JP2006277987A - Simulation method and device of organic electroluminescent element - Google Patents

Simulation method and device of organic electroluminescent element Download PDF

Info

Publication number
JP2006277987A
JP2006277987A JP2005091162A JP2005091162A JP2006277987A JP 2006277987 A JP2006277987 A JP 2006277987A JP 2005091162 A JP2005091162 A JP 2005091162A JP 2005091162 A JP2005091162 A JP 2005091162A JP 2006277987 A JP2006277987 A JP 2006277987A
Authority
JP
Japan
Prior art keywords
light
amplitude
light emitting
layer
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005091162A
Other languages
Japanese (ja)
Inventor
Takuya Nishiyama
卓哉 西山
Shigeo Fujimori
茂雄 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005091162A priority Critical patent/JP2006277987A/en
Publication of JP2006277987A publication Critical patent/JP2006277987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simulate luminescent characteristics of an organic electroluminescent element with accuracy. <P>SOLUTION: In the simulation method for finding luminescent characteristics of light taken out of the organic electroluminescent element with a light reflecting layer, an amplitude ratio or a phase difference of direct light irradiated from a light-emitting face toward an observation side at a certain angle θ with a normal line direction of the light-emitting face to reflection light reflected at the light reflecting layer once or more after being emitted from the light-emitting face and directed toward the observation side at the same angle as the direct light is found with consideration of anisotropy of an amplitude of light emitted from light-emitting molecules as a fourth factor, in addition to reflection, an amplitude at transmission, and change of phases (a first factor), light absorption (a second factor), and a light-path difference (a third factor) at each layer interface constituting organic electroluminescent element introduced from Fresnel equations with the use of a complex index of refraction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表示素子、バックライト、照明、インテリア、標識、看板、電子写真機、光信号発生器などの分野に利用可能な有機電界発光素子の発光特性を予測するシミュレーション方法およびその装置に関するものである。   The present invention relates to a simulation method and apparatus for predicting the light emission characteristics of an organic electroluminescent element that can be used in fields such as display elements, backlights, lighting, interiors, signs, signboards, electrophotographic machines, and optical signal generators. It is.

基板上に形成された第一電極(一般には陽極)から注入された正孔と、第二電極(一般には陰極)から注入された電子とが、両極に挟まれた有機蛍光体や有機リン光体内で再結合する際に発光する原理を利用する有機電界発光素子の研究が近年活発に行われている。この素子は、薄型化が可能であり、低駆動電圧下での高輝度発光が可能であり、蛍光材料を選ぶことにより多色発光が可能であるという特徴を有している。   Organic phosphor or organic phosphorescent material in which holes injected from the first electrode (generally anode) formed on the substrate and electrons injected from the second electrode (generally cathode) are sandwiched between the two electrodes In recent years, researches on organic electroluminescent devices using the principle of light emission upon recombination in the body have been actively conducted. This element can be reduced in thickness, can emit light with high luminance under a low driving voltage, and has a feature that multicolor light emission is possible by selecting a fluorescent material.

有機電界発光素子が高輝度に発光することは、コダック社のC.W.Tangらによって初めて示された(例えば、非特許文献1参照)。コダック社の提示した有機電界発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層であり、かつ電子輸送性も併せ持ったトリス(8−キノリノラト)アルミニウム、および陰極としてのMg:Agを順次設けたものであり、10V程度の駆動電圧で1000Cd/mの緑色発光が可能であった。現在の有機電界発光装置は、基本的にはコダック社の上記構成を踏襲しており、基板上に第一電極と、発光層を含む薄膜層と、第二電極とが順次積層された構造を有している。そして、薄膜層は、発光層のみの単層構造であってもよいが、多くの場合には正孔輸送層や電子輸送層を設けた、複数層からなる積層構造である。 The organic electroluminescence device emits light with high brightness, which is a C.D. W. First shown by Tang et al. (See Non-Patent Document 1, for example). A typical configuration of the organic electroluminescent device presented by Kodak Company is a tris (8-quinolinolato) aluminum having a hole transporting diamine compound, a light emitting layer and an electron transporting property on an ITO glass substrate, and Mg: Ag as a cathode was sequentially provided, and green light emission of 1000 Cd / m 2 was possible with a driving voltage of about 10V. The current organic electroluminescent device basically follows the above-mentioned configuration of Kodak Company, and has a structure in which a first electrode, a thin film layer including a light emitting layer, and a second electrode are sequentially laminated on a substrate. Have. The thin film layer may have a single-layer structure including only the light-emitting layer, but in many cases, it has a laminated structure including a plurality of layers provided with a hole transport layer and an electron transport layer.

ところで、有機電界発光素子においては、素子内部で光が干渉するため、同一材料を用いて素子を作製しても、素子構造によって発光スペクトル、色度、輝度などの発光特性が変化することが知られている。そして、この光学干渉による発光特性の変化をシミュレーションする方法が提案されている(特許文献1参照)。   By the way, in an organic electroluminescent element, light interferes inside the element, and it is known that even if an element is manufactured using the same material, emission characteristics such as emission spectrum, chromaticity, and luminance change depending on the element structure. It has been. And the method of simulating the change of the light emission characteristic by this optical interference is proposed (refer patent document 1).

特許文献1の方法は、発光面の法線方向に対してある角度θで発光面から観察側に放射される直接光と、前記発光面から放射されて光反射層で一度以上反射された後、前記直接光と同じ角度θで観察側に向う反射光との振幅比もしくは位相差を、複素屈折率を用いてフレネルの式から導かれる有機電界発光素子を構成する各層界面での反射、透過時の振幅、位相の変化と、光吸収と、光路差とに加えて、発光面から放射された光が光反射層によって反射される際に正反射以外の角度に散乱されて生じる散乱光を考慮して求めるシミュレーション方法であり、発光分子から放射される光の振幅に異方性はなく等方的であるとし、光反射層によって反射される際に正反射以外の角度に散乱されて生じる散乱光の存在を考慮して任意の角度方向の発光特性を予測しようというものである。
特開2005−38659号公報 Appl. Phys. Lett.51(12)21,913(1987)
In the method of Patent Document 1, the direct light emitted from the light emitting surface to the observation side at a certain angle θ with respect to the normal direction of the light emitting surface, and after being emitted from the light emitting surface and reflected by the light reflecting layer one or more times. , Reflection and transmission at the interface of each layer constituting the organic electroluminescence device derived from the Fresnel equation using the complex refractive index, the amplitude ratio or phase difference with the reflected light directed to the observation side at the same angle θ as the direct light In addition to changes in time and amplitude, phase absorption, light absorption, and optical path difference, scattered light produced by scattering at angles other than regular reflection when light emitted from the light emitting surface is reflected by the light reflection layer This is a simulation method that is taken into consideration and is assumed that the amplitude of the light emitted from the luminescent molecule is isotropic and is isotropic, and is scattered at an angle other than regular reflection when reflected by the light reflecting layer. Light emission in any angle direction considering the presence of scattered light It is to predict the characteristics.
JP 2005-38659 A Appl. Phys. Lett. 51 (12) 21, 913 (1987)

しかしながら、上記のように散乱光をも考慮する特許文献1のシミュレーション方法では、シミュレーションで得た輝度の視野角依存性と実際の発光素子で得られる輝度の視野角依存性との間には大きな違いがあり、シミュレーションとしての精度は必ずしも高いものではなかった。   However, in the simulation method of Patent Document 1 that also considers scattered light as described above, there is a large difference between the viewing angle dependency of luminance obtained by simulation and the viewing angle dependency of luminance obtained by an actual light emitting element. There was a difference, and the simulation accuracy was not necessarily high.

特に、有機電界発光素子を用いて有機EL(Electro Luminescence)ディスプレイを作製する場合であって、画素の輝度の視野角依存性が各発光色で異なる場合、特許文献1の方法によりシミュレーションを行った結果、正面のみならず、画面の法線方向に対して角度のついた方向から見た状態における各発光色のバランスがとれていることを示すシミュレーション結果が得られても、上述のように、シミュレーションの精度が高くないことに起因して、実際の有機ELディスプレイでは、例えば、正面から見ると正しい発光色を示し、画面の法線方向に対して角度のついた方向から見ると各発光色のバランスが崩れ、ディスプレイの視認性が確保できないという不都合が発生する可能性がある。   In particular, when an organic EL (Electro Luminescence) display is manufactured using an organic electroluminescent element, and the viewing angle dependency of the luminance of a pixel is different for each emission color, a simulation was performed by the method of Patent Document 1. As a result, as described above, even if a simulation result indicating that each emission color is balanced not only in the front direction but also in a state viewed from a direction angled with respect to the normal direction of the screen, Due to the fact that the accuracy of the simulation is not high, an actual organic EL display, for example, shows a correct emission color when viewed from the front, and each emission color when viewed from a direction angled with respect to the normal direction of the screen. There is a possibility that inconvenience may occur that the visibility of the display cannot be secured.

また、この不都合は、不十分な品質の有機ELディスプレイを作製し、実際に発光特性を測定するまでは、分からないので、無駄に有機ELディスプレイを作製することになってしまうという不都合、シミュレーションだけでは十分な品質の有機ELディスプレイのための素子設計を達成できるという保証がないという不都合などを生じてしまう。   In addition, this disadvantage is not known until an organic EL display with insufficient quality is manufactured and the light emission characteristics are actually measured. Therefore, only the inconvenience and simulation that the organic EL display is wasted. Then, there arises a disadvantage that there is no guarantee that an element design for an organic EL display of sufficient quality can be achieved.

本発明は、発光特性の視野角依存性を考慮して素子設計を行い、広視野角で視認性のよい有機ELディスプレイのための発光素子を作製するために、有機電界発光素子の発光特性において、実測値と合致する精度のよいシミュレーション結果を得ることができるシミュレーション方法およびその装置を提供することを目的としている。   The present invention performs element design in consideration of the viewing angle dependency of light emission characteristics, and produces light emitting elements for organic EL displays with a wide viewing angle and good visibility. Another object of the present invention is to provide a simulation method and apparatus capable of obtaining an accurate simulation result that matches an actual measurement value.

前記の目的は、以下のシミュレーション方法、またはシミュレーション装置を用いることによって解決される。   The object is solved by using the following simulation method or simulation apparatus.

すなわち、光反射層を有し、かつ構成が既知の有機電界発光素子の取り出し光の発光特性を求めるに当たって、発光面の法線方向に対してある角度θで発光面から観察側に放射された直接光と、前記発光面から放射されて光反射層で一度以上反射された後、前記直接光と同じ角度θで観察側に向う反射光との振幅比もしくは位相差を、(1)複素屈折率を用いてフレネルの式から導かれる有機電界発光素子を構成する各層界面での反射、透過時の振幅、位相の変化、(2)光吸収、(3)光路差、および(4)発光分子から放射される光の振幅の異方性を考慮して求めることを特徴とする有機電界発光素子のシミュレーション方法である。   That is, when obtaining the light emission characteristics of the extracted light of an organic electroluminescence device having a light reflection layer and a known configuration, the light was emitted from the light emitting surface to the observation side at a certain angle θ with respect to the normal direction of the light emitting surface. The amplitude ratio or phase difference between the direct light and the reflected light emitted from the light emitting surface and reflected by the light reflection layer at least once and then toward the observation side at the same angle θ as the direct light is expressed as (1) complex refraction. The reflection at the interface of each layer constituting the organic electroluminescence device derived from the Fresnel equation using the rate, the change in amplitude and phase during transmission, (2) light absorption, (3) optical path difference, and (4) luminescent molecule This is a simulation method for an organic electroluminescent element, which is obtained in consideration of the anisotropy of the amplitude of light emitted from the organic electroluminescent element.

また、光反射層を有し、かつ構成が既知の有機電界発光素子の取り出し光の発光特性を求めるために、発光面の法線方向に対してある角度θで発光面から観察側に放射された直接光と、前記発光面から放射されて光反射層で一度以上反射された後、前記直接光と同じ角度θで観察側に向う反射光との振幅比もしくは位相差を、(1)複素屈折率を用いてフレネルの式から導かれる有機電界発光素子を構成する各層界面での反射、透過時の振幅、位相の変化、(2)光吸収、(3)光路差、および(4)発光分子から放射される光の振幅の異方性を考慮して求める手段を含むことを特徴とする有機電界発光素子のシミュレーション装置である。   In addition, in order to obtain the emission characteristics of the extracted light of an organic electroluminescence device having a light reflection layer and a known configuration, it is emitted from the light emitting surface to the observation side at an angle θ with respect to the normal direction of the light emitting surface. The amplitude ratio or phase difference between the direct light and the reflected light emitted from the light emitting surface and reflected by the light reflecting layer at least once and then directed to the observation side at the same angle θ as the direct light is expressed as (1) complex Reflection at the interface of each layer constituting the organic electroluminescence device derived from the Fresnel equation using the refractive index, change in amplitude and phase during transmission, (2) light absorption, (3) optical path difference, and (4) light emission An organic electroluminescent device simulation apparatus comprising means for determining anisotropy of amplitude of light emitted from a molecule.

本発明のシミュレーション方法は、実際に得られる有機電界発光素子の発光特性と高精度に合致するシミュレーション結果を得ることができるという特有の効果を奏する。   The simulation method of the present invention has a specific effect that a simulation result that matches the emission characteristics of the organic electroluminescence element actually obtained with high accuracy can be obtained.

本発明のシミュレーション装置も、実際に得られる有機電界発光素子の発光特性と高精度に合致するシミュレーション結果を得ることができるという特有の効果を奏する。   The simulation apparatus of the present invention also has a unique effect that it can obtain a simulation result that matches the emission characteristics of the organic electroluminescence element actually obtained with high accuracy.

以下、添付図面を参照して、本発明の有機電界発光素子のシミュレーション方法およびその装置の実施の形態を詳細に説明する。   Hereinafter, embodiments of a simulation method and apparatus for an organic electroluminescent element according to the present invention will be described in detail with reference to the accompanying drawings.

本発明でいう光反射層とは、可視光を反射する機能を有する層であり、素材としては、金属単体、合金、または可視光を反射できるその他の無機化合物、可視光を反射できる有機化合物などが例示できる。また電極としての機能を併せ持っていてもよい。   The light reflecting layer as used in the present invention is a layer having a function of reflecting visible light, and as a material, a simple metal, an alloy, or other inorganic compound that can reflect visible light, an organic compound that can reflect visible light, etc. Can be illustrated. Further, it may have a function as an electrode.

また本発明でいう取り出し光の発光特性とは、素子から発光面の法線方向に対してある任意の角度で外部に出射される光の発光スペクトル、色度、輝度の少なくとも1つを含む概念として使用される。換言すれば、取り出し光の発光特性は、外部に出射される光の発光スペクトル、色度、輝度の少なくとも1つの角度依存性である。   In addition, the emission characteristic of extracted light in the present invention is a concept including at least one of emission spectrum, chromaticity, and luminance of light emitted from the element to the outside at an arbitrary angle with respect to the normal direction of the light emitting surface. Used as. In other words, the emission characteristic of the extracted light is at least one angle dependency of the emission spectrum, chromaticity, and luminance of the light emitted to the outside.

発光面(図1中の2を参照)の法線方向に対してある角度θで発光面から観察側(図1中の5を参照)に放射される直接光(図1中の4を参照)と、発光面から放射されて光反射層(図1中の1を参照)で一度以上反射された後、直接光と同じ角度θで観察側に向う反射光(図1中の3を参照)とは、一般に振幅と位相が異なるが、それは下記三要素の影響である。   Direct light (see 4 in FIG. 1) emitted from the light emitting surface to the viewing side (see 5 in FIG. 1) at an angle θ with respect to the normal direction of the light emitting surface (see 2 in FIG. 1). ) And reflected light (see 3 in FIG. 1) that is emitted from the light emitting surface and reflected at least once by the light reflecting layer (see 1 in FIG. 1) and then directed to the observation side at the same angle θ as the direct light. ) Generally differs in amplitude and phase, but this is due to the following three factors.

本発明における第一の要素とは、複素屈折率を用いてフレネルの式から導かれる、有機電界発光素子を構成する各層界面での反射、透過時の振幅、位相の変化であり、以下の数式(1)〜(4)(数1参照)により表される。   The first element in the present invention is a change in the amplitude and phase at the time of reflection and transmission at the interface of each layer constituting the organic electroluminescent element, which is derived from the Fresnel equation using the complex refractive index. It is represented by (1) to (4) (see Equation 1).

複素屈折率N0の媒質0(図2、図3中の6を参照)から複素屈折率N1の媒質1(図2、図3中の7を参照)へ角度θ0で光が入射して角度θ1で透過する場合(図2、図3参照、なお、矢印はベクトルを表し、丸印中に黒丸の記号は、紙面に対して垂直に紙面手前側へ向かうベクトルを表し、丸印中に×印の記号は、紙面に対して垂直に紙面向こう側へ向かうベクトルを表す。これらの表記規約は、以下、他の図においても同様に適用される。)(また、図2、図3中、8は入射光を、9は反射光を、10は透過光を、それぞれ表す)、添え字s、pにより光の電場の入射面に垂直な成分(S偏光)と平行な成分(P偏光)とをそれぞれ表すと、振幅反射率及び振幅透過率は下記数式(1)から数式(4)のようになる。なお、rsはS偏光の光の振幅反射率、tsはS偏光の光の振幅透過率、rpはP偏光の光の振幅反射率、tpはP偏光の光の振幅透過率である。また、図においてEは電場、Hは磁場をそれぞれ表し、図2に示すようにS偏光における電磁場の正方向を定義し、図3に示すようにP偏光における電磁場の正方向を定義する。数式(5)(数1参照)はスネルの法則である。   Light is incident at an angle θ0 from a medium 0 having a complex refractive index N0 (see 6 in FIGS. 2 and 3) to a medium 1 having a complex refractive index N1 (see 7 in FIGS. 2 and 3). (See FIGS. 2 and 3. Note that the arrow indicates a vector, and the black circle symbol in the circle indicates a vector that is directed perpendicularly to the page. The symbol of represents a vector that goes to the other side of the page perpendicularly to the page.These conventions apply to other figures as well in the following.) (Also, in FIG. Represents incident light, 9 represents reflected light, and 10 represents transmitted light. The subscripts s and p represent a component perpendicular to the incident surface of the light electric field (S-polarized light) and a component parallel to (P-polarized light). Respectively, the amplitude reflectance and the amplitude transmittance are expressed by the following formulas (1) to (4). Note that rs is the amplitude reflectance of S-polarized light, ts is the amplitude transmittance of S-polarized light, rp is the amplitude reflectance of P-polarized light, and tp is the amplitude transmittance of P-polarized light. In the figure, E represents an electric field, and H represents a magnetic field. The positive direction of the electromagnetic field in the S-polarized light is defined as shown in FIG. 2, and the positive direction of the electromagnetic field in the P-polarized light is defined as shown in FIG. Equation (5) (see Equation 1) is Snell's law.

Figure 2006277987
Figure 2006277987

複素屈折率はN=n−i・kで表される。ここでnは屈折率、kは消衰係数であり、iは虚数単位である。そして、屈折率と消衰係数をまとめて光学定数と呼ぶ。光反射層はもちろん、有機電界発光素子を構成する各層の消衰係数は一般には0ではないので、一般に複素屈折率Nは複素数である。そのため振幅反射率、振幅透過率も複素数となり、反射、透過時の位相のずれの情報を含む。入射光の振幅に対する反射光の振幅の比、透過光の振幅の比はそれぞれ振幅反射率、振幅透過率の絶対値である。また、振幅反射率、振幅透過率の偏角を求めれば反射、透過時の位相のずれの値を求めることができる。有機電界発光素子の各層界面での反射、透過時の振幅、位相の変化を求めるには有機電界発光素子を構成する各層の光学定数の値が必要であるが、これは例えば偏光解析法(エリプソメトリ)等により求めることができる。 The complex refractive index is expressed by N j = n j −i · k j . Here, n j is a refractive index, k j is an extinction coefficient, and i is an imaginary unit. The refractive index and extinction coefficient are collectively called an optical constant. Since the extinction coefficient of each layer constituting the organic electroluminescent element as well as the light reflecting layer is generally not 0, the complex refractive index N j is generally a complex number. Therefore, the amplitude reflectance and the amplitude transmittance are also complex numbers, and include information on the phase shift during reflection and transmission. The ratio of the amplitude of the reflected light to the amplitude of the incident light and the ratio of the amplitude of the transmitted light are the absolute values of the amplitude reflectance and the amplitude transmittance, respectively. Further, if the deflection angle of the amplitude reflectance and the amplitude transmittance is obtained, the value of the phase shift at the time of reflection and transmission can be obtained. In order to obtain changes in the reflection and transmission amplitude and phase at the interface of each layer of the organic electroluminescent element, the values of the optical constants of the respective layers constituting the organic electroluminescent element are necessary. (Metric) or the like.

第二の要素とは光吸収である。有機電界発光素子を構成する各層の消衰係数は一般には0ではないので、光波の進行に伴ない光が吸収される。波長λの光波が消衰係数kの媒質中を距離dだけ進行すると振幅はexp(−2πkd/λ)倍となる。また光反射層での反射時には一部の光は反射されずに吸収される。反射時のエネルギー反射率は振幅反射率の絶対値の二乗であり、エネルギー吸収率は1からエネルギー反射率を差し引けば求まる。これら光吸収の結果、光の振幅が減少する。   The second element is light absorption. Since the extinction coefficient of each layer constituting the organic electroluminescence element is generally not 0, light is absorbed as the light wave travels. When a light wave having a wavelength λ travels a distance d through a medium having an extinction coefficient k, the amplitude becomes exp (−2πkd / λ) times. Further, at the time of reflection by the light reflecting layer, a part of the light is absorbed without being reflected. The energy reflectivity during reflection is the square of the absolute value of the amplitude reflectivity, and the energy absorption rate can be obtained by subtracting the energy reflectivity from 1. As a result of these light absorptions, the light amplitude decreases.

第三の要素とは光路差である。光路差の分だけ位相が異なることになる。例えば図4に示すように屈折率nの媒質中にある発光面(図4中の12を参照)の法線方向に対して角度θで発光面から観察側(図4中の15を参照)に放射される直接光(図4中の14を参照)と、発光面から放射されて光反射層(図4中の11を参照)で反射された後、角度θで観察側に向う反射光(図4中の13を参照)とは光路差2nd・cosθを有する(ここでdは発光面から光反射層までの距離である)。したがって直接光と反射光とは位相差4πnd・cosθ/λを有する(ここでλは光の波長である)。   The third factor is the optical path difference. The phase is different by the optical path difference. For example, as shown in FIG. 4, the viewing side (see 15 in FIG. 4) from the light emitting surface at an angle θ with respect to the normal direction of the light emitting surface (see 12 in FIG. 4) in the medium of refractive index n. Direct light (see 14 in FIG. 4) radiated from the light-emitting surface, reflected light emitted from the light emitting surface and reflected by the light reflecting layer (see 11 in FIG. 4), and then reflected toward the observation side at an angle θ (Refer to 13 in FIG. 4) has an optical path difference of 2nd · cos θ (where d is a distance from the light emitting surface to the light reflecting layer). Therefore, the direct light and the reflected light have a phase difference of 4πnd · cos θ / λ (where λ is the wavelength of the light).

本発明においては、上記三要素に加えて、第四の要素として、発光分子から放射される光の振幅の異方性を考慮する。これまでの検討によると、発光分子から放射される光の振幅は等方的ではなく、異方的であることが判明した。そこで本発明は、従って実際と類似の、あるいは合致したシミュレーション結果を得るには、発光分子から放射される光の振幅の異方性を考慮することとした。この考え方に基づく、下記に説明する各数式を用いるシミュレーション方法では、発光面の法線方向に対してある角度θで発光面から観察側に放射される直接光と、前記発光面から放射されて光反射層に向かう光(光反射層で反射された後は前記直接光と同じ角度θで観察側に向かう光)との振幅比は一般に1ではなくなり、また、出射角度に応じて放射される光の振幅の値が異なることになる。従来の散乱光を考慮したシミュレーション技術では、発光面の法線方向に対してある角度θで発光面から観察側に放射される直接光と、前記発光面から放射されて光反射層に向かう光との振幅比は常に1であり、また、出射角度に応じて放射される光の振幅の値も常に一定としていたが、これは発光分子から光が放射されるという現象を物理的にとらえるならば正しい結果をもたらすことはできなかった。   In the present invention, in addition to the above three elements, anisotropy of the amplitude of light emitted from the light emitting molecule is considered as a fourth element. According to previous studies, it has been found that the amplitude of the light emitted from the luminescent molecule is not isotropic but anisotropic. Therefore, the present invention considers the anisotropy of the amplitude of the light emitted from the light emitting molecule in order to obtain a simulation result that is similar or consistent with the actual result. In the simulation method using each formula described below based on this concept, direct light emitted from the light emitting surface to the observation side at a certain angle θ with respect to the normal direction of the light emitting surface, and emitted from the light emitting surface. The amplitude ratio with the light traveling to the light reflecting layer (the light traveling toward the observation side at the same angle θ as that of the direct light after being reflected by the light reflecting layer) is generally not 1 and is radiated according to the emission angle. The light amplitude value will be different. In the conventional simulation technology considering scattered light, direct light emitted from the light emitting surface to the observation side at a certain angle θ with respect to the normal direction of the light emitting surface, and light emitted from the light emitting surface toward the light reflecting layer. The amplitude ratio is always 1, and the value of the amplitude of the emitted light is always constant according to the emission angle, but this can be considered physically if the phenomenon that light is emitted from the light emitting molecule is considered. Could not give the correct results.

有機電界発光素子を構成する各層の膜厚、光学定数、発光層内の膜厚方向の発光強度分布、発光層から発せられる光スペクトル、発光分子数の方向分布を用い(これらは、設計データとして与えられているので、実際には、図示しないメモリに保持させておき、必要に応じてメモリから読み出してシミュレーションのための処理部に供給する)、上記四要素を考慮することで、素子内部の全界面での反射、透過を考慮した内部発光干渉モデルを構成することができ、取り出し光の発光特性を求めることができる。計算の際には、S偏光とP偏光はそれぞれ独立に計算することができ、最後に足し合わせればよい。発光分子から放射される光の電場振幅は一般に異方的であり、本発明では電気双極子遷移による発光の場合を説明する。この場合、発光分子の遷移双極子モーメントが発光面の法線方向に対して垂直である場合を除き、発光面(図5中の18を参照)の法線方向に対してある角度θで発光面から観察側(図5中の21を参照)に放射される直接光(図5中の20を参照)と、前記発光面から放射されて光反射層(図5中の17を参照)に向かう光との振幅比は1ではなく、遷移双極子モーメント(図5中の22を参照)の方向に応じて変化を受けることになる(図5)。   The thickness of each layer constituting the organic electroluminescence device, optical constants, emission intensity distribution in the film thickness direction in the light emitting layer, light spectrum emitted from the light emitting layer, and direction distribution of the number of light emitting molecules are used as design data. In actuality, it is held in a memory (not shown), read from the memory as needed, and supplied to the processing unit for simulation). An internal light emission interference model considering reflection and transmission at all interfaces can be configured, and the emission characteristics of extracted light can be obtained. In the calculation, the S-polarized light and the P-polarized light can be calculated independently and may be added together at the end. The electric field amplitude of the light emitted from the light emitting molecule is generally anisotropic, and the present invention will explain the case of light emission by electric dipole transition. In this case, except for the case where the transition dipole moment of the light emitting molecule is perpendicular to the normal direction of the light emitting surface, light is emitted at an angle θ with respect to the normal direction of the light emitting surface (see 18 in FIG. 5). Direct light (see 20 in FIG. 5) radiated from the surface to the observation side (see 21 in FIG. 5) and a light reflection layer (see 17 in FIG. 5) radiated from the light emitting surface The amplitude ratio with the light that goes is not 1, but changes depending on the direction of the transition dipole moment (see 22 in FIG. 5) (FIG. 5).

発光スペクトルを求めるには、各波長の発光エネルギーを計算するが、その際、まず発光層の屈折率(一般に波長依存性を有する)と発光界面の湧き出し光の電場振幅の二乗との積が、発光分子の遷移双極子モーメントの向きに対して湧き出し光の向きがなす角度に応じて定まった大きさになるようにして各波長の発光エネルギーを求める。次にこの値に発光層から発せられるスペクトル値(着目する波長のエネルギー)を掛けて発光スペクトルを求める。発光層から発せられるスペクトルとしては、発光層と同一の材料からなる膜の光励起発光スペクトルを使用すればよい。なお、発光分子は一般に様々な方向を向いているので、以下のようにする。   In order to obtain the emission spectrum, the emission energy of each wavelength is calculated. At this time, first, the product of the refractive index of the light emitting layer (generally having wavelength dependence) and the square of the electric field amplitude of the light emitted from the light emitting interface. The emission energy of each wavelength is obtained so as to have a magnitude determined according to the angle formed by the direction of the light that springs out with respect to the direction of the transition dipole moment of the luminescent molecule. Next, an emission spectrum is obtained by multiplying this value by a spectrum value (energy of a wavelength of interest) emitted from the light emitting layer. As a spectrum emitted from the light emitting layer, a photoexcitation emission spectrum of a film made of the same material as the light emitting layer may be used. In addition, since luminescent molecules generally face various directions, the following is performed.

まず、遷移双極子モーメントの2つの偏角(方向)をそれぞれいくつかに分割し、遷移双極子モーメントが各角度方向を向いている場合の発光スペクトルを前記方法でそれぞれ独立に求める。次に各発光スペクトルにその角度方向を向いている発光分子数を乗じた後、この値を角度方向に亘って積分して、全方向からの寄与を足し合わせた全体での発光スペクトルを求める。   First, the two declinations (directions) of the transition dipole moment are each divided into several, and the emission spectra when the transition dipole moment is directed to each angular direction are obtained independently by the above method. Next, after multiplying each emission spectrum by the number of light emitting molecules facing the angle direction, this value is integrated over the angle direction, and the total emission spectrum is obtained by adding the contributions from all directions.

また、発光強度分布は以下のように取り扱えばよい。まず発光層を何層かに分割し、各層界面のみが発光している場合の発光スペクトルを前記方法でそれぞれ独立に求める。次に各発光スペクトルにその界面での発光強度を乗じた後、この値を厚み方向に亘って積分して、全界面からの寄与を足し合わせた全体での発光スペクトルを求める。このスペクトルから色度・輝度を求めることができる。   The emission intensity distribution may be handled as follows. First, the light emitting layer is divided into several layers, and the emission spectra when only the interface of each layer emits light are obtained independently by the above method. Next, after multiplying each emission spectrum by the emission intensity at the interface, this value is integrated over the thickness direction, and the total emission spectrum is obtained by adding the contributions from all the interfaces. From this spectrum, chromaticity and luminance can be obtained.

以下、内部発光干渉モデルについて詳細に述べる。   Hereinafter, the internal light emission interference model will be described in detail.

まず発光分子の遷移双極子モーメントがある特定の方向を向いていて厚さ方向に発光分布がなく、発光がある界面に集中している場合、すなわちある方向を向いた発光分子が一つだけある場合について述べ、次にこれを用いて様々な方向を向いた発光分子が存在し発光分布が厚さ方向に広がっている場合について拡張する。   First, when the transition dipole moment of a light emitting molecule is directed in a certain direction, there is no light emission distribution in the thickness direction, and the light emission is concentrated at an interface, that is, there is only one light emitting molecule directed in a certain direction. The case will be described, and then this will be used to expand the case where there are luminescent molecules in various directions and the luminescence distribution spreads in the thickness direction.

基板上に、m層の薄膜層と陰極とを有する有機電界発光素子において、図6、図7のように層番号をつける。j=1〜mについて、第j層の膜厚をdとおく。同様にj=0〜m+1について、波長λにおける屈折率をn(λ)、消衰係数をk(λ)とおき、複素屈折率をN(λ)=n(λ)−i・k(λ)とおく。(ここでiは虚数単位である。)素子外部の波長λにおける屈折率をn(λ)とおく。(通常は空気であり、減衰率(k(λ))=0と近似し、又、真空の屈折率と同じであると近似して、N(λ)=N(λ)=1である。)
まず、発光が第(h−1)層/第h層界面に集中している場合を考え、発光する面を第(h−1)層/第h層界面とする。第(h−1)層と第h層は同一材料で構成し、N(h−1)(λ)=Nh(λ)とする。{発光層が第(h−1)層および第h層からなり、発光強度が第(h−2)層/第(h−1)層界面に集中している場合はd(h−1)=0とする。}θ方向の取り出し光に寄与する波長λの光の各界面での電場をEs α(λ)、Ep α(λ)で表す{ここでs、pはそれぞれs偏光、p偏光を表す(s偏光とは電場がyz面に垂直な光であり、p偏光とは磁場がyz面に垂直な光である)。なお、下付き添え字jは層番号を表す。また、上付き添え字αは0か1の値を持ち、0はz軸の負の方向に向う光を、1はz軸の正の方向に向う光を示す}。θ方向の波長λの取り出し光に寄与する光の各層での方向θ(λ)に対して、sinθ(λ)、cosθ(λ)を数2、数3を用いて求める。
In an organic electroluminescent device having m thin film layers and a cathode on a substrate, layer numbers are given as shown in FIGS. For j = 1 to m , the film thickness of the jth layer is set to dj. Similarly, for j = 0 to m + 1, the refractive index at wavelength λ is n j (λ), the extinction coefficient is k j (λ), and the complex refractive index is N j (λ) = n j (λ) −i.・ K j (λ). (Here, i is an imaginary unit.) The refractive index at the wavelength λ outside the device is n (λ). (Normally air, approximating attenuation factor (k (λ)) = 0, and approximating to be the same as the refractive index of vacuum, N (λ) = N (λ) = 1. )
First, considering the case where light emission is concentrated at the (h-1) th layer / hth layer interface, the light emitting surface is defined as the (h-1) th layer / hth layer interface. The (h−1) th layer and the hth layer are made of the same material, and N (h−1) (λ) = Nh (λ). {When the light emitting layer is composed of the (h-1) th layer and the hth layer and the light emission intensity is concentrated at the (h-2) layer / (h-1) layer interface, d (h-1) = 0. } The electric field at each interface of the light of wavelength λ contributing to the extracted light in the θ direction is expressed as Es j α (λ) and Ep j α (λ) {where s and p are s-polarized light and p-polarized light, respectively. (S-polarized light is light whose electric field is perpendicular to the yz plane, and p-polarized light is light whose magnetic field is perpendicular to the yz plane). The subscript j represents the layer number. The superscript α has a value of 0 or 1, where 0 indicates light directed in the negative z-axis direction and 1 indicates light directed in the positive z-axis direction}. The sin θ j (λ) and cos θ j (λ) are obtained using the equations 2 and 3 with respect to the direction θ j (λ) in each layer of the light contributing to the extracted light of the wavelength λ in the θ direction.

Figure 2006277987
Figure 2006277987

数2は、スネルの法則より導いた後、複素数N(λ)の共役複素数を分子分母にかけて分母を実数化したものである。 Formula 2 is derived from Snell's law, and then the conjugate complex number of the complex number N j (λ) is multiplied by the numerator denominator to convert the denominator into a real number.

Figure 2006277987
Figure 2006277987

数3中の式(3a)は、三角関数関係式と、sinにおいてスネルの公式で導いた式でsinで表される式に変形した後、数3中の式(3b)、(3c)の通り実数部、虚数部をp
(λ)、q(λ)とおいて、複素数の平方根を実数と虚数の和の形に直したものである。
Equation (3a) in Equation 3 is transformed into a trigonometric relational equation and an equation represented by sin in the equation derived from Snell's formula in sin, and then Equations (3b) and (3c) in Equation 3 Street real part, imaginary part p
In j (λ) and q j (λ), the square root of a complex number is converted into the form of the sum of a real number and an imaginary number.

次に発光分子から発せられる光の振幅を求める。発光分子の遷移双極子モーメントが図8に示すようにM方向を向いている場合を考える。(図中において太字はベクトルであることを示す。以下も同様である。)着目するのはkh0方向、kh1方向に向かって発せられる光である。ここでkh0方向に向かうS偏光の光の電場方向の単位ベクトルをes0、P偏光の光の電場方向の単位ベクトルをep0としている。また、kh1方向に向かうS偏光の光の電場方向の単位ベクトルをes1、P偏光の光の電場方向の単位ベクトルをep1としている。それぞれのベクトルのxyz成分は数4のようになる。

Next, the amplitude of the light emitted from the luminescent molecule is determined. Consider a case where the transition dipole moment of the luminescent molecule is oriented in the M direction as shown in FIG. (Bold characters in the figure indicate vectors. The same applies hereinafter.) The light focused on the kh0 direction and the kh1 direction. Here, the unit vector in the electric field direction of the S-polarized light traveling in the kh0 direction is es0, and the unit vector in the electric field direction of the P-polarized light is ep0. In addition, the unit vector in the electric field direction of the S-polarized light toward the kh1 direction is es1, and the unit vector in the electric field direction of the P-polarized light is ep1. The xyz component of each vector is as shown in Equation 4.

Figure 2006277987
Figure 2006277987

なお、遷移双極子モーメントMとは量子力学で光放射を伴う遷移の遷移確率を計算する際に現れる量で、双極子モーメントの演算子の始状態と終状態との間の行列要素として定義されるものであり、数5で与えられる。   The transition dipole moment M is an amount that appears when calculating the transition probability of a transition involving light emission in quantum mechanics, and is defined as a matrix element between the start state and the end state of the dipole moment operator. Which is given by equation (5).

Figure 2006277987
Figure 2006277987


ここでek、xkは、k番目の粒子の電荷および位置ベクトルを表す。またψf、ψiは、それぞれ系の終状態および始状態の波動関数を表す。θTMおよびφTMはMの偏角である。kh0、kh1は波数ベクトルである。 Here, ek and xk represent the charge and position vector of the kth particle. Ψf and ψi represent the wave functions of the final state and the initial state of the system, respectively. θ TM and φ TM are declinations of M. kh0 and kh1 are wave vector.

本発明は、第四の要素として発光分子から放射される光の振幅の異方性を考慮するが、この要素は以下の数式(数6)で表され、シミュレーションの一要素として含まれる。   In the present invention, the anisotropy of the amplitude of light emitted from the light emitting molecule is considered as a fourth element. This element is expressed by the following equation (Equation 6) and is included as an element of the simulation.

励起分子の、ある角度方向への光子放出の失活速度は、放出される光子の電場方向の単位ベクトルをeとした場合|e・M|に比例するので、発せられる光の振幅は|e・M|に比例すると考えることができる。すなわち、m0=1とすると、kh0方向に向かうS偏光の光の電場振幅をvs0、P偏光の光の電場振幅をv0、kh1方向に向かうS偏光の光の電場振幅をv1、P偏光の光の電場振幅をv1として数6のようになる。 The deactivation rate of photon emission in a certain angular direction of the excited molecule is proportional to | e · M | 2 when the unit vector in the electric field direction of the emitted photon is e, so the amplitude of the emitted light is | It can be considered that it is proportional to e · M |. That, m0 = 1 and when, S polarized light of the electric field amplitude of the light vs0, P v p 0 the electric field amplitude of the polarization of light, kh1 S-polarized v s 1 the electric field amplitude of the light directed in a direction toward the kh0 direction, When the electric field amplitude of the P-polarized light is v p 1, Equation 6 is obtained.

Figure 2006277987
Figure 2006277987

次に実際のシミュレーションについてその手順を含め、以下に説明する。下記(1)〜(4)の場合における方程式(数7、数8、数9、数10)を満たすas(λ)、ap(λ)を求め、その時のEs (λ)、Ep (λ)を求める。これらは多層膜内から発光して基板に到達した光の電場である。
(1)j=0で
Next, the actual simulation including the procedure will be described below. As (λ) and ap (λ) satisfying the equations (Equation 7, Equation 8, Equation 9, Equation 10) in the following cases (1) to (4) are obtained, and Es 0 0 (λ), Ep o at that time are obtained. 0 (λ) is obtained. These are the electric fields of light emitted from the multilayer film and reaching the substrate.
(1) When j = 0

Figure 2006277987
Figure 2006277987

(2)j=hで (2) When j = h

Figure 2006277987
Figure 2006277987

(3)j=m+1で (3) When j = m + 1

Figure 2006277987
Figure 2006277987

(4)j≠0かつj≠hかつj≠m+1で (4) When j ≠ 0, j ≠ h and j ≠ m + 1

Figure 2006277987
Figure 2006277987

次に式(11a)〜式(11d)(数11参照)を用いて角度θ0(λ)で基板内をz軸の負の方向に向う波長λのs偏光の光の、基板から外部への透過率Ts(λ)、反射率Rs(λ)、p偏光の光の基板から外部への透過率Tp(λ)、反射率Rp(λ)を求める。   Next, using the formula (11a) to the formula (11d) (see Expression 11), the s-polarized light having the wavelength λ in the negative direction of the z-axis at the angle θ0 (λ) is transmitted from the substrate to the outside. The transmittance Ts (λ), the reflectance Rs (λ), the transmittance Tp (λ) of the p-polarized light from the substrate to the outside, and the reflectance Rp (λ) are obtained.

Figure 2006277987
Figure 2006277987

次に外部/基板界面に到達して反射された光が再度多層膜で反射される際の多層膜反射率を求める。図9、図10に、波長λの光が角度θ0(λ)で基板から多層膜に入射した場合を示す。各界面での電場をE(1) α(λ)、E(1) α(λ)で表す。 Next, the multilayer film reflectance when the light that reaches the external / substrate interface and is reflected again is reflected by the multilayer film is obtained. 9 and 10 show a case where light having a wavelength λ is incident on the multilayer film from the substrate at an angle θ0 (λ). The electric field at each interface is represented by E (1) s j α (λ) and E (1) p j α (λ).

次に下記(5)(6)の場合における方程式(数12、数13)を満たすE(1) (λ)、E(1) (λ)、E(1) (λ)、E(1) (λ)を求める。E(1) (λ)、E(1) (λ)は多層膜への入射光の電場を表し、E(1) (λ)、E(1) (λ)は多層膜で反射された反射光の電場を表す。
(5)j=m+1で
Next, E (1) s 0 0 (λ), E (1) s 0 1 (λ), E (1) p 0 satisfying the equations (Equation 12, Equation 13) in the cases of (5) and (6) below 0 (λ), E (1) Find p 0 1 (λ). E (1) s 0 1 (λ), E (1) p 0 1 (λ) represents the electric field of the incident light on the multilayer film, and E (1) s 0 0 (λ), E (1) p 0 0 (λ) represents the electric field of the reflected light reflected by the multilayer film.
(5) When j = m + 1

Figure 2006277987
Figure 2006277987

(6)j≠m+1で (6) When j ≠ m + 1

Figure 2006277987
Figure 2006277987

角度θ0(λ)で基板内をz軸の正の方向に向う波長λのs偏光の光の多層膜での反射率rs(λ)、p偏光の光の多層膜での反射率rp(λ)は数14のようになる。   Reflectance rs (λ) at the multilayer film of s-polarized light of wavelength λ directed in the positive direction of the z-axis in the substrate at an angle θ0 (λ), and reflectivity rp (λ at the multilayer film of p-polarized light ) Is as shown in Equation 14.

Figure 2006277987
Figure 2006277987

基板の厚さは通常光の波長よりも遥かに大きいため外部/基板界面で一度以上反射された光は他の光との干渉性がなくなると考えてよい。外部/基板界面と多層膜とで順次反射された光はインコヒーレントに加えることができ、全経路を足し合わせるとθ方向の発光スペクトルIEL(λ)は数15で表すことができる。 Since the thickness of the substrate is much larger than the wavelength of normal light, it may be considered that the light reflected once or more at the external / substrate interface loses coherence with other light. The light sequentially reflected by the external / substrate interface and the multilayer film can be added incoherently, and when all paths are added, the emission spectrum I EL (λ) in the θ direction can be expressed by Equation 15.

Figure 2006277987
Figure 2006277987

ここでIEM(λ)は発光層から発する光のスペクトルである。
N(λ)/nh(λ)の項が入る理由について以下に説明する。
式(8a)〜式(8e)(数8参照)において、光源ではS偏光、P偏光それぞれについて遷移双極子モーメントの大きさは式(4a)(数4参照)におけるm0が1の場合とし、双極子遷移するとして計算を行った。第(h−1)層、第h層が無限に厚く戻り光がない場合、例えば角度θ(h−1)で第(h−1)層をz軸の負の方向に向う波長λのS偏光の光エネルギーは数16で表される。
Here, I EM (λ) is a spectrum of light emitted from the light emitting layer.
The reason why the term N (λ) / nh (λ) is included will be described below.
In Equation (8a) to Equation (8e) (see Equation 8), the magnitude of the transition dipole moment for each of the S-polarized light and P-polarized light in the light source is as follows when m 0 in Equation (4a) (see Equation 4) is 1. The calculation was performed as a dipole transition. When the (h-1) th layer and the hth layer are infinitely thick and there is no return light, for example, at an angle θ (h-1), the (h-1) th layer is S with a wavelength λ directed in the negative z-axis direction. The light energy of polarized light is expressed by Equation 16.

Figure 2006277987
Figure 2006277987

nh(λ)が波長依存性を持つ場合にはθ(h−1)方向に向う光エネルギーは波長によって値が異なることになる。
そして、この時θ方向に出射される波長λの光のエネルギーは数17で表される。
When nh (λ) has wavelength dependence, the value of light energy directed toward the θ (h−1) direction varies depending on the wavelength.
At this time, the energy of light having a wavelength λ emitted in the θ direction is expressed by Equation 17.

Figure 2006277987
Figure 2006277987

光源のエネルギーの波長依存性を除去するためには数17をnh(λ)/2で割ればよい(数18参照)。   In order to remove the wavelength dependency of the energy of the light source, the equation 17 may be divided by nh (λ) / 2 (see equation 18).

Figure 2006277987
Figure 2006277987

ここで改めて光源のエネルギーの波長依存性として発光層から発する光スペクトルIEM(λ)を掛ければθ方向の発光スペクトルIEL(λ)を求めることができる。同様の考察から一般の素子構成においても数18のようにn(λ)/nh(λ)の項が入る。なお、通常外部の屈折率n(λ)=1であるのでnh(λ)の波長依存性が小さい時にはn(λ)/nh(λ)の項を省いてもよい。 Here, the light emission spectrum I EL (λ) in the θ direction can be obtained by multiplying the light spectrum I EM (λ) emitted from the light emitting layer as the wavelength dependence of the energy of the light source. From the same consideration, even in a general element configuration, a term of n (λ) / nh (λ) is entered as in Expression 18. Since the external refractive index n (λ) = 1 is normal, the term n (λ) / nh (λ) may be omitted when the wavelength dependency of nh (λ) is small.

また基板から外部への透過率Ts(λ)、Tp(λ)が大きく、反射率Rs(λ)、Rp(λ)が小さい時や、多層膜の反射率が小さい場合、計算を簡略にするため多層膜の反射率を0として(5)(6)の場合における方程式の計算を省いてもよい。この時θ方向の発光スペクトルIEL(λ)は数19で表すことができる。 Further, when the transmittances Ts (λ) and Tp (λ) from the substrate to the outside are large and the reflectances Rs (λ) and Rp (λ) are small, or the reflectance of the multilayer film is small, the calculation is simplified. Therefore, the calculation of equations in the cases of (5) and (6) may be omitted by setting the reflectance of the multilayer film to 0. At this time, the emission spectrum I EL (λ) in the θ direction can be expressed by Equation 19.

Figure 2006277987
Figure 2006277987

発光スペクトルから数20を用いてCIE1931表色系における3刺激値X、Y、Zを求め、θ方向の色度座標(x,y)、相対輝度Lを求めることができる。   The tristimulus values X, Y, and Z in the CIE1931 color system can be obtained from the emission spectrum using Equation 20, and the chromaticity coordinates (x, y) in the θ direction and the relative luminance L can be obtained.

Figure 2006277987
Figure 2006277987

発光分子の向きが様々であり、遷移双極子モーメントが様々な方向を向いている場合は以下のようにする。   When the direction of the luminescent molecule is various and the transition dipole moment is in various directions, the following is performed.

まず、任意の遷移双極子モーメントの方向M(θ,φ)を向いた発光分子数をg(θ,φ)とおく。遷移双極子モーメントの向きをM(θ,φ)とした場合について数15を用いてθ方向の発光スペクトルを求めてIEL(λ,θ,φ)とおく。さらに数21を用いて角度方向で積分し、θ方向の発光スペクトルIEL(λ)を求める。 First, let g (θ, φ) be the number of luminescent molecules facing the direction M (θ, φ) of an arbitrary transition dipole moment. When the direction of the transition dipole moment is M (θ, φ), the emission spectrum in the θ direction is obtained using Equation 15 and is set as IEL (λ, θ, φ). Further, integration is performed in the angular direction using Equation 21, and an emission spectrum I EL (λ) in the θ direction is obtained.

Figure 2006277987
Figure 2006277987

発光分子が配向しておらず、向きがランダムな場合はg(θ,φ)を定数とすればよい。発光領域が厚さ方向(Z軸方向)に広がりを有している場合は以下のようにする。   When the light emitting molecules are not oriented and the orientation is random, g (θ, φ) may be set as a constant. In the case where the light emitting region has a spread in the thickness direction (Z-axis direction), the following is performed.

第(h−2)層、第(h−1)層、第h層を同一材料で構成する。発光領域が第(h−2)層/第(h−1)層界面から第(h−1)層/第h層界面の間に広がっているとし、この領域内の任意の面zにおける発光強度をf(z)とおく。発光面{前記発光領域が第(h−1)層/第h層界面に限られる場合の第(h−1)層/第h層界面}を数22の領域内の面zとした場合について、数21を用いてθ方向の発光スペクトルを求めてIEL(λ,z)とおく。 The (h-2) th layer, the (h-1) th layer, and the hth layer are made of the same material. It is assumed that the light emitting region extends from the (h-2) layer / (h-1) layer interface to the (h-1) layer / h layer interface, and light emission at an arbitrary plane z in this region. Let intensity be f (z). The case where the light emitting surface {the (h-1) layer / h layer interface when the light emitting region is limited to the (h-1) layer / h layer interface} is the surface z in the region of Formula 22 , The emission spectrum in the θ direction is obtained using Equation 21, and is set as I EL (λ, z).

Figure 2006277987
Figure 2006277987

さらに数23を用いて発光領域内で積分し、θ方向の発光スペクトルIEL(λ)を求める。 Further, integration is performed within the light emission region using Equation 23 to obtain a light emission spectrum I EL (λ) in the θ direction.

Figure 2006277987
Figure 2006277987

遷移双極子モーメントの向きおよび発光領域に関する積分をまとめると以下のようである。すなわち、数15を用いて面zにおける遷移双極子モーメントM(θ,φ)の発光分子からの発光スペクトルを求めてIEL(λ,θ,φ,z)とおく。さらに数24を用いて角度方向および発光領域内で積分し、θ方向の発光スペクトルIEL(λ)を求める。 The integration of the direction of the transition dipole moment and the integration of the emission region is summarized as follows. That is, the emission spectrum from the light emitting molecule of the transition dipole moment M (θ, φ) on the surface z is obtained using Equation 15 and is set as I EL (λ, θ, φ, z). Further, integration is performed in the angular direction and in the light emission region using Equation 24, and the light emission spectrum I EL (λ) in the θ direction is obtained.

Figure 2006277987
Figure 2006277987

発光スペクトルから式(20a)〜式(20d)(数20参照)を用いてCIE1931表色系における3刺激値X、Y、Zを求め、θ方向の色度座標(x,y)、相対輝度Lを求めることができる。  Tristimulus values X, Y, and Z in the CIE 1931 color system are obtained from the emission spectrum using the equations (20a) to (20d) (see Equation 20), the chromaticity coordinates (x, y) in the θ direction, and the relative luminance. L can be obtained.

本発明は透明基板上に透明な第一電極、有機化合物からなる薄膜層、光反射層が積層された構造の素子において効果的であるが、基板上に光反射層、有機化合物からなる薄膜層、透明な第二電極が積層されたトップエミッション構造の有機電界発光素子に対しても効果的である。   The present invention is effective in a device having a structure in which a transparent first electrode, a thin film layer made of an organic compound, and a light reflecting layer are laminated on a transparent substrate, but the light reflecting layer and the thin film layer made of an organic compound are formed on the substrate. It is also effective for an organic electroluminescence device having a top emission structure in which a transparent second electrode is laminated.

以上のモデルを用いて実際にシミュレーションするには、コンピュータを用いて本発明のシミュレーション方法を反映したプログラムを実行すればよい。具体的には、例えば以下のようにして実施する。まず、有機電解発光素子を構成する各層の膜厚、光学定数、発光層内の膜厚方向の発光強度分布、発光層から発せられる光スペクトル、発光分子数の方向分布、着目する視野角をキーボード等の入力手段により数値データとしてコンピュータのハードディスク内に記憶させる。   To actually simulate using the above model, a program reflecting the simulation method of the present invention may be executed using a computer. Specifically, for example, it is carried out as follows. First, the thickness of each layer constituting the organic electroluminescence device, the optical constant, the light emission intensity distribution in the film thickness direction in the light emitting layer, the light spectrum emitted from the light emitting layer, the direction distribution of the number of light emitting molecules, and the viewing angle of interest The numerical data is stored in the hard disk of the computer by an input means such as.

次にあらかじめハードディスク内に記憶させている本発明のシミュレーションを反映したプログラムを起動し、ハードディスク内に記憶されたデータを使用し、計算処理を実行させる。計算処理は、コンピュータ内のハードディスク、メモリ、CPUを用いて行われるが、その内容はおおよそ次の通りである。まず、発光層内のある位置におけるある方向を向いた発光分子による着目する視野角方向の発光スペクトルを求め、そこにその発光分子の存在確立を乗じる。これを種々の位置、種々の方向の発光分子について順次求めて行き、最後に、求めたものをすべて足し合わせることにより、素子の着目する視野角方向の発光スペクトルが得られる。また、その発光スペクトルから輝度および色度が得られる。得られた結果については、モニタ等の出力手段により表示させることで確認できる。   Next, a program reflecting the simulation of the present invention stored in advance in the hard disk is started, and calculation processing is executed using the data stored in the hard disk. The calculation process is performed using a hard disk, a memory, and a CPU in the computer, and the contents are roughly as follows. First, an emission spectrum in a viewing angle direction of interest by a luminescent molecule directed in a certain direction at a certain position in the luminescent layer is obtained, and the presence of the luminescent molecule is multiplied there. By sequentially obtaining the light emitting molecules in various positions and in various directions, and finally adding all of the obtained ones, an emission spectrum in the viewing angle direction of interest of the device can be obtained. Further, luminance and chromaticity can be obtained from the emission spectrum. The obtained result can be confirmed by displaying it on output means such as a monitor.

また、本発明は発光面の法線方向に対して斜め方向の発光特性のシミュレーションに有効であり、発光輝度の視野角依存性のシミュレーションに特に有効である。また、本発明は発光層から発せられる光スペクトルがブロードな時、具体的には半値幅が50nm以上の場合に特に使用できる。   In addition, the present invention is effective for simulation of light emission characteristics in an oblique direction with respect to the normal direction of the light emitting surface, and is particularly effective for simulation of viewing angle dependence of light emission luminance. In addition, the present invention can be used particularly when the light spectrum emitted from the light emitting layer is broad, specifically when the half width is 50 nm or more.

以下、実施例および比較例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited by these examples.

スパッタリング法によりITO透明導電膜を106nm積層したガラス基板を38×46mmに切断した後、ITOの不要部分をエッチング除去した。得られた基板をアルカリ洗浄液で10分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV/オゾン処理し、真空装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず銅フタロシアニン(CuPc)を6nm蒸着し、続いて正孔輸送材料としてN,N’−ジ−(ナフタレン−1−イル)−N,N’−ジフェニル−ベンジジン(NPD)を62nm蒸着し、続いて発光層としてトリス(8−キノリノラト)アルミニウム(Alq)を54nm蒸着した。陰極用マスクを装着し、リチウムの蒸気にさらしてドーピングした後、アルミニウムを150nm蒸着して陰極とした。   A glass substrate on which a ITO transparent conductive film having a thickness of 106 nm was laminated by sputtering was cut into 38 × 46 mm, and then unnecessary portions of ITO were removed by etching. The obtained substrate was ultrasonically cleaned with an alkaline cleaning liquid for 10 minutes and then cleaned with ultrapure water. This substrate was subjected to UV / ozone treatment for 1 hour immediately before producing the device, placed in a vacuum apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, copper phthalocyanine (CuPc) was vapor-deposited by 6 nm by resistance heating, and then N, N′-di- (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD) was used as a hole transport material. Subsequently, 62 nm was vapor-deposited, and subsequently, tris (8-quinolinolato) aluminum (Alq) was vapor-deposited as a light-emitting layer at 54 nm. A cathode mask was attached, and after doping by exposure to lithium vapor, aluminum was deposited to a thickness of 150 nm to form a cathode.

このようにして作製した有機電界発光素子を10mA/cmの電流密度で発光させ、基板表面の法線方向に対して0°、30°、60°をなす方向の輝度を測定したところ、図11の(1)のようであった。輝度は0°方向を1として規格化している。 The organic electroluminescence device thus fabricated was made to emit light at a current density of 10 mA / cm 2 , and the luminance in the direction of 0 °, 30 °, 60 ° with respect to the normal direction of the substrate surface was measured. It was like 11 (1). The luminance is normalized with 1 in the 0 ° direction.

実施例1
上記構成の有機電界発光素子について本発明のモデルによるシミュレーションを行い、基板表面の法線方向に対して0°、15°、30°、45°、60°、75°をなす方向の輝度を求めたところ図11の(2)のようになり、実際の発光素子とほぼ同じ数値が得られた。輝度は0°方向を1として規格化している。
Example 1
The organic electroluminescence device having the above-described configuration is simulated using the model of the present invention, and the luminance in the direction of 0 °, 15 °, 30 °, 45 °, 60 °, and 75 ° with respect to the normal direction of the substrate surface is obtained. As a result, as shown in (2) of FIG. 11, almost the same numerical value as that of an actual light emitting element was obtained. The luminance is normalized with 1 in the 0 ° direction.

ここで発光分子の向きはランダムとして数24におけるg(θ,φ)=1とし、θ=0、15、30、45、60、75、90、105、120、135、150、165、180°の場合をそれぞれ独立に計算して足し合わせた。φは0〜2πとした。また、ここで発光層内での発光強度分布f(d)は図12に示すようにNPD/Alq界面で強くAlq/電子輸送層界面に近づくに従って減少し、膜厚に関する指数関数分布として数25のように表せると仮定した。   Here, the direction of the luminescent molecule is random, g (θ, φ) = 1 in Equation 24, and θ = 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180 °. The cases were calculated and added independently. φ was set to 0 to 2π. Here, the emission intensity distribution f (d) in the light emitting layer is strongly reduced at the NPD / Alq interface as it approaches the Alq / electron transport layer interface as shown in FIG. It was assumed that

Figure 2006277987
Figure 2006277987

(ここでαは定数であり、dはNPD/Alq界面を0としてAlq/電子輸送層界面に向って測った距離のnm単位の数字である。なお、発光スペクトルは最終的には規格化されるからαは如何なる値であってもよいが、ここでは1とした。また指数関数の分母の10という値は、素子平面法線方向の発光スペクトルの解析により決定された。)
すなわちNPD/Alq界面からAlq/電子輸送層界面に向って10nm進んだ地点で発光強度は1/eに減少するとした。計算では発光層を等間隔に6つに分割し、計7面が発光界面である場合をそれぞれ独立に計算して足し合わせた。
(Where α is a constant, and d is a number in nm of the distance measured toward the Alq / electron transport layer interface with the NPD / Alq interface as 0. Note that the emission spectrum is finally normalized. Α can be any value, but here it is 1. The value of 10 in the denominator of the exponential function was determined by analyzing the emission spectrum in the normal direction of the element plane.)
That is, the emission intensity was reduced to 1 / e at a point advanced 10 nm from the NPD / Alq interface toward the Alq / electron transport layer interface. In the calculation, the light emitting layer was divided into six at equal intervals, and the cases where a total of seven surfaces were light emitting interfaces were independently calculated and added.

すなわち数26のように計算を行った。ここで右辺のIELはλ,θ,φ,zの関数であり、IEL(λ,θ,φ,z)である。 That is, the calculation was performed as shown in Equation 26. Here, I EL on the right side is a function of λ, θ, φ, z, and is I EL (λ, θ, φ, z).

Figure 2006277987
Figure 2006277987

なお、波長については400〜800nmについて5nm毎に計算を行った。また発光面から放射される光スペクトルとして、石英板上にAlqを25nm積層し、光励起スペクトルを測定して得られたスペクトル(図13)を用いた。また、有機電界発光素子を構成する各層の光学定数として、ガラス基板上に各層をそれぞれ100nm積層し偏光解析により光学定数を測定して得られた値を用いた。 Note that the wavelength was calculated every 5 nm for 400 to 800 nm. Further, as a light spectrum emitted from the light emitting surface, a spectrum (FIG. 13) obtained by laminating 25 nm of Alq on a quartz plate and measuring a photoexcitation spectrum was used. Moreover, as an optical constant of each layer which comprises an organic electroluminescent element, each layer was each laminated | stacked 100 nm on the glass substrate, and the value obtained by measuring an optical constant by polarization analysis was used.

比較例1
この構成の有機電界発光素子について、特許文献1の段落0066〜0103に記載の方法でシミュレーションを行い、基板表面の法線方向に対して0°、15°、30°、45°、60°、75°をなす方向の輝度を求めたところ図11の(3)のようになった。なお、光反射層界面全体の面積に対して正反射が起こる面積の比rは特許文献1に記載の0.87とした。輝度は0°方向を1として規格化している。本実施例と比べると実測との差が大きい。
Comparative Example 1
About the organic electroluminescent element of this structure, it simulates by the method of paragraphs 0066-0103 of patent document 1, and 0 degree | times, 15 degrees, 30 degrees, 45 degrees, 60 degrees with respect to the normal line direction of a substrate surface, When the luminance in the direction of 75 ° was obtained, it was as shown in (3) of FIG. Note that the ratio r 2 of the area where regular reflection occurs with respect to the entire area of the light reflecting layer interface was 0.87 described in Patent Document 1. The luminance is normalized with 1 in the 0 ° direction. Compared with the present embodiment, the difference from the actual measurement is large.

角度θの直接光と反射光とを示す概略図である。It is the schematic which shows the direct light and reflected light of angle (theta). S偏光の反射と透過とを示す概略図である。It is the schematic which shows reflection and permeation | transmission of S polarization | polarized-light. P偏光の反射と透過とを示す概略図である。It is the schematic which shows reflection and permeation | transmission of P polarized light. 角度θの直接光と反射光との光路差を示す概略図である。It is the schematic which shows the optical path difference of the direct light and reflected light of angle (theta). 双極子遷移による角度θの直接光と反射光とを示す概略図である。It is the schematic which shows the direct light and reflected light of angle (theta) by a dipole transition. ある方向を向いた単独の発光分子からのS偏光の内部発光干渉モデル図である。It is an internal emission interference model diagram of S-polarized light from a single luminescent molecule directed in a certain direction. ある方向を向いた単独の発光分子からのP偏光の内部発光干渉モデル図である。It is an internal emission interference model diagram of P-polarized light from a single luminescent molecule directed in a certain direction. 遷移双極子モーメント、波数ベクトルおよび各電場の単位ベクトルの方向を示す概略図である。It is the schematic which shows the direction of the unit vector of a transition dipole moment, a wave vector, and each electric field. 基板から多層膜へS偏光の光が入射した時の電場を示す概略図である。It is a schematic diagram showing an electric field when S-polarized light is incident on a multilayer film from a substrate. 基板から多層膜へP偏光の光が入射した時の電場を示す概略図である。It is the schematic which shows an electric field when the light of P polarization enters into a multilayer film from a substrate. Alq素子の輝度の視野角依存性を示す概略図である。It is the schematic which shows the viewing angle dependence of the brightness | luminance of an Alq element. 発光層内の発光強度分布を示す概略図である。It is the schematic which shows the emitted light intensity distribution in a light emitting layer. Alq薄膜の光励起スペクトルを示す概略図である。It is the schematic which shows the photoexcitation spectrum of an Alq thin film.

符号の説明Explanation of symbols

1、11、17 光反射層
2、12、18 発光面
3、19 反射光
4、20 直接光
5、15、21 観察側
6 媒質0:複素屈折率N0
7 媒質1:複素屈折率N1
8 入射
9 反射
10 透過
13 反射光B
14 直接光A
16 屈折率n
22 遷移双極子モーメント


1, 11, 17 Light reflecting layer 2, 12, 18 Light emitting surface 3, 19 Reflected light 4, 20 Direct light 5, 15, 21 Observation side 6 Medium 0: Complex refractive index N0
7 Medium 1: Complex refractive index N1
8 Incident 9 Reflected 10 Transmitted 13 Reflected light B
14 Direct light A
16 Refractive index n
22 Transition dipole moment


Claims (2)

光反射層を有し、かつ構成が既知の有機電界発光素子の取り出し光の発光特性を求めるシミュレーション方法であって、発光面の法線方向に対してある角度θで発光面から観察側に放射される直接光と、前記発光面から放射されて光反射層で一度以上反射された後、前記直接光と同じ角度θで観察側に向う反射光との振幅比もしくは位相差を、(1)複素屈折率を用いてフレネルの式から導かれる有機電界発光素子を構成する各層界面での反射、透過時の振幅、位相の変化、(2)光吸収、(3)光路差、および(4)発光分子から放射される光の振幅の異方性を考慮して求めることを特徴とする有機電界発光素子のシミュレーション方法。 A simulation method for obtaining light emission characteristics of extracted light of an organic electroluminescence device having a light reflection layer and a known configuration, and emitting from the light emitting surface to the observation side at an angle θ with respect to the normal direction of the light emitting surface. The amplitude ratio or phase difference between the reflected direct light and the reflected light emitted from the light emitting surface and reflected by the light reflection layer at least once and then directed to the observation side at the same angle θ as the direct light is (1) Reflection at the interface of each layer constituting the organic electroluminescent element derived from the Fresnel equation using the complex refractive index, change in amplitude and phase during transmission, (2) light absorption, (3) optical path difference, and (4) A method for simulating an organic electroluminescent device, wherein the method is obtained in consideration of anisotropy of amplitude of light emitted from a light emitting molecule. 光反射層を有し、かつ構成が既知の有機電界発光素子の取り出し光の発光特性を求めるシミュレーション装置であって、発光面の法線方向に対してある角度θで発光面から観察側に放射された直接光と、前記発光面から放射されて光反射層で一度以上反射された後、前記直接光と同じ角度θで観察側に向う反射光との振幅比もしくは位相差を、(1)複素屈折率を用いてフレネルの式から導かれる有機電界発光素子を構成する各層界面での反射、透過時の振幅、位相の変化、(2)光吸収、(3)光路差、および、(4)発光分子から放射される光の振幅の異方性を考慮して求める手段を含むことを特徴とする有機電界発光素子のシミュレーション装置。



A simulation apparatus for obtaining the light emission characteristics of extracted light of an organic electroluminescence device having a light reflection layer and a known configuration, and emitting from the light emitting surface to the observation side at an angle θ with respect to the normal direction of the light emitting surface The amplitude ratio or phase difference between the reflected direct light and the reflected light emitted from the light emitting surface and reflected by the light reflection layer at least once and then toward the observation side at the same angle θ as the direct light is (1) Reflection at the interface of each layer constituting the organic electroluminescent element derived from the Fresnel equation using the complex refractive index, change in amplitude and phase during transmission, (2) light absorption, (3) optical path difference, and (4 ) A simulation apparatus for an organic electroluminescent device, comprising means for obtaining anisotropy of amplitude of light emitted from a luminescent molecule.



JP2005091162A 2005-03-28 2005-03-28 Simulation method and device of organic electroluminescent element Pending JP2006277987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091162A JP2006277987A (en) 2005-03-28 2005-03-28 Simulation method and device of organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091162A JP2006277987A (en) 2005-03-28 2005-03-28 Simulation method and device of organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2006277987A true JP2006277987A (en) 2006-10-12

Family

ID=37212561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091162A Pending JP2006277987A (en) 2005-03-28 2005-03-28 Simulation method and device of organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2006277987A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139097A (en) * 2006-11-30 2008-06-19 Internatl Business Mach Corp <Ibm> Simulation system, computer device, simulation method, and program
JP2009054383A (en) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd Design method of organic electroluminescent element, and organic electroluminescent element
JP2009054382A (en) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd Design method of organic electroluminescent element, and organic electroluminescent element
JP2010147337A (en) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Method of designing organic electroluminescence element
DE102011086277A1 (en) * 2011-11-14 2013-05-16 Osram Opto Semiconductors Gmbh ORGANIC LIGHT EMITTING COMPONENT
DE102012203583A1 (en) * 2012-03-07 2013-09-12 Osram Opto Semiconductors Gmbh Organic light emitting device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139097A (en) * 2006-11-30 2008-06-19 Internatl Business Mach Corp <Ibm> Simulation system, computer device, simulation method, and program
US7523028B2 (en) 2006-11-30 2009-04-21 International Business Machines Corporation Method of and system for simulating a light-emitting device
US7676354B2 (en) 2006-11-30 2010-03-09 International Business Machines Corporation Method of and system for simulating a light-emitting device
JP2009054383A (en) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd Design method of organic electroluminescent element, and organic electroluminescent element
JP2009054382A (en) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd Design method of organic electroluminescent element, and organic electroluminescent element
JP2010147337A (en) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Method of designing organic electroluminescence element
DE102011086277A1 (en) * 2011-11-14 2013-05-16 Osram Opto Semiconductors Gmbh ORGANIC LIGHT EMITTING COMPONENT
US9252378B2 (en) 2011-11-14 2016-02-02 Osram Oled Gmbh Organic light-emitting component
DE102011086277B4 (en) * 2011-11-14 2017-09-14 Osram Oled Gmbh Organic light-emitting device
DE102012203583A1 (en) * 2012-03-07 2013-09-12 Osram Opto Semiconductors Gmbh Organic light emitting device
US10454050B2 (en) 2012-03-07 2019-10-22 Osram Oled Gmbh Organic light-emitting device
DE102012203583B4 (en) * 2012-03-07 2021-03-18 Pictiva Displays International Limited Organic light-emitting component

Similar Documents

Publication Publication Date Title
KR101451099B1 (en) Organic electroluminescence element, and light emitting apparatus, image forming apparatus, light emitting element array, display apparatus, and imaging apparatus each using the element
JP2007095500A (en) Simulation method and device of organic electroluminescent element
JP6118525B2 (en) Organic electroluminescence device and electronic device
JP2006277987A (en) Simulation method and device of organic electroluminescent element
US7554259B2 (en) Light emitting display apparatus having excellent color reproducibility
Cho et al. Computational study of dipole radiation in re‐absorbing perovskite semiconductors for optoelectronics
JP2008226718A (en) Organic el device
CN108287944B (en) OLED structure size optimization design method and device
Nowy Understanding losses in OLEDs: optical device simulation and electrical characterization using impedance spectroscopy
Kim et al. Using Fourier-plane imaging microscopy for determining transition-dipole-moment orientations in organic light-emitting devices
JP2002158095A (en) Self-luminous display element equipped with diffraction structure
JP2010287562A (en) Display device
JPH10208884A (en) Display device
Hänisch et al. Refined setup for angle-resolved photoluminescence spectroscopy of thin films
Mac Ciarnain et al. Plasmonic Purcell effect reveals obliquely ordered phosphorescent emitters in Organic LEDs
JP5155842B2 (en) Design method of organic electroluminescence device
Ramuz et al. Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors
JP4989366B2 (en) Design method of organic electroluminescence device
Hauss et al. Periodic nanostructuring for guided mode extraction in organic light-emitting diodes
JP2005038659A (en) Simulation method of organic electroluminescent element
Lee et al. Investigation of light out-coupling efficiency of blue OLED using microcavity effects
JP4989367B2 (en) Design method of organic electroluminescence device
Flämmich et al. In situ measurement of the internal luminescence quantum efficiency in organic light-emitting diodes
JP4423103B2 (en) Organic electroluminescence light emitting device
Schwab et al. Improved light outcoupling and mode analysis of top-emitting OLEDs on periodically corrugated substrates