JPH0658323B2 - COD measuring device for water - Google Patents

COD measuring device for water

Info

Publication number
JPH0658323B2
JPH0658323B2 JP2112842A JP11284290A JPH0658323B2 JP H0658323 B2 JPH0658323 B2 JP H0658323B2 JP 2112842 A JP2112842 A JP 2112842A JP 11284290 A JP11284290 A JP 11284290A JP H0658323 B2 JPH0658323 B2 JP H0658323B2
Authority
JP
Japan
Prior art keywords
light
ultraviolet
water
attenuation value
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2112842A
Other languages
Japanese (ja)
Other versions
JPH0412250A (en
Inventor
和博 渡辺
博親 鈴木
高保 大池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Seiki Co Ltd
Original Assignee
Tsurumi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Seiki Co Ltd filed Critical Tsurumi Seiki Co Ltd
Priority to JP2112842A priority Critical patent/JPH0658323B2/en
Publication of JPH0412250A publication Critical patent/JPH0412250A/en
Publication of JPH0658323B2 publication Critical patent/JPH0658323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水の有機性汚濁の状態を測定する装置に関す
るものであり、詳しくは水のCOD測定装置に関してい
る。
TECHNICAL FIELD The present invention relates to a device for measuring the state of organic pollution of water, and more particularly to a COD measuring device for water.

(従来の技術) ダム湖などが有機物によって汚染されるに伴って、水質
を常時観測する必要性が管理者から強まってきており、
同時に水質の総量規制も行なわれるようになっている。
(Prior art) As the dam lake is polluted with organic substances, the need for continuous monitoring of water quality is increasing from managers.
At the same time, the total amount of water quality is being regulated.

総量規制では、COD(化学的酸素要求量)を一つの汚
濁指標として指定し、その指定計測法として「JIS
K0102工業排水試験方法」の13頁「100℃にお
ける過マンガン酸カリウムによる酸素消費量(CO
D)」を採用している。
In the total amount regulation, COD (Chemical Oxygen Demand) is designated as one pollution index, and the designated measurement method is "JIS.
K0102 Industrial wastewater test method ", page 13," Oxygen consumption by potassium permanganate at 100 ° C (CO
D) ”is adopted.

CODは試水中の被酸化物が過マンガン酸カリウムのよ
うな酸化剤で酸化される際に消費する酸素量(mg/ま
たはppm)であり、薬品を用いて化学的に有機物を酸化
する。そして既でに多くのデータが蓄積されている。
COD is the amount of oxygen (mg / or ppm) consumed when an oxide in test water is oxidized by an oxidizing agent such as potassium permanganate, and chemically oxidizes organic substances using chemicals. And much data has already been accumulated.

しかしながら、化学的に処理して計算する方法では、例
えばダム湖などで連続的に測定することが困難である。
そこで他の方法が研究され、ある種の有機物は紫外線を
よく吸収するので、その有機物の定性定量に紫外線吸光
度が用いられるようになった。多くのデータからこの紫
外線吸光度がCODの指標となることが裏ずけられてい
る。
However, it is difficult to measure continuously in, for example, a dam lake by the method of chemically processing and calculating.
Therefore, other methods have been studied, and since some organic substances absorb ultraviolet light well, ultraviolet absorption has come to be used for the qualitative quantification of the organic substances. Many data confirm that this UV absorbance serves as an index of COD.

紫外線吸光度が水質汚濁の指標として有効とされてはい
るが、従来、ダム湖や湖沼などの現場に浸漬する方法で
設置したまま長期間無保守で連続的に測定する装置は存
在しなかった。
Although the ultraviolet absorbance is considered to be effective as an indicator of water pollution, conventionally, there has not been a device that continuously measures without maintenance for a long period of time while being installed by a method of immersing it in a site such as a dam lake or lake.

(発明が解決しようとする課題) 本発明は、ダム湖などにおいて水面から100 m程度の深
度迄を長期間無保守で自動的かつ連続的にCODを測定
することができる装置を提供することである。
(Problems to be Solved by the Invention) The present invention provides an apparatus capable of automatically and continuously measuring COD up to a depth of about 100 m from a water surface in a dam lake or the like for a long period without maintenance. is there.

