JP2006278618A - Electric double-layer capacitor and gas discharge valve thereof - Google Patents

Electric double-layer capacitor and gas discharge valve thereof Download PDF

Info

Publication number
JP2006278618A
JP2006278618A JP2005093967A JP2005093967A JP2006278618A JP 2006278618 A JP2006278618 A JP 2006278618A JP 2005093967 A JP2005093967 A JP 2005093967A JP 2005093967 A JP2005093967 A JP 2005093967A JP 2006278618 A JP2006278618 A JP 2006278618A
Authority
JP
Japan
Prior art keywords
container
electric double
layer capacitor
double layer
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005093967A
Other languages
Japanese (ja)
Other versions
JP4515304B2 (en
Inventor
Hideo Ono
英雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2005093967A priority Critical patent/JP4515304B2/en
Publication of JP2006278618A publication Critical patent/JP2006278618A/en
Application granted granted Critical
Publication of JP4515304B2 publication Critical patent/JP4515304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double-layer capacitor which can acquire superior durability thereof with the inclusion of a vessel, while the maximum characteristic of a carbon material is attained, even when the principal material of polarizing electrodes uses the carbon material having a larger expansion coefficient resulting from charging, such as a non-porous carbon. <P>SOLUTION: The vessel 21 is formed of a soft resin film in the laminated structure including an intermediate layer of metal foil, and a liquid storing unit 35 which can store a certain amount of electrolytic liquid, corresponding to the increase in the amount of impregnation resulting from expansion of a laminate 22 is set in the periphery of the laminate 22. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、電気二重層キャパシタおよび電気二重層キャパシタに好適なガス抜きバルブに関する。   The present invention relates to an electric double layer capacitor and a gas vent valve suitable for an electric double layer capacitor.

近年、各種の蓄電素子として、高速充放電,充放電深度,充放電サイクル特性に優れる電気二重層キャパシタの適用技術が注目される。電気二重層キャパシタは、正極体と負極体とこれらの間に介装するセパレータとから組成される積層体と、積層体を電解質溶液と共に密封する容器と、容器の外部に配置される1対の端子と、からなり、1対の端子が正極体および負極体の同極どうしの結束部に接続される。   2. Description of the Related Art In recent years, attention has been focused on application technologies of electric double layer capacitors that are excellent in high-speed charge / discharge, charge / discharge depth, and charge / discharge cycle characteristics as various power storage elements. The electric double layer capacitor includes a laminate composed of a positive electrode body, a negative electrode body, and a separator interposed therebetween, a container for sealing the laminate together with an electrolyte solution, and a pair of electrodes disposed outside the container. And a pair of terminals are connected to a bundling portion of the positive and negative electrodes having the same polarity.

正極体および負極体は、炭素質材料を主原料に分極性電極が形成され、この炭素電極に集電体が取り付けられる。電荷は炭素電極に溜まり、電気の出し入れは1対のの端子(集電体の同極どうしの結束部に接続する)を介して行われるのである。分極性電極を形成する炭素質材料として、多孔質の活性炭がよく用いられる(特許文献1,特許文献2)。また、活性炭に代わる炭素質材料として、非多孔性炭素が知られている(非特許文献1)。   In the positive electrode body and the negative electrode body, a polarizable electrode is formed using a carbonaceous material as a main raw material, and a current collector is attached to the carbon electrode. Electric charges are accumulated on the carbon electrode, and electricity is supplied and taken out through a pair of terminals (connected to the bundling portions of the current collector with the same polarity). As a carbonaceous material for forming a polarizable electrode, porous activated carbon is often used (Patent Document 1, Patent Document 2). Moreover, nonporous carbon is known as a carbonaceous material replacing activated carbon (Non-patent Document 1).

非多孔性炭素は、易黒鉛化炭を乾留およびアルカリ賦活して得られるものであり、比表面積が100m2/g以下と、殆ど外比表面積だけと見させる程小さく、炭素組織の層間距離が0.36〜0.37nmの黒鉛様炭素である。このような非多孔性炭素を主原料に形成される分極性電極を用いる電気二重層キャパシタについては、充電により、初めて静電容量を発生する。充電前は、各種電解質イオン,溶媒,N2ガスなどを取り込める程度の細孔がない非多孔性炭素にも拘わらず、充電により、静電容量が発生するのは、炭素組織の層間への溶媒を伴った電解質イオンのインターカレーション(溶媒共挿入:solvent co-intercalation)によるものと推定されるのである。
特開2002−299168 特開2003−124078 『高エネルギー密度の電気二重層キャパシタ』(応用物理 第37巻 第8号(2004) 所載)
Non-porous carbon is obtained by dry distillation and alkali activation of graphitized charcoal, and has a specific surface area of 100 m 2 / g or less, which is so small that it can be regarded as almost only the external specific surface area, and the interlayer distance of the carbon structure is small. It is 0.36-0.37 nm graphite-like carbon. For an electric double layer capacitor using a polarizable electrode formed of such non-porous carbon as a main raw material, capacitance is generated for the first time by charging. Before charging, even though non-porous carbon does not have pores that can take in various electrolyte ions, solvents, N 2 gas, etc., the capacitance is generated by charging because of the solvent between the layers of the carbon structure. It is presumed that this is due to intercalation of electrolyte ions accompanied by (solvent co-intercalation).
JP 2002-299168 A JP2003-124078 “High Energy Density Electric Double Layer Capacitor” (Applied Physics Vol. 37, No. 8 (2004))

特許文献1および特許文献2の場合、積層体を電解質溶液と共に密封する容器については、金属箔の中間層を含む積層構造の樹脂フィルムから形成され、積層体を電解質溶液と共に収容して熱溶着による密封処理が施される。   In the case of Patent Document 1 and Patent Document 2, the container for sealing the laminate together with the electrolyte solution is formed from a resin film having a laminated structure including an intermediate layer of metal foil, and the laminate is accommodated together with the electrolyte solution by heat welding. Sealing is applied.

