JP2006275753A - Optical measuring device - Google Patents

Optical measuring device Download PDF

Info

Publication number
JP2006275753A
JP2006275753A JP2005094951A JP2005094951A JP2006275753A JP 2006275753 A JP2006275753 A JP 2006275753A JP 2005094951 A JP2005094951 A JP 2005094951A JP 2005094951 A JP2005094951 A JP 2005094951A JP 2006275753 A JP2006275753 A JP 2006275753A
Authority
JP
Japan
Prior art keywords
light
light receiving
optical
light emitting
measurement cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005094951A
Other languages
Japanese (ja)
Other versions
JP4622623B2 (en
Inventor
Yoshiyuki Fukuoka
好之 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2005094951A priority Critical patent/JP4622623B2/en
Priority to TW095110022A priority patent/TW200639392A/en
Priority to PCT/JP2006/306403 priority patent/WO2006104180A1/en
Publication of JP2006275753A publication Critical patent/JP2006275753A/en
Application granted granted Critical
Publication of JP4622623B2 publication Critical patent/JP4622623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the adhesion of dew condensation water or dust/dirt to a light transmission window section, a light-emitting device, and a light receiving device, or the generation of stray light at an optical path section with a simple configuration. <P>SOLUTION: In an optical measuring device, the light-emitting device 4 and the light receiving device 8 are arranged outside a measuring cell 2 having the light transmission window section 13, and an optical element supporting member 38 in which a cylindrical sleeve 46 is formed at the optical path section is fitted outside of the light transmission window section 13 on the light emission and reception sides, thus fitting each light-emitting device 4 and each light receiving device 8 into the sleeve 46. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、測定セル内に収容した試料へ光を照射し、試料の透過光強度や散乱光強度を計測する光学計測装置の構造に関する。   The present invention relates to a structure of an optical measurement device that irradiates a sample accommodated in a measurement cell with light and measures the transmitted light intensity and scattered light intensity of the sample.

硬度成分,溶存酸素,残留塩素,懸濁物質等をはじめとする水中の特定成分濃度や排ガス中の煤煙濃度などを測定する目的で光学計測装置が広く利用されている。この種の光学計測装置は、一般に、所定容量の試料を収容した測定セルへ外部から光を照射し,あるいは連続的に試料を流通させている測定セルへ外部から光を照射し、透過光強度や散乱光強度に基づいて、対象物質の濃度を測定するように構成されている。   Optical measuring devices are widely used for the purpose of measuring the concentration of specific components in water, such as hardness components, dissolved oxygen, residual chlorine, and suspended solids, and the concentration of soot in exhaust gas. In general, this type of optical measuring device irradiates light from the outside to a measuring cell containing a sample of a predetermined volume, or irradiates light from the outside to a measuring cell continuously circulating the sample, and transmits light intensity. And the concentration of the target substance is measured based on the scattered light intensity.

たとえば、特許文献1には、試料液と発色試薬とを反応させ、この反応による試料液の変色を透過光強度に基づいて検出し、試料液に含まれる特定物質の濃度を測定する光学計測装置が開示されている。ここで、図11および図12を参照し、従来の光学計測装置における測定部の構成例を説明する。図11は、測定部の縦断面図であり、図12は、図11のXII−XII線断面図である。   For example, Patent Document 1 discloses an optical measurement device that reacts a sample solution with a color-developing reagent, detects discoloration of the sample solution due to this reaction based on transmitted light intensity, and measures the concentration of a specific substance contained in the sample solution. Is disclosed. Here, with reference to FIG. 11 and FIG. 12, the structural example of the measurement part in the conventional optical measuring device is demonstrated. FIG. 11 is a longitudinal sectional view of the measurement unit, and FIG. 12 is a sectional view taken along line XII-XII in FIG.

測定部1は、全体が透明な部材で形成された有底円筒状の測定セル2と、発光回路基板3上に第一発光素子4および第二発光素子5が装着された発光基板部6と、受光回路基板7上に第一受光素子8および第二受光素子9が装着された受光基板部10とを備えている。前記測定セル2の対向する側面には、それぞれ前記測定セル2の軸芯方向と直交する向きに外側へ向かって開口する発光素子支持部11および受光素子支持部12が形成されており、これらの各支持部11,12の側壁で囲まれた部分に光透過窓部13,13が形成されている。ここにおいて、前記発光素子支持部11は、前記測定セル2の軸芯方向と直交する断面の開口幅が、前記各発光素子4,5の外径とほぼ同じ大きさに設定されている。一方、前記受光素子支持部12は、前記測定セル2の軸芯方向と直交する断面の開口幅が、前記各受光素子8,9の外径とほぼ同じ大きさに設定されている。そして、前記測定セル2には、前記各光透過窓部13よりも下方の側壁に試料液入口14が形成されており、また前記各光透過窓部13よりも上方の側壁に試料液出口15が形成されている。   The measurement unit 1 includes a bottomed cylindrical measurement cell 2 formed entirely of a transparent member, and a light emitting substrate unit 6 in which a first light emitting element 4 and a second light emitting element 5 are mounted on a light emitting circuit board 3. And a light receiving substrate portion 10 on which a first light receiving element 8 and a second light receiving element 9 are mounted. A light emitting element support portion 11 and a light receiving element support portion 12 are formed on the opposing side surfaces of the measurement cell 2 so as to open outward in a direction orthogonal to the axial center direction of the measurement cell 2. Light transmissive window portions 13 and 13 are formed in portions surrounded by the side walls of the support portions 11 and 12. Here, the opening width of the cross section orthogonal to the axial direction of the measurement cell 2 of the light emitting element support portion 11 is set to be approximately the same as the outer diameter of the light emitting elements 4 and 5. On the other hand, the opening width of the cross section perpendicular to the axial direction of the measurement cell 2 of the light receiving element support portion 12 is set to be approximately the same as the outer diameter of the light receiving elements 8 and 9. In the measurement cell 2, a sample liquid inlet 14 is formed on the side wall below each light transmission window 13, and a sample liquid outlet 15 is formed on the side wall above each light transmission window 13. Is formed.

前記測定セル2の側方には、前記発光回路基板3および前記受光回路基板7をそれぞれ支持するための回路基板支持部16が形成されている。前記発光基板部6は、前記各発光素子4,5を前記発光素子支持部11内へ挿入し、前記発光回路基板3と前記回路基板支持部16とをネジ17で結合することにより固定されている。一方、前記受光基板部10は、前記各受光素子8,9を前記受光素子支持部12内へ挿入し、前記受光回路基板7と前記回路基板支持部16とをネジ17で結合することにより固定されている。   A circuit board support 16 for supporting the light emitting circuit board 3 and the light receiving circuit board 7 is formed on the side of the measurement cell 2. The light emitting substrate 6 is fixed by inserting the light emitting elements 4 and 5 into the light emitting element support 11 and connecting the light emitting circuit board 3 and the circuit board support 16 with screws 17. Yes. On the other hand, the light receiving substrate part 10 is fixed by inserting the light receiving elements 8 and 9 into the light receiving element support part 12 and connecting the light receiving circuit board 7 and the circuit board support part 16 with screws 17. Has been.

このような構成において、前記測定部1は、前記発光素子支持部11および前記受光素子支持部12が外側へ向かって開口しているため、前記各発光素子4,5から前記光透過窓部13への光路部分や前記光透過窓部13から前記各受光素子8,9への光路部分へ外気が容易に流入し、測定を妨害する場合がある。たとえば、室温よりも低い温度の試料液を測定すると、前記各光透過窓部13に結露が生じ、正確な測定値を得られないことがある。また、たとえば塵埃の多い環境で使用すると、前記各光透過窓部13,前記各発光素子4,5および前記各受光素子8,9に塵埃が付着し、正確な測定値を得られないことがある。さらに、前記測定セル2全体が透明な部材であるため、光路部分へ乱反射した光が侵入すると、迷光によって正確な測定値を得られないおそれもある。   In such a configuration, since the light emitting element support part 11 and the light receiving element support part 12 are opened toward the outside, the measuring part 1 has the light transmission window part 13 from the light emitting elements 4 and 5. In some cases, outside air easily flows into the optical path portion to the optical path portion and the optical path portion to the light receiving elements 8 and 9 from the light transmission window portion 13, thereby disturbing the measurement. For example, if a sample solution having a temperature lower than room temperature is measured, condensation may occur in each light transmission window portion 13 and an accurate measurement value may not be obtained. In addition, for example, when used in an environment with a lot of dust, dust may adhere to the light transmission window portions 13, the light emitting elements 4, 5, and the light receiving elements 8, 9, and accurate measurement values may not be obtained. is there. Furthermore, since the entire measurement cell 2 is a transparent member, there is a possibility that an accurate measurement value may not be obtained due to stray light when irregularly reflected light enters the optical path portion.

結露の防止に関しては、従来から、前記各光透過窓部13の近傍へ乾燥空気を流通させる構成(特許文献2)や前記各光透過窓部13をヒータで常時加熱する構成(特許文献3)が提案されている。しかしながら、前者の構成では、乾燥空気を発生させる機器が必要になるため、光学計測装置が大型になり、設置場所に制約を受けやすくなる。また、後者の構成では、ヒータを常時作動させるため、電気容量が大きくなり、ランニングコストが増加しやすくなる。したがって、いずれの構成も水処理機器の給水水質,処理水水質などを監視させる簡易な光学計測装置では、実施が困難である。   Regarding prevention of condensation, conventionally, a configuration in which dry air is circulated in the vicinity of each light transmission window portion 13 (Patent Document 2) and a configuration in which each light transmission window portion 13 is constantly heated by a heater (Patent Document 3). Has been proposed. However, in the former configuration, an apparatus that generates dry air is required, so that the optical measurement device becomes large and is easily restricted by the installation location. In the latter configuration, since the heater is always operated, the electric capacity increases, and the running cost tends to increase. Therefore, any configuration is difficult to implement with a simple optical measurement device that monitors the quality of the water supply water and the quality of the treated water of the water treatment equipment.

また、塵埃の付着防止に関しては、たとえば前記各光透過窓部13の表面,前記各発光素子4,5の表面および前記各受光素子8,9の表面へ高圧ガスを吹き付ける構成が提案されている(特許文献4)。しかしながら、この構成では、高圧ガスを発生させる機器が必要になるため、圧縮エアを利用可能な施設,たとえば工場などに光学測定装置を設置する場合でない限り、現実的ではない。   For preventing dust from adhering, for example, a configuration has been proposed in which high pressure gas is blown onto the surface of each light transmission window 13, the surfaces of the light emitting elements 4 and 5, and the surfaces of the light receiving elements 8 and 9. (Patent Document 4). However, this configuration requires a device that generates high-pressure gas, and is not realistic unless the optical measurement device is installed in a facility where compressed air can be used, such as a factory.

さらに、前記測定部1は、前記各発光素子4,5や前記各受光素子8,9を所定の光軸位置に案内する手段が施されていないため、前記各基板部6,10を固定する際に、前記各発光素子4,5や前記各受光素子8,9が前記各支持部11,12と接触すると光軸のずれを起こしやすい。したがって、所定の精度を確保するためには、組立後に光軸の補正や測定値の校正を行う必要があった。   Further, since the measuring unit 1 is not provided with means for guiding the light emitting elements 4 and 5 and the light receiving elements 8 and 9 to a predetermined optical axis position, the measuring units 1 fix the substrate parts 6 and 10. At this time, when the light-emitting elements 4 and 5 and the light-receiving elements 8 and 9 come into contact with the support portions 11 and 12, the optical axis tends to shift. Therefore, in order to ensure a predetermined accuracy, it is necessary to correct the optical axis and calibrate the measurement value after assembly.

特許第3214400号Japanese Patent No. 3214400 特開2000−171389号JP 2000-171389 A 特開昭56−148040号JP 56-148040 A 特開昭59−57142号JP 59-57142 A

この発明が解決しようとする第一の課題は、光透過窓部,発光素子および受光素子への結露水や塵埃の付着,あるいは光路部分での迷光の発生を簡単な構成で防止することである。また、この発明が解決しようとする第二の課題は、光軸のずれを簡単な構成で防止することである。   The first problem to be solved by the present invention is to prevent the formation of condensed water and dust on the light transmitting window, light emitting element and light receiving element, or the generation of stray light in the optical path part with a simple configuration. . A second problem to be solved by the present invention is to prevent the deviation of the optical axis with a simple configuration.

この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、光透過窓部を備えた測定セルの外側に、発光素子および受光素子が配置される光学計測装置であって、発光側および受光側の前記光透過窓部の外側に、光路部分に筒状のスリーブが形成された光学素子支持部材をそれぞれ装着し、前記発光素子および前記受光素子をそれぞれ前記スリーブ内へ装着したことを特徴としている。   The present invention has been made to solve the above problems, and the invention according to claim 1 is an optical measuring device in which a light emitting element and a light receiving element are arranged outside a measurement cell having a light transmission window. An optical element support member having a cylindrical sleeve formed in an optical path portion is mounted outside the light transmitting window on the light emitting side and the light receiving side, and the light emitting element and the light receiving element are respectively attached to the sleeve. It is characterized by being installed inside.

請求項1に記載の発明によれば、前記光透過窓部の外側に、前記光学素子支持部材が装着され、前記発光素子および前記受光素子は、それぞれ前記スリーブ内へ挿入されることにより密着支持される。すなわち、前記発光素子から前記光透過窓部への光路部分や前記光透過窓部から前記受光素子への光路部分は、気密状態に保たれ、湿気や塵埃を含む外気が光路部分へ流入することが抑制されるとともに、乱反射した光が光路部分へ侵入することが防止される。したがって、前記光透過窓部,前記発光素子および前記受光素子への結露水や塵埃の付着,あるいは光路部分での迷光の発生が防止される。   According to the first aspect of the present invention, the optical element support member is attached to the outside of the light transmission window portion, and the light emitting element and the light receiving element are respectively closely supported by being inserted into the sleeve. Is done. That is, the optical path portion from the light emitting element to the light transmitting window portion and the optical path portion from the light transmitting window portion to the light receiving element are kept in an airtight state, and external air including moisture and dust flows into the optical path portion. Is suppressed, and diffused light is prevented from entering the optical path portion. Therefore, it is possible to prevent the condensed water and dust from adhering to the light transmission window portion, the light emitting element and the light receiving element, or stray light from being generated in the optical path portion.

また、請求項2に記載の発明は、請求項1において、前記発光素子と前記受光素子の各軸芯が、前記測定セルの軸芯と直交する同一平面上に位置するように前記光学素子支持部材を装着したことを特徴としている。   Further, the invention according to claim 2 is the optical element support according to claim 1, wherein each axis of the light emitting element and the light receiving element is located on the same plane perpendicular to the axis of the measurement cell. It is characterized by mounting a member.

請求項2に記載の発明によれば、前記発光素子と前記受光素子の各軸芯が、前記測定セルの軸芯と直交する同一平面上に位置するように前記光学素子支持部材が装着される。すなわち、前記スリーブにより、前記発光素子および前記受光素子の各軸芯が、前記測定セルの軸芯と直交する同一平面上に位置決めされた状態で支持される。したがって、透過光強度,散乱光強度のいずれを計測する場合でも、光軸のずれが防止される。   According to the second aspect of the present invention, the optical element support member is mounted so that the axial centers of the light emitting element and the light receiving element are located on the same plane orthogonal to the axial center of the measurement cell. . That is, the sleeve supports the light emitting element and the light receiving element in a state where the axes of the light emitting element and the light receiving element are positioned on the same plane orthogonal to the axis of the measurement cell. Therefore, deviation of the optical axis is prevented when measuring either the transmitted light intensity or the scattered light intensity.

さらに、請求項3に記載の発明は、請求項1または2において、前記光学素子支持部材が弾性材料で形成されていることを特徴としている。   Furthermore, the invention described in claim 3 is characterized in that, in claim 1 or 2, the optical element support member is formed of an elastic material.

請求項3に記載の発明によれば、前記光学素子支持部材が弾性材料で形成されているので、前記発光素子から前記光透過窓部への光路部分や前記光透過窓から前記受光素子への光路部分は、より気密状態に保たれ、湿気や塵埃を含む外気が光路部分へ流入することが効果的に抑制される。また、前記スリーブにより、前記発光素子および前記受光素子が確実に支持され、前記発光素子および前記受光素子の各軸芯が、前記測定セルの軸芯と直交する同一平面上に精度よく位置決めされる。したがって、前記光透過窓部,前記発光素子および前記受光素子への結露水および塵埃の付着が効果的に防止されるともに、光軸のずれが効果的に防止される。   According to invention of Claim 3, since the said optical element support member is formed with the elastic material, the optical path part from the said light emitting element to the said light transmissive window part, or from the said light transmissive window to the said light receiving element The optical path portion is kept in a more airtight state, and the outside air including moisture and dust is effectively suppressed from flowing into the optical path portion. The sleeve securely supports the light emitting element and the light receiving element, and the axial centers of the light emitting element and the light receiving element are accurately positioned on the same plane orthogonal to the axis of the measurement cell. . Accordingly, it is possible to effectively prevent dew condensation and dust from adhering to the light transmission window portion, the light emitting element, and the light receiving element, and also prevent the optical axis from being displaced.

この発明によれば、光透過窓部,発光素子および受光素子への結露水や塵埃の付着,あるいは光路部分での迷光の発生を簡単な構成で防止することができる。また、光軸のずれを簡単な構成で防止することができる。この結果、光学計測装置における所定の測定精度を継続的に維持することができる。   According to the present invention, it is possible to prevent the condensation of water and dust from adhering to the light transmission window, the light emitting element and the light receiving element, or the generation of stray light in the optical path portion with a simple configuration. In addition, the optical axis can be prevented from being displaced with a simple configuration. As a result, the predetermined measurement accuracy in the optical measurement device can be continuously maintained.

以下、この発明の実施形態を図面に基づいて詳細に説明する。図1は、この発明に係る光学計測装置を、液体中の特定成分(硬度成分,溶存酸素,残留塩素等)の濃度を測定する液体濃度測定装置に適用した概略構成図を示している。図1において、光学計測装置18は、測定部1と、試薬供給部19と、制御部20とを主に備えている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration diagram in which the optical measuring device according to the present invention is applied to a liquid concentration measuring device for measuring the concentration of a specific component (hardness component, dissolved oxygen, residual chlorine, etc.) in a liquid. In FIG. 1, the optical measurement device 18 mainly includes a measurement unit 1, a reagent supply unit 19, and a control unit 20.

前記測定部1は、測定セル2と、発光基板部6と、受光基板部10と、撹拌装置21とを主に備えている。前記測定セル2は、不透明樹脂材料で形成された円筒状の容器であり、その側壁に一対の光透過窓部13,13が対向して形成されている。ここで、前記各光透過窓部13には、ガラスや合成樹脂などの透明材料を平板状に成形した窓板22,22がそれぞれ装着されている。とくに、前記各窓板22は、後述する発色試薬に酸,アルカリ,あるいは有機溶媒などが含まれる場合、その材料に石英ガラスを使用すると、材質劣化による破損のおそれがなく、好適である。   The measurement unit 1 mainly includes a measurement cell 2, a light emitting substrate unit 6, a light receiving substrate unit 10, and a stirring device 21. The measurement cell 2 is a cylindrical container made of an opaque resin material, and a pair of light transmission window portions 13 and 13 are formed to face each other on the side wall. Here, each of the light transmission window portions 13 is provided with window plates 22 and 22 formed of a transparent material such as glass or synthetic resin in a flat plate shape. In particular, when each of the window plates 22 contains acid, alkali, organic solvent, or the like in a coloring reagent to be described later, it is preferable to use quartz glass as the material because there is no risk of damage due to deterioration of the material.

前記発光基板部6は、発光回路基板3上に発光波長の異なる第一発光素子4および第二発光素子5が装着されて構成されており、また前記受光基板部10は、受光回路基板7上に第一受光素子8および第二受光素子9が装着されて構成されている。ここで、前記各発光素子4,5は、たとえばLEDであり、また前記各受光素子8,9は、たとえばフォトダイオードである。前記発光基板部6は、前記各発光素子4,5が一方の前記光透過窓部13へ臨むように、前記測定セル2の外側に配置されている。そして、前記受光基板部10は、前記各受光素子8,9が他方の前記光透過窓部13へ臨むように、前記測定セル2の外側に配置されている。   The light emitting substrate unit 6 is configured by mounting the first light emitting element 4 and the second light emitting element 5 having different emission wavelengths on the light emitting circuit substrate 3, and the light receiving substrate unit 10 is formed on the light receiving circuit substrate 7. The first light receiving element 8 and the second light receiving element 9 are mounted. Here, each of the light emitting elements 4 and 5 is, for example, an LED, and each of the light receiving elements 8 and 9 is, for example, a photodiode. The light emitting substrate 6 is disposed outside the measurement cell 2 so that the light emitting elements 4 and 5 face one of the light transmitting window portions 13. The light receiving substrate portion 10 is disposed outside the measurement cell 2 so that the light receiving elements 8 and 9 face the other light transmission window portion 13.

前記撹拌装置21は、前記測定セル2の底部に設けられており、攪拌子23とステータ24とを備えている。前記攪拌子23は、前記測定セル2の底部において、回転可能に配
置されている。前記ステータ24は、前記攪拌子23を取り囲むように、前記測定セル2の外側に配置されており、電磁誘導コイル(図示省略)を備えている。この電磁誘導コイルへ電流を供給すると、前記攪拌子23が回転する。
The stirring device 21 is provided at the bottom of the measurement cell 2 and includes a stirring bar 23 and a stator 24. The stirrer 23 is rotatably disposed at the bottom of the measurement cell 2. The stator 24 is disposed outside the measurement cell 2 so as to surround the stirrer 23 and includes an electromagnetic induction coil (not shown). When a current is supplied to the electromagnetic induction coil, the stirrer 23 rotates.

前記測定セル2において、前記各光透過窓部13よりも下方の側壁には、試料液入口14が設けられており、この試料液入口14には、試料液流入経路25が接続されている。この試料液流入経路25には、前記試料液入口14側から順に電磁弁26,定流量弁27およびフィルタ28が設けられている。一方、前記測定セル2において、前記各光透過窓部13よりも上方の側壁には、試料液出口15が設けられており、この試料液出口15には、試料液排出経路29が接続されている。   In the measurement cell 2, a sample liquid inlet 14 is provided on a side wall below each light transmission window 13, and a sample liquid inflow path 25 is connected to the sample liquid inlet 14. In the sample liquid inflow path 25, an electromagnetic valve 26, a constant flow valve 27, and a filter 28 are provided in this order from the sample liquid inlet 14 side. On the other hand, in the measurement cell 2, a sample solution outlet 15 is provided on the side wall above each light transmission window 13, and a sample solution discharge path 29 is connected to the sample solution outlet 15. Yes.

前記試薬供給部19は、試薬貯蔵容器30とローラポンプ31とを主に備えている。前記試薬貯蔵容器30は、その内部に試料液中の特定成分(硬度成分,溶存酸素,残留塩素等)と反応して発色,あるいは変色する色素が配合された発色試薬が貯蔵されており、前記測定セル2の上部と試薬供給経路32で接続されている。この試薬供給経路32には、前記ローラポンプ31が設けられており、このローラポンプ31の下流側には、逆止弁33が設けられている。前記試薬供給経路32は、たとえば弾性材料で形成されたチューブであって、このチューブを前記ローラポンプ31で扱くことにより、前記試薬貯蔵容器30から前記測定セル2内へ発色試薬が吐出される。   The reagent supply unit 19 mainly includes a reagent storage container 30 and a roller pump 31. The reagent storage container 30 stores therein a coloring reagent in which a coloring agent that reacts with a specific component (hardness component, dissolved oxygen, residual chlorine, etc.) in a sample solution and is colored or changed in color is mixed. The upper part of the measurement cell 2 is connected by a reagent supply path 32. The reagent supply path 32 is provided with the roller pump 31, and a check valve 33 is provided on the downstream side of the roller pump 31. The reagent supply path 32 is a tube made of, for example, an elastic material, and the coloring reagent is discharged from the reagent storage container 30 into the measurement cell 2 by handling the tube with the roller pump 31. .

前記制御部20は、出力インターフェース(符号省略)を有しており、この出力インターフェースから前記発光回路基板3,前記ステータ24,前記電磁弁26および前記ローラポンプ31へ駆動信号が出力される。また、前記制御部20は、入力インターフェース(符号省略)を有しており、この入力インターフェースへ前記受光回路基板7からの検出信号が入力される。   The control unit 20 has an output interface (reference number omitted), and a drive signal is output from the output interface to the light emitting circuit board 3, the stator 24, the electromagnetic valve 26, and the roller pump 31. The control unit 20 has an input interface (reference number omitted), and a detection signal from the light receiving circuit board 7 is input to the input interface.

ここで、前記光学計測装置18の作用について説明する。まず、前記電磁弁26を開状態にすると、試料液が前記試料液流入経路25を介して前記試料液入口14から前記測定セル2内へ連続的に流入する。この際、試料液に含まれる懸濁物質やゴミは、前記フィルタ28で捕捉され、また試料液の流量が前記定流量弁27で一定に制御される。この試料液は、前記測定セル2内を下方から上方へ向かって流れ、液面が前記試料液出口15まで達すると、前記試料液排出経路29を介して系外へ流出する。この過程において、前記撹拌装置21を作動させ、前記攪拌子23を回転させることによって、前記測定セル2内が洗浄される。そして、前記測定セル2内に所定量の試料液が貯留されると、前記電磁弁26を閉状態にする。   Here, the operation of the optical measuring device 18 will be described. First, when the electromagnetic valve 26 is opened, the sample liquid continuously flows into the measurement cell 2 from the sample liquid inlet 14 via the sample liquid inflow path 25. At this time, suspended substances and dust contained in the sample solution are captured by the filter 28, and the flow rate of the sample solution is controlled to be constant by the constant flow valve 27. The sample liquid flows from the lower side to the upper side in the measurement cell 2, and when the liquid level reaches the sample liquid outlet 15, it flows out of the system through the sample liquid discharge path 29. In this process, the inside of the measurement cell 2 is cleaned by operating the stirring device 21 and rotating the stirring bar 23. When a predetermined amount of sample liquid is stored in the measurement cell 2, the electromagnetic valve 26 is closed.

つぎに、前記撹拌装置21を作動させながら、前記ローラポンプ31を駆動させ、所定量の発色試薬を前記試薬貯蔵容器30から前記測定セル2内へ供給する。試料液中に特定成分が存在する場合、発色試薬に含まれる色素がこの特定成分と反応し、試料液が発色する。試料液中の特定成分と発色試薬に含まれる色素とが十分に反応する時間が経過すると、前記各発光素子4,5を点灯し、それぞれの透過光強度を前記各受光素子8,9で検出する。そして、前記各受光素子8,9で検出された複数の透過光強度に基づいて、試料液に含まれる特定成分の濃度を前記制御部20で判定する。   Next, while operating the stirring device 21, the roller pump 31 is driven to supply a predetermined amount of the coloring reagent from the reagent storage container 30 into the measurement cell 2. When a specific component is present in the sample solution, the dye contained in the coloring reagent reacts with the specific component, and the sample solution develops color. When a sufficient time has passed for a specific component in the sample solution and the dye contained in the coloring reagent to elapse, the light emitting elements 4 and 5 are turned on, and the transmitted light intensity is detected by the light receiving elements 8 and 9. To do. Then, based on the plurality of transmitted light intensities detected by the light receiving elements 8 and 9, the control unit 20 determines the concentration of the specific component contained in the sample liquid.

さて、前記測定部1の構成を図面に基づいてより詳細に説明する。図2は、前記光透過窓部13の装着側から見た前記測定セル2の側面図である。前記測定セル2の対向する側面には、それぞれブロック状の光学部材取付部34が一体的に形成されている。この光学部材取付部34には、前記測定セル2内と連通する矩形の貫通窓35が設けられており、この貫通窓35の内周面には、前記測定セル2内へ向かうテーパ面36が設けられている。そして、前記貫通窓35の四隅には、前記窓板22を支持するための窓板支持部37,
37,…がそれぞれ形成されている。すなわち、前記窓板22は、前記貫通窓35内へ挿入され、前記測定セル2内部から前記各窓板支持部37により支持された状態で装着される。
Now, the configuration of the measuring unit 1 will be described in more detail based on the drawings. FIG. 2 is a side view of the measurement cell 2 as viewed from the mounting side of the light transmission window portion 13. Block-like optical member attachment portions 34 are integrally formed on the opposing side surfaces of the measurement cell 2. The optical member mounting portion 34 is provided with a rectangular through window 35 that communicates with the inside of the measurement cell 2. Is provided. And at the four corners of the through window 35, a window plate support portion 37 for supporting the window plate 22,
37,... Are formed. That is, the window plate 22 is inserted into the through window 35 and mounted in a state supported by the window plate support portions 37 from the inside of the measurement cell 2.

前記貫通窓35の開口部の周縁には、後述する光学素子支持部材38を嵌合させるための段差部39が設けられている。また、前記貫通窓35の開口面において、前記光学部材取付部34の四隅には、後述する押付部材40をボルト止めするための第一貫通穴41,41,…がそれぞれ設けられている。さらに、前記貫通窓35の開口面には、前記押付部材40を位置決めするためのピン挿入孔42,42がそれぞれ設けられている。   A step portion 39 for fitting an optical element support member 38 to be described later is provided on the periphery of the opening portion of the through window 35. Further, on the opening surface of the through window 35, first through holes 41, 41,... For bolting a pressing member 40 described later are provided at the four corners of the optical member mounting portion 34, respectively. Furthermore, pin insertion holes 42 and 42 for positioning the pressing member 40 are provided in the opening surface of the through window 35, respectively.

つぎに、前記光学素子支持部材38について、図3〜図5を参照して説明する。図3は、前記測定セル2へ臨む側から見た前記光学素子支持部材38の正面図であり、また図4は、図3のIV−IV線断面図であり、さらに図5は、前記光学素子支持部材38の背面図である。   Next, the optical element support member 38 will be described with reference to FIGS. 3 is a front view of the optical element support member 38 as viewed from the side facing the measurement cell 2, FIG. 4 is a sectional view taken along line IV-IV in FIG. 3, and FIG. 4 is a rear view of the element support member 38. FIG.

前記光学素子支持部材38は、弾性材料で形成され、いわゆるパッキンとして作用する部材である。弾性材料としては、薬品や溶媒で容易に劣化しないもの,たとえばエチレンプロピレンゴム,シリコンゴム,フッ素ゴムなどを使用することができる。前記光学素子支持部材38は、板状のパッキン部43に3個の貫通孔44,44,…がそれぞれ設けられており、これらの各貫通孔44の周縁部には、正面側において、環状の第一突条部45,45,…がそれぞれ設けられている。また、前記光学素子支持部材38は、背面側において、前記各貫通孔44の周縁部から立ち上がる円筒状のスリーブ46,46,…がそれぞれ形成されており、これらの各スリーブ46の立上がり部分の外周には、環状の第二突条部47,47,…がそれぞれ設けられている。   The optical element support member 38 is formed of an elastic material and functions as a so-called packing. As the elastic material, a material that is not easily deteriorated by a chemical or a solvent, such as ethylene propylene rubber, silicon rubber, or fluorine rubber, can be used. The optical element support member 38 is provided with three through holes 44, 44,... In a plate-shaped packing portion 43, and each of the through holes 44 has an annular shape on the front side. 1st protrusion part 45,45, ... is each provided. Further, the optical element support member 38 is formed with cylindrical sleeves 46, 46,... Rising from the peripheral edge of each through hole 44 on the back side, and the outer periphery of the rising portion of each sleeve 46 is formed. Are provided with annular second protrusions 47, 47,..., Respectively.

ここにおいて、前記光学素子支持部材38は、前記発光基板部6側で使用する場合、前記各スリーブ46の内径が前記各発光素子4,5の外径と同一,もしくは若干小径に設定される。また、前記光学素子支持部材38は、前記受光基板部10側で使用する場合、前記各スリーブ46の内径が前記各受光素子8,9の外径と同一,もしくは若干小径に設定される。すなわち、前記光学素子支持部材38へは、その弾性を利用して、最大3個の発光素子,あるいは最大3個の受光素子を圧入し、支持可能になっている。因みに、前記各スリーブ46は、使用する発光素子および受光素子の数に応じて、任意の数を設定することができる。   Here, when the optical element support member 38 is used on the light emitting substrate 6 side, the inner diameter of each sleeve 46 is set to be the same as or slightly smaller than the outer diameter of each of the light emitting elements 4 and 5. Further, when the optical element support member 38 is used on the light receiving substrate part 10 side, the inner diameter of each sleeve 46 is set to be the same as or slightly smaller than the outer diameter of each of the light receiving elements 8 and 9. That is, a maximum of three light emitting elements or a maximum of three light receiving elements can be press-fitted and supported to the optical element support member 38 by utilizing its elasticity. Incidentally, an arbitrary number of the respective sleeves 46 can be set according to the number of light emitting elements and light receiving elements to be used.

前記光学素子支持部材38は、正面側において、前記各貫通孔44を取り囲むように前記パッキン部43から立ち上がる窓板支持枠48が形成されている。この窓板支持枠48は、前記窓板22を嵌合可能な形状と深さに設定されており、前記窓板22が嵌合された状態にて、前記貫通窓35へ挿入される。また、前記パッキン部43の周縁部には、背面側において、第三突条部49が設けられており、さらに、正面側において、第四突条部50が設けられている。   The optical element support member 38 is formed with a window plate support frame 48 rising from the packing portion 43 so as to surround each through hole 44 on the front side. The window plate support frame 48 is set to have a shape and depth capable of fitting the window plate 22, and is inserted into the through window 35 in a state where the window plate 22 is fitted. Further, a third ridge 49 is provided on the peripheral side of the packing portion 43 on the back side, and a fourth ridge 50 is provided on the front side.

つぎに、前記押付部材40について、図6〜図8を参照して説明する。図6は、前記測定セル2へ臨む側から見た前記押付部材40の正面図であり、また図7は、図6のVII−VII線断面図であり、さらに図8は、前記押付部材40の背面図である。   Next, the pressing member 40 will be described with reference to FIGS. 6 is a front view of the pressing member 40 as viewed from the side facing the measurement cell 2, FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. 6, and FIG. FIG.

前記押付部材40は、前記窓板22が嵌合された前記光学素子支持部材38を前記測定セル2へ装着した際に、前記光学素子支持部材38を前記測定セル2側へ押し付けた状態で固定するためのケース状の部材である。図6に示す前記押付部材40の正面側は、平滑面となっており、前記各スリーブ46を挿入するためのスリーブ挿入孔51,51,…がそれぞれ設けられている。これらの各スリーブ挿入孔51は、前記押付部材40の背面側
へ向かって貫通している。
The pressing member 40 is fixed in a state where the optical element support member 38 is pressed to the measurement cell 2 side when the optical element support member 38 fitted with the window plate 22 is attached to the measurement cell 2. It is a case-like member for doing. The front side of the pressing member 40 shown in FIG. 6 is a smooth surface, and is provided with sleeve insertion holes 51, 51,... For inserting the sleeves 46, respectively. Each of these sleeve insertion holes 51 penetrates toward the back side of the pressing member 40.

前記各スリーブ挿入孔51の内径は、正面側の開口面から前記各スリーブ46の高さに相当する深さの位置Aまでは、前記各スリーブ46の外径と同一,もしくは若干大径に設定されている。一方、前記位置Aから背面側の開口面までは、前記各スリーブ46の内径と同一,もしくは若干大径に設定されている。すなわち、前記各スリーブ46が前記各スリーブ挿入孔51に挿入された状態では、前記各スリーブ46の外周面および先端面が前記各スリーブ挿入孔51の内面に密着支持されるようになっている。   The inner diameter of each sleeve insertion hole 51 is set to be the same as or slightly larger than the outer diameter of each sleeve 46 from the opening surface on the front side to a position A at a depth corresponding to the height of each sleeve 46. Has been. On the other hand, from the position A to the opening surface on the back side, the inner diameter of each sleeve 46 is set to be the same or slightly larger. That is, in a state where each sleeve 46 is inserted into each sleeve insertion hole 51, the outer peripheral surface and the front end surface of each sleeve 46 are tightly supported by the inner surface of each sleeve insertion hole 51.

前記押付部材40の正面側には、前記各第一貫通穴41対応する位置に第二貫通穴52,52,…がそれぞれ設けられており、また前記各ピン挿入孔42に対応する位置にピン53,53がそれぞれ設けられている。さらに、前記押付部材40の背面側には、前記発光回路基板3または受光回路基板7を支持し,かつネジ止めして固定するための基板支持部54,54がそれぞれ設けられている。   On the front side of the pressing member 40, second through holes 52, 52,... Are respectively provided at positions corresponding to the first through holes 41, and pins are provided at positions corresponding to the pin insertion holes 42. 53 and 53 are provided, respectively. Furthermore, on the back side of the pressing member 40, there are provided substrate support portions 54 and 54 for supporting the light emitting circuit board 3 or the light receiving circuit board 7 and fixing them by screws.

ここで、前記測定部1の組立状態を図9および図10に基づいて説明する。図9は、前記測定部1の縦断面図であり、図10は、図9のX−X線断面図である。   Here, the assembled state of the measurement unit 1 will be described with reference to FIGS. 9 is a longitudinal sectional view of the measuring unit 1, and FIG. 10 is a sectional view taken along line XX of FIG.

まず、前記各窓板22は、それぞれが前記光学素子支持部材38の前記窓板支持枠48内へ嵌合され、支持されている。前記窓板22が支持された前記光学素子支持部材38は、前記窓板支持枠48の外周面が前記テーパ面35へ当接し、また前記パッキン部43の正面側周縁面が前記段差部39面へ当接するように、前記光学部材取付部34へ装着される。すなわち、前記各窓板22は、それぞれ前記窓板支持部37と前記パッキン部43とで挟持された状態で支持されている。   First, each of the window plates 22 is fitted and supported in the window plate support frame 48 of the optical element support member 38. In the optical element support member 38 on which the window plate 22 is supported, the outer peripheral surface of the window plate support frame 48 abuts on the tapered surface 35, and the front side peripheral surface of the packing portion 43 is the surface of the stepped portion 39. It is attached to the optical member mounting portion 34 so as to come into contact with. That is, each window plate 22 is supported in a state of being sandwiched between the window plate support portion 37 and the packing portion 43.

つぎに、前記押付部材40は、前記各スリーブ46を前記各スリーブ挿入孔51へそれぞれ挿入し、また前記各ピン53を前記各ピン挿入孔42へそれぞれ挿入することにより、前記光学部材取付部34へ装着される。そして、前記測定セル2を挟んで対向する前記押付部材40どうしは、前記各第一貫通穴41および前記各第二貫通穴52を介してボルト57で締結される。ここにおいて、一方の前記押付部材40は、前記ボルト57と結合するため、前記各第二貫通穴52内にインサートナット58が埋め込まれている。   Next, the pressing member 40 inserts the sleeves 46 into the sleeve insertion holes 51 and inserts the pins 53 into the pin insertion holes 42, respectively. It is attached to. The pressing members 40 facing each other across the measurement cell 2 are fastened by bolts 57 via the first through holes 41 and the second through holes 52. Here, one of the pressing members 40 is connected to the bolt 57, and an insert nut 58 is embedded in each of the second through holes 52.

前記光学部材取付部34へ前記各窓板22,前記各光学素子支持部材38および前記各押付部材40を装着し、それぞれが支持および固定された状態では、前記各ピン53および前記各ピン挿入孔42によって、対向する前記各スリーブ46の軸芯どうしが同軸上に位置決めされる。すなわち、対向する前記各スリーブ46の軸芯は、前記測定セル2の軸芯と直交する同一平面上に位置するように装着される。また、この状態では、前記各第一突条部45が前記窓板22の表面へ当接し、また前記第四突条部50が前記段差部39面へ当接し、さらに前記各第二突条部47および前記第三突条部49が前記押付部材40の正面側表面へ当接することにより、前記窓板22,前記光学素子支持部材38および前記押付部材40どうしが密着され、相互の位置ずれが効果的に防止される。   In the state in which each window plate 22, each optical element support member 38, and each pressing member 40 are mounted on the optical member mounting portion 34 and are supported and fixed, each pin 53 and each pin insertion hole. The axial centers of the sleeves 46 facing each other are positioned coaxially by 42. That is, the axial cores of the sleeves 46 facing each other are mounted so as to be located on the same plane orthogonal to the axial core of the measurement cell 2. Further, in this state, the first protrusions 45 abut against the surface of the window plate 22, the fourth protrusions 50 abut against the surface of the step part 39, and the second protrusions When the portion 47 and the third protrusion 49 are brought into contact with the front surface of the pressing member 40, the window plate 22, the optical element support member 38, and the pressing member 40 are in close contact with each other, so that their positional deviations occur. Is effectively prevented.

さて、前記発光基板部6および前記受光基板部10の取付けについて説明する。まず、前記発光回路基板3上には、前記第一発光素子4および第二発光素子5とともに、第三発光素子55が装着されている。この第三発光素子55は、通常、前記第一発光素子4および第二発光素子5と異なる発光波長に設定されており、たとえば前記各発光素子4,5,55は、それぞれ赤色LED,緑色LED,青色LEDが使用される。このように構成することにより、発色試薬に含まれる色素の反応前の色相や、反応後の色相に応じて所望の発光波長を選択的に使用することができる。   Now, attachment of the light emitting substrate portion 6 and the light receiving substrate portion 10 will be described. First, a third light emitting element 55 is mounted on the light emitting circuit board 3 together with the first light emitting element 4 and the second light emitting element 5. The third light-emitting element 55 is normally set to a light emission wavelength different from that of the first light-emitting element 4 and the second light-emitting element 5. For example, each of the light-emitting elements 4, 5, and 55 includes a red LED and a green LED, respectively. Blue LEDs are used. By comprising in this way, a desired light emission wavelength can be selectively used according to the hue before the reaction of the pigment | dye contained in the coloring reagent, and the hue after reaction.

前記各発光素子4,5,55は、前記光学素子支持部材38の一方の側へ臨んで、それぞれが前記各スリーブ46内へ挿入されている。そして、前記発光回路基板3をネジ17で前記基板支持部54と結合することにより、前記発光基板部6が前記押付部材40へ固定される。この状態では、前記各発光素子4,5,55の外周面が、それぞれ前記各スリーブ46内周面と密着して支持される。すなわち、前記各発光素子4,5,55から前記窓板22への光路部分は、気密状態に保たれ、この光路部分へ湿気や塵埃を含む外気が流入することや、乱反射した光が侵入することが抑制される。この結果、発光側の前記光透過窓部13や前記各発光素子4,5,55への結露水および塵埃の付着が防止されるとともに、光路部分での迷光の発生が防止される。   Each of the light emitting elements 4, 5, 55 faces one side of the optical element support member 38 and is inserted into each sleeve 46. Then, the light emitting circuit board 3 is fixed to the pressing member 40 by coupling the light emitting circuit board 3 with the board supporting part 54 with the screw 17. In this state, the outer peripheral surfaces of the respective light emitting elements 4, 5, 55 are supported in close contact with the inner peripheral surfaces of the respective sleeves 46. That is, the optical path portion from each of the light emitting elements 4, 5, 55 to the window plate 22 is kept in an airtight state, and outside air including moisture and dust flows into the optical path portion, or irregularly reflected light enters. It is suppressed. As a result, dew condensation water and dust are prevented from adhering to the light transmitting window 13 on the light emitting side and the light emitting elements 4, 5 and 55, and stray light is prevented from being generated in the optical path portion.

つぎに、前記受光回路基板7上には、前記第一受光素子8および第二受光素子9とともに、第三受光素子56が装着されている。前記各受光素子8,9,56は、それぞれ前記各発光素子4,5,55から照射された光の透過光強度を検出するものである。   Next, a third light receiving element 56 is mounted on the light receiving circuit board 7 together with the first light receiving element 8 and the second light receiving element 9. The light receiving elements 8, 9, and 56 detect the transmitted light intensity of the light emitted from the light emitting elements 4, 5, and 55, respectively.

前記各受光素子8,9,56は、前記光学素子支持部材38の他方の側へ臨んで、それぞれが前記各スリーブ46内へ挿入されている。そして、前記受光回路基板7をネジ17で前記基板支持部54と結合することにより、前記受光基板部10が前記押付部材40へ固定される。この状態では、前記各受光素子8,9,56の外周面が、それぞれ前記各スリーブ46内周面と密着して支持される。すなわち、前記窓板22から前記各受光素子8,9,56への光路部分は、気密状態に保たれ、この光路部分へ湿気や塵埃を含む外気が流入することや、乱反射した光が侵入することが抑制される。この結果、受光側の前記光透過窓部13や前記各受光素子8,9,56への結露水および塵埃の付着が防止されるとともに、光路部分での迷光の発生が防止される。   Each of the light receiving elements 8, 9, 56 faces the other side of the optical element support member 38 and is inserted into each sleeve 46. Then, the light receiving substrate portion 10 is fixed to the pressing member 40 by coupling the light receiving circuit substrate 7 with the substrate support portion 54 with screws 17. In this state, the outer peripheral surfaces of the light receiving elements 8, 9, and 56 are supported in close contact with the inner peripheral surfaces of the sleeves 46, respectively. That is, the optical path portion from the window plate 22 to each of the light receiving elements 8, 9, and 56 is kept in an airtight state, and outside air including moisture and dust flows into the optical path portion, or irregularly reflected light enters. It is suppressed. As a result, dew condensation water and dust are prevented from adhering to the light transmission window 13 on the light receiving side and the light receiving elements 8, 9, and 56, and stray light is prevented from being generated in the optical path portion.

ここにおいて、前記発光基板部6および前記受光基板部10を取付けた状態では、前記第一発光素子4と前記第一受光素子8の各軸芯が、前記測定セル2の軸芯と直交する同一平面上に位置し、また前記第二発光素子5と前記第二受光素子9の各軸芯が、前記測定セル2の軸芯と直交する同一平面上に位置し、さらに前記第三発光素子55と前記第三受光素子56の各軸芯が、前記測定セル2の軸芯と直交する同一平面上に位置するように装着される。すなわち、対向する前記各スリーブ46の軸芯が、前記測定セル2の軸芯と直交する同一平面上に位置するように装着されているので、対応する一対の発光素子と受光素子の各軸芯が、前記測定セル2の軸芯と直交する同一平面上に位置するように位置決めされる。したがって、この実施形態のように透過光強度を計測する場合のみならず、散乱光強度を計測する場合に応用しても、光軸のずれが効果的に防止される。   Here, in a state in which the light emitting substrate portion 6 and the light receiving substrate portion 10 are attached, the respective axis cores of the first light emitting element 4 and the first light receiving element 8 are the same orthogonal to the axis core of the measurement cell 2. The axis of the second light emitting element 5 and the second light receiving element 9 are positioned on the same plane perpendicular to the axis of the measurement cell 2, and the third light emitting element 55 And the third light receiving element 56 is mounted so that the axial centers of the third light receiving elements 56 are positioned on the same plane perpendicular to the axial center of the measurement cell 2. That is, since the axial cores of the respective sleeves 46 facing each other are mounted so as to be located on the same plane orthogonal to the axial core of the measurement cell 2, each axial core of the corresponding pair of light emitting elements and light receiving elements. Are positioned so as to be located on the same plane orthogonal to the axis of the measurement cell 2. Therefore, not only when measuring the transmitted light intensity as in this embodiment but also when measuring the scattered light intensity, it is possible to effectively prevent the deviation of the optical axis.

以上のように、この発明によれば、光透過窓部,発光素子および受光素子への結露水や塵埃の付着,あるいは光路部分での迷光の発生を簡単な構成で防止することができる。また、光軸のずれを簡単な構成で防止することができる。この結果、光学計測装置における所定の測定精度を継続的に維持することができる。   As described above, according to the present invention, it is possible to prevent adhesion of condensed water and dust to the light transmission window portion, the light emitting element, and the light receiving element, or generation of stray light in the optical path portion with a simple configuration. In addition, the optical axis can be prevented from being displaced with a simple configuration. As a result, the predetermined measurement accuracy in the optical measurement device can be continuously maintained.

この発明に係る光学計測装置の概略構成図。The schematic block diagram of the optical measuring device which concerns on this invention. 光透過窓部の装着側から見た測定セルの側面図。The side view of the measurement cell seen from the mounting side of the light transmission window part. 光学素子支持部材の正面図。The front view of an optical element support member. 図3のIV−IV線断面図。IV-IV sectional view taken on the line of FIG. 光学素子支持部材の背面図。The rear view of an optical element support member. 押付部材の正面図。The front view of a pressing member. 図6のVII−VII線断面図。VII-VII sectional view taken on the line of FIG. 押付部材の背面図。The rear view of a pressing member. 測定部の組立状態を示す縦断面図。The longitudinal cross-sectional view which shows the assembly state of a measurement part. 図9のX−X線断面図。XX sectional drawing of FIG. 従来の光学計測装置における測定部の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the measurement part in the conventional optical measuring device. 図11のXII−XII線断面図。XII-XII sectional view taken on the line of FIG.

符号の説明Explanation of symbols

4 第一発光素子
5 第二発光素子
8 第一受光素子
9 第二受光素子
13 光透過窓部
38 光学素子支持部材
46 スリーブ
55 第三発光素子
56 第三受光素子
4 1st light emitting element 5 2nd light emitting element 8 1st light receiving element 9 2nd light receiving element 13 Light transmission window part 38 Optical element support member 46 Sleeve 55 3rd light emitting element 56 3rd light receiving element

Claims (3)

光透過窓部を備えた測定セルの外側に、発光素子および受光素子が配置される光学計測装置であって、
発光側および受光側の前記光透過窓部の外側に、光路部分に筒状のスリーブが形成された光学素子支持部材をそれぞれ装着し、
前記発光素子および前記受光素子をそれぞれ前記スリーブ内へ装着したことを特徴とする光学計測装置。
An optical measuring device in which a light emitting element and a light receiving element are arranged outside a measurement cell having a light transmission window,
An optical element support member in which a cylindrical sleeve is formed in the optical path portion is attached to the outside of the light transmission window on the light emitting side and the light receiving side, respectively.
An optical measuring device, wherein the light emitting element and the light receiving element are mounted in the sleeve.
前記発光素子と前記受光素子の各軸芯が、前記測定セルの軸芯と直交する同一平面上に位置するように前記光学素子支持部材を装着したことを特徴とする請求項1に記載の光学測定装置。   2. The optical device according to claim 1, wherein the optical element support member is mounted so that each axis of the light emitting element and the light receiving element is positioned on the same plane perpendicular to the axis of the measurement cell. measuring device. 前記光学素子支持部材が弾性材料で形成されていることを特徴とする請求項1または2に記載の光学計測装置。   The optical measuring device according to claim 1, wherein the optical element support member is made of an elastic material.
JP2005094951A 2005-03-29 2005-03-29 Optical measuring device Active JP4622623B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005094951A JP4622623B2 (en) 2005-03-29 2005-03-29 Optical measuring device
TW095110022A TW200639392A (en) 2005-03-29 2006-03-23 Optical measuring device
PCT/JP2006/306403 WO2006104180A1 (en) 2005-03-29 2006-03-29 Optical measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094951A JP4622623B2 (en) 2005-03-29 2005-03-29 Optical measuring device

Publications (2)

Publication Number Publication Date
JP2006275753A true JP2006275753A (en) 2006-10-12
JP4622623B2 JP4622623B2 (en) 2011-02-02

Family

ID=37053434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094951A Active JP4622623B2 (en) 2005-03-29 2005-03-29 Optical measuring device

Country Status (3)

Country Link
JP (1) JP4622623B2 (en)
TW (1) TW200639392A (en)
WO (1) WO2006104180A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151605A (en) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd Method and device for measuring dissolved material concentration, and method and device for detecting color tone
JP2014081280A (en) * 2012-10-16 2014-05-08 Horiba Advanced Techno Co Ltd Colorimeter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617692B1 (en) 2018-08-31 2022-09-28 Vaisala Oyj System for protecting an optical system
TWI805150B (en) * 2021-12-24 2023-06-11 財團法人工業技術研究院 Water quality monitoring device and monitoring method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576405U (en) * 1992-03-24 1993-10-19 株式会社島津製作所 Optical biometric device
JPH09243553A (en) * 1996-03-08 1997-09-19 Suido Kiko Kaisha Ltd Optical house
JPH11118715A (en) * 1997-10-20 1999-04-30 Suido Kiko Kaisha Ltd Water quality meter and water quality measuring method
JPH11337489A (en) * 1998-05-22 1999-12-10 Miura Co Ltd Method for measuring concentration of liquid
JP2000283974A (en) * 1999-03-31 2000-10-13 Miura Co Ltd Method and device for measuring liquid concentration
JP2005010099A (en) * 2003-06-20 2005-01-13 Shimadzu Corp Spectrophotometer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658323B2 (en) * 1990-04-28 1994-08-03 株式会社鶴見精機 COD measuring device for water
JP2532988B2 (en) * 1990-09-29 1996-09-11 三洋電機株式会社 Dry cleaner turbidity detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576405U (en) * 1992-03-24 1993-10-19 株式会社島津製作所 Optical biometric device
JPH09243553A (en) * 1996-03-08 1997-09-19 Suido Kiko Kaisha Ltd Optical house
JPH11118715A (en) * 1997-10-20 1999-04-30 Suido Kiko Kaisha Ltd Water quality meter and water quality measuring method
JPH11337489A (en) * 1998-05-22 1999-12-10 Miura Co Ltd Method for measuring concentration of liquid
JP2000283974A (en) * 1999-03-31 2000-10-13 Miura Co Ltd Method and device for measuring liquid concentration
JP2005010099A (en) * 2003-06-20 2005-01-13 Shimadzu Corp Spectrophotometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151605A (en) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd Method and device for measuring dissolved material concentration, and method and device for detecting color tone
JP2014081280A (en) * 2012-10-16 2014-05-08 Horiba Advanced Techno Co Ltd Colorimeter

Also Published As

Publication number Publication date
WO2006104180A1 (en) 2006-10-05
JP4622623B2 (en) 2011-02-02
TW200639392A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
US10234473B2 (en) Analytical device for automated determining of a measured variable of a liquid sample
US10801965B2 (en) Gas measurement system
TWI649552B (en) Dissolved oxygen sensor
CN107807093B (en) Fluid sensor device
JP4622623B2 (en) Optical measuring device
EP3293511B1 (en) Fluid sensor card
CN103210298A (en) Miniature UV sensor utilizing a disposable flow cell
JP6716463B2 (en) Systems and methods for end-of-life detection and signal generation of dissolved oxygen sensor components
WO2014012977A1 (en) Gas measurement system
US20200103345A1 (en) Methods and devices employing thermoplastics from thepolyaryletherketone (paek) family of semi-crystalline thermoplastics for calibration and/or monitoring of optical measurement devices
US20170102317A1 (en) Device for monitoring a light source of an optical sensor
US20110149286A1 (en) Liquid core waveguide assembly and detecting system including the same
JP2007155494A (en) Twin flow cell and concentration measuring system using it
WO2023004423A1 (en) Fluorescence and scatter and absorption spectroscopic apparatus with a sapphire tube and method for analyzing inline low level hydrocarbon in a flow medium
WO2004095009A1 (en) Optical inspection device
US8077316B2 (en) Chlorine dioxide sensor
KR101493645B1 (en) Optical dissolved oxygen sensor for safeguarding sensor membrane
US20210199580A1 (en) Turbidity sensor
KR20160094116A (en) Contamination monitoring apparatus for a gas line
US20180011005A1 (en) Apparatus for inline trace analysis of a liquid
US20230175972A1 (en) Systems and methods for device-independent color measurements for colorimetric sensing
TWM573832U (en) Water quality management system
WO2019229830A1 (en) Water quality meter and water quality management system
CN107108275B (en) Method for determining UV transmittance of water
JP2007057317A (en) Automatic analyzer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4622623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250