(課題を解決するための手段) 本発明は、透明な筒体内に筒体内を往復移動するワイパ
ーで測定する水を吸引導入すると共に筒体内面を洗浄
し、筒体内を透過させる紫外線発光体からの紫外線の減
衰値と、筒体内を通過させる可視光の減衰値とをそれぞ
れ計測し、紫外線の減衰値から可視光の減衰値を差し引
くことによって紫外線吸光度を求めて水中のCODを測
定することを特徴としている。
(Means for Solving the Problems) The present invention is directed to an ultraviolet light emitting body that sucks and introduces water to be measured by a wiper that reciprocates in the cylinder into a transparent cylinder, cleans the surface of the cylinder, and transmits the light through the cylinder. Measurement of the attenuation value of ultraviolet light and the attenuation value of visible light that passes through the cylinder, and subtracting the attenuation value of visible light from the attenuation value of ultraviolet light determines the ultraviolet absorbance to measure COD in water. It has a feature.

(作用) 無機物の紫外線吸光度は硝酸イオン、亜硫酸イオン、臭
素イオンについて220nmの波長では無視できないが、2
50nm以上の波長ではほとんどみられない。したがっ
て、250nm以上の波長での吸収はほとんど有機物に基
ずく。すなわち、CODと波長250nmの吸光度はよい
相関をもっている。本発明で使用する紫外線発光体は25
0nm以上の波長の光を放出するものであり、市販され
ている低圧水銀灯がこれを満たす。また、通常の発光体
を用いフィルターで紫外線のみを通すようにしてもよ
い。
(Function) The UV absorbance of inorganic substances cannot be ignored for nitrate ions, sulfite ions, and bromine ions at a wavelength of 220 nm.
Almost not seen at wavelengths above 50 nm. Therefore, absorption at wavelengths of 250 nm and above is mostly based on organic substances. That is, the COD and the absorbance at a wavelength of 250 nm have a good correlation. The UV emitters used in the present invention are 25
It emits light having a wavelength of 0 nm or more, and a commercially available low-pressure mercury lamp satisfies this. Alternatively, a normal light emitting body may be used and only the ultraviolet rays may be passed through the filter.

本発明装置は、例えばダム湖などの中にケーブルによっ
て吊り下げられて設置される。筒体は筒体内に吸引導入
する水を排出する箇所以外は水が入らないように密閉さ
れたケースに収納されている。
The device of the present invention is installed by being suspended by a cable in, for example, a dam lake. The cylindrical body is housed in a case that is sealed so that water does not enter except for a portion where the water sucked and introduced into the cylindrical body is discharged.

測定は、透明な筒体内にワイパーで水を吸引して検査す
べき水を筒体内に導入する。紫外線発光体からの紫外線
は筒体内に導入された試料水の汚濁物によって吸収され
るとともに浮遊物によって散乱させられて減衰する。こ
れを元の明るさと比較して減衰分を検出する。この減衰
分には上記のように浮遊物による散乱も含まれている。
本発明は有機物に吸収されない可視光によって浮遊物に
よる散乱で生じる減衰をも測定し、演算器によってそれ
を差し引いている。これにより本発明は紫外線吸光度の
測定、すなわち水のCODを測定することができる。
For the measurement, water is sucked into the transparent cylinder with a wiper and the water to be inspected is introduced into the cylinder. The ultraviolet light from the ultraviolet light emitter is absorbed by the contaminants of the sample water introduced into the cylinder and scattered by the floating substances to be attenuated. The attenuation is detected by comparing this with the original brightness. This attenuation also includes scattering by suspended matter as described above.
The present invention also measures the attenuation caused by scattering by a floating substance due to visible light that is not absorbed by an organic substance, and subtracts it by a calculator. This allows the present invention to measure UV absorbance, that is, the COD of water.