電気二重層キャパシタにおいては、充放電により、気体状の分解生成物が発生すると、容器の内圧が高まり、容器の密封性を損なう可能性がある。このため、外気の侵入を防止しつつ、容器の内圧を所定レベルに維持するべく、容器の密封部にガス抜きバルブを組み付けることが考えられる。ところが、分極性電極の主原料が非多孔性炭素のような充電に伴う膨張率が大きい炭素質材料を用いる場合、積層体の膨張により、容器の密封部(熱溶着部)に剥離が生じやすくなる。また、放電に伴って積層体が収縮すると、積層体の電解質溶液の含浸量が減る分、容器の内部において、積層体の外側に電解質溶液が溢れてガス抜きバルブへ侵入しやすく、ガス抜きバルブの良好な機能を損なう可能性も考えられるのである。   In the electric double layer capacitor, when a gaseous decomposition product is generated due to charge and discharge, the internal pressure of the container is increased, which may impair the sealing performance of the container. For this reason, in order to maintain the internal pressure of the container at a predetermined level while preventing the intrusion of outside air, it is conceivable to assemble a gas vent valve in the sealed part of the container. However, when the main material of the polarizable electrode is a carbonaceous material having a large expansion coefficient associated with charging, such as non-porous carbon, peeling of the sealed portion (thermal welding portion) of the container is likely to occur due to the expansion of the laminate. Become. Further, when the laminate contracts with discharge, the amount of the electrolyte solution impregnated in the laminate decreases, so that the electrolyte solution overflows outside the laminate inside the container and easily enters the vent valve. There is also a possibility of damaging the good function of the.

この発明は、このような課題に対処するため、分極性電極の主原料が非多孔性炭素のような充電に伴う膨張率が大きい炭素質材料を用いる場合においても、炭素質材料の特性を最大限に引き出しつつ、容器を含む良好な耐久性を確保しえる、電気二重層キャパシタの提供を目的とする。   In order to cope with such a problem, the present invention maximizes the characteristics of the carbonaceous material even when the main material of the polarizable electrode is a carbonaceous material having a large expansion coefficient associated with charging, such as non-porous carbon. An object of the present invention is to provide an electric double layer capacitor capable of ensuring good durability including a container while drawing out to the limit.

第1の発明は、炭素質材料を主原料に分極性電極を形成すると共に集電体をこの炭素電極に取り付けることにより正極体および負極体を作成する工程、正極体と負極体とセパレータとから平板型の積層体を組成する工程、正極体および負極体のリード部としてこれらの同極どうしの結束部に1対の端子を接合する工程、容器に1対の端子の一部が突き出る状態に積層体を収めて注入した電解質溶液に含浸させる工程、炭素電極の電界賦活を行うべく1対の端子の間に電圧を印加する工程、1対の端子の一部が突き出る容器の開口を密封する工程、を経て製造される電気二重層キャパシタにおいて、容器は、金属箔の中間層を含む積層構造の柔軟な樹脂フィルムから形成され、積層体の膨張に伴う含浸量の増加分に相応する電解質溶液量を収容可能な保液部を積層体の周辺に設定したことを特徴とする。   The first invention includes a step of forming a polarizable electrode using a carbonaceous material as a main raw material and attaching a current collector to the carbon electrode to form a positive electrode body and a negative electrode body, and a positive electrode body, a negative electrode body, and a separator. A step of composing a flat laminate, a step of bonding a pair of terminals to the bundling portions of the same polarity as the lead portions of the positive electrode body and the negative electrode body, and a state in which a part of the pair of terminals protrudes from the container The step of impregnating the injected electrolyte solution containing the laminated body, the step of applying a voltage between the pair of terminals in order to activate the electric field of the carbon electrode, and sealing the opening of the container from which a part of the pair of terminals protrudes In the electric double layer capacitor manufactured through the process, the container is formed from a flexible resin film having a laminated structure including an intermediate layer of metal foil, and an electrolyte solution corresponding to an increase in the amount of impregnation accompanying expansion of the laminated body Accommodating quantity Characterized in that setting the capacity of the liquid retaining portion to the periphery of the laminate.

第2の発明は、第1の発明に係る電気二重層キャパシタにおいて、保液部にチューブまたはセパレータ等の保液性の良い材料を収装したことを特徴とする。   The second invention is characterized in that in the electric double layer capacitor according to the first invention, a material having a good liquid retention property such as a tube or a separator is accommodated in the liquid retention part.

第3の発明は、第2の発明に係る電気二重層キャパシタにおいて、チューブはフッ素樹脂から形成したことを特徴とする。   According to a third invention, in the electric double layer capacitor according to the second invention, the tube is made of a fluororesin.

第4の発明は、第1の発明に係る電気二重層キャパシタにおいて、1対の端子の一部が突き出る容器の密封部にガス抜きバルブを熱溶着により組み付けたことを特徴とする。   According to a fourth aspect of the invention, in the electric double layer capacitor according to the first aspect of the invention, a gas vent valve is assembled by heat welding to a sealed portion of a container from which a part of a pair of terminals protrudes.

第5の発明は、第4の発明に係る電気二重層キャパシタに用いられるガス抜きバルブにおいて、バルブボディの少なくとも一部が熱溶着性樹脂から形成され、その樹脂面に熱溶着性樹脂が盛り上がるリブ状の凸部を備えたことを特徴とする。   According to a fifth aspect of the present invention, in the gas vent valve used in the electric double layer capacitor according to the fourth aspect of the present invention, at least a part of the valve body is formed of a heat-weldable resin, and the ribs on which the heat-weldable resin swells It has the shape of a convex part.

第1の発明においては、充電に伴う積層体の膨張により、積層体の電解質溶液の含浸量が増える分は、保液部の電解質溶液によって補償される。放電に伴って積層体が収縮すると、積層体の電解質溶液の含浸量が減る分、容器の内部において、積層体の外側の電解質溶液が増えることになるが、その分は保液部に収容される。このため、積層体の膨張に応じた含浸量の変化が保液部に吸収され、容器の密封部(熱溶着部)に無理が掛かることもなく、容器を含む電気二重層キャパシタの良好な耐久性を確保することができる。   In the first invention, the increase in the amount of the electrolyte solution impregnated in the laminate due to the expansion of the laminate due to charging is compensated by the electrolyte solution in the liquid retaining portion. When the laminate shrinks with the discharge, the amount of electrolyte solution impregnated in the laminate decreases, and the amount of electrolyte solution outside the laminate increases inside the container. The For this reason, the change in the amount of impregnation according to the expansion of the laminate is absorbed by the liquid retaining part, and the electric double layer capacitor including the container has good durability without overloading the sealed part (thermal welding part) of the container. Sex can be secured.

第2の発明においては、容器の内外の圧力差により、保液部に圧縮力が作用しても、チューブにより保液部が潰れるのを抑えられ、チューブの内径を保液部として必要な容積を確保することが可能となる。また、容積の確保のため、チューブの代わりにセパレータ等の保液性の良い材料を用いても良い。   In the second invention, even if a compressive force is applied to the liquid retaining part due to a pressure difference between the inside and outside of the container, the liquid retaining part is prevented from being crushed by the tube, and the volume required for the inner diameter of the tube as the liquid retaining part. Can be secured. In addition, in order to secure the volume, a material having good liquid retention properties such as a separator may be used instead of the tube.

