JP2006278554A - AlGaN-BASED DEEP-ULTRAVIOLET LIGHT-EMITTING ELEMENT AND ITS MANUFACTURING METHOD - Google Patents

AlGaN-BASED DEEP-ULTRAVIOLET LIGHT-EMITTING ELEMENT AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2006278554A
JP2006278554A JP2005093028A JP2005093028A JP2006278554A JP 2006278554 A JP2006278554 A JP 2006278554A JP 2005093028 A JP2005093028 A JP 2005093028A JP 2005093028 A JP2005093028 A JP 2005093028A JP 2006278554 A JP2006278554 A JP 2006278554A
Authority
JP
Japan
Prior art keywords
layer
algan
electrode
type
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005093028A
Other languages
Japanese (ja)
Inventor
Koji Kawasaki
宏治 川崎
Katsunobu Aoyanagi
克信 青柳
Hideo Hosono
秀雄 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2005093028A priority Critical patent/JP2006278554A/en
Publication of JP2006278554A publication Critical patent/JP2006278554A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an AlGaN-based deep-ultraviolet light-emitting element with high luminous efficiency having a vertical electrode structure with a significantly reduced series resistance. <P>SOLUTION: The AlGaN-based deep-ultraviolet light-emitting element includes sequentially an n-type AlGaN layer, an AlGaN-based quantum well active layer, a p-type AlGaN layer, and a p-type GaN layer, as needed. Furthermore, an n-layer electrode is formed on at least part of the surface of the n-type AlGaN layer, a p-layer electrode is formed on at least part of the surface of the p-type AlGaN layer, or the p-type GaN layer so that a drive current flows in each layer substantially in a direction normal to respective boundary surfaces. An indium tin oxide (ITO) transparent electrode with a tin content of 10-20 mass% is used as the n-layer electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光効率の高いAlGaN系深紫外発光素子に関する。   The present invention relates to an AlGaN-based deep ultraviolet light emitting device with high luminous efficiency.

紫外光源は、照明、ディスプレイ、蛍光分析、光触媒化学、高分解能光学機器等の多様な応用分野を有している。紫外光源用発光素子として窒化物半導体が知られており、とりわけ直接遷移型のワイドギャップ窒化物半導体で、波長200〜350nmの深紫外発光が可能な窒化アルミニウム・ガリウム(AlGaN)に注目が集まっている。   The ultraviolet light source has various application fields such as illumination, display, fluorescence analysis, photocatalytic chemistry, and high-resolution optical equipment. Nitride semiconductors are known as light-emitting elements for ultraviolet light sources. In particular, attention has been focused on aluminum / gallium nitride (AlGaN), which is a direct-transition wide-gap nitride semiconductor that can emit deep ultraviolet light with a wavelength of 200 to 350 nm. Yes.

AlGaN系半導体層は、バルク基板の作製が非常に困難であるため、通常はサファイア基板上へのヘテロエピタキシャル成長により形成される。また、AlGaN系発光素子の場合、p型GaN層を設けたときにはこれが紫外光を吸収するためp層電極側から光を取り出すことができず、基板側から光を取り出さなければならない点でもサファイア基板が有用である。ところがサファイア基板には導電性がないため、従来のAlGaN系発光素子は、n層電極がp層電極の側方に位置する横型電極構造を採用している(特許文献1)。   Since an AlGaN-based semiconductor layer is very difficult to produce a bulk substrate, it is usually formed by heteroepitaxial growth on a sapphire substrate. Also, in the case of an AlGaN-based light emitting device, when a p-type GaN layer is provided, it absorbs ultraviolet light, so that light cannot be extracted from the p-layer electrode side, and light must be extracted from the substrate side. Is useful. However, since the sapphire substrate has no electrical conductivity, the conventional AlGaN-based light-emitting element employs a lateral electrode structure in which the n-layer electrode is positioned on the side of the p-layer electrode (Patent Document 1).

特開平11−307811号公報JP-A-11-307811

しかしながら、n層電極がp層電極の側方に位置する横型電極構造には、電流がn型AlGaN層中を横方向に流れなければならないため、直列抵抗が高くなるという問題がある。直列抵抗が高くなると動作時の自己発熱量が増大し、キャリアの注入効率への悪影響も懸念される。また、この問題は高出力動作時には一層顕著となる。さらに、電極を通して光を取り出す場合には、発光効率の観点から当該放出光の波長に対する透過性の高い材料が求められる。   However, the lateral electrode structure in which the n-layer electrode is located on the side of the p-layer electrode has a problem that the series resistance increases because current must flow in the lateral direction in the n-type AlGaN layer. If the series resistance increases, the amount of self-heating during operation increases, and there is a concern about the adverse effect on the carrier injection efficiency. This problem becomes more prominent during high output operation. Furthermore, when taking out light through an electrode, the material with the high transmittance | permeability with respect to the wavelength of the said emitted light is calculated | required from a viewpoint of luminous efficiency.

そこで、本発明は、直列抵抗を大幅に下げることで駆動効率を高め、また発熱を抑えて高出力動作を可能とする素子構造を有し、さらに深紫外光域での透過性が高い電極材料を採用することにより発光効率を高めたAlGaN系深紫外発光素子を提供することを目的とする。   Therefore, the present invention has an element structure that increases drive efficiency by greatly reducing the series resistance, suppresses heat generation, and enables high-output operation, and further has high transparency in the deep ultraviolet region. An object of the present invention is to provide an AlGaN-based deep ultraviolet light-emitting device with improved luminous efficiency by employing the above.

本発明によると、順にn型AlGaN層、AlGaN系量子井戸活性層、p型AlGaN層を、ならびに必要によりp型GaN層を含み、さらに該n型AlGaN層の表面の少なくとも一部にn層電極を、そして該p型AlGaN層または該p型GaN層の表面の少なくとも一部にp層電極を、当該駆動電流が各層内を各境界面に対して実質的に法線方向に流れるように形成させたAlGaN系深紫外発光素子であって、該n層電極として、錫含有量10〜20質量%のインジウム錫酸化物(ITO)透明電極を使用したことを特徴とするAlGaN系深紫外発光素子が提供される。   According to the present invention, an n-type AlGaN layer, an AlGaN-based quantum well active layer, a p-type AlGaN layer and, if necessary, a p-type GaN layer are included, and an n-layer electrode is formed on at least a part of the surface of the n-type AlGaN layer. And a p-layer electrode on at least a part of the surface of the p-type AlGaN layer or the p-type GaN layer so that the drive current flows in each layer in a substantially normal direction with respect to each boundary surface. An AlGaN-based deep ultraviolet light-emitting device using an indium tin oxide (ITO) transparent electrode having a tin content of 10 to 20% by mass as the n-layer electrode Is provided.

本発明によると、n層電極とp層電極とが上下に位置する縦型電極構造を実現したことにより、AlGaN系深紫外発光素子の直列抵抗が劇的に下がる。このため、発光素子の駆動効率を高めることができ、また高出力動作時の発熱が抑えられる。さらに、深紫外光域での透過率を高めた高錫濃度ITO透明電極を採用したことにより、AlGaN系深紫外発光素子の発光効率が一層向上する。   According to the present invention, the realization of the vertical electrode structure in which the n-layer electrode and the p-layer electrode are positioned above and below dramatically reduces the series resistance of the AlGaN-based deep ultraviolet light-emitting device. For this reason, the drive efficiency of a light emitting element can be improved and the heat_generation | fever at the time of high output operation | movement can be suppressed. Furthermore, by adopting a high tin concentration ITO transparent electrode with increased transmittance in the deep ultraviolet region, the luminous efficiency of the AlGaN-based deep ultraviolet light emitting device is further improved.

また本発明によると、サファイア基板上にGaNバッファ層、n型AlGaN層、AlGaN系量子井戸活性層、p型AlGaN層および必要によりp型GaN層を順次積層させ、次いで該p型AlGaN層または該p型GaN層の上にp層電極を形成させた後、該p層電極の上に導電性支持体を接合させ、次いで該サファイア基板側から所定の波長を有するレーザーを照射することにより該GaNバッファ層を融解させて該サファイア基板と共に除去し、これにより露出された該n型AlGaN層の表面の少なくとも一部に、n層電極として錫含有量10〜20質量%のインジウム錫酸化物(ITO)透明電極を温度400℃以上で蒸着形成させることを特徴とするAlGaN系深紫外発光素子の製造方法が提供される。   Further, according to the present invention, a GaN buffer layer, an n-type AlGaN layer, an AlGaN-based quantum well active layer, a p-type AlGaN layer and, if necessary, a p-type GaN layer are sequentially laminated on the sapphire substrate, and then the p-type AlGaN layer or the After forming a p-layer electrode on the p-type GaN layer, a conductive support is bonded on the p-layer electrode, and then irradiating a laser having a predetermined wavelength from the sapphire substrate side. The buffer layer is melted and removed together with the sapphire substrate, and at least part of the surface of the n-type AlGaN layer exposed thereby, indium tin oxide (ITO) having a tin content of 10 to 20% by mass as an n-layer electrode is formed. ) A method for producing an AlGaN-based deep ultraviolet light emitting device is provided, wherein the transparent electrode is formed by vapor deposition at a temperature of 400 ° C. or higher.

図1に、本発明によるAlGaN系深紫外発光素子の好適例を示す。本発明による深紫外発光素子は、n型AlGaN層、AlGaN系量子井戸活性層およびp型AlGaN層を、ならびに必要によりp型GaN層を順次積層させ、さらに該n型AlGaN層の表面の少なくとも一部にn層電極としてITO透明電極を形成させ、かつ、該p型AlGaN層(または使用した場合にはp型GaN層)の表面の少なくとも一部にp層電極を形成させた構造を有する。本発明による深紫外発光素子は、n層電極とp層電極とが上下に位置する縦型電極構造となっているため、両電極間の直列抵抗が、従来の横型電極構造をとる深紫外発光構造体と比較して劇的に、例えば100分の1程度にまで、低下する。   FIG. 1 shows a preferred example of an AlGaN-based deep ultraviolet light emitting device according to the present invention. The deep ultraviolet light emitting device according to the present invention includes an n-type AlGaN layer, an AlGaN-based quantum well active layer, a p-type AlGaN layer, and, if necessary, a p-type GaN layer sequentially stacked, and at least one surface of the n-type AlGaN layer. An ITO transparent electrode is formed as an n-layer electrode on the part, and a p-layer electrode is formed on at least a part of the surface of the p-type AlGaN layer (or p-type GaN layer when used). Since the deep ultraviolet light emitting device according to the present invention has a vertical electrode structure in which an n-layer electrode and a p-layer electrode are positioned above and below, deep ultraviolet light emission in which the series resistance between both electrodes has a conventional horizontal electrode structure. Compared with the structure, it drops dramatically, for example, to about 1/100.

n型AlGaN層の材料としては、後述するAlGaN系量子井戸活性層の材料よりもバンドギャップが大きくなるように設計されたn型AlGaN系化合物半導体が使用される。このようなn型AlGaN系化合物半導体の設計は、当業者であれば適宜を行うことができる。n型AlGaN層の材料の好適例として、Al組成が30原子%(Ga組成は70原子%)程度のn型AlGaN系化合物半導体が挙げられる。このn型AlGaN系化合物半導体にドープされるn型ドーパントとしては、例えばシラン、テトラエチルシリコン等のSi源が挙げられる。n型ドーパントは、n型AlGaN層のキャリア濃度が2〜3×1018cm-2程度になるような量でドープすればよい。n型AlGaN層の厚さは、一般に1〜2μmの範囲内とすればよい。 As the material of the n-type AlGaN layer, an n-type AlGaN compound semiconductor designed to have a larger band gap than the material of an AlGaN quantum well active layer described later is used. A person skilled in the art can appropriately design such an n-type AlGaN-based compound semiconductor. A preferred example of the material of the n-type AlGaN layer is an n-type AlGaN compound semiconductor having an Al composition of about 30 atomic% (Ga composition is 70 atomic%). Examples of the n-type dopant doped in the n-type AlGaN compound semiconductor include Si sources such as silane and tetraethyl silicon. The n-type dopant may be doped in such an amount that the carrier concentration of the n-type AlGaN layer is about 2 to 3 × 10 18 cm −2 . The thickness of the n-type AlGaN layer may generally be in the range of 1 to 2 μm.

AlGaN系量子井戸活性層の材料としては、波長200〜350nmの深紫外発光が可能ないずれのAlGaN系化合物半導体でも使用することができる。また、量子井戸活性層の材料は、上記n型AlGaN層の材料および後述するp型AlGaN層の材料よりもバンドギャップが小さくなるように設計される。量子井戸活性層は単一量子井戸(SQW)構造であっても多重量子井戸(MQW)構造であってもよい。量子井戸活性層の好適例として、AlGa1−xN/AlGa1−yN系量子井戸活性層(x=0.15、y=0.20)であって、膜厚がそれぞれ3nm/8nmであるものを3〜5周期形成させたMQW構造が挙げられる。 As the material of the AlGaN quantum well active layer, any AlGaN compound semiconductor capable of emitting deep ultraviolet light having a wavelength of 200 to 350 nm can be used. The material of the quantum well active layer is designed to have a smaller band gap than the material of the n-type AlGaN layer and the material of the p-type AlGaN layer described later. The quantum well active layer may have a single quantum well (SQW) structure or a multiple quantum well (MQW) structure. As a preferable example of the quantum well active layer, an Al x Ga 1-x N / Al y Ga 1-y N-based quantum well active layer (x = 0.15, y = 0.20), each having a film thickness An MQW structure in which 3 to 8 cycles of 3 nm / 8 nm are formed can be given.

p型AlGaN層の材料としては、上記AlGaN系量子井戸活性層の材料よりもバンドギャップが大きくなるように設計されたp型AlGaN系化合物半導体が使用される。このようなp型AlGaN系化合物半導体の設計は、当業者であれば適宜行うことができる。p型AlGaN層の材料の好適例として、Al組成が24〜30原子%(Ga組成は70〜76原子%)程度のp型AlGaN系化合物半導体が挙げられる。このp型AlGaN系化合物半導体にドープされるp型ドーパントとしては、例えばビスシクロペンタジエニルマグネシウム等のMg源が挙げられる。p型ドーパントは、p型AlGaN層のキャリア濃度が1×1017cm-2程度になるような量でドープすればよい。p型AlGaN層の厚さは、一般に10〜100nmの範囲内とすればよい。 As a material for the p-type AlGaN layer, a p-type AlGaN-based compound semiconductor designed to have a larger band gap than the material for the AlGaN-based quantum well active layer is used. Such a p-type AlGaN compound semiconductor can be designed as appropriate by those skilled in the art. A preferred example of the material of the p-type AlGaN layer is a p-type AlGaN-based compound semiconductor having an Al composition of about 24 to 30 atomic% (Ga composition is about 70 to 76 atomic%). Examples of the p-type dopant doped in the p-type AlGaN compound semiconductor include a Mg source such as biscyclopentadienyl magnesium. The p-type dopant may be doped in such an amount that the carrier concentration of the p-type AlGaN layer is about 1 × 10 17 cm −2 . In general, the thickness of the p-type AlGaN layer may be in the range of 10 to 100 nm.

必要に応じて、後述するp層電極との接触抵抗を下げるため、p型GaN層が積層されてもよい。使用する場合、p型GaN層の材料としては、上記p型AlGaN層よりもバンドギャップが大きくなるように設計されたp型GaN系化合物半導体が使用される。例えば、p型GaNの他、上記p型AlGaN層を構成するp型AlGaNとは組成が異なるp型AlGaNを使用してもよい。p型GaN系化合物半導体にドープされるp型ドーパントとしては、例えばビスシクロペンタジエニルマグネシウム等のMg源が挙げられる。p型ドーパントは、p型GaN層のキャリア濃度が5×1017cm-2程度になるような量でドープすればよい。p型GaN層の厚さは、一般に10〜200nmの範囲内とすればよい。 If necessary, a p-type GaN layer may be stacked in order to reduce contact resistance with a p-layer electrode described later. When used, as a material of the p-type GaN layer, a p-type GaN compound semiconductor designed to have a larger band gap than the p-type AlGaN layer is used. For example, in addition to p-type GaN, p-type AlGaN having a composition different from that of the p-type AlGaN constituting the p-type AlGaN layer may be used. Examples of the p-type dopant doped into the p-type GaN compound semiconductor include a Mg source such as biscyclopentadienyl magnesium. The p-type dopant may be doped in such an amount that the carrier concentration of the p-type GaN layer is about 5 × 10 17 cm −2 . In general, the thickness of the p-type GaN layer may be in the range of 10 to 200 nm.

本発明による深紫外発光素子は、上記n型AlGaN層の表面の少なくとも一部に形成させたn層電極として、錫を高濃度で含むインジウム錫酸化物(ITO)透明電極が用いられる。本発明において「高濃度」とは、一般的に用いられているITOの錫含有量8〜10質量%より高い濃度であることを意味する。具体的には、本発明によるn層電極としては、錫含有量10質量%以上、好ましくは12〜25質量%、より好ましくは15〜20質量%のITO透明電極を使用する。錫を高濃度で含むことにより、深紫外光域での透過性が向上し、放出された深紫外光の電極による損失が少なくなる分、発光効率が高くなる。本発明による高錫濃度ITO透明電極は深紫外光に対する透過性が高いため、n層電極でn型AlGaN層の全面を被覆することができる。もちろん、n型AlGaN層の表面の一部のみにITO透明電極を形成させてもよい。例えば、ITO透明電極の形状を櫛形やストライプ状にし、その隙間から光を取り出すことができる。ITO透明電極の厚さは、導電性と透明性の兼ね合いで決まり、一般に100〜500nm、好ましくは200〜400nmの範囲内とすればよい。   In the deep ultraviolet light emitting device according to the present invention, an indium tin oxide (ITO) transparent electrode containing tin at a high concentration is used as an n layer electrode formed on at least a part of the surface of the n type AlGaN layer. In the present invention, “high concentration” means a concentration higher than a tin content of 8 to 10% by mass of ITO generally used. Specifically, as the n-layer electrode according to the present invention, an ITO transparent electrode having a tin content of 10% by mass or more, preferably 12 to 25% by mass, more preferably 15 to 20% by mass is used. By containing tin at a high concentration, the transmittance in the deep ultraviolet light region is improved, and the emission efficiency of the emitted deep ultraviolet light is reduced because the loss due to the electrode is reduced. Since the high tin concentration ITO transparent electrode according to the present invention is highly permeable to deep ultraviolet light, the n-type electrode can cover the entire surface of the n-type AlGaN layer. Of course, the ITO transparent electrode may be formed only on a part of the surface of the n-type AlGaN layer. For example, the ITO transparent electrode can have a comb shape or a stripe shape, and light can be extracted from the gap. The thickness of the ITO transparent electrode is determined by the balance between conductivity and transparency, and is generally 100 to 500 nm, preferably 200 to 400 nm.

本発明による深紫外発光素子は、上記p型AlGaN層(または使用した場合にはp型GaN層)の表面の少なくとも一部に形成させたp層電極を含む。本発明による深紫外発光素子は、放出光をITO透明電極側から取り出すので、p層電極の透光性は問題とならず、p型AlGaN層またはp型GaN層へ正孔を効率よく注入することができるものであればp層電極の材料に特に制限はない。p層電極の材料の好適例として、Ni/Au、Pt/Pd/Au、Pt、Pd/Ni/Au、Pd/Ag/Au/Ti/Au、Ni/ITO、Pd/Re、Ni/ZnO,Ni(Mg)/Au、Ni(La)/Au等が挙げられる。p層電極の厚さは、一般に20〜3000nmの範囲内とすればよい。   The deep ultraviolet light-emitting device according to the present invention includes a p-layer electrode formed on at least a part of the surface of the p-type AlGaN layer (or p-type GaN layer when used). Since the deep ultraviolet light emitting device according to the present invention extracts emitted light from the ITO transparent electrode side, the translucency of the p-layer electrode is not a problem, and holes are efficiently injected into the p-type AlGaN layer or the p-type GaN layer. The material for the p-layer electrode is not particularly limited as long as it can be used. Preferred examples of the material for the p-layer electrode include Ni / Au, Pt / Pd / Au, Pt, Pd / Ni / Au, Pd / Ag / Au / Ti / Au, Ni / ITO, Pd / Re, Ni / ZnO, Ni (Mg) / Au, Ni (La) / Au, etc. are mentioned. The thickness of the p-layer electrode may generally be in the range of 20 to 3000 nm.

以下、上述した本発明による深紫外発光素子の製造方法を説明する。図2に、本発明による製造方法の好適例を示す。図2(A)に示したように、サファイア基板上にGaNバッファ層、n型AlGaN層、AlGaN系量子井戸活性層、p型AlGaN層および必要によりp型GaN層を順次積層させる。ここで、GaNバッファ層は、サファイア基板とGaNバッファ層の上に成長させるn型AlGaN層、及びそれに引き続いて成長させる各層との間の格子不整合を緩和してミスフィット転位を防止することの他、後述のレーザー照射により融解除去されることを目的として設けられる。このGaNバッファ層の厚さは1nm〜数百μmといった広い範囲で設定することができる。このGaNバッファ層は、後に除去されて深紫外発光素子の一部を構成しないため、結晶質であっても非晶質であってもよく、さらには厚さが数μm〜数百μmといった場合は、サファイア基板上に形成された厚膜GaNテンプレートウェハとして市販されているような形態でもよい。各層の積層には、当該技術分野で公知のエピタキシャル成長法、例えば有機金属気相体積法(MOCVD法)を採用することができる。また、当業者であれば、上述した各層の組成および特性を実現するために必要な原料ガス、ドーパントガス、キャリアガス、層成長温度その他の製造条件を適宜選定することができる。   Hereinafter, a method for manufacturing the above-described deep ultraviolet light emitting device according to the present invention will be described. FIG. 2 shows a preferred example of the production method according to the present invention. As shown in FIG. 2A, a GaN buffer layer, an n-type AlGaN layer, an AlGaN-based quantum well active layer, a p-type AlGaN layer, and, if necessary, a p-type GaN layer are sequentially stacked on a sapphire substrate. Here, the GaN buffer layer relaxes the lattice mismatch between the n-type AlGaN layer grown on the sapphire substrate and the GaN buffer layer, and the layers grown subsequently, thereby preventing misfit dislocations. In addition, it is provided for the purpose of melting and removing by laser irradiation described later. The thickness of the GaN buffer layer can be set in a wide range of 1 nm to several hundred μm. Since this GaN buffer layer is removed later and does not constitute a part of the deep ultraviolet light emitting device, the GaN buffer layer may be crystalline or amorphous, and further, when the thickness is several μm to several hundred μm. May be in the form of a commercially available thick GaN template wafer formed on a sapphire substrate. For the lamination of each layer, an epitaxial growth method known in the technical field, for example, a metal organic vapor phase volume method (MOCVD method) can be employed. Further, those skilled in the art can appropriately select the raw material gas, dopant gas, carrier gas, layer growth temperature, and other production conditions necessary for realizing the composition and characteristics of each layer described above.

次いで、図2(B)に示したように、p型GaN層(p型GaN層を使用しない場合にはp型AlGaN層)の上にp層電極を形成させた後、必要により導電性接着剤を介してp層電極の上に導電性支持体を接合させる。p層電極の形成は、当該技術分野で公知の蒸着法を採用することができる。導電性支持体は、サファイア基板除去後に発光素子を支持する役割を担うと共に、p層電極への電流注入機能をも有する。導電性支持体の材料としては、GaAs、SiC、Si、Ge、C、Cu、Al、Mo、Ti、Ni、W、Ta、Au/Ni等が挙げられる。導電性支持体の厚さは、一般に50〜5000μmの範囲内とすればよい。導電性接着剤を使用する場合、例えばAu/Ge系半田を厚さ0.5〜100μm程度で使用することができる。導電性接着剤を使用しない場合、p層電極の上に直接導電性支持体を配置して加熱処理することによりp層電極に導電性支持体を接合させることができる。特に、半田を使用しないことは、後述するITO透明電極の蒸着時の基板温度を高くすることができ、よって得られるITO透明電極の深紫外光透過率が一層高くなる点で、好ましい。   Next, as shown in FIG. 2B, a p-layer electrode is formed on the p-type GaN layer (or p-type AlGaN layer when the p-type GaN layer is not used), and if necessary, conductive adhesion is performed. A conductive support is bonded onto the p-layer electrode via an agent. The p-layer electrode can be formed by a vapor deposition method known in the art. The conductive support plays a role of supporting the light emitting element after removing the sapphire substrate and also has a function of injecting current into the p-layer electrode. Examples of the material for the conductive support include GaAs, SiC, Si, Ge, C, Cu, Al, Mo, Ti, Ni, W, Ta, and Au / Ni. The thickness of the conductive support may generally be in the range of 50 to 5000 μm. When using a conductive adhesive, for example, Au / Ge solder can be used at a thickness of about 0.5 to 100 μm. When the conductive adhesive is not used, the conductive support can be bonded to the p-layer electrode by placing the conductive support directly on the p-layer electrode and performing heat treatment. In particular, it is preferable not to use solder in that the substrate temperature at the time of vapor deposition of the ITO transparent electrode described later can be increased, and the deep ultraviolet light transmittance of the obtained ITO transparent electrode is further increased.

次いで、図2(C)に示したように、該サファイア基板側から所定の波長を有するレーザーを照射することにより該GaNバッファ層を融解させる。レーザーとしては、例えばNd−YAGレーザーの第3高調波(355nm)または第4高調波(266nm)を使用すればよい。このようなレーザーをサファイア基板側から照射することによりGaNバッファ層が融解し、これと共に該サファイア基板が容易に除去される。   Next, as shown in FIG. 2C, the GaN buffer layer is melted by irradiating a laser having a predetermined wavelength from the sapphire substrate side. As the laser, for example, the third harmonic (355 nm) or the fourth harmonic (266 nm) of an Nd-YAG laser may be used. By irradiating such a laser from the sapphire substrate side, the GaN buffer layer is melted and the sapphire substrate is easily removed.

その後、図2(D)に示したように、サファイア基板およびGaNバッファ層が除去されたことにより露出されたn型AlGaN層の表面の少なくとも一部に、錫濃度の高いITO透明電極を形成させる。このようなITO透明電極の形成は、当該技術分野で公知の蒸着法を採用することができる。例えば、酸化錫(SnO)と酸化インジウム(In)をSn含有量が10質量%以上、好ましくは12〜25質量%、より好ましくは15〜20質量%となるように混合した混合物を原料として、レーザーを用いた真空蒸着法を採用することができる。ITO透明電極は、一般に200℃程度の基板温度で蒸着される。しかし、本発明による深紫外発光素子の製造方法によると、高錫濃度ITO透明電極の蒸着時の基板温度を、各層に悪影響を及ぼさない範囲内で可能な限り高い温度にすることが、深紫外光域(波長200〜350nm)での透過率を高める上で好ましい。このことを示すため、ITO蒸着時の基板温度が深紫外光透過率に与える影響を示すグラフを図3に示す。グラフから、波長330nmを中心とする深紫外光透過率が、ITO(錫濃度10質量%)蒸着時の基板温度を400℃、600℃、800℃と高くするにつれて高くなることがわかる。したがって、高錫濃度ITO電極の蒸着時の基板温度は、好ましくは400℃以上、より好ましくは600℃以上、さらに好ましくは800℃以上である。このように、本発明の製造方法によると、AlGaN系深紫外発光素子において初めてn層電極とp層電極とが上下に位置する縦型電極構造が実現され、その際、深紫外光透過率を高めた高錫濃度ITO透明電極をn層電極に採用したことにより、AlGaN系深紫外発光素子の発光効率が一層向上する。 Thereafter, as shown in FIG. 2D, an ITO transparent electrode having a high tin concentration is formed on at least a part of the surface of the n-type AlGaN layer exposed by removing the sapphire substrate and the GaN buffer layer. . Such an ITO transparent electrode can be formed by a vapor deposition method known in the art. For example, a mixture in which tin oxide (SnO 2 ) and indium oxide (In 2 O 3 ) are mixed so that the Sn content is 10% by mass or more, preferably 12 to 25% by mass, more preferably 15 to 20% by mass. As a raw material, a vacuum deposition method using a laser can be employed. The ITO transparent electrode is generally deposited at a substrate temperature of about 200 ° C. However, according to the manufacturing method of the deep ultraviolet light emitting device according to the present invention, it is possible to set the substrate temperature at the time of vapor deposition of the high tin concentration ITO transparent electrode as high as possible within the range that does not adversely affect each layer. It is preferable for increasing the transmittance in the light region (wavelength 200 to 350 nm). In order to show this, FIG. 3 shows a graph showing the effect of the substrate temperature during ITO deposition on the deep ultraviolet light transmittance. From the graph, it can be seen that the deep ultraviolet light transmittance centered at a wavelength of 330 nm increases as the substrate temperature during deposition of ITO (tin concentration of 10% by mass) is increased to 400 ° C., 600 ° C., and 800 ° C. Therefore, the substrate temperature during the deposition of the high tin concentration ITO electrode is preferably 400 ° C. or higher, more preferably 600 ° C. or higher, and still more preferably 800 ° C. or higher. Thus, according to the manufacturing method of the present invention, a vertical electrode structure in which an n-layer electrode and a p-layer electrode are positioned vertically is realized for the first time in an AlGaN-based deep ultraviolet light-emitting device. By adopting the increased high tin concentration ITO transparent electrode as the n-layer electrode, the luminous efficiency of the AlGaN deep ultraviolet light emitting device is further improved.

例1
図2に示した製造手順に従い、以下のように本発明によるAlGaN系深紫外発光素子を製造した。各層の結晶成長に際しては、有機金属気相堆積法(MOCVD)を使用した。また、キャリアガスには水素(H)を使用した。但し、p層電極と導電性支持体との接合は、後のITO電極の蒸着時の基板温度を高めるため、半田を用いずに行った。
Example 1
According to the manufacturing procedure shown in FIG. 2, an AlGaN-based deep ultraviolet light emitting device according to the present invention was manufactured as follows. For crystal growth of each layer, metal organic chemical vapor deposition (MOCVD) was used. Further, hydrogen (H 2 ) was used as the carrier gas. However, the p-layer electrode and the conductive support were joined without using solder in order to increase the substrate temperature when the ITO electrode was deposited later.

所定の結晶成長装置にC面サファイア基板を装填した。Ga源としてトリメチルガリウム(TMG)を、そして窒素源としてアンモニア(NH)を供給し、温度550℃において、サファイア基板上に厚さ20nmのGaN層をバッファ層として成長させた。 A predetermined crystal growth apparatus was loaded with a C-plane sapphire substrate. Trimethylgallium (TMG) was supplied as a Ga source, and ammonia (NH 3 ) was supplied as a nitrogen source, and a GaN layer having a thickness of 20 nm was grown as a buffer layer on a sapphire substrate at a temperature of 550 ° C.

続いて、温度を1120℃に上昇させ、Ga源としてTMGを、Al源としてトリメチルアルミニウム(TMA)を、窒素源としてNHを、そしてn型ドーパント源としてテトラエチルシリコン(TESi)を供給し、GaNバッファ層の上に厚さ1μmのn型Al0.3Ga0.7N層を成長させた。 Subsequently, the temperature is raised to 1120 ° C., TMG as a Ga source, trimethylaluminum (TMA) as an Al source, NH 3 as a nitrogen source, and tetraethyl silicon (TESi) as an n-type dopant source are supplied, and GaN An n-type Al 0.3 Ga 0.7 N layer having a thickness of 1 μm was grown on the buffer layer.

続いて、温度を1120℃に維持したまま、Ga源としてTMGを、Al源としてTMAを、そして窒素源としてNHを供給するに際し、TMGとTMAの流量を変更することにより、n型Al0.3Ga0.7N層の上に8nm厚のAl0.2Ga0.8N障壁層と3nm厚のAl0.15Ga0.85N井戸層が5周期からなるAlGaN系多重量子井戸活性層を成長させた。 Subsequently, while supplying TMG as a Ga source, TMA as an Al source, and NH 3 as a nitrogen source while maintaining the temperature at 1120 ° C., by changing the flow rates of TMG and TMA, n-type Al 0.3 On the Ga 0.7 N layer, an AlGaN-based multi-quantum well active layer having an 8 nm thick Al 0.2 Ga 0.8 N barrier layer and a 3 nm thick Al 0.15 Ga 0.85 N well layer consisting of 5 periods was grown.

続いて、温度を1120℃に維持したまま、Ga源としてTMGを、Al源としてTMAを、窒素源としてNHを、そしてp型ドーパント源としてビスシクロペンタジエニルマグネシウム(CPMg)を供給し、AlGaN系多重量子井戸活性層の上に厚さ40nmのp型Al0.3Ga0.7N層を成長させた。 Subsequently, while maintaining the temperature at 1120 ° C., supply TMG as a Ga source, TMA as an Al source, NH 3 as a nitrogen source, and biscyclopentadienyl magnesium (CP 2 Mg) as a p-type dopant source Then, a p-type Al 0.3 Ga 0.7 N layer having a thickness of 40 nm was grown on the AlGaN-based multiple quantum well active layer.

続いて、温度を1080℃とし、Ga源としてTMGを、窒素源としてNHを、そしてp型ドーパント源としてCPMgを供給し、p型Al0.3Ga0.7N層の上に厚さ40nmのp型GaN層を成長させた。 Subsequently, the temperature was set to 1080 ° C., TMG was supplied as a Ga source, NH 3 was supplied as a nitrogen source, and CP 2 Mg was supplied as a p-type dopant source, and a 40 nm thick layer was formed on the p-type Al 0.3 Ga 0.7 N layer. A p-type GaN layer was grown.

続いて、結晶成長装置から上記結晶成長法で形成した半導体積層体を取り出し、電気炉(真空理工株式会社製:HPC−5000)で、窒素雰囲気中30分、850℃でp型化の活性化アニールを行った。次いで、活性化アニールを行った後、70℃の王水で10分間表面処理を行った積層体を蒸着装置(アネルバ株式会社製:型式VI−43N)に装着し、p型GaN層の上に厚さ20nmのNiと厚さ700nmの金を連続して蒸着した。蒸着後、積層体を蒸着装置から取り出し、電気炉(真空理工株式会社製:HPC−5000)で、450℃5分間、窒素含有量80%および酸素含有量20%の混合ガス雰囲気中でアニールを行いp型電極を形成した。p型電極を形成後、張り合わせ工程のために、積層体を適当なサイズに切断した。積層体をサポートする厚さ350μmのGaAsからなる導電性支持体を適当なサイズに切断した後、アセトン、メタノール、超純水で洗浄し、乾燥させた。乾燥後、支持体の上に厚さ40μmの金ゲルマニウム合金(金:12%)を配置し、その後積層体のp型電極面を下にして配置し、電気炉(真空理工株式会社製:HPC−5000)で、窒素雰囲気中、450℃で5分間加熱を行い積層体と支持体を接合させた。   Subsequently, the semiconductor laminate formed by the above-described crystal growth method is taken out from the crystal growth apparatus, and activation of p-type is performed at 850 ° C. in a nitrogen atmosphere for 30 minutes in an electric furnace (manufactured by Vacuum Riko Co., Ltd .: HPC-5000). Annealing was performed. Next, after performing activation annealing, the laminate subjected to surface treatment with aqua regia at 70 ° C. for 10 minutes is mounted on a vapor deposition apparatus (manufactured by Anerva Co., Ltd .: Model VI-43N), and on the p-type GaN layer. A 20 nm thick Ni and a 700 nm thick gold were successively deposited. After vapor deposition, the laminate is taken out from the vapor deposition apparatus, and annealed in an electric furnace (manufactured by Vacuum Riko Co., Ltd .: HPC-5000) in a mixed gas atmosphere having a nitrogen content of 80% and an oxygen content of 20% at 450 ° C for 5 minutes. A p-type electrode was formed. After forming the p-type electrode, the laminate was cut into an appropriate size for the bonding process. A conductive support made of GaAs having a thickness of 350 μm for supporting the laminate was cut into an appropriate size, washed with acetone, methanol, and ultrapure water and dried. After drying, a 40 [mu] m thick gold germanium alloy (gold: 12%) is placed on the support, and then the p-type electrode surface of the laminate is placed down, and an electric furnace (manufactured by Vacuum Riko Co., Ltd .: HPC) -5000) in a nitrogen atmosphere at 450 ° C. for 5 minutes to bond the laminate and the support.

次いで、サファイア基板側から、QスイッチLD励起Nd:YVOレーザー(スペクトラフィジックス株式会社製:型式BL6S−266Q)(波長266nm)を照射してGaNバッファ層を融解させた。その後、半導体積層体を約50℃に加熱してサファイア基板を除去した。   Next, from the sapphire substrate side, a GaN buffer layer was melted by irradiation with a Q-switched LD-pumped Nd: YVO laser (Spectra Physics Co., Ltd .: model BL6S-266Q) (wavelength 266 nm). Thereafter, the semiconductor laminate was heated to about 50 ° C. to remove the sapphire substrate.

サファイア基板の除去により露出されたn型AlGaN層の表面をCMP法で研磨した。次いで、レーザー堆積装置(日本真空株式会社製)を用い、SnOとInをSn含有量が15質量%となるように混合した混合物から、温度800℃において、n型Al0.3Ga0.7N層の上に厚さ300nmの高錫濃度ITO電極からなるn層電極を蒸着した。 The surface of the n-type AlGaN layer exposed by removing the sapphire substrate was polished by CMP. Next, using a laser deposition apparatus (manufactured by Nippon Vacuum Co., Ltd.), from a mixture obtained by mixing SnO 2 and In 2 O 3 so that the Sn content is 15% by mass, at a temperature of 800 ° C., n-type Al 0.3 Ga 0.7 An n-layer electrode composed of a 300-nm-thick high tin concentration ITO electrode was deposited on the N layer.

ITO電極を堆積させて得られた発光素子に電流10mAを注入して発光スペクトルを測定したところ、例1で得られた発光素子は深紫外光域の波長330nm付近にピークを有することがわかった。また、この発光素子の直列抵抗を測定したところ約1Ωであった。この値は、従来の横型電極構造を有するAlGaN系深紫外発光素子における直列抵抗約100Ωの100分の1である。さらに、ITO電極を800℃で蒸着したため深紫外光波長における透過率が高くなり、発光素子の発光効率が向上した。   When the emission spectrum was measured by injecting a current of 10 mA into the light-emitting device obtained by depositing the ITO electrode, it was found that the light-emitting device obtained in Example 1 had a peak near the wavelength of 330 nm in the deep ultraviolet region. . Further, when the series resistance of this light emitting element was measured, it was about 1Ω. This value is 1/100 of the series resistance of about 100Ω in the AlGaN-based deep ultraviolet light-emitting device having the conventional lateral electrode structure. Furthermore, since the ITO electrode was deposited at 800 ° C., the transmittance at the wavelength of deep ultraviolet light was increased, and the light emission efficiency of the light emitting device was improved.

本発明による縦型電極構造を有するAlGaN系深紫外発光素子の層構造を示す略横断面図である。1 is a schematic cross-sectional view showing a layer structure of an AlGaN deep ultraviolet light emitting device having a vertical electrode structure according to the present invention. 本発明によるAlGaN系深紫外発光素子の製造手順の一態様を示す略横断面図である。It is a general | schematic cross-sectional view which shows the one aspect | mode of the manufacturing procedure of the AlGaN-type deep ultraviolet light emitting element by this invention. ITO蒸着時の基板温度が深紫外光域での透過率に与える影響を示すグラフである。It is a graph which shows the influence which the substrate temperature at the time of ITO vapor deposition has on the transmittance | permeability in a deep ultraviolet light region.

Claims (2)

順にn型AlGaN層、AlGaN系量子井戸活性層、p型AlGaN層を、ならびに必要によりp型GaN層を含み、さらに該n型AlGaN層の表面の少なくとも一部にn層電極を、そして該p型AlGaN層または該p型GaN層の表面の少なくとも一部にp層電極を、当該駆動電流が各層内を各境界面に対して実質的に法線方向に流れるように形成させたAlGaN系深紫外発光素子であって、該n層電極として、錫含有量10〜20質量%のインジウム錫酸化物(ITO)透明電極を使用したことを特徴とするAlGaN系深紫外発光素子。   An n-type AlGaN layer, an AlGaN-based quantum well active layer, a p-type AlGaN layer, and a p-type GaN layer as necessary, and an n-layer electrode on at least a part of the surface of the n-type AlGaN layer, and AlGaN-based depth in which a p-layer electrode is formed on at least a part of the surface of the p-type GaN layer or the p-type GaN layer so that the driving current flows in each layer in a direction substantially normal to each boundary surface An AlGaN-based deep ultraviolet light emitting element, wherein an indium tin oxide (ITO) transparent electrode having a tin content of 10 to 20% by mass is used as the n-layer electrode. サファイア基板上にGaNバッファ層、n型AlGaN層、AlGaN系量子井戸活性層、p型AlGaN層および必要によりp型GaN層を順次積層させ、次いで該p型AlGaN層または該p型GaN層の上にp層電極を形成させた後、該p層電極の上に導電性支持体を接合させ、次いで該サファイア基板側から所定の波長を有するレーザーを照射することにより該GaNバッファ層を融解させて該サファイア基板と共に除去し、これにより露出された該n型AlGaN層の表面の少なくとも一部に、n層電極として錫含有量10〜20質量%のインジウム錫酸化物(ITO)透明電極を温度400℃以上で蒸着形成させることを特徴とするAlGaN系深紫外発光素子の製造方法。   A GaN buffer layer, an n-type AlGaN layer, an AlGaN-based quantum well active layer, a p-type AlGaN layer and, if necessary, a p-type GaN layer are sequentially stacked on the sapphire substrate, and then on the p-type AlGaN layer or the p-type GaN layer. After forming a p-layer electrode, a conductive support is bonded on the p-layer electrode, and then the GaN buffer layer is melted by irradiating a laser having a predetermined wavelength from the sapphire substrate side. An indium tin oxide (ITO) transparent electrode having a tin content of 10 to 20% by mass as an n-layer electrode is formed on at least a part of the surface of the n-type AlGaN layer that is removed together with the sapphire substrate and exposed at a temperature of 400. A method for producing an AlGaN-based deep ultraviolet light-emitting device, wherein vapor deposition is performed at a temperature equal to or higher than ° C.
JP2005093028A 2005-03-28 2005-03-28 AlGaN-BASED DEEP-ULTRAVIOLET LIGHT-EMITTING ELEMENT AND ITS MANUFACTURING METHOD Pending JP2006278554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093028A JP2006278554A (en) 2005-03-28 2005-03-28 AlGaN-BASED DEEP-ULTRAVIOLET LIGHT-EMITTING ELEMENT AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093028A JP2006278554A (en) 2005-03-28 2005-03-28 AlGaN-BASED DEEP-ULTRAVIOLET LIGHT-EMITTING ELEMENT AND ITS MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2006278554A true JP2006278554A (en) 2006-10-12

Family

ID=37213023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093028A Pending JP2006278554A (en) 2005-03-28 2005-03-28 AlGaN-BASED DEEP-ULTRAVIOLET LIGHT-EMITTING ELEMENT AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2006278554A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131335A3 (en) * 2008-04-24 2010-01-21 엘지이노텍주식회사 Semiconductor light-emitting device
JP2010507262A (en) * 2006-10-18 2010-03-04 ナイテック インコーポレイテッド Vertical deep ultraviolet light emitting diode
JP2013120829A (en) * 2011-12-07 2013-06-17 Sharp Corp Nitride semiconductor ultraviolet light-emitting device
JP2014199849A (en) * 2013-03-29 2014-10-23 ウシオ電機株式会社 Nitride light-emitting element
JP2015500576A (en) * 2011-12-12 2015-01-05 センサー エレクトロニック テクノロジー インコーポレイテッド UV reflective contact
JP2017201655A (en) * 2016-05-02 2017-11-09 日機装株式会社 Deep uv light-emitting device and method for manufacturing deep uv light-emitting device
US9818912B2 (en) 2011-12-12 2017-11-14 Sensor Electronic Technology, Inc. Ultraviolet reflective contact
JP2019029536A (en) * 2017-07-31 2019-02-21 Dowaホールディングス株式会社 Group iii nitride epitaxial substrate, electron beam excitation type light-emitting epitaxial substrate, method of manufacturing them, and electron beam excitation type light-emitting device
JP2019067841A (en) * 2017-09-29 2019-04-25 日機装株式会社 Semiconductor light-emitting element and light-emitting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507262A (en) * 2006-10-18 2010-03-04 ナイテック インコーポレイテッド Vertical deep ultraviolet light emitting diode
US8492782B2 (en) 2008-04-24 2013-07-23 Lg Innotek Co., Ltd. Semiconductor light emitting device
KR100946523B1 (en) 2008-04-24 2010-03-11 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
US7973329B2 (en) 2008-04-24 2011-07-05 Lg Innotek Co., Ltd. Semiconductor light emitting device
WO2009131335A3 (en) * 2008-04-24 2010-01-21 엘지이노텍주식회사 Semiconductor light-emitting device
US8823033B2 (en) 2011-12-07 2014-09-02 Sharp Kabushiki Kaisha Nitride semiconductor ultraviolet light-emitting device
JP2013120829A (en) * 2011-12-07 2013-06-17 Sharp Corp Nitride semiconductor ultraviolet light-emitting device
JP2015500576A (en) * 2011-12-12 2015-01-05 センサー エレクトロニック テクノロジー インコーポレイテッド UV reflective contact
US9818912B2 (en) 2011-12-12 2017-11-14 Sensor Electronic Technology, Inc. Ultraviolet reflective contact
JP2014199849A (en) * 2013-03-29 2014-10-23 ウシオ電機株式会社 Nitride light-emitting element
JP2017201655A (en) * 2016-05-02 2017-11-09 日機装株式会社 Deep uv light-emitting device and method for manufacturing deep uv light-emitting device
JP2019029536A (en) * 2017-07-31 2019-02-21 Dowaホールディングス株式会社 Group iii nitride epitaxial substrate, electron beam excitation type light-emitting epitaxial substrate, method of manufacturing them, and electron beam excitation type light-emitting device
JP7000062B2 (en) 2017-07-31 2022-01-19 Dowaホールディングス株式会社 Group III nitride epitaxial substrate, electron beam excited light emitting epitaxial substrate and their manufacturing method, and electron beam excited light emitting device
JP2019067841A (en) * 2017-09-29 2019-04-25 日機装株式会社 Semiconductor light-emitting element and light-emitting device
JP7112190B2 (en) 2017-09-29 2022-08-03 日機装株式会社 light emitting device

Similar Documents

Publication Publication Date Title
JP5272390B2 (en) Group III nitride semiconductor manufacturing method, group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
JP5049659B2 (en) Group III nitride semiconductor manufacturing method, group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
JP5072397B2 (en) Gallium nitride compound semiconductor light emitting device and method of manufacturing the same
JP2006278554A (en) AlGaN-BASED DEEP-ULTRAVIOLET LIGHT-EMITTING ELEMENT AND ITS MANUFACTURING METHOD
JP4457826B2 (en) Light-emitting diode using nitride semiconductor
KR100845037B1 (en) Ohmic electrode and method thereof, semiconductor light emitting element having this
JPWO2006038665A1 (en) Nitride semiconductor light emitting device and manufacturing method thereof
TW200838000A (en) Group-III nitride compound semiconductor device and production method thereof, group-III nitride compound semiconductor light-emitting device and production method thereof, and lamp
JP2007157853A (en) Semiconductor light-emitting element, and method of manufacturing same
JP2000216164A (en) Manufacture of semiconductor device
WO2007120016A1 (en) Method for forming ohmic electrode and semiconductor light emitting element
JP5078039B2 (en) Ga2O3 semiconductor device and method for manufacturing Ga2O3 semiconductor device
JPWO2006104063A1 (en) Nitride-based deep ultraviolet light emitting device and method for manufacturing the same
TWI488333B (en) LED element and manufacturing method thereof
JP2001102623A (en) Nitride semiconductor light emitting element and fabrication thereof
JP2010267694A (en) Semiconductor light emitting element and method of manufacturing the same, and semiconductor element and method of manufacturing the same
KR102099440B1 (en) A method of manufacturing a light emitting device
JP2002314131A (en) Transparent electrode, manufacturing method thereof and group iii nitride semiconductor light emitting element using the same
JPWO2009147822A1 (en) Light emitting element
TWI585993B (en) Nitride light emitting device and manufacturing method thereof
JP2006093675A (en) Positive electrode for compound semiconductor light emitting element, light emitting element and lamp using positive electrode
JP2009152530A (en) Nitride semiconductor light emitting element and method of producing the same
JP4297884B2 (en) Group III nitride p-type semiconductor and method of manufacturing the same
KR101459770B1 (en) group 3 nitride-based semiconductor devices
US7655491B2 (en) P-type Group III nitride semiconductor and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201