この測定をワイパーで筒体内に試水を吸引導入するごと
に連続的に行なう。長期間水中に設置された場合、筒体
内面に汚れが付着し測定値に悪影響を及ぼすが、本発明
においてはワイパーが筒体内面に接触して移動するの
で、試水を吸引するたびに筒体内面が拭かれ筒体内面を
常に清浄に保つことができ正確な測定が可能となる。筒
体の外面は密閉されたケース内に収納されているので汚
れるおそれはない。
This measurement is continuously performed every time the sample water is sucked into the cylinder with the wiper. When placed in water for a long period of time, dirt adheres to the inner surface of the cylinder and adversely affects the measured value.However, in the present invention, the wiper moves in contact with the inner surface of the cylinder. The inner surface of the cylinder is wiped so that the inner surface of the cylinder can be kept clean and accurate measurement can be performed. Since the outer surface of the cylinder is housed in a closed case, there is no risk of getting dirty.

又、一日に一回程度の測定となる間欠測定時においては
水中に設置されたままワイパーが長時間停止するが、日
光や酸素などの供給が自由に行われると微生物が付着、
繁殖するおそれがあるが、本発明では筒体内は遮光され
ており、酸素の補給もされ難いのでワイパーの作動が間
欠的であっても筒体内を清浄に保つことができる。
In addition, the wiper stops for a long time while being installed in water during intermittent measurement, which is about once a day, but microorganisms adhere when sunlight and oxygen are freely supplied.
Although there is a possibility of breeding, in the present invention, the inside of the cylinder is shielded from light and it is difficult to supply oxygen, so that the cylinder can be kept clean even if the wiper is intermittently operated.

この他、筒体開口部に設けた蓋体は微生物が嫌う銅製で
あるから、ワイパー停止中に水の注入口から筒体内に微
生物が侵入するのを防止でき、従って筒体内を清浄に保
持する。
In addition, since the lid provided at the opening of the cylinder is made of copper, which microorganisms dislike, it is possible to prevent the microorganisms from entering the cylinder through the water inlet while the wiper is stopped, thus keeping the cylinder clean. .

(実施例) 第1図は本発明の構成図、第2図は試水を収容する筒体
の微細であり、Aは吸入状態、Bは吐出状態を示す各断
面図、第3図は計測回路の電気的な構成を示すブロック
図である。
(Embodiment) FIG. 1 is a configuration diagram of the present invention, FIG. 2 is a minute cylinder for accommodating sample water, A is a sectional view showing a suction state, B is a discharge state, and FIG. It is a block diagram which shows the electric constitution of a circuit.

これらの図において、ケース1は耐圧構造を有し密閉さ
れた筒状容器で、第一のケース2と第二のケース3とに
よって形成されている。前記第一のケース2内に透明な
筒体4をその解放端を第一のケース2の底から解放させ
て設置している。前記筒体4は試水を収容してCODを
測定する容器であって、内部に筒体内面に接触しながら
昇降運動するワイパー5が設けられている。又、前記ワ
イパー5には駆動軸6が取り付けられ、これが前記筒体
4の基端部から摺動自在に突出している。前記第一のケ
ース2の上部に設けられた第二のケース3内に設置した
モータ7にカップリング8を介してねじ軸9が取り付け
られている。さらに又、前記ねじ軸9に摺動体10が螺合
され、この摺動体10に前記駆動軸6が取り付けられてい
る。すなわち、モータ7の回転でねじ軸9を回転させ、
摺動体10を軸に沿って移動させてワイパー5を筒体4内
で昇降運動させるものである。
In these drawings, a case 1 is a sealed cylindrical container having a pressure resistant structure, and is formed by a first case 2 and a second case 3. A transparent cylindrical body 4 is installed in the first case 2 with its open end released from the bottom of the first case 2. The tubular body 4 is a container for containing a sample water and measuring COD, and a wiper 5 which moves up and down while contacting the inner surface of the tubular body is provided therein. A drive shaft 6 is attached to the wiper 5, and the drive shaft 6 is slidably projected from the base end of the cylindrical body 4. A screw shaft 9 is attached to a motor 7 installed in a second case 3 provided above the first case 2 via a coupling 8. Furthermore, a slide body 10 is screwed onto the screw shaft 9, and the drive shaft 6 is attached to the slide body 10. That is, the screw shaft 9 is rotated by the rotation of the motor 7,
The wiper 5 is moved up and down in the cylindrical body 4 by moving the sliding body 10 along the axis.