第3の発明においては、フッ素樹脂製により、チューブに必要な特性(機械強度,耐薬品性,電気絶縁性,等)が確保される。   In the third invention, the properties (mechanical strength, chemical resistance, electrical insulation, etc.) necessary for the tube are ensured by the fluororesin.

第4の発明においては、充放電に伴って気体状の分解生成物が発生しても、ガス抜きバルブにより、外気の侵入を防止しつつ、容器の内圧を所定レベルに維持しえる。また、電解質溶液の保液部により、放電時に電解質溶液が積層体の外側に溢れてガス抜きバルブへ侵入(オーバフロー)するのを防止しえる。これらにより、容器の密封部およびガス抜きバルブを含む電気二重層キャパシタの良好な耐久性を確保することができる。   In the fourth aspect of the invention, even when a gaseous decomposition product is generated along with charging / discharging, the internal pressure of the container can be maintained at a predetermined level while preventing the entry of outside air by the gas vent valve. Further, the electrolyte solution holding part can prevent the electrolyte solution from overflowing to the outside of the laminate during discharge and entering the gas vent valve (overflow). As a result, it is possible to ensure good durability of the electric double layer capacitor including the sealed portion of the container and the gas vent valve.

第5の発明においては、リブ状の凸部により、熱溶着部を形成する樹脂量が増えるので、容器の密封部(ガス抜きバルブの組付部)を十分に補強することができる。容器の機械強度を高めるため、樹脂フィルムの金属箔の厚みを相対的に大きくする場合においても、リブ状の凸部により、熱溶着部の樹脂量の確保が図れ、必要な溶着強度を与えられるのである。   In the fifth aspect of the invention, the amount of resin forming the heat-welded portion is increased by the rib-like convex portion, so that the sealing portion of the container (the assembly portion of the gas vent valve) can be sufficiently reinforced. In order to increase the mechanical strength of the container, even when the thickness of the metal foil of the resin film is relatively increased, the rib-like convex portion can secure the amount of resin in the heat-welded portion and give the necessary welding strength. It is.

図1,図2において、電気二重層キャパシタ1の一例を説明する。22はキャパシタ本体を構成する平板型の積層体であり、21は積層体22を電解液と共に密封する容器であり、24は容器21の外部に突き出る1対の端子である。各端子24は、高純度のアルミ板から形成される。35は容器21の内部に発生する気体状の分解生成物を容器21の外部へ除去するためのガス抜きバルブであり、容器21の上部において、1対の端子24の間に組み付けられる。   1 and 2, an example of the electric double layer capacitor 1 will be described. Reference numeral 22 denotes a flat plate-type laminated body constituting the capacitor body, 21 denotes a container for sealing the laminated body 22 together with the electrolytic solution, and 24 denotes a pair of terminals protruding outside the container 21. Each terminal 24 is formed from a high-purity aluminum plate. Reference numeral 35 denotes a degassing valve for removing a gaseous decomposition product generated inside the container 21 to the outside of the container 21, and is assembled between a pair of terminals 24 at the upper part of the container 21.

平板型の積層体22は、正極体と負極体とこれらの間に介装されるセパレータとから組成される。正極体および負極体は、分極性電極と集電体とから構成される。分極性電極は、非多孔性炭素(炭素質材料)を主原料に形成される。集電体は、高純度のアルミ箔から形成され、分極性電極(炭素電極)に取り付けられる。セパレータは、圧縮状態で100μmのガラス繊維から作られ、電解質溶液の保持体(retainner)機能を与えるべく、分極性電極と同等以上の厚みに設定される。分極性電極の集電体は、同極どうしが結束され、各結束部に極性の対応する端子24が接合される。   The flat plate-type laminate 22 is composed of a positive electrode body, a negative electrode body, and a separator interposed therebetween. The positive electrode body and the negative electrode body are composed of a polarizable electrode and a current collector. The polarizable electrode is formed using non-porous carbon (carbonaceous material) as a main raw material. The current collector is formed from a high-purity aluminum foil and is attached to a polarizable electrode (carbon electrode). The separator is made of 100 μm glass fiber in a compressed state, and is set to a thickness equal to or greater than that of the polarizable electrode in order to provide a retainer function for the electrolyte solution. The current collectors of the polarizable electrodes are bundled with the same polarity, and the terminals 24 corresponding to the polarities are joined to the respective binding portions.

容器21は、金属箔の中間層を含む積層構造の樹脂フィルム(ラミネートフィルム)から絞り加工により成形される2つの容器部材(底側部材と蓋側部材と)からなり、これらを組み合わせると、互いの向き合う凹部21aにより、底側部材と蓋側部材との間に積層体22の収容部が形成される。凹部21aの底面から合わせ面21bへ立ち上がる側面が2つの曲がり部21c,21dを持つ階段状に形成され、収容部の周辺に保液部36が設けられる。保液部36は、充電による積層体の膨張に伴う含浸量の増加分に相応する電解質溶液量を収容可能な容積に設定される。   The container 21 is composed of two container members (a bottom side member and a lid side member) formed by drawing from a resin film (laminated film) having a laminated structure including an intermediate layer of metal foil. The accommodating part of the laminated body 22 is formed between the bottom-side member and the lid-side member by the facing recesses 21a. A side surface rising from the bottom surface of the recess 21a to the mating surface 21b is formed in a stepped shape having two bent portions 21c and 21d, and a liquid retaining portion 36 is provided around the storage portion. The liquid retaining portion 36 is set to a volume that can accommodate the amount of the electrolyte solution corresponding to the increase in the amount of impregnation accompanying the expansion of the laminate due to charging.

積層体22は、底側部材の内側に納められ、その上に蓋側部材が被せられる。容器21の周縁において、1対の端子24の一部が引き出される一辺を除く三辺が熱溶着される。容器21は、1対の端子24の一部が突き出る一辺が開口可能となり、その開口部から内部に電解質溶液が注入され、含浸処理および電界賦活が終わると、容器21内の余分な電解液が抜き取られ、残りの開口可能な一辺が熱溶着されるのである。   The laminated body 22 is housed inside the bottom side member, and the lid side member is placed thereon. At the peripheral edge of the container 21, three sides are thermally welded except one side from which a part of the pair of terminals 24 is drawn. The container 21 can be opened at one side from which a part of the pair of terminals 24 protrudes, and when the electrolyte solution is injected into the inside through the opening and the impregnation treatment and the electric field activation are finished, the excess electrolyte in the container 21 is removed. It is extracted and the remaining openable side is heat welded.

1対の端子24と容器21の金属箔(樹脂フィルムの中間層)との電気絶縁性を確保するため、これらの端子に板状の熱溶着性樹脂が取り付けられる。容器21の開口可能な一辺において、熱溶着の密閉処理により、板状の熱溶着性樹脂は、容器21の内面(樹脂フィルムの表層)と溶融しながら1対の端子24を包み込むるように固まり、これら端子24が樹脂フィルムの中間層(金属箔)に接触するのを防止するのである。   In order to ensure electrical insulation between the pair of terminals 24 and the metal foil (interlayer of the resin film) of the container 21, a plate-like heat-welding resin is attached to these terminals. On one openable side of the container 21, the plate-like heat-welding resin is solidified so as to wrap around the pair of terminals 24 while being melted with the inner surface of the container 21 (surface layer of the resin film). These terminals 24 are prevented from coming into contact with the intermediate layer (metal foil) of the resin film.

図3〜図6において、40はガス抜きバルブ35のバルブボディであり、容器21との熱溶着部41と、容器21の内部への挿入部42と、容器21の外部への突出部43と、からなり、これらを貫通するガス抜き通路44が形成される。ガス抜き通路44の出口側は弁室45に形成され、ガス抜き通路44の入口側に気体状の分解生成物が溜まる大径の空間容積46が設定される。弁室45と空間容積46との間に中継部47が形成され、弁室45と中継部47との境(段差面)が弁座48に設定される。弁室45に弁体(図示せず)およびその開弁圧を設定するバネ(図示せず)が収装され、気体状の分解生成物と一緒に電解質溶液が外部へ持ち出されるのを抑止するガス透過膜(図示せず)が中継部47に介装される。   3 to 6, reference numeral 40 denotes a valve body of the gas vent valve 35, which includes a heat welding portion 41 with the container 21, an insertion portion 42 inside the container 21, and a protruding portion 43 outside the container 21. , And a gas vent passage 44 extending therethrough is formed. An outlet side of the gas vent passage 44 is formed in the valve chamber 45, and a large-diameter space volume 46 in which a gaseous decomposition product is accumulated is set on the inlet side of the gas vent passage 44. A relay portion 47 is formed between the valve chamber 45 and the space volume 46, and a boundary (step surface) between the valve chamber 45 and the relay portion 47 is set in the valve seat 48. A valve body (not shown) and a spring (not shown) for setting the valve opening pressure are accommodated in the valve chamber 45 to prevent the electrolyte solution from being taken out together with the gaseous decomposition products. A gas permeable membrane (not shown) is interposed in the relay unit 47.

バルブボディ40は、熱溶着性樹脂から一体成形され、容器21との熱溶着面を大きく確保するため、熱溶着部41の外周が翼状に形成される。分極性電極の主原料が非多孔性炭素であり、充電時の膨張率が大きいので、容器21の密封部(熱溶着部)を補強するため、熱溶着部41の外面に熱溶着性樹脂がリブ状に盛り上がる複数の凸部49が備えられる。   The valve body 40 is integrally formed from a heat-weldable resin, and the outer periphery of the heat-welded portion 41 is formed in a wing shape in order to ensure a large heat-welded surface with the container 21. Since the main material of the polarizable electrode is non-porous carbon and has a large expansion coefficient at the time of charging, in order to reinforce the sealing part (thermal welding part) of the container 21, a heat welding resin is provided on the outer surface of the thermal welding part 41. A plurality of convex portions 49 that rise in a rib shape are provided.

ガス抜きバルブ35は、容器21の周縁において、三辺の熱溶着後、残る一辺において、熱溶着の密閉処理により、1対の端子24に取り付けられる板状の熱溶着性樹脂と共にバルブボディ40の熱溶着部41を介して容器21の上部に組み付けられるのである。   The gas vent valve 35 is formed on the periphery of the container 21 together with the plate-like heat-welding resin attached to the pair of terminals 24 by the heat-sealing sealing process on the remaining side after the three sides are heat-welded. It is assembled to the upper part of the container 21 via the heat welding part 41.

このような構成によると、充放電に伴って気体状の分解生成物が発生しても、ガス抜きバルブ35により、外気の侵入を防止しつつ、容器21の内圧を開弁圧以下に維持しえる。充電に伴う積層体22の膨張により、積層体22の電解質溶液の含浸量が増える分は、保液部36の電解質溶液によって補償される。放電に伴って積層体22が収縮すると、積層体22の電解質溶液の含浸量が減る分、容器21の内部において、積層体22の外側の電解質溶液が増えることになるが、その分は保液部36に収容される。このため、積層体22の膨張に応じた含浸量の変化が保液部36に吸収され、容器21の密封部(熱溶着部)に無理が掛かることもなく、容器21を含む電気二重層キャパシタの良好な耐久性を確保することができる。   According to such a configuration, even if a gaseous decomposition product is generated due to charging / discharging, the internal pressure of the container 21 is maintained below the valve opening pressure by the gas vent valve 35 while preventing intrusion of outside air. Yeah. The increase in the amount of the electrolyte solution impregnated in the multilayer body 22 due to the expansion of the multilayer body 22 due to charging is compensated by the electrolyte solution in the liquid retaining portion 36. When the laminate 22 contracts with the discharge, the electrolyte solution outside the laminate 22 is increased inside the container 21 as the amount of electrolyte solution impregnated in the laminate 22 is reduced. Housed in part 36. For this reason, the change of the impregnation amount according to the expansion of the laminated body 22 is absorbed by the liquid retaining part 36, and the sealing part (thermal welding part) of the container 21 is not forced, and the electric double layer capacitor including the container 21 Good durability can be secured.

ガス抜きバルブ35は、リブ状の凸部49により、熱溶着部41の樹脂量が増えるので、容器21との溶着強度および容器21の密封性を十分に高めることができる。積層体22の膨張率に対応して容器21の機械強度を高めるため、樹脂フィルムの金属箔の厚みを相対的に大きくする場合においても、リブ状の凸部49により、熱溶着部41の樹脂量の確保が図れ、必要な溶着強度を与えられるのである。また、電解質溶液の保液部36により、放電時に電解質溶液が積層体の外側に溢れてガス抜きバルブ35へ侵入(オーバフロー)するのを防止しえる。電解質溶液がガス抜きバルブ35に侵入すると、ガス抜き通路44に電解質溶液がこびりつく可能性もあり、正常なガス抜き機能(弁体の開閉動作)を阻害しかねないのである。   In the gas vent valve 35, the amount of resin in the heat-welded portion 41 is increased by the rib-like convex portion 49, so that the welding strength with the container 21 and the sealing performance of the container 21 can be sufficiently improved. In order to increase the mechanical strength of the container 21 corresponding to the expansion rate of the laminate 22, even when the thickness of the metal foil of the resin film is relatively large, the resin of the heat welded portion 41 is formed by the rib-like convex portions 49. The amount can be secured and the necessary welding strength can be provided. In addition, the electrolyte solution holding part 36 can prevent the electrolyte solution from overflowing to the outside of the laminate during discharge and entering the gas vent valve 35 (overflow). When the electrolyte solution enters the gas vent valve 35, the electrolyte solution may be stuck in the gas vent passage 44, which may hinder a normal gas vent function (valve opening / closing operation).

図7は、電気二重層キャパシタの製造過程において、電界賦活などを処理するための装置を説明するものである。槽11は、各工程の処理手段と共にグローブボックスの内部に設置される。グローブボックスの内部は、常圧の低露点(例えば、露点温度が−90℃)の不活性雰囲気に管理(維持)される。   FIG. 7 illustrates an apparatus for processing electric field activation or the like in the manufacturing process of the electric double layer capacitor. The tank 11 is installed inside the glove box together with the processing means of each process. The inside of the glove box is managed (maintained) in an inert atmosphere having a low pressure dew point at normal pressure (for example, a dew point temperature of −90 ° C.).

図7において、21が槽11に収蔵される容器であり、1対の端子24の一部が突き出る一辺が開口可能に構成される。槽11は、真空ポンプに接続される配管用の開口部12と、槽11の内部をグローブボックスに開放する通路13およびこれを開閉するバルブ13aと、を備える。バルブ13aおよび蓋14を閉じると、槽11の内部は高度な密閉状態に保持される。15は充放電装置に接続されるコネクタであり、槽11の内部において、容器21の開口から突き出る1対の端子34は、コネクタ15から延びる配線(コード)の鰐口部を介して分離可能に接続される。   In FIG. 7, 21 is a container stored in the tank 11, and one side from which a part of the pair of terminals 24 protrudes is configured to be openable. The tank 11 includes an opening 12 for piping connected to a vacuum pump, a passage 13 that opens the inside of the tank 11 to a glove box, and a valve 13a that opens and closes the passage 13. When the valve 13a and the lid 14 are closed, the inside of the tank 11 is maintained in a highly sealed state. Reference numeral 15 denotes a connector connected to the charging / discharging device. In the tank 11, a pair of terminals 34 protruding from the opening of the container 21 are separably connected via a wire (cord) opening extending from the connector 15. Is done.

25は容器21を所定状態に保持する治具であり、プレート26に締付ボルト27が進退可能に螺合され、締付ボルト17上をスライド可能に支持されるプレート28,29が設けられる。プレート28,29間にスプリング30が介装され、締付ボルト27を初期位置からネジ込むと、スプリング30が圧縮され、プレート29,26間の容器21に作用する押圧力を高めるようになっている。図示しないが、槽11は、電解質溶液を容器21に注入するための設備と、容器21内の余分な電解質溶液を抜き取るための設備と、を備える。   Reference numeral 25 denotes a jig that holds the container 21 in a predetermined state, and is provided with plates 28 and 29 that are screwed onto the plate 26 so that the fastening bolts 27 can be advanced and retracted, and are slidably supported on the fastening bolts 17. When a spring 30 is interposed between the plates 28 and 29 and the tightening bolt 27 is screwed from the initial position, the spring 30 is compressed and the pressing force acting on the container 21 between the plates 29 and 26 is increased. Yes. Although not shown, the tank 11 includes equipment for injecting the electrolyte solution into the container 21 and equipment for extracting the excess electrolyte solution in the container 21.

電気二重層キャパシタは、(1)炭素質材料を主原料に分極性電極を形成すると共に集電体をこの炭素電極に取り付けることにより正極体および負極体を作成する工程、(2)正極体と負極体とセパレータとから平板型の積層体22を組成する工程、(3)正極体および負極体のリード部としてこれらの同極どうしの結束部に1対の端子24を接合する工程、(4)容器21に1対の端子の一部が突き出る状態に積層体22を収めて注入した電解質溶液に含浸させる工程、(5)炭素電極の電界賦活を行うべく1対の端子24の間に電圧を印加する工程、(6)1対の端子の一部が突き出る容器の開口を密封する工程、を経て製造される。   The electric double layer capacitor includes (1) a step of forming a polarizable electrode using a carbonaceous material as a main raw material and attaching a current collector to the carbon electrode to create a positive electrode body and a negative electrode body, and (2) a positive electrode body and A step of composing a flat laminate 22 from a negative electrode body and a separator; (3) a step of bonding a pair of terminals 24 to the bundling portions of the same polarity as lead portions of the positive electrode body and the negative electrode body; ) A step of placing the laminate 22 in a state where a part of the pair of terminals protrudes from the container 21 and impregnating the injected electrolyte solution; and (5) a voltage between the pair of terminals 24 to activate the electric field of the carbon electrode. And (6) sealing the opening of the container from which a part of the pair of terminals protrudes.

(1)の工程において、非多孔性炭素は、比表面積が100m2/g以下かつ炭素組織の層間距離が0.36〜0.37nmの黒鉛様炭素であり、易黒鉛化コークスあるいはピッチ(前駆体)を300〜400℃で乾留した後、この原料炭に苛性アルカリ(例えば、KOH)を混合して不活性雰囲気中で650〜850℃に加熱する処理(アルカリ賦活)から得られる。乾留を経ない場合、多孔質の活性炭が生成される。 In the step (1), the non-porous carbon is a graphite-like carbon having a specific surface area of 100 m 2 / g or less and a carbon structure interlayer distance of 0.36 to 0.37 nm, and is easily graphitized coke or pitch (precursor). Body) is subjected to dry distillation at 300 to 400 ° C., and then the raw coal is mixed with caustic (eg, KOH) and heated to 650 to 850 ° C. in an inert atmosphere (alkali activation). When carbonization is not performed, porous activated carbon is generated.

非多孔性炭素は、通常の手法で洗浄,粉砕などの処理を施した後、導電材(例えば、カーボンブラック)および結着材(例えば、ポリテトラフルオロエチレン)を加えて混練してシート状の分極性電極に形成され、この炭素電極に集電体を取り付けることにより、正極体および負極体が作成されるのである。   Non-porous carbon is processed into a sheet-like shape after being subjected to treatment such as washing and pulverization by a usual method, and then a conductive material (for example, carbon black) and a binder (for example, polytetrafluoroethylene) are added and kneaded. A positive electrode body and a negative electrode body are formed by forming a polarizable electrode and attaching a current collector to the carbon electrode.

(2)の工程においては、正極体と負極体とこれらの間に介装するセパレータとから平板型の積層体22が組成される。組成前の正極体および負極体は、真空乾燥炉に入れ、真空度10-5Pa以下の減圧状態において、温度200℃以上に加熱する。極度の減圧状態を確保するため、ターボ分子ポンプが使用される。この処理(真空乾燥)が終わると、正極体および負極体を真空乾燥炉からグローブボックスへ搬送する前に炉内を常圧に戻すべく低露点(例えば、露点温度が−90℃)の不活性ガスを充填するのである。ガラス繊維のセパレータについても、真空乾燥炉に正極体および負極体と一緒に入れ、真空度10-5Pa以下の減圧状態において、温度200℃以上に加熱する。 In the step (2), a plate-type laminate 22 is composed of a positive electrode body, a negative electrode body, and a separator interposed therebetween. The positive electrode body and negative electrode body before composition are put in a vacuum drying furnace and heated to a temperature of 200 ° C. or higher in a reduced pressure state with a vacuum degree of 10 −5 Pa or lower. A turbo molecular pump is used to ensure an extremely reduced pressure state. After this treatment (vacuum drying) is completed, the low dew point (for example, dew point temperature is −90 ° C.) is inert so that the positive electrode body and the negative electrode body are returned to normal pressure before being transported from the vacuum drying furnace to the glove box. Fill with gas. The glass fiber separator is also put in a vacuum drying furnace together with the positive electrode body and the negative electrode body, and heated to a temperature of 200 ° C. or higher in a reduced pressure state with a vacuum degree of 10 −5 Pa or lower.

(3)の工程において、積層体22の各集電体は、同極どうしが結束され、各結束部に極性の対応する端子24を溶接する。   In the step (3), the current collectors of the laminate 22 are bundled with the same polarity, and the terminals 24 corresponding to the polarities are welded to the bundling portions.

(4)の工程において、積層体22は、容器21の底側部材の内側に納められ、その上に蓋側部材が被せられる。容器21の周縁において、1対の端子24の一部が引き出される一辺を除く三辺が熱溶着される。容器21は、1対の端子24の一部が突き出る一辺が開口可能になり、その状態で図1の槽11に収蔵される。密閉した槽11の内部を10Pa以下に減圧し、10Pa以下の減圧状態を保持しつつ、所定時間が経過すると、低露点(例えば、露点温度が−90℃)の不活性ガスを充填して槽11の内部を常圧に戻すのであり、常圧状態を保持しつつ、電解質溶液を容器21に注入する。注入後は、槽11の内部を10Pa以下の減圧状態に保持する処理と、低露点の不活性ガスの充填によって常圧状態に保持する処理と、が交互に繰り返される。これにより、炭素電極(分極性電極)およびセパレータに電解質溶液が十分に浸透するようになり、含浸時間も短縮される。   In the step (4), the laminated body 22 is housed inside the bottom side member of the container 21, and the lid side member is placed thereon. At the peripheral edge of the container 21, three sides are thermally welded except one side from which a part of the pair of terminals 24 is drawn. The container 21 can be opened at one side from which a part of the pair of terminals 24 protrudes, and is stored in the tank 11 of FIG. The inside of the sealed tank 11 is depressurized to 10 Pa or less, and when a predetermined time elapses while maintaining a depressurized state of 10 Pa or less, the tank is filled with an inert gas having a low dew point (for example, a dew point temperature of −90 ° C.). 11 is returned to normal pressure, and the electrolyte solution is injected into the container 21 while maintaining the normal pressure state. After the injection, the process of maintaining the inside of the tank 11 in a reduced pressure state of 10 Pa or less and the process of maintaining the normal pressure state by filling with an inert gas having a low dew point are alternately repeated. As a result, the electrolyte solution can sufficiently penetrate the carbon electrode (polarizable electrode) and the separator, and the impregnation time is also shortened.

(5)の工程においては、1次電界賦活および2次電界賦活が処理される。1次電界賦活は、密閉した槽11の内部を10Pa以下の減圧状態に保持しつつ行われる充放電サイクルであり、電流密度が所定値(例えば、1mA/cm2)未満の定電流充電により、長時間かけて電圧を徐々に高め、予め定めた印加可能な最大電圧(例えば、3V〜5V)に達したら、その電圧を保持しつつ、所定時間が経過すると、定電流放電により、電圧を0Vまで低下させる。2次電界賦活は、密閉した槽11の内部を常圧の低露点(例えば、露点温度が−90℃)の不活性雰囲気に保持しつつ行われる充電サイクルと、10Pa以下の減圧状態に保持しつつ行われる充放電サイクルと、を交互に所定回数(例えば、2〜15回)行う処理であり、各充放電サイクルにおいて、電流密度が所定値(例えば、1mA/cm2)以上の定電流充電により、電圧を短時間に高め、予め定めた印加可能な最大電圧(例えば、3V〜5V)に達したら、その電圧を保持しつつ、所定時間が経過すると、定電流放電により、電圧を0Vまで低下させる。 In the step (5), primary electric field activation and secondary electric field activation are processed. The primary electric field activation is a charge / discharge cycle performed while maintaining the inside of the sealed tank 11 in a reduced pressure state of 10 Pa or less, and by constant current charging with a current density less than a predetermined value (for example, 1 mA / cm 2 ), When the voltage is gradually increased over a long period of time and reaches a predetermined maximum voltage that can be applied (for example, 3 V to 5 V), the voltage is kept at 0 V by constant current discharge after a predetermined time while maintaining the voltage. To lower. In the secondary electric field activation, the inside of the sealed tank 11 is maintained in a charging cycle performed while maintaining an inert atmosphere with a low pressure dew point (for example, a dew point temperature of −90 ° C.) and a reduced pressure state of 10 Pa or less. Charging and discharging cycles carried out while being carried out alternately at a predetermined number of times (for example, 2 to 15 times), and in each charging and discharging cycle, constant current charging with a current density of a predetermined value (for example, 1 mA / cm 2 ) or more. By increasing the voltage in a short time and reaching a predetermined maximum voltage that can be applied (for example, 3 V to 5 V), the voltage is kept to 0 V by constant current discharge after a predetermined time while maintaining the voltage. Reduce.

2次電界賦活の、密閉した槽11の内部を常圧の低露点の不活性雰囲気に保持しつつ行われる、最後の充放電サイクルにおいては、予め定めた印加可能な最大電圧を一定時間保持しつつ、槽11の蓋14を開いた状態において、治具25の締付ボルト27を初期位置から所定量だけネジ込むことにより、スプリング30のバネ力(容器21への押圧力)を高め、容器21内の余分な電解質溶液を回収する。その後、治具25の締付ボルト27を初期位置に緩め、定電流放電により、電圧を0Vに低下させる。   In the final charge / discharge cycle, which is performed while maintaining the inside of the sealed tank 11 of the secondary electric field activation in an inert atmosphere with a low dew point at normal pressure, a predetermined maximum voltage that can be applied is maintained for a certain period of time. In the state where the lid 14 of the tank 11 is opened, the tightening bolt 27 of the jig 25 is screwed by a predetermined amount from the initial position, thereby increasing the spring force of the spring 30 (the pressing force to the container 21), and the container The excess electrolyte solution in 21 is collected. Thereafter, the fastening bolt 27 of the jig 25 is loosened to the initial position, and the voltage is reduced to 0 V by constant current discharge.

(6)の工程においては、容器21の残る一辺を熱溶着することにより、1対の端子24の間にガス抜きバルブ35を組み付けるのである。ガス抜きバルブ35は、熱溶着の密閉処理により、1対の端子24に付けた板状の熱溶着性樹脂と共にバルブボディ40の熱溶着部41を介して容器21の上部に組み付けられる。   In the step (6), the gas vent valve 35 is assembled between the pair of terminals 24 by thermally welding the remaining side of the container 21. The degassing valve 35 is assembled to the upper part of the container 21 through the heat welding portion 41 of the valve body 40 together with the plate-like heat welding resin attached to the pair of terminals 24 by a sealing process of heat welding.

このような製造過程において、槽11の内部は、常圧の不活性雰囲気と10Pa以下の減圧状態と、に変換される。そのため、(5)の工程においては、10Pa以下の減圧状態への変換により、容器21が圧縮され、保液部36も潰れてしまうと、放電に伴う積層体22の収縮により、容器21の内部において、積層体22の外側の電解質溶液が増えることになり、容器21から溢れる可能性が考えられる。図8〜図10は、その対策手段を説明するものであり、容器21の保液部36にフッ素樹脂製のチューブ50が収装される。具体的には、(4)の工程において、容器21の底側部材に積層体22の三辺を囲むコ字形のチューブ50が納められる。そして、蓋側部材が被せられ、1対の端子24の一部が引き出される一辺を除く三辺が熱溶着されるのである。   In such a manufacturing process, the inside of the tank 11 is converted into an inert atmosphere at normal pressure and a reduced pressure state of 10 Pa or less. Therefore, in the step (5), when the container 21 is compressed by the conversion to a reduced pressure state of 10 Pa or less and the liquid retaining part 36 is also crushed, the inside of the container 21 is caused by the contraction of the laminate 22 accompanying the discharge. In this case, the electrolyte solution on the outside of the laminate 22 increases, and the container 21 may overflow. FIGS. 8 to 10 illustrate countermeasures, and a fluororesin tube 50 is accommodated in the liquid retaining portion 36 of the container 21. Specifically, in the step (4), a U-shaped tube 50 surrounding the three sides of the laminate 22 is placed in the bottom member of the container 21. And the cover side member is covered, and the three sides excluding the one side from which a part of the pair of terminals 24 is drawn are heat-welded.

このため、(5)の工程において、容器21の内外の圧力差により、保液部36に圧縮力が作用しても、チューブ50により保液部36が潰れるのを抑えられ、チューブ50の内径を保液部36として必要な容積を確保することができる。チューブ50は、複数の穴(電解質溶液の出入口)が形成される。なお、電気二重層キャパシタ(製品)は、チューブ50を内蔵するものとなり、チューブ50により積層体22の保護機能も得られる。図8〜図10において、図2と機能が同一の部位に同一の符号を付ける。なお、チューブ50の代わりにセパレータ等の保液性の良い材料を保液部36に収装しても良い。   Therefore, in the step (5), even if a compressive force acts on the liquid retaining part 36 due to the pressure difference between the inside and outside of the container 21, the liquid retaining part 36 is prevented from being crushed by the tube 50, and the inner diameter of the tube 50 is reduced. As a liquid retaining part 36, a necessary volume can be secured. The tube 50 is formed with a plurality of holes (electrolyte solution inlet / outlet ports). In addition, the electric double layer capacitor (product) has a built-in tube 50, and the protective function of the multilayer body 22 can be obtained by the tube 50. 8-10, the same code | symbol is attached | subjected to the site | part which has the same function as FIG. In addition, instead of the tube 50, a material having good liquid retention properties such as a separator may be accommodated in the liquid retention portion 36.

この発明の実施形態に係る電気二重層キャパシタの一部構成図である。1 is a partial configuration diagram of an electric double layer capacitor according to an embodiment of the present invention. 同じくC−C断面図である。It is CC sectional drawing similarly. 同じくバルブボディの正面図である。It is a front view of a valve body similarly. 同じくバルブボディの平面図である。It is a top view of a valve body similarly. 同じくバルブボディのA−A断面図である。It is AA sectional drawing of a valve body similarly. 同じくバルブボディの右側面図である。It is a right view of a valve body similarly. 同じく製造工程の説明図である。It is explanatory drawing of a manufacturing process similarly. 別の実施形態に係る電気二重層キャパシタの説明図である。It is explanatory drawing of the electric double layer capacitor which concerns on another embodiment. 同じくD−D断面図である。Similarly it is DD sectional drawing. 同じくB部の拡大図である。It is the enlarged view of the B section similarly.

符号の説明Explanation of symbols

21 容器
22 積層体
24 端子
35 保液部
35 ガス抜きバルブ
40 バルブボディ
41 バルブボディの熱溶着部
49 リブ状の凸部
50 チューブ
21 Container 22 Laminated body 24 Terminal 35 Liquid retaining part 35 Gas vent valve 40 Valve body 41 Heat welding part of valve body 49 Rib-shaped convex part 50 Tube

Claims (5)

炭素質材料を主原料に分極性電極を形成すると共に集電体をこの炭素電極に取り付けることにより正極体および負極体を作成する工程、正極体と負極体とセパレータとから平板型の積層体を組成する工程、正極体および負極体のリード部としてこれらの同極どうしの結束部に1対の端子を接合する工程、容器に1対の端子の一部が突き出る状態に積層体を収めて注入した電解質溶液に含浸させる工程、炭素電極の電界賦活を行うべく1対の端子の間に電圧を印加する工程、1対の端子の一部が突き出る容器の開口を密封する工程、を経て製造される電気二重層キャパシタにおいて、容器は、金属箔の中間層を含む積層構造の柔軟な樹脂フィルムから形成され、積層体の膨張に伴う含浸量の増加分に相応する電解質溶液量を収容可能な保液部を積層体の周辺に設定したことを特徴とする電気二重層キャパシタ。   A step of forming a polarizable electrode using a carbonaceous material as a main material and attaching a current collector to the carbon electrode to create a positive electrode body and a negative electrode body, and a flat laminate from a positive electrode body, a negative electrode body, and a separator The composition step, the step of bonding a pair of terminals to the bundling portion of the same polarity as the lead portion of the positive electrode body and the negative electrode body, and placing the laminated body in a state in which a part of the pair of terminals protrudes into the container Manufactured through a step of impregnating the electrolyte solution, a step of applying a voltage between the pair of terminals to activate the electric field of the carbon electrode, and a step of sealing the opening of the container from which a part of the pair of terminals protrudes. In the electric double layer capacitor, the container is formed of a flexible resin film having a laminated structure including an intermediate layer of metal foil, and can hold an electrolyte solution amount corresponding to an increase in the amount of impregnation accompanying expansion of the laminate. Liquid part Electric double layer capacitor, characterized in that set in the neighborhood of the lamina. 請求項1に係る電気二重層キャパシタにおいて、保液部にチューブまたはセパレータ等の保液性の良い材料を収装したことを特徴とする電気二重層キャパシタ。   2. The electric double layer capacitor according to claim 1, wherein a material having good liquid retention properties such as a tube or a separator is accommodated in the liquid retention portion. 請求項2に係る電気二重層キャパシタにおいて、チューブはフッ素樹脂から形成したことを特徴とする電気二重層キャパシタ。   3. The electric double layer capacitor according to claim 2, wherein the tube is made of a fluororesin. 請求項1に係る電気二重層キャパシタにおいて、1対の端子の一部が突き出る容器の密封部にガス抜きバルブを熱溶着により組み付けたことを特徴とする電気二重層キャパシタ。   2. The electric double layer capacitor according to claim 1, wherein a gas vent valve is assembled by heat welding to a sealed portion of a container from which a part of a pair of terminals protrudes. 請求項4に係る電気二重層キャパシタに用いられるガス抜きバルブにおいて、バルブボディの少なくとも一部が熱溶着性樹脂から形成され、その樹脂面に熱溶着性樹脂が盛り上がるリブ状の凸部を備えたことを特徴とするガス抜きバルブ。   In the degassing valve used for the electric double layer capacitor according to claim 4, at least a part of the valve body is formed of a heat-welding resin, and a rib-like convex portion is formed on the resin surface. A gas vent valve characterized by that.
JP2005093967A 2005-03-29 2005-03-29 Electric double layer capacitor and degassing valve Expired - Fee Related JP4515304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093967A JP4515304B2 (en) 2005-03-29 2005-03-29 Electric double layer capacitor and degassing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093967A JP4515304B2 (en) 2005-03-29 2005-03-29 Electric double layer capacitor and degassing valve

Publications (2)

Publication Number Publication Date
JP2006278618A true JP2006278618A (en) 2006-10-12
JP4515304B2 JP4515304B2 (en) 2010-07-28

Family

ID=37213078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093967A Expired - Fee Related JP4515304B2 (en) 2005-03-29 2005-03-29 Electric double layer capacitor and degassing valve

Country Status (1)

Country Link
JP (1) JP4515304B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068086A1 (en) 2009-12-03 2011-06-09 Udトラックス株式会社 Electricity storage device and method for manufacturing electricity storage device
JP2013065639A (en) * 2011-09-16 2013-04-11 Kyushu Institute Of Technology Manufacturing method of electric double layer capacitor
CN113785438A (en) * 2019-04-26 2021-12-10 大日本印刷株式会社 Valve structure for electricity storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208778A (en) * 1997-01-22 1998-08-07 Sumitomo Electric Ind Ltd Non-aqueous electrolyte battery
JPH11345599A (en) * 1998-06-01 1999-12-14 Tdk Corp Sheet type electrochemical element and its manufacture
JP2000216068A (en) * 1999-01-22 2000-08-04 Nec Corp Electrical double layer capacitor
JP2000260668A (en) * 1999-01-07 2000-09-22 Ngk Insulators Ltd Electrochemical capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208778A (en) * 1997-01-22 1998-08-07 Sumitomo Electric Ind Ltd Non-aqueous electrolyte battery
JPH11345599A (en) * 1998-06-01 1999-12-14 Tdk Corp Sheet type electrochemical element and its manufacture
JP2000260668A (en) * 1999-01-07 2000-09-22 Ngk Insulators Ltd Electrochemical capacitor
JP2000216068A (en) * 1999-01-22 2000-08-04 Nec Corp Electrical double layer capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068086A1 (en) 2009-12-03 2011-06-09 Udトラックス株式会社 Electricity storage device and method for manufacturing electricity storage device
JP2013065639A (en) * 2011-09-16 2013-04-11 Kyushu Institute Of Technology Manufacturing method of electric double layer capacitor
CN113785438A (en) * 2019-04-26 2021-12-10 大日本印刷株式会社 Valve structure for electricity storage device

Also Published As

Publication number Publication date
JP4515304B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
US20050147880A1 (en) Electrochemical device
KR101713068B1 (en) Device for Eliminating Gas from Activated Battery Cell and Method for Manufacturing Battery Cell
WO2012114951A1 (en) Molten salt battery and method for producing same
KR20180128573A (en) Method for manufacturing all solid state battery
JP2012114374A (en) Electrochemical device
JP2010062163A (en) Manufacturing method of secondary battery
KR20080049649A (en) Bipolar battery and manufacturing method for the same
US20240063449A1 (en) Solid-state battery module
JP2010087170A (en) Electric storage device
JP4601917B2 (en) Secondary battery and manufacturing method thereof
JP2021096950A (en) Solid-state battery and method of manufacturing solid-state battery
JP4515304B2 (en) Electric double layer capacitor and degassing valve
JP2010089156A (en) Joining method and utilization thereof
EP2795712A2 (en) Unitary energy storage and sensing batteries
JP5924689B2 (en) Manufacturing method of electric double layer capacitor module
JP4623840B2 (en) Manufacturing method of electric double layer capacitor
JP2019087414A (en) Method for manufacturing bipolar battery
KR101368236B1 (en) Secondary battery having a plastic-bag, and manufacturing the same
JP2000285896A (en) Electrode structure for battery and capacitor and manufacture thereof
KR100824869B1 (en) Lithium polymer battery of method for manufacturing and lithium polymer battery
JP2020102419A (en) Solid-state battery cell structure and manufacturing method of solid-state battery
JP6431409B2 (en) Method for manufacturing power storage element
JP2005209684A (en) Electric double-layer capacitor, electric storage device with it and manufacturing method for electric double-layer capacitor
KR100437602B1 (en) Method of producing electric cells
JP4515301B2 (en) Electric double layer capacitor manufacturing method and manufacturing apparatus thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160521

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees