JP2006278533A - Manufacturing method of magnetic core - Google Patents

Manufacturing method of magnetic core Download PDF

Info

Publication number
JP2006278533A
JP2006278533A JP2005092763A JP2005092763A JP2006278533A JP 2006278533 A JP2006278533 A JP 2006278533A JP 2005092763 A JP2005092763 A JP 2005092763A JP 2005092763 A JP2005092763 A JP 2005092763A JP 2006278533 A JP2006278533 A JP 2006278533A
Authority
JP
Japan
Prior art keywords
magnetic core
mold
manufacturing
molded body
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005092763A
Other languages
Japanese (ja)
Inventor
Yuji Sezai
勇司 瀬在
Migaku Murase
琢 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005092763A priority Critical patent/JP2006278533A/en
Publication of JP2006278533A publication Critical patent/JP2006278533A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a magnetic core capable of reducing costs in manufacturing (magnetic core manufacturing cost and polishing cost), without substantially requiring polishing after calcination with less deformation upon calcination even in the magnetic core having different thickness portions. <P>SOLUTION: The method can manufacture the magnetic core 2 having the thickness of a portion 12 thinner than other portions by integrally subjecting the core to press working. The method comprises a process of forming a compressed molding structure 2a by disposing a first mold 26 for forming the relatively thin portion 12, and a second mold 28 for forming relatively thick portions relatively movably in a press direction and press molding powder filled in a cavity of a mold composed of the first mold 26 and the second mold 28; and a process of calcining the compressed molding structure 2a. press forces are applied independently to the first mold 26 and the second metal 28 so that the maximum variation of density is reduced in the thin portion 12 and the thick portions in the compressed molding structure 2a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、トランスやチョークコイルなどに用いる磁心の製造方法に関する。   The present invention relates to a method of manufacturing a magnetic core used for a transformer, a choke coil, or the like.

近年、各種電子機器には小型化、薄型化、高性能化などの要求が高まっており、スイッチング電源やトランスや磁心などの形状も小型化、薄型化、複雑化、高寸法精度化などが求められている。磁心の小型化、薄型化、高寸法精度化などに伴い、磁心を製造する際に課題が生じてくる。例えば一部分の厚みが他の部分よりも薄く構成される磁心では、焼成時に変形などが発生しやすくなり充分な寸法精度が得られなくなる。これを防止する手段として、芯心全体の厚みが同じになるように成形しておいて焼成時の変形を低減させることなどが考えられる。しかしながら、このような手段の場合、焼成後の磁心に他の部分よりも薄く構成される部分を形成するための研磨を施さなければならず、製造する際のコスト(磁心材料コスト、研磨コストなど)が増大することになる。   In recent years, various electronic devices have been demanded to be smaller, thinner, higher performance, etc., and the shape of switching power supplies, transformers, magnetic cores, etc. have been reduced in size, thickness, complexity, and high dimensional accuracy. It has been. With the downsizing, thinning, and high dimensional accuracy of magnetic cores, problems arise when manufacturing magnetic cores. For example, in a magnetic core configured such that a part of the thickness is thinner than the other part, deformation or the like is likely to occur during firing, and sufficient dimensional accuracy cannot be obtained. As a means for preventing this, it is conceivable to reduce the deformation at the time of firing by forming the core core so as to have the same thickness. However, in the case of such a means, the sintered magnetic core must be polished to form a portion that is thinner than other portions, and the manufacturing cost (magnetic core material cost, polishing cost, etc.) ) Will increase.

具体的には、下記の特許文献1に示す磁心の形状が知られており、この文献に示す枠形の磁心は縦横対称形状のため焼成時の変形が発生しにくいと述べられているが、取付溝も含めて一体的に成形しようとすると、焼成時の変形が問題となってくる。
特開平7−230919号公報
Specifically, the shape of the magnetic core shown in the following Patent Document 1 is known, and the frame-shaped magnetic core shown in this document is described as being less likely to be deformed during firing because of its vertical and horizontal symmetry. If an attempt is made to integrally mold including the mounting groove, deformation during firing becomes a problem.
Japanese Patent Laid-Open No. 7-230919

本発明は、このような実状に鑑みてなされ、厚みが異なる部分を有する磁心であっても、焼成時の変形が小さく、焼成後に研磨がほとんど不要であり、製造時のコスト(磁心材料コスト、研磨コストなど)を低減することができる磁心の製造方法を提供することを目的とする。   The present invention has been made in view of such a situation, and even a magnetic core having a portion having a different thickness has little deformation at the time of baking, and almost no polishing is required after baking, and the cost at the time of manufacturing (magnetic core material cost, An object of the present invention is to provide a method of manufacturing a magnetic core that can reduce polishing costs and the like.

上記目的を達成するために、本発明に係る磁心の製造方法は、
一部分の厚みが他の部分よりも薄く構成してある磁心を、一体的にプレス加工して製造することができる方法であり、
比較的に薄い部分を形成するための第1金型部分と、比較的に厚い部分を形成するための第2金型部分とを、プレス方向に相対移動自在に配置し、前記第1金型部分および前記第2金型部分で構成してある金型のキャビティに充填される粉体をプレス成形して圧縮成形体を形成する工程と、
前記圧縮成形体を焼成する工程とを有し、
前記圧縮成形体における薄い部分と、前記厚い部分との密度の最大バラツキが小さくなるように、前記第1金型部分および前記第2金型部分にプレス力を別々に加えることを特徴とする。
なお、本発明において、相対移動自在とは、いずれか一方を固定して、他方を移動させても良いし、他方を固定して一方を移動させても良いし、あるいは、これらの双方を移動させても良いという意味である。
In order to achieve the above object, a method of manufacturing a magnetic core according to the present invention includes:
It is a method that can be manufactured by integrally pressing a magnetic core that is configured so that the thickness of one part is thinner than the other part,
A first mold part for forming a relatively thin part and a second mold part for forming a relatively thick part are arranged so as to be relatively movable in the pressing direction, and the first mold part Forming a compression molded body by press-molding a powder filled in a mold cavity constituted by a portion and the second mold portion;
Firing the compression molded body,
A pressing force is separately applied to the first mold part and the second mold part so that the maximum variation in density between the thin part and the thick part in the compression molded body is reduced.
In the present invention, “relatively movable” means that one of them can be fixed and the other can be moved, the other can be fixed and one can be moved, or both of these can be moved. It means that you may let them.

好ましくは、前記磁心が、
断面矩形の棒状のI型コアと組み合わされて閉磁路コアを構成する細長い矩形リング形状の枠形コアであり、
長手方向に沿って平行に延在する一対の長辺部分と、
前記長辺部分の両端を各々一体的に連絡するように平行に配置してある一対の短辺部分と、を有し、
それぞれの前記短辺部分の上部には、前記I型コアの両端が着脱自在に嵌め込まれる取付溝が形成してあり、その取付溝が形成される前記短辺部分の厚みが前記長辺部分の厚みよりも薄く構成してある。
Preferably, the magnetic core is
An elongated rectangular ring-shaped frame core that forms a closed magnetic circuit core in combination with a rod-shaped I-shaped core having a rectangular cross section;
A pair of long side portions extending in parallel along the longitudinal direction;
A pair of short side portions arranged in parallel so as to integrally connect both ends of the long side portion, and
At the upper part of each short side portion, an attachment groove is formed in which both ends of the I-type core are detachably fitted, and the thickness of the short side portion where the attachment groove is formed is the length of the long side portion. It is configured to be thinner than the thickness.

好ましくは、前記圧縮成形体における薄い部分と、前記厚い部分との密度の最大バラツキが0.16Mg/m以内、さらに好ましくは0.08Mg/m以内、特に好ましくは0.02Mg/m以内となるように、前記第1金型部分および前記第2金型部分にプレス力を別々に加える。 Preferably, the maximum variation in density between the thin portion and the thick portion in the compression molded body is within 0.16 Mg / m 3 , more preferably within 0.08 Mg / m 3 , and particularly preferably 0.02 Mg / m 3. The pressing force is separately applied to the first mold part and the second mold part so as to be within the range.

好ましくは、焼成後の成形体におけるいずれの表面に対しても、研磨処理を行わないが、焼成後の成形体における比較的に厚みが薄い部分のみ研磨処理を行っても良い。   Preferably, the polishing treatment is not performed on any surface of the fired molded body, but only a relatively thin portion of the fired molded body may be polished.

好ましくは、前記金型のキャビティに充填される粉体が、MnZn系フェライト材料であり、
さらに好ましくは、前記MnZn系フェライトが、
Fe : 50.0 〜 70.0 mol% および ZnO : 0 〜 30.0 mol% を含み、残部が実質的に MnO から成る。
Preferably, the powder filled in the cavity of the mold is a MnZn-based ferrite material,
More preferably, the MnZn-based ferrite is
Fe 2 O 3: 50.0 ~ 70.0 mol% and ZnO: includes 0 ~ 30.0 mol%, the balance being substantially MnO.

本発明者等は、上記目的を達成するために、焼成後の磁心において、研磨を施さなくても変形を少なくするように鋭意検討した結果、焼成する前の粉体の圧縮成形体において、各部分の密度を均一となるように成型することにより、焼成後でも変形量が小さく高寸法精度の磁心を製造することができることを見出し、本発明を完成させるに至った。   In order to achieve the above object, the inventors of the present invention have intensively studied to reduce deformation in the magnetic core after firing without performing polishing. It has been found that by molding the part so as to have a uniform density, it is possible to manufacture a magnetic core with a small deformation amount and high dimensional accuracy even after firing, and the present invention has been completed.

本発明によれば、厚みが異なる部分を有する磁心であっても、焼成後に研磨を施さなくても変形の少ない高寸法精度の磁心を製造することができるため、研磨代の不要による磁心材料量の削減、研磨に要するエネルギー・設備・部材などの削減、研磨により発生する材料の削減などを図ることが可能になる。   According to the present invention, even a magnetic core having portions with different thicknesses can be manufactured with a high dimensional accuracy with little deformation without being polished after firing. It is possible to reduce the amount of energy, equipment, members, etc. required for polishing, and the material generated by polishing.

本発明では、圧縮成形体における薄い部分と、厚い部分との密度の最大バラツキが0.16Mg/m以内となるように、第1金型部分および前記第2金型部分にプレス力を別々に加えることで、焼成後の変形は、最大で、0.20mm以内となる。また、厚い部分との密度の最大バラツキが0.08Mg/m以内となるように、第1金型部分および前記第2金型部分にプレス力を別々に加えることで、焼成後の変形は、最大で、0.08mm以内となる。さらに、厚い部分との密度の最大バラツキが0.02Mg/m以内となるように、第1金型部分および前記第2金型部分にプレス力を別々に加えることで、焼成後の変形は、最大で、0.01mm以内となる。 In the present invention, the pressing force is separately applied to the first mold portion and the second mold portion so that the maximum variation in density between the thin portion and the thick portion in the compression molded body is within 0.16 Mg / m 3. By adding to the above, deformation after firing is within 0.20 mm at the maximum. Further, by applying a pressing force separately to the first mold part and the second mold part so that the maximum variation in density with the thick part is within 0.08 Mg / m 3 , deformation after firing can be reduced. The maximum is within 0.08 mm. Furthermore, by applying a pressing force separately to the first mold part and the second mold part so that the maximum variation in density with the thick part is within 0.02 Mg / m 3 , deformation after firing can be reduced. The maximum is within 0.01 mm.

以下、本発明を、図面に示す実施形態に基づき説明する。
図1は本発明の一実施形態に係る磁心の斜視図、
図2は図1に示す磁心と組み合わせて用いられるI形磁心の斜視図、
図3Aは図1に示す磁心における焼成前の圧縮成形体を形成するための金型の要部断面図、
図3Bは図3Aに示す金型の部分斜視図、
図4は圧縮成形体の平面図、
図5は焼成後の焼結体の変形量を示す概略図である。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 is a perspective view of a magnetic core according to an embodiment of the present invention,
FIG. 2 is a perspective view of an I-shaped magnetic core used in combination with the magnetic core shown in FIG.
3A is a cross-sectional view of a main part of a mold for forming a compression molded body before firing in the magnetic core shown in FIG.
FIG. 3B is a partial perspective view of the mold shown in FIG.
FIG. 4 is a plan view of the compression molded body,
FIG. 5 is a schematic view showing the amount of deformation of the sintered body after firing.

図1に示すように、本発明の一実施形態に係る磁心2は、図2に示す断面矩形の棒状のI型コア(磁心)4と組み合わされて閉磁路コアを構成する。具体的には、I型コア(磁心)4の周囲に導線が巻回され、このコア4の両端部が磁心2の取付溝に嵌合される。   As shown in FIG. 1, a magnetic core 2 according to an embodiment of the present invention is combined with a rod-shaped I-shaped core (magnetic core) 4 having a rectangular cross section shown in FIG. 2 to form a closed magnetic circuit core. Specifically, a conducting wire is wound around the I-type core (magnetic core) 4, and both ends of the core 4 are fitted into the mounting grooves of the magnetic core 2.

図1に示す磁心2は、中央部に矩形状の貫通孔6が形成してあり、全体として、細長い矩形リング形状の枠形コアであり、長手方向Xに沿って平行に延在する一対の長辺部分8を有する。また、この磁心2は、長辺部分8、8の両端を各々一体的に連絡するように、幅方向Yに沿って平行に配置してある一対の短辺部分10,10を有する。   A magnetic core 2 shown in FIG. 1 has a rectangular through-hole 6 formed at the center, and is a frame core having an elongated rectangular ring shape as a whole, and a pair of parallel extending along the longitudinal direction X. It has a long side portion 8. The magnetic core 2 has a pair of short side portions 10 and 10 arranged in parallel along the width direction Y so as to integrally connect both ends of the long side portions 8 and 8 respectively.

それぞれの短辺部分10の中央上部には、図2に示すI型コアの両端が着脱自在に嵌め込まれる取付溝12、12が形成してあり、その取付溝12,12が形成される短辺部分10の厚みが長辺部分8の厚みよりも薄く構成してある。取付溝12の幅w1は、I型コア4の幅w2と略同じか、それよりも広い幅である。また、取付溝12の深さd1は、I型コア4の厚みd2と略同じか、それよりも深い幅である。   At the center upper part of each short side portion 10, there are formed mounting grooves 12, 12 into which both ends of the I-shaped core shown in FIG. 2 are detachably fitted, and the short side on which the mounting grooves 12, 12 are formed. The thickness of the portion 10 is made thinner than the thickness of the long side portion 8. The width w1 of the mounting groove 12 is substantially the same as or wider than the width w2 of the I-type core 4. Further, the depth d1 of the mounting groove 12 is substantially the same as or thicker than the thickness d2 of the I-type core 4.

このため、取付溝12が形成してある短辺部分10の厚み(上下方向Z)は、その他の部分(残りの短辺部分10および長辺部分8)に比較して、10〜90%程度に薄くなる。   For this reason, the thickness (vertical direction Z) of the short side portion 10 in which the mounting groove 12 is formed is about 10 to 90% as compared with other portions (the remaining short side portion 10 and the long side portion 8). It becomes thinner.

図1に示す磁心2を製造するために、本実施形態では、図3Aおよび図3Bに示す金型装置20が用いられる。この金型装置20は、枠金型22を有し、この枠金型22の中空部24の中心部に、図3Bに示す中棒金型6aが配置してある。この中棒金型6aは、図3Aに示す枠金型22と一体に上下方向Zに同時に移動可能に配置してある。なお、図3Bでは、枠金型22の図示を省略している。
中棒金型6aと枠金型22との間の空間には、下パンチ28と、取付溝形成金型26が配置してある。下パンチ28は、金型装置20に対して固定して配置されている。取付溝形成金型26は、下パンチ28に対して、上下方向Zに移動可能に配置してある。
これらの取付溝形成金型26および下パンチ28の上方には、四角リング形状の上パンチ30が中空部24の内面を上下方向Zに移動自在に配置してある。本実施形態では、中棒金型6aと枠金型22との間の空間が、圧縮成形体2aを成形するためのキャビティ32であり、中棒金型6aは、圧縮成形体2aの貫通孔6を形成する部分である。
In order to manufacture the magnetic core 2 shown in FIG. 1, a mold apparatus 20 shown in FIGS. 3A and 3B is used in the present embodiment. The mold apparatus 20 has a frame mold 22, and an intermediate rod mold 6 a shown in FIG. 3B is arranged at the center of the hollow portion 24 of the frame mold 22. The middle bar mold 6a is arranged so as to be movable in the vertical direction Z simultaneously with the frame mold 22 shown in FIG. 3A. In FIG. 3B, the frame mold 22 is not shown.
A lower punch 28 and a mounting groove forming mold 26 are arranged in the space between the middle bar mold 6 a and the frame mold 22. The lower punch 28 is fixedly arranged with respect to the mold apparatus 20. The mounting groove forming mold 26 is arranged so as to be movable in the vertical direction Z with respect to the lower punch 28.
Above these mounting groove forming mold 26 and lower punch 28, a square ring-shaped upper punch 30 is disposed so as to be movable in the vertical direction Z on the inner surface of the hollow portion 24. In the present embodiment, the space between the middle bar mold 6a and the frame mold 22 is a cavity 32 for molding the compression molded body 2a, and the middle bar mold 6a is a through hole of the compression molded body 2a. 6 is a part forming 6.

金型装置20のキャビティ32には、磁心2を形成するためのフェライト材料が予め充填される。フェライト材料としては、特に限定されないが、たとえばMnZn系フェライト材料が用いられる。MnZn系フェライトは、一般に、Fe : 50.0 〜 70.0 mol% および ZnO : 0 〜 30.0 mol% を含み、残部が実質的に MnO から成る。圧縮成形される前のフェライト材料(顆粒)の平均粒径は、たとえば50〜200μm程度である。 The cavity 32 of the mold apparatus 20 is prefilled with a ferrite material for forming the magnetic core 2. Although it does not specifically limit as a ferrite material, For example, a MnZn type ferrite material is used. The MnZn-based ferrite generally contains Fe 2 O 3 : 50.0 to 70.0 mol% and ZnO: 0 to 30.0 mol%, with the balance being substantially made of MnO 2. The average particle diameter of the ferrite material (granules) before being compression-molded is, for example, about 50 to 200 μm.

図3Aおよび図3Bにおいて、上パンチ30を下側に移動して、上パンチ30と下パンチ28との間、および上パンチ30と取付溝形成金型26との間で、フェライト材料が圧縮成形され、図1に示す磁心2の上下を逆にした形状の圧縮成形体2aが得られる。図3Aに示す取付溝形成金型26の上部には、図1に示す取付溝12を形成するための金型上面12bが形成してある。
なお、上パンチ30が下方に移動すると、下パンチ28は移動しないが、取付溝形成金型26は、上パンチ30の下方移動に応じて移動する。ただし、取付溝形成金型26の下方移動は、上パンチ30の下方移動とは同じではなく、取付溝形成金型26の上に位置するフェライト材料に印加される圧力と、下パンチ28の上に位置するフェライト材料に印加される圧力とが同じになるように制御される。
3A and 3B, the upper punch 30 is moved downward, and the ferrite material is compression-molded between the upper punch 30 and the lower punch 28 and between the upper punch 30 and the mounting groove forming mold 26. Thus, a compression molded body 2a having a shape in which the magnetic core 2 shown in FIG. 1 is turned upside down is obtained. A mold upper surface 12b for forming the mounting groove 12 shown in FIG. 1 is formed on the upper part of the mounting groove forming mold 26 shown in FIG. 3A.
When the upper punch 30 moves downward, the lower punch 28 does not move, but the mounting groove forming mold 26 moves according to the downward movement of the upper punch 30. However, the downward movement of the mounting groove forming mold 26 is not the same as the downward movement of the upper punch 30, but the pressure applied to the ferrite material positioned on the mounting groove forming mold 26 and the upper punch 28. The pressure applied to the ferrite material located at is controlled to be the same.

取付溝形成金型26の金型上面12bの上に位置する材料が圧縮成形されて、焼成前取付溝12aが形成されている部分の焼成前短辺部分10aとなり、下パンチ28の上部に位置する材料が圧縮成形されて、焼成前取付溝12aが形成されていない焼成前長辺部分8a(焼成前取付溝12aが形成されていない部分の焼成前短辺部分10aも含む)となる。下パンチ28は、装置20に固定して配置されており、取付溝形成金型26が下方向に移動可能に配置されている部分(溝部)のみが、他部と別々に加圧制御され、その他の部分とで、圧縮成形時の加圧力を別々に制御することが可能となる。   The material positioned on the upper surface 12b of the mounting groove forming mold 26 is compression-molded to form a pre-firing short side portion 10a where the pre-firing mounting groove 12a is formed, and is positioned above the lower punch 28. The material to be compressed is compression-molded to form a pre-firing long side portion 8a in which the pre-firing mounting groove 12a is not formed (including the pre-firing short side portion 10a in a portion where the pre-firing mounting groove 12a is not formed). The lower punch 28 is fixedly disposed on the apparatus 20, and only the portion (groove portion) where the mounting groove forming mold 26 is disposed so as to be movable downward is subjected to pressure control separately from the other portions. It is possible to separately control the pressing force at the time of compression molding in the other portions.

本実施形態では、金型装置20により成形される圧縮成形体における薄い部分(図1に示す取付溝12が形成される部分)と、厚い部分(図1に示す長辺部分8)との密度の最大バラツキが0.16Mg/m以内となるように、上パンチ30を移動させ、下パンチ28を固定し、取付溝形成金型26を下パンチ28に対して移動させることで、その部分のプレス力を別々に制御することができる。そして、取付溝形成金型26の上に位置するフェライト材料に印加される圧力と、下パンチ28の上に位置するフェライト材料に印加される圧力とが同じになるように上パンチ30および取付溝形成金型26の移動を制御する。その結果、圧縮成形体における各部において、圧力が均等に印加される。 In this embodiment, the density of the thin part (part in which the attachment groove 12 shown in FIG. 1 is formed) and the thick part (the long side part 8 shown in FIG. 1) in the compression-molded body molded by the mold apparatus 20. The upper punch 30 is moved, the lower punch 28 is fixed, and the mounting groove forming mold 26 is moved with respect to the lower punch 28 so that the maximum variation of the portion is 0.16 Mg / m 3 or less. The pressing force can be controlled separately. Then, the upper punch 30 and the mounting groove are set so that the pressure applied to the ferrite material positioned on the mounting groove forming mold 26 is the same as the pressure applied to the ferrite material positioned on the lower punch 28. The movement of the forming mold 26 is controlled. As a result, pressure is uniformly applied to each part of the compression molded body.

このようにして得られた圧縮成形体2aは、次に、必要に応じて脱バインダ処理され、その後に焼成される。脱バインダ条件および焼成条件は、圧縮成形体2aを構成するフェライトの材質などにより決定される。焼成の際には、焼成用治具の上に、平均粒径が100〜200μm程度の酸化ジルコニウムなどを散布して収縮過程での滑りを促進させ(焼成用治具との摩擦を緩和させ)、その上に、複数の圧縮成形体を置いて焼成する。   The compression molded body 2a thus obtained is then subjected to binder removal processing as necessary, and then fired. The binder removal condition and the firing condition are determined by the material of the ferrite constituting the compression molded body 2a. During firing, zirconium oxide or the like having an average particle diameter of about 100 to 200 μm is sprayed on the firing jig to promote slipping during the shrinking process (reducing friction with the firing jig). Then, a plurality of compression-molded bodies are placed thereon and fired.

この実施形態では、密度の最大バラツキが0.16Mg/m以内となるように、上パンチ30に対して下パンチ28および取付溝形成金型26にプレス力を別々に加える(下パンチ28は固定してある)ことで、焼成後の成形体の変形は、最大で、0.20mm以内となる。 In this embodiment, a pressing force is separately applied to the lower punch 28 and the mounting groove forming mold 26 with respect to the upper punch 30 so that the maximum density variation is within 0.16 Mg / m 3 (the lower punch 28 is In other words, the deformation of the molded body after firing is at most 0.20 mm.

また、厚い部分との密度の最大バラツキが0.08Mg/m以内となるように、プレス力を加えることで、焼成後の変形は、最大で、0.08mm以内となる。さらに、厚い部分との密度の最大バラツキが0.02Mg/m以内となるように、プレス力を加えることで、焼成後の変形は、最大で、0.01mm以内となる。 Further, by applying a pressing force so that the maximum variation in density with the thick portion is within 0.08 Mg / m 3 , the deformation after firing is within 0.08 mm at the maximum. Furthermore, by applying a pressing force such that the maximum variation in density with the thick portion is within 0.02 Mg / m 3 , the deformation after firing is within 0.01 mm at the maximum.

したがって、本実施形態の方法では、焼成後に研磨を施さなくても変形の少ない高寸法精度の磁心2を製造することができるため、研磨代の不要による磁心材料量の削減、研磨に要するエネルギー・設備・部材などの削減、研磨により発生する材料の削減などを図ることが可能になる。   Therefore, in the method according to the present embodiment, the magnetic core 2 having high dimensional accuracy with little deformation can be manufactured without polishing after firing. Therefore, the amount of magnetic core material can be reduced by eliminating the need for polishing, and the energy required for polishing can be reduced. It is possible to reduce the number of equipment / members and materials generated by polishing.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。
たとえば、トランスなどで使用される状態によっては、図1に示す取付溝12の表面は面精度が必要となり研磨を施さなければならない場合もある。ただし、この場合の研磨の目的は、取付溝を形成するための研磨とは異なる。
The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.
For example, depending on the state of use in a transformer or the like, the surface of the mounting groove 12 shown in FIG. 1 may require surface accuracy and must be polished. However, the purpose of polishing in this case is different from that for forming the mounting groove.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

実施例1Example 1

本発明において、磁心としてはMnZn系フェライトを用いた。主成分の出発原料として、Fe、Mn、ZnOを使用し、その他副成分を含有させた。 In the present invention, MnZn-based ferrite was used as the magnetic core. Fe 2 O 3 , Mn 3 O 4 and ZnO were used as starting materials for the main component, and other subcomponents were contained.

出発原料を秤量し、湿式混合した後に乾燥させ、大気中で2時間900°Cで仮焼成した。これにより得られた仮焼成体に副成分を添加し、粉砕することにより混合した。混合後、適当なバインダー、例えばポリビニルアルコールを加え、スプレードライヤー等にて造粒し、平均粒径が50〜200μmの顆粒を得た。次に、この顆粒を、図3Aに示す金型装置20のキャビティに充填し、図1に示す形状に圧縮成形した。   The starting materials were weighed, wet-mixed, dried, and calcined at 900 ° C. for 2 hours in the air. Subcomponents were added to the calcined product obtained in this manner and mixed by pulverization. After mixing, an appropriate binder such as polyvinyl alcohol was added and granulated with a spray dryer or the like to obtain granules having an average particle size of 50 to 200 μm. Next, this granule was filled in the cavity of the mold apparatus 20 shown in FIG. 3A, and compression molded into the shape shown in FIG.

さらに、得られた圧縮成形体2aを、酸素濃度を制御した雰囲気下において 約1250〜1400°Cで焼成して、図1に示す焼結体の磁心2を得た。焼成の際は、焼成用治具の上に、平均粒径が約100〜200μmの酸化ジルコニウムなどの粉を散布し、その上に圧縮成形した磁心を置いた。   Further, the obtained compression molded body 2a was fired at about 1250 to 1400 ° C. in an atmosphere in which the oxygen concentration was controlled to obtain a sintered magnetic core 2 shown in FIG. During firing, powder such as zirconium oxide having an average particle diameter of about 100 to 200 μm was sprayed on the firing jig, and a compression-molded magnetic core was placed thereon.

表1に、磁心各部の成形体密度と、焼結体の変形量を示す。焼結体の変形量は、図5に示すように、磁心における長手方向Xの端部の幅方向Yの端部寸法A1とA2とを測定し、そのうちの小さい方の値をAmin.とし、このAmin.とと中央部寸法Bとの差B−Amin.を表している。   Table 1 shows the compact density of each part of the magnetic core and the deformation amount of the sintered body. As shown in FIG. 5, the deformation amount of the sintered body was measured by measuring the end dimensions A1 and A2 in the width direction Y of the end in the longitudinal direction X of the magnetic core, and the smaller value among them was Amin. And this Amin. And the difference B-Amin. Represents.

なお、表1において、成形体密度の差(密度の最大バラツキ)は、図3Aに示す金型装置20を用いてプレス成形した後の圧縮成形2aの各部の密度を、図4に示すように、磁心を8分割して、各部において測定した密度の最大値と最小値との差を表している。   In Table 1, the difference in the molded body density (maximum variation in density) indicates the density of each part of the compression molding 2a after press molding using the mold apparatus 20 shown in FIG. 3A, as shown in FIG. The magnetic core is divided into 8 parts, and the difference between the maximum value and the minimum value of the density measured in each part is shown.

表1に示すように、磁心各部の成形体密度の差を小さくすることにより、焼結体の変形量を小さくすることができ、焼成後に研磨を施さなくても変形の少ない高寸法精度の磁心を製造することができることが確認された。磁心各部の成形体密度の差としては、表1の結果から、好ましくは、0.16Mg/m以内、さらに好ましくは、0.08Mg/m以内、特に好ましくは、0.02Mg/m以内とすることで、焼成後の変形は、0.20mm以内、0.08mm以内、特に0.01mm以内となることが確認された。 As shown in Table 1, it is possible to reduce the amount of deformation of the sintered body by reducing the difference in the density of the compacts in each part of the magnetic core, and a high dimensional accuracy magnetic core with little deformation without polishing after firing. It was confirmed that can be manufactured. The difference in the green density of the magnetic core each part, from the results in Table 1, preferably, 0.16 mg / m 3 within, more preferably, 0.08 mg / m 3 within, and particularly preferably, 0.02 mg / m 3 It was confirmed that the deformation after firing was within 0.20 mm, within 0.08 mm, and particularly within 0.01 mm.

Figure 2006278533
Figure 2006278533

図1は本発明の一実施形態に係る磁心の斜視図である。FIG. 1 is a perspective view of a magnetic core according to an embodiment of the present invention. 図2は図1に示す磁心と組み合わせて用いられるI形磁心の斜視図である。FIG. 2 is a perspective view of an I-shaped magnetic core used in combination with the magnetic core shown in FIG. 図3Aは図1に示す磁心における焼成前の圧縮成形体を形成するための金型の要部断面図である。3A is a cross-sectional view of a main part of a mold for forming a compression molded body before firing in the magnetic core shown in FIG. 図3Bは図3Aに示す金型の部分斜視図である。FIG. 3B is a partial perspective view of the mold shown in FIG. 3A. 図4は圧縮成形体の平面図である。FIG. 4 is a plan view of the compression molded body. 図5は焼成後の焼結体の変形量を示す概略図である。FIG. 5 is a schematic view showing the amount of deformation of the sintered body after firing.

符号の説明Explanation of symbols

2… 磁心
2a… 圧縮成形体
4… I形磁心
8… 長辺部分
8a… 焼成前長辺部分
10… 短辺部分
10a… 焼成前短辺部分
12… 取付溝
12a… 焼成前取付溝
20… 金型装置
22… 枠金型
24… 中空部
26… 取付溝形成金型
28… 下パンチ
30… 上パンチ
32… キャビティ
DESCRIPTION OF SYMBOLS 2 ... Magnetic core 2a ... Compression molding 4 ... I-shaped magnetic core 8 ... Long side part 8a ... Long side part before baking 10 ... Short side part 10a ... Short side part before baking 12 ... Mounting groove 12a ... Mounting groove before baking 20 ... Gold Mold device 22 ... Frame die 24 ... Hollow portion 26 ... Mounting groove forming die 28 ... Lower punch 30 ... Upper punch 32 ... Cavity

Claims (8)

一部分の厚みが他の部分よりも薄く構成してある磁心を、一体的にプレス加工して製造することができる方法であり、
比較的に薄い部分を形成するための第1金型部分と、比較的に厚い部分を形成するための第2金型部分とを、プレス方向に相対移動自在に配置し、前記第1金型部分および前記第2金型部分で構成してある金型のキャビティに充填される粉体をプレス成形して圧縮成形体を形成する工程と、
前記圧縮成形体を焼成する工程とを有し、
前記圧縮成形体における薄い部分と、前記厚い部分との密度の最大バラツキが小さくなるように、前記第1金型部分および前記第2金型部分にプレス力を別々に加えることを特徴とする
磁心の製造方法。
It is a method that can be manufactured by integrally pressing a magnetic core that is configured so that the thickness of one part is thinner than the other part,
A first mold part for forming a relatively thin part and a second mold part for forming a relatively thick part are arranged so as to be relatively movable in the pressing direction, and the first mold part Forming a compression molded body by press-molding a powder filled in a mold cavity constituted by a portion and the second mold portion;
Firing the compression molded body,
A magnetic core characterized in that a pressing force is separately applied to the first mold part and the second mold part so that the maximum variation in density between the thin part and the thick part in the compression molded body is reduced. Manufacturing method.
前記磁心が、
断面矩形の棒状のI型コアと組み合わされて閉磁路コアを構成する細長い矩形リング形状の枠形コアであり、
長手方向に沿って平行に延在する一対の長辺部分と、
前記長辺部分の両端を各々一体的に連絡するように平行に配置してある一対の短辺部分と、を有し、
それぞれの前記短辺部分の上部には、前記I型コアの両端が着脱自在に嵌め込まれる取付溝が形成してあり、その取付溝が形成される前記短辺部分の厚みが前記長辺部分の厚みよりも薄く構成してあることを特徴とする請求項1に記載の磁心の製造方法。
The magnetic core is
An elongated rectangular ring-shaped frame core that forms a closed magnetic circuit core in combination with a rod-shaped I-shaped core having a rectangular cross section;
A pair of long side portions extending in parallel along the longitudinal direction;
A pair of short side portions arranged in parallel so as to integrally connect both ends of the long side portion, and
At the upper part of each of the short side portions, there is formed a mounting groove in which both ends of the I-shaped core are detachably fitted, and the thickness of the short side portion where the mounting groove is formed is the length of the long side portion. 2. The method of manufacturing a magnetic core according to claim 1, wherein the magnetic core is made thinner than the thickness.
前記圧縮成形体における薄い部分と、前記厚い部分との密度の最大バラツキが0.16Mg/m以内となるように、前記第1金型部分および前記第2金型部分にプレス力を別々に加えることを特徴とする
請求項1または2に記載の磁心の製造方法。
The pressing force is separately applied to the first mold part and the second mold part so that the maximum variation in density between the thin part and the thick part in the compression molded body is within 0.16 Mg / m 3. The method of manufacturing a magnetic core according to claim 1, wherein the magnetic core is added.
前記圧縮成形体における薄い部分と、前記厚い部分との密度の最大バラツキが0.08Mg/m以内となるように、前記第1金型部分および前記第2金型部分にプレス力を別々に加えることを特徴とする
請求項3に記載の磁心の製造方法。
Press force is separately applied to the first mold part and the second mold part so that the maximum variation in density between the thin part and the thick part in the compression molded body is within 0.08 Mg / m 3. The method of manufacturing a magnetic core according to claim 3, wherein the magnetic core is added.
焼成後の磁心におけるいずれの表面に対しても、研磨処理を行わないことを特徴とする請求項1〜4のいずれかに記載の磁心の製造方法。   The method for manufacturing a magnetic core according to claim 1, wherein no polishing treatment is performed on any surface of the sintered magnetic core. 焼成後の磁心における比較的に厚みが薄い部分のみ研磨処理を行うことを特徴とする請求項1〜4のいずれかに記載の磁心の製造方法。   The method for manufacturing a magnetic core according to any one of claims 1 to 4, wherein a polishing process is performed only on a relatively thin portion of the magnetic core after firing. 前記金型のキャビティに充填される粉体が、MnZn系フェライト材料である請求項1〜6のいずれかに記載の磁心の製造方法。   The method of manufacturing a magnetic core according to claim 1, wherein the powder filled in the cavity of the mold is a MnZn-based ferrite material. 前記MnZn系フェライトが、
Fe : 50.0 〜 70.0 mol% および ZnO : 0 〜 30.0 mol% を含み、残部が実質的に MnO から成る請求項7に記載の磁心の製造方法。
The MnZn ferrite is
The method for producing a magnetic core according to claim 7, comprising Fe 2 O 3 : 50.0 to 70.0 mol% and ZnO: 0 to 30.0 mol%, with the balance being substantially composed of MnO 3.
JP2005092763A 2005-03-28 2005-03-28 Manufacturing method of magnetic core Withdrawn JP2006278533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092763A JP2006278533A (en) 2005-03-28 2005-03-28 Manufacturing method of magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092763A JP2006278533A (en) 2005-03-28 2005-03-28 Manufacturing method of magnetic core

Publications (1)

Publication Number Publication Date
JP2006278533A true JP2006278533A (en) 2006-10-12

Family

ID=37213006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092763A Withdrawn JP2006278533A (en) 2005-03-28 2005-03-28 Manufacturing method of magnetic core

Country Status (1)

Country Link
JP (1) JP2006278533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845422A (en) * 2015-02-03 2016-08-10 胜美达集团株式会社 Manufacturing method of magnetic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845422A (en) * 2015-02-03 2016-08-10 胜美达集团株式会社 Manufacturing method of magnetic element
CN105845422B (en) * 2015-02-03 2019-07-09 胜美达集团株式会社 A kind of manufacturing method of magnetic element

Similar Documents

Publication Publication Date Title
KR101353827B1 (en) Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for producing dust core
US10679788B2 (en) Method of manufacturing magnetic core elements
EP2211360A2 (en) A compact inductor and a method for manufacturing the same
KR101352652B1 (en) Green compact, method of manufacturing the same, and core for reactor
EP2302647A1 (en) A coil-buried inductor and a method for manufacturing the same
KR20130025835A (en) Ferrite ceramic composition, ceramic electronic component, and process for producing ceramic electronic component
JP2010245216A (en) Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core
JP2006278533A (en) Manufacturing method of magnetic core
JP2007012891A (en) Ferrite core manufacturing method
JP2005026365A (en) Drum core
KR101435429B1 (en) Ferrite core and transformer
JP4753016B2 (en) Ferrite powder, green sheet containing ferrite powder, and ferrite sintered body
JP5828308B2 (en) Ferrite core and transformer
JP4215992B2 (en) Oxide magnetic powder and core manufacturing method, core molding method, magnetic component and coil component
JP6715073B2 (en) Ni-Zn ferrite material and Ni-Zn ferrite manufacturing method
JP2016135724A (en) METHOD FOR PRODUCING MnZn FERRITE CORE
JP6079172B2 (en) Ferrite core and transformer
JP2006111518A (en) Method for manufacturing soft ferrite core
JP2006206384A (en) Ceramic material for non-reciprocal circuit element and its production method
JPH07237975A (en) Method for burning ceramics
KR20130045802A (en) Ferrite core and transformer
KR101475163B1 (en) Poder core forming method and core produced using the method
JP2005280127A (en) Compression mold, compression molded product and its manufacturing method
JP2005294319A (en) Mold for compression molding, compression molded product and its manufacturing method
JP2006240894A (en) Ferrite sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603