第2図において、筒体4は基部口金40と先端口金41との
間にガラスなどで構成される透明筒体42が設けられてお
り、前記ワイパー5は透明筒体42内を昇降すると共に、
駆動軸6が基部口金40から突出している。前記先端口金
41には銅製の蓋体43が設けられると共に、この蓋体43の
内側周縁に凹条溝44が形成され、さらにこの凹条溝44に
向って開口する複数の注入口45が設けられている。な
お、前記凹条溝44を形成する内側の壁体は前記先端口金
41との間に隙間を設けて取り付けられており、このた
め、注入口45から透明筒体42内に水は進入するが光は遮
断される構造となっており、又、蓋体43が銅製なので生
物が付着しにくい構造となっている。
In FIG. 2, the tubular body 4 is provided with a transparent tubular body 42 made of glass or the like between the base die 40 and the tip die 41, and the wiper 5 moves up and down in the transparent tubular body 42.
The drive shaft 6 projects from the base cap 40. The tip base
41 is provided with a lid 43 made of copper, a groove 44 is formed on the inner peripheral edge of the lid 43, and a plurality of injection ports 45 opening toward the groove 44 are provided. . The inner wall forming the groove 44 is the tip cap.
It is attached with a gap between it and 41, so that it has a structure in which water enters the transparent cylinder 42 from the inlet 45 but blocks light, and the lid 43 is made of copper. Therefore, it has a structure that makes it difficult for organisms to attach.

この他、前記排水管11は基部口金40に接続されている。In addition, the drain pipe 11 is connected to the base cap 40.

一方、前記ワイパー5は、前記透明筒体42よりも小径な
円柱状の栓体50に内部にテーパ面51を有する空洞部52が
形成されると共に、前記テーパ面51に至る軸孔53が形成
されている。前記駆動軸6の先端は前記栓体50の軸孔53
内を経て空洞部52内に収容され、空洞部52内においてテ
ーパ栓60が設けられている。又、駆動軸6に前記栓体50
の基端面に接合させるフランジ61が設けられており、こ
のフランジ61とテーパ栓60との間のロッド62の直径は前
記軸孔53の直径よりも小径であり、従って軸孔53とロッ
ド62との間に隙間が形成されている。さらに又、栓体50
には軸孔53に向って開口する通孔54が設けられている。
On the other hand, in the wiper 5, a hollow portion 52 having a tapered surface 51 inside is formed in a cylindrical plug body 50 having a diameter smaller than that of the transparent cylindrical body 42, and a shaft hole 53 reaching the tapered surface 51 is formed. Has been done. The tip of the drive shaft 6 has a shaft hole 53 of the plug 50.
It is accommodated in the cavity portion 52 via the inside, and a taper plug 60 is provided in the cavity portion 52. Also, the drive shaft 6 has the plug 50.
A flange 61 to be joined to the base end surface of the rod 61 is provided, and the diameter of the rod 62 between the flange 61 and the taper plug 60 is smaller than the diameter of the shaft hole 53, and thus the shaft hole 53 and the rod 62 are A gap is formed between them. Furthermore, stopper 50
A through hole 54 that opens toward the shaft hole 53 is provided in the.

なお、前記駆動軸6をワイパー5に向って移動させると
フランジ61が栓体50の基端面に接合し、このときテーパ
栓60は空洞部52内に進入してテーパ面51との間に隙間が
形成される。駆動軸6を逆方向に移動させればテーパ栓
60はテーパ面51にシールされる。
When the drive shaft 6 is moved toward the wiper 5, the flange 61 is joined to the base end surface of the plug body 50, and at this time, the taper plug 60 enters the cavity 52 and leaves a gap between it and the taper surface 51. Is formed. Taper plug if drive shaft 6 is moved in the opposite direction
60 is sealed to the tapered surface 51.

前記栓体50の先端には透明筒体42の内周面と接合させた
椀状のワイパ輪55がボルトねじ5bで固定されており、
さらにこのボルトねじ56に前記空洞部52と連通する誘導
孔57が設けられている。
A bowl-shaped wiper wheel 55 joined to the inner peripheral surface of the transparent cylinder 42 is fixed to the tip of the plug body 50 with a bolt screw 5b.
Further, the bolt screw 56 is provided with a guide hole 57 communicating with the hollow portion 52.

なお、前記第一のケース2には筒体4の水をケース1か
ら排出するための排水管11が、又、第二のケース3には
ケース1を吊るためのケーブル12が設けられている。
The first case 2 is provided with a drain pipe 11 for discharging the water in the tubular body 4 from the case 1, and the second case 3 is provided with a cable 12 for suspending the case 1. .

第3図を参照して、前記筒体4を挟んで紫外線発光体と
しての低圧水銀灯20と紫外線検出器としての第一光電管
21とが配設されている。図に示すよう低圧水銀灯20から
第一光電管21への光路中にはレンズ22、モータ23で回転
駆動され光を連続して交互に通過、遮断する回転スリッ
ト24、さらにフィルター25、レンズ26が配置されてい
る。前記フィルター25は紫外線以外の光をカットするた
めのものである。また前記低圧水銀灯20の紫外線はさら
に第二光電管27で受光され、減衰を比較するための参照
光とされる。
With reference to FIG. 3, a low-pressure mercury lamp 20 as an ultraviolet light emitter and a first photoelectric tube as an ultraviolet light detector sandwiching the cylindrical body 4 therebetween.
21 and 21 are provided. As shown in the figure, in the optical path from the low-pressure mercury lamp 20 to the first photoelectric tube 21, a lens 22, a rotary slit 24 which is rotationally driven by a motor 23 to alternately alternately pass and block light, a filter 25, and a lens 26 are arranged. Has been done. The filter 25 is for cutting light other than ultraviolet rays. Further, the ultraviolet light of the low-pressure mercury lamp 20 is further received by the second photoelectric tube 27 and is used as reference light for comparing attenuation.

また、前記筒体4を挟んでLED28と可視光検出器とし
ての第一受光素子29とが配置されている。この光路中に
はレンズ30、ハーフミラー31および赤色フィルター32が
配置されており、前記ハーフミラー31で反射させられた
光を受光する第二受光素子33が別途用意されている。こ
れは可視光の減衰を演算するための参照光である。
Further, an LED 28 and a first light receiving element 29 as a visible light detector are arranged with the cylindrical body 4 sandwiched therebetween. A lens 30, a half mirror 31, and a red filter 32 are arranged in this optical path, and a second light receiving element 33 for receiving the light reflected by the half mirror 31 is separately prepared. This is a reference light for calculating the attenuation of visible light.

前記第一光電管21からの減衰された出力は増幅器34aで
増幅されバンドパスフィルタ35aを介して整流回路36a
に入力させられる。同様に参照光も増幅器34bで増幅さ
れてバンドパスフィルタ35bを介して整流回路36bに入
力させられる。この整流回路36a,36bの出力は共に除
算器37に入力されて減衰光と参照光との比が出力され
る。又、除算器37の出力は対数増幅器38に入力され、紫
外線減衰度Auvを出力する。
The attenuated output from the first phototube 21 is amplified by the amplifier 34a and passed through the bandpass filter 35a to the rectifier circuit 36a.
To be entered. Similarly, the reference light is also amplified by the amplifier 34b and input to the rectifier circuit 36b via the bandpass filter 35b. The outputs of the rectifier circuits 36a and 36b are both input to the divider 37, and the ratio between the attenuated light and the reference light is output. Further, the output of the divider 37 is input to the logarithmic amplifier 38 and outputs the ultraviolet ray attenuation degree A uv .

前記回転スリット24でチョッパーしてバンドパスフィル
タ35aで通過帯域を制限しているが、これは外来光ノイ
ズを除去するためである。
The pass band is limited by the band pass filter 35a by choppering with the rotary slit 24, which is for removing external light noise.

一方、LED28の可視光も同様に増幅器39a,39bで増
幅され、バンドパスフィルタ40a,40b、整数回路41
a,41b、除算器42a,42bを経て対数増幅器43に入力
され可視光減衰度Avis を出力する。
On the other hand, the visible light of the LED 28 is similarly amplified by the amplifiers 39a and 39b, and the bandpass filters 40a and 40b and the integer circuit 41 are used.
a, 41b and dividers 42a, 42b are input to the logarithmic amplifier 43 to output the visible light attenuation A vis .

実施例はそれぞれを出力させるとともに、演算器44でそ
の差Auv−Avis を出力させる。このAuv−Avis が浮
遊物による減衰を除去した有機物によって吸光された紫
外線吸光度である。この値からCODに換算する。
In the embodiment, each of them is output, and the difference A uv -A vis is output by the calculator 44. This A uv -A vis is the ultraviolet absorbance absorbed by the organic substance from which the attenuation due to the suspended matter is removed. This value is converted to COD.

実施例はダム湖などの湖沼の中に配置され、自動的に連
続運転して水質の変化をリアルタイムに監視するもので
ある。
The embodiment is arranged in a lake or marshes such as a dam lake and automatically operates continuously to monitor changes in water quality in real time.

したがって、本装置は水中にケーブル12で吊り下げて配
置される。モータ7でワイパー5を上昇することによっ
て水を筒体4に導入して前記した計測を行ないCODを
測定する。このワイパー5の上昇ごとに計測して連続し
て計測を行なう。透明な筒体4内には有機物や浮遊物が
付着するがワイパー5の往復移動はそれを除去するので
常に清浄な状態で計測することができる。
Therefore, this device is suspended in water and arranged by the cable 12. Water is introduced into the cylindrical body 4 by raising the wiper 5 by the motor 7, and the above-mentioned measurement is performed to measure the COD. Each time the wiper 5 is lifted, the measurement is continuously performed. Organic substances and floating substances adhere to the inside of the transparent cylinder 4, but the reciprocating movement of the wiper 5 removes them, so that the wiper 5 can always be measured in a clean state.

(発明の効果) 本発明は、透明な筒体を水中に設置したままその中に試
料水を導入して、紫外線の減衰値と可視光の減衰値とか
ら紫外線の吸光度を計測することができるので、長期間
無保守で自動的かつ連続的にダム湖、湖沼等のCODを
観測すことができる。
(Effects of the Invention) According to the present invention, the absorbance of ultraviolet rays can be measured from the attenuation value of ultraviolet rays and the attenuation value of visible light by introducing sample water into the transparent cylindrical body while placing it in water. Therefore, COD of dam lakes, lakes and marshes can be automatically and continuously observed without maintenance for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例装置の断面図、 第2図は検出部の詳細を表わし、Aは筒体内に水を吸入
する状態、Bは筒体内の水を排出する状態を表わす各断
面図、 第3図は計測回路の電気的な構成を示すブロック図であ
る。 1……ケース、2……第一のケース 3……第二のケース、4……筒体 5……ワイパー、6……駆動軸 7……モータ、8……カップリング 9……ねじ軸、10……摺動体 20……低圧水銀灯、21……第一光電管 24……回転スリット、27……第二光電管 28……LED、29……第一受光素子 33……第二受光素子
FIG. 1 is a cross-sectional view of an apparatus according to an embodiment of the present invention, FIG. 2 shows the details of a detection unit, A is a state in which water is sucked into the cylinder, and B is each cross-section showing a state in which water is discharged from the cylinder. 3 and 4 are block diagrams showing the electrical configuration of the measuring circuit. 1 …… Case 2 …… First case 3 …… Second case 4 …… Cylinder 5 …… Wipeer, 6 …… Drive shaft 7 …… Motor, 8 …… Coupling 9 …… Screw shaft , 10 ...... Sliding body 20 ...... Low pressure mercury lamp, 21 ...... First photoelectric tube 24 ...... Rotating slit, 27 ...... Second photoelectric tube 28 ...... LED, 29 ...... First light receiving element 33 ...... Second light receiving element

フロントページの続き (72)発明者 大池 高保 神奈川県横浜市鶴見区鶴見中央2丁目2番 20号 株式会社鶴見精機内 (56)参考文献 特開 昭56−106143(JP,A) 特開 昭55−159140(JP,A) 特開 昭60−128333(JP,A) 特開 昭61−290345(JP,A)Front page continuation (72) Inventor Takaho Oike 2-22 Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Tsurumi Seiki Co., Ltd. (56) References JP-A-56-106143 (JP, A) JP-A-55 -159140 (JP, A) JP-A-60-128333 (JP, A) JP-A-61-290345 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試水を収容してCODを測定する容器であ
って一端が外部と連通しており内部に水を吸引導入する
透明な筒体と、該筒体を挟んで紫外線を発光する紫外線
発光体と、該紫外線発光体からの光を一定周波数で変調
する変調機構と、前記筒体を通過した紫外光を受光して
電気信号に変換する紫外線検出器と、該紫外線検出器で
受光した光と前記紫外線発光体の明るさとを比較して紫
外線減衰値を求める紫外線減衰値検出手段と、前記筒体
を挟んで一定周波数で変調される可視光発光体と当該筒
体を通過した可視光を受光する可視光検出器と、該可視
光検出器で受光した光と前記可視光発光体の明るさとを
比較して可視光減衰値を求める可視光減衰値検出手段
と、前記紫外線減衰値検出手段によって得られた紫外線
減衰値から前記可視光減衰値検出手段によって得られた
可視光減衰値を吸光度に変換後差し引く演算器とを具備
し、上記筒体並びに紫外線及び可視光の発光体及び検出
器がケース内に収容され該ケースをケーブルによって吊
り下げてダム湖などに設置する測定装置において、前記
筒体は、一端が筒体外部と連通しているが筒体内部に外
光が入らないように遮光されていると共に、筒体内周面
に接触しながら往復運動し往復運動によって試水を当該
筒体内部に吸引導入し同時に筒体内周面を洗浄するワイ
パーが設けられていることを特徴とする水のCOD測定
装置。
1. A container for accommodating sample water and measuring COD, which has one end communicating with the outside and a transparent cylinder into which water is sucked and introduced, and emits ultraviolet rays with the cylinder interposed therebetween. An ultraviolet light emitter, a modulation mechanism that modulates the light from the ultraviolet light emitter at a constant frequency, an ultraviolet light detector that receives the ultraviolet light that has passed through the tubular body and converts it into an electrical signal, and the light received by the ultraviolet light detector. UV attenuation value detecting means for obtaining an ultraviolet attenuation value by comparing the light and the brightness of the ultraviolet light emitter, a visible light emitter modulated at a constant frequency with the tubular body sandwiched, and a visible light passing through the tubular body. A visible light detector that receives light, a visible light attenuation value detection unit that obtains a visible light attenuation value by comparing the light received by the visible light detector and the brightness of the visible light emitter, and the ultraviolet attenuation value. From the UV attenuation value obtained by the detection means, the visible And a calculator for subtracting the visible light attenuation value obtained by the attenuation value detecting means after converting it to absorbance, and the cylindrical body and the ultraviolet and visible light emitters and detectors are housed in a case and the case is connected by a cable. In a measuring device to be hung and installed in a dam lake or the like, the cylindrical body has one end communicating with the outside of the cylindrical body but is shielded so that external light does not enter the inside of the cylindrical body, and the peripheral surface of the cylindrical body. A COD measuring device for water, comprising: a wiper for reciprocating while contacting with, and sucking and introducing the sample water into the inside of the cylinder by the reciprocating motion, and at the same time cleaning the peripheral surface of the cylinder.
【請求項2】前記筒体の水の注入口が銅製など微生物の
付着が少ない材質で形成されていることを特徴とする請
求項第1項に記載の水のCOD測定装置。
2. The water COD measuring device according to claim 1, wherein the water inlet of the cylindrical body is formed of a material such as copper which is less susceptible to microorganisms.
JP2112842A 1990-04-28 1990-04-28 COD measuring device for water Expired - Fee Related JPH0658323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112842A JPH0658323B2 (en) 1990-04-28 1990-04-28 COD measuring device for water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112842A JPH0658323B2 (en) 1990-04-28 1990-04-28 COD measuring device for water

Publications (2)

Publication Number Publication Date
JPH0412250A JPH0412250A (en) 1992-01-16
JPH0658323B2 true JPH0658323B2 (en) 1994-08-03

Family

ID=14596898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112842A Expired - Fee Related JPH0658323B2 (en) 1990-04-28 1990-04-28 COD measuring device for water

Country Status (1)

Country Link
JP (1) JPH0658323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171395A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Detector for substance dissolved in water and method for measuring substance dissolve in water
CN100408998C (en) * 2003-08-07 2008-08-06 多元水环保技术产业(中国)有限公司 COD on-line detecting method and instrument

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622623B2 (en) * 2005-03-29 2011-02-02 三浦工業株式会社 Optical measuring device
WO2009157057A1 (en) * 2008-06-24 2009-12-30 株式会社島津製作所 Ultraviolet absorbance measuring instrument
CN102323234A (en) * 2011-08-09 2012-01-18 上海广照光电科技有限公司 Self-adaption type on-line chemical oxygen demand (COD) monitoring method and instrument
WO2018072201A1 (en) * 2016-10-21 2018-04-26 Honeywell International Inc. Compact ultraviolet light adsorption sensing system
CN107335641B (en) * 2017-03-29 2024-01-16 宁波方太厨具有限公司 Cleaning machine
JP6851343B2 (en) * 2018-04-12 2021-03-31 Jfeアドバンテック株式会社 Method for calculating the absorbance of the contents in the sample water and the absorbance calculation device
CN116297280B (en) * 2023-05-22 2023-08-01 成都博瑞科传科技有限公司 UCOD coefficient detection method and sensor for organic matters in water based on array spectrum

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923379B2 (en) * 1979-05-30 1984-06-01 株式会社東芝 Sludge capacity indicator measuring device
JPS56106143A (en) * 1980-01-26 1981-08-24 Denki Kagaku Keiki Co Ltd Absorbance measuring apparatus
JPS60128333A (en) * 1983-12-16 1985-07-09 Hitachi Ltd Water quality densitometer
JPS61290345A (en) * 1985-06-17 1986-12-20 Ishikawajima Harima Heavy Ind Co Ltd Detector for oil or the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171395A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Detector for substance dissolved in water and method for measuring substance dissolve in water
CN100408998C (en) * 2003-08-07 2008-08-06 多元水环保技术产业(中国)有限公司 COD on-line detecting method and instrument

Also Published As

Publication number Publication date
JPH0412250A (en) 1992-01-16

Similar Documents

Publication Publication Date Title
US7330262B2 (en) Methods and apparatus for determining the content materials of a liquid employing a piston movable within a measuring chamber
US3713743A (en) Forward scatter optical turbidimeter apparatus
AU660305B2 (en) Organic pollutant monitor
JP3230751B2 (en) Turbidity measurement
US4775794A (en) Process and apparatus for measurement of light-absorbable components dissolved in liquids
US6028663A (en) Photometric analysis of water suspensions
WO2010059176A1 (en) Nephelometric turbidity sensor device
US4622465A (en) Arrangement for determining the presence of specific substances in a liquid
JPH0658323B2 (en) COD measuring device for water
US4637719A (en) Optical measurement of marine conditions
US5630987A (en) Method and apparatus for the measurement of pollutants in liquids
WO2023004423A1 (en) Fluorescence and scatter and absorption spectroscopic apparatus with a sapphire tube and method for analyzing inline low level hydrocarbon in a flow medium
GB1161916A (en) Monitoring of a Contaminant in a Liquid
JPS6125304B2 (en)
JP2001033388A (en) Method and device for measuring concentration of chlorophyll a
US3628873A (en) Method of continuously determining the degree of pollution of translucent liquids and apparatus therefor
CN110887814A (en) Underwater turbidity detection method based on spectral analysis
US4647210A (en) Chlorine analysis using fiber optics
GB2256043A (en) Organic pollutant monitor
CN111742078B (en) Non-fluorescent darkened optical assembly
JPS59109844A (en) Measuring device for reflected light
CN209961685U (en) Water quality spectrum analyzer
CN113310893A (en) Spectroscopy-based variable optical path multi-parameter water quality monitoring device and method
RU52185U1 (en) OIL CONCENTRATION DETECTOR IN WATER
RU2308707C2 (en) Detector for detecting oil concentration in water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees