JP2006275702A - Diaphragm type pressure sensor - Google Patents

Diaphragm type pressure sensor Download PDF

Info

Publication number
JP2006275702A
JP2006275702A JP2005093956A JP2005093956A JP2006275702A JP 2006275702 A JP2006275702 A JP 2006275702A JP 2005093956 A JP2005093956 A JP 2005093956A JP 2005093956 A JP2005093956 A JP 2005093956A JP 2006275702 A JP2006275702 A JP 2006275702A
Authority
JP
Japan
Prior art keywords
diaphragm
insulating substrate
substrate
temperature
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005093956A
Other languages
Japanese (ja)
Inventor
Haruzo Miyashita
治三 宮下
Yasushi Kitamura
恭志 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Technix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Technix Corp filed Critical Canon Anelva Technix Corp
Priority to JP2005093956A priority Critical patent/JP2006275702A/en
Publication of JP2006275702A publication Critical patent/JP2006275702A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diaphragm type pressure sensor excellent in reproducibility of measurement value and capable of correct pressure measurement and prevented from effects of fluctuation of circumferential temperature. <P>SOLUTION: The diaphragm type pressure sensor is characteristically manufactured by bonding the first insulative substrate and the silicon substrate formed with the diaphragm, and the silicon substrate and the second insulative substrate provided with a ventilation hole, either of insulative substrate has smaller heat expansion coefficient than the coefficient of heat expansion of the silicon substrate at the bonding temperature, and the temperature expansion coefficient of the other silicon substrate is nearer to that of the silicon substrate than the former insulative substrate. The thickness of the former insulative substrate is characteristically thinner than that of the latter insulative substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は隔膜型圧力センサに係り、特に、圧力測定の安定性に優れ、しかも環境温度変化の影響を受けにくい隔膜型圧力センサに関する。   The present invention relates to a diaphragm-type pressure sensor, and more particularly to a diaphragm-type pressure sensor that is excellent in pressure measurement stability and is not easily affected by environmental temperature changes.

従来の隔膜型圧力センサとして、静電容量型圧力センサを例に挙げて説明する。静電容量型圧力センサは、例えば図4の模式的断面図に示すように、測定電極11が形成された第1のガラス基板10と、ダイヤフラム21が形成されたシリコン基板20と、通気口31が形成された第2のガラス基板30とが、接合された構造を有し、ダイヤフラム21の両側に圧力基準室1と圧力測定室2とが形成されている。圧力基準室1には、例えば非蒸発型ゲッタ3が配置され、内部を真空に保持している。   A capacitance type pressure sensor will be described as an example of a conventional diaphragm type pressure sensor. For example, as shown in the schematic cross-sectional view of FIG. 4, the capacitive pressure sensor includes a first glass substrate 10 on which a measurement electrode 11 is formed, a silicon substrate 20 on which a diaphragm 21 is formed, and a vent 31. The pressure reference chamber 1 and the pressure measurement chamber 2 are formed on both sides of the diaphragm 21. In the pressure reference chamber 1, for example, a non-evaporable getter 3 is disposed, and the inside is kept in a vacuum.

この圧力センサは、例えば金属製のアダプタ4上にO−リング5を介して取り付けられ、押さえ板6により固定される。アダプタは真空チャンバのゲージポートに接続される。真空チャンバ内の圧力は、通気口31を通してセンサの圧力測定室2に加わり、圧力測定室2と圧力基準室1との圧力差に応じて、ダイヤフラム21が撓むことになる。従って、ダイヤフラム21と測定電極11間の静電容量を端子ピン12,13で測定することにより、ダイヤフラムの撓み量、即ち真空チャンバの圧力を測定することができる。   This pressure sensor is mounted on, for example, a metal adapter 4 via an O-ring 5 and fixed by a pressing plate 6. The adapter is connected to the gauge port of the vacuum chamber. The pressure in the vacuum chamber is applied to the pressure measurement chamber 2 of the sensor through the vent 31, and the diaphragm 21 is bent according to the pressure difference between the pressure measurement chamber 2 and the pressure reference chamber 1. Accordingly, by measuring the capacitance between the diaphragm 21 and the measuring electrode 11 with the terminal pins 12 and 13, the amount of deflection of the diaphragm, that is, the pressure in the vacuum chamber can be measured.

このような圧力センサの製造には、マイクロマシン技術が用いられる。また、第1及び第2のガラス基板とシリコン基板との接合には、通常、陽極接合法が用いられ、300〜450℃に加熱した状態で、シリコン基板とガラス基板間に数100V〜1kV程度の電圧を印加することにより、接着剤を用いずに両基板を強固に接合することができる。しかし、このように高温で接合すると室温に戻したときにシリコン基板、特にダイヤフラムに大きな応力が発生し、測定値に再現性がなくなり、又はセンサ周辺の環境温度の変動により測定値が変化するため、ガラス基板としては接合温度での熱膨張量がシリコンに近い材質のガラス(例えば、パイレックス(登録商標)ガラス)が一般に用いられている。
特開2001−255225 特開平6−66658
Micromachine technology is used for manufacturing such a pressure sensor. In addition, an anodic bonding method is usually used for bonding the first and second glass substrates and the silicon substrate, and is heated to 300 to 450 ° C., and is about several hundreds V to 1 kV between the silicon substrate and the glass substrate. By applying this voltage, both substrates can be firmly bonded without using an adhesive. However, if bonding is performed at such a high temperature, a large stress is generated on the silicon substrate, particularly the diaphragm, when the temperature is returned to room temperature, and the measured values are not reproducible, or the measured values change due to fluctuations in ambient temperature around the sensor As the glass substrate, glass (for example, Pyrex (registered trademark) glass) whose material has a thermal expansion amount close to silicon at the bonding temperature is generally used.
JP 2001-255225 A JP-A-6-66658

近年、半導体デバイスや電子部品の高機能化、高密度化に伴い、製造プロセスはより一層高度な制御が必要となり、圧力センサも種々のプロセス条件において一層高い測定精度のものが要求されるようになった。しかし、図4に示した従来の静電容量型圧力センサでは、これらの高度の要求には、十分対応しきれなくなり、センサ間のばらつき、圧力測定値の再現性及び環境温度の変動に伴う測定誤差等が顕著な問題となってきた。また、温度補償のため測定電極の周辺に参照電極を配置し、温度変化に起因する静電容量の変動値を補償する構成のものが提案されているが、参照電極を配置した構成だけでは十分とはいえず、温度依存性のより小さな圧力センサが求められている。   In recent years, as semiconductor devices and electronic components become more functional and denser, the manufacturing process needs to be more sophisticated and pressure sensors are required to have higher measurement accuracy under various process conditions. became. However, with the conventional capacitive pressure sensor shown in FIG. 4, it is not possible to sufficiently meet these high demands, and measurement due to variations between sensors, reproducibility of pressure measurement values, and fluctuations in environmental temperature. Errors and the like have become prominent problems. In addition, a configuration has been proposed in which a reference electrode is arranged around the measurement electrode for temperature compensation to compensate for a variation in capacitance caused by a temperature change, but the configuration with the reference electrode alone is sufficient. However, there is a need for a pressure sensor that is less temperature dependent.

そこで、本発明者らは、種々のガラス基板を用い、様々な製造条件で圧力センサを試作し、上記問題を解消する検討を行った。ここで、例えば、応力を低減するために、熱膨張率特性がシリコンに非常近いガラス(旭テクノグラス株式会社SW−Y等)を用いた場合は、予想に反し、特に100Pa以下の低い圧力域で測定値に再現性がなく安定した測定ができず、さらに環境温度依存性も特に改善されないことが分かった。即ち、ガラス基板として、単に、接合温度での熱膨張率の近い材質のものを用いるだけでは、高精度の測定が可能な圧力センサを作製することは困難であることが分かった。さらに、シリコン基板に圧縮応力がかかるような材質及び接合条件を選択すると、同様に、測定値に再現性がなくなった。また、引張り応力が加わる場合も、引張り応力が大きくなると圧力に対する感度が低下し、環境温度に対する測定値の変動が大きくなる傾向を示した。   Therefore, the present inventors made trial manufactures of pressure sensors under various manufacturing conditions using various glass substrates, and studied to solve the above problems. Here, for example, in order to reduce stress, when glass having a thermal expansion coefficient very close to that of silicon (Asahi Techno Glass Co., Ltd., SW-Y, etc.) is used, contrary to expectation, a low pressure range of 100 Pa or less in particular. As a result, it was found that the measurement value was not reproducible and stable measurement could not be performed, and the environmental temperature dependency was not particularly improved. That is, it has been found that it is difficult to produce a pressure sensor capable of high-precision measurement by simply using a glass substrate having a material having a similar coefficient of thermal expansion at the bonding temperature. Furthermore, when a material and a joining condition that apply a compressive stress to the silicon substrate are selected, similarly, the reproducibility of the measured value is lost. In addition, even when tensile stress was applied, the sensitivity to pressure decreased as the tensile stress increased, and the variation of the measured value with respect to the environmental temperature tended to increase.

これらの知見を基に、シリコンダイヤフラムの引張り応力を適正化すべく、第1及び第2のガラス基板の材質や厚さ、接合条件等に関する検討をさらに進め、その結果として測定値が安定化し、温度の影響を低減できるセンサ構造を見出し、これにより本発明の完成に至ったものである。
以上の静電容量型圧力センサに関する問題やその他の事情は、ダイヤフラムを利用した他の圧力センサ、例えば、ダイヤフラム上にピエゾ抵抗素子を形成した半導体抵抗素子型、ダイヤフラムの共振周波数を利用した振動型等のセンサについても同様である。
Based on these findings, in order to optimize the tensile stress of the silicon diaphragm, further studies on the materials and thicknesses of the first and second glass substrates, bonding conditions, etc. are made, and as a result, the measured values are stabilized and the temperature is stabilized. The present inventors have found a sensor structure that can reduce the influence of the above, and thus completed the present invention.
The above-mentioned problems and other circumstances related to the capacitance type pressure sensor include other pressure sensors using a diaphragm, for example, a semiconductor resistance element type in which a piezoresistive element is formed on the diaphragm, and a vibration type using a resonance frequency of the diaphragm. The same applies to other sensors.

このような状況に鑑み、本発明は、測定値の再現性に優れ、正確な圧力測定が可能な隔膜型圧力センサを提供することを目的とする。さらに、環境温度変化の影響を抑えた、測定精度の高い隔膜型圧力センサを提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a diaphragm type pressure sensor that is excellent in reproducibility of measurement values and capable of accurate pressure measurement. Furthermore, it aims at providing the diaphragm type | mold pressure sensor with the high measurement accuracy which suppressed the influence of environmental temperature change.

本発明の隔膜型圧力センサは、第1の絶縁性基板、ダイヤフラムを形成したシリコン基板、及び通気口を形成した第2の絶縁性基板を接合して、前記ダイヤフラムと前記第1の絶縁性基板及び前記通気口との間にそれぞれ圧力基準室及び圧力測定室を形成し、外部から前記通気口を通して前記圧力測定室に加わる圧力に応じて変位するダイヤフラムの変位量を計測して前記圧力を求める隔膜型圧力センサにおいて、前記第1及び第2の絶縁性基板のうち一方の絶縁性基板は、環境温度において前記シリコン基板に引張り応力の第1の応力を加え、他方の絶縁性基板は、前記環境温度において前記シリコン基板に前記第1の応力よりも小さい引張り応力又は圧縮応力の第2の応力を加えて、前記ダイヤフラムに常に引張り応力が作用するようにし、さらに前記第2の応力の温度に対する変化量は、前記第1の応力の温度に対する変化量よりも小さくなるように構成したことを特徴とする。
このように一方の絶縁性基板が、圧力測定の環境温度領域でシリコン基板に引張り応力(第1の応力)を加えるべく、例えば、材料、接合温度を選択することにより、環境温度領域で、シリコンダイヤフラムに常に引張り応力を作用させることができ、かつ、他方の絶縁性基板が環境温度領域でシリコン基板にほとんど応力(第2の応力)を加えないように、例えば材料を選択することにより、環境温度でシリコンダイヤフラムに加わる引張り応力の温度依存性を小さくすることが可能となる。かかる構成とすることにより、再現性のある安定した圧力測定が可能となり、環境温度の変動に伴う測定値のばらつきも低減して、より高精度の測定が可能となる。なお、第2の応力は、全体としてダイヤフラムに加わる応力が引張り応力であれば、引張り応力に限らず圧縮応力であっても良い。
The diaphragm type pressure sensor according to the present invention includes a first insulating substrate, a silicon substrate on which a diaphragm is formed, and a second insulating substrate on which a vent is formed, and the diaphragm and the first insulating substrate. A pressure reference chamber and a pressure measurement chamber are respectively formed between the pressure vent and the vent, and a displacement amount of a diaphragm displaced according to a pressure applied to the pressure measurement chamber from the outside through the vent is measured to obtain the pressure. In the diaphragm type pressure sensor, one of the first and second insulating substrates applies a first tensile stress to the silicon substrate at an environmental temperature, and the other insulating substrate A tensile stress or a compressive stress, which is smaller than the first stress, is applied to the silicon substrate at an environmental temperature so that the tensile stress always acts on the diaphragm. Further variation with respect to temperature of the second stress is characterized by being configured to be smaller than the change amount with respect to the temperature of the first stress.
Thus, in order to apply a tensile stress (first stress) to the silicon substrate in the environmental temperature region of pressure measurement, for example, by selecting the material and the bonding temperature, one insulating substrate can select silicon in the environmental temperature region. By selecting a material, for example, by selecting a material so that a tensile stress can always be applied to the diaphragm and the other insulating substrate hardly applies a stress (second stress) to the silicon substrate in the environmental temperature region. It becomes possible to reduce the temperature dependence of the tensile stress applied to the silicon diaphragm at the temperature. By adopting such a configuration, it is possible to perform stable pressure measurement with reproducibility, and to reduce variations in measurement values due to fluctuations in environmental temperature, thereby enabling more accurate measurement. If the stress applied to the diaphragm as a whole is a tensile stress, the second stress is not limited to a tensile stress but may be a compressive stress.

より具体的には、第1の絶縁性基板、ダイヤフラムを形成したシリコン基板、及び通気口を形成した第2の絶縁性基板を接合して、前記ダイヤフラムと前記第1の絶縁性基板及び前記通気口との間にそれぞれ圧力基準室及び圧力測定室を形成し、外部から前記通気口を通して前記圧力測定室に加わる圧力に応じて変位するダイヤフラムの変位量を計測して前記圧力を求める隔膜型圧力センサにおいて、前記第1及び第2の絶縁性基板のうち一方の絶縁性基板は、接合温度において、前記シリコン基板の熱膨張率よりも小さい熱膨張率を有し、他方の絶縁性基板は、環境温度において、前記一方の絶縁性基板よりシリコン基板に近い熱膨張率を有することを特徴とする。
即ち、第1及び第2の絶縁性基板の熱膨張率について、以上の関係を備えたセンサ構造とすることにより、圧力測定の環境温度域において、シリコンダイヤフラムに適度の引張り応力を常に作用させることができ、その結果、再現性のある安定した測定が可能となる。さらに、また、環境温度域において、環境温度の変動に伴う引張り応力の変化を小さく抑えることができ、その結果、環境温度の変動に伴う測定値のばらつきも低減して、より高精度な測定が可能となる。
More specifically, a first insulating substrate, a silicon substrate on which a diaphragm is formed, and a second insulating substrate on which a vent hole is formed are joined, and the diaphragm, the first insulating substrate, and the ventilation are joined. A diaphragm-type pressure that forms a pressure reference chamber and a pressure measurement chamber between each of them and determines the pressure by measuring the amount of displacement of the diaphragm that is displaced according to the pressure applied to the pressure measurement chamber from the outside through the vent In the sensor, one of the first and second insulating substrates has a thermal expansion coefficient smaller than that of the silicon substrate at a bonding temperature, and the other insulating substrate is It has a thermal expansion coefficient closer to that of the silicon substrate than that of the one insulating substrate at an environmental temperature.
That is, with the sensor structure having the above relationship regarding the thermal expansion coefficients of the first and second insulating substrates, an appropriate tensile stress is always applied to the silicon diaphragm in the environmental temperature range of pressure measurement. As a result, stable measurement with reproducibility becomes possible. Furthermore, in the environmental temperature range, it is possible to suppress changes in tensile stress due to environmental temperature fluctuations, and as a result, variations in measured values due to environmental temperature fluctuations are reduced, resulting in more accurate measurements. It becomes possible.

さらに、前記一方の絶縁性基板の厚さは、前記他方の絶縁性基板の厚さより薄くしたことを特徴とする。
このように、第1及び第2の絶縁性基板の厚さについて、以上の関係を備えたセンサ構造とすることにより、主に、薄い絶縁性基板は、シリコン基板に適度の引張り応力を加え、厚い絶縁性基板はシリコン基板に引張り応力をほとんど加えず、環境温度の変動に伴うシリコン基板の引張り応力の変化を小さく抑えるように作用し、より制御性良くシリコンダイヤフラムに適度の引張り応力を作用させ、かつ環境温度の変動に伴うシリコンダイヤフラムの引張り応力の変化を小さく抑えることが可能となる。その結果、環境温度の変動に伴う測定値のばらつきがより低減してより高精度な測定を再現性良く、安定して行うことが可能となる。
ここで、厚い絶縁性基板による応力は、圧縮応力であってもその値は小さく、センサ全体として、ダイヤフラムに加わる応力が引張り応力であればよい。
Further, the thickness of the one insulating substrate is smaller than the thickness of the other insulating substrate.
As described above, with the sensor structure having the above relationship with respect to the thicknesses of the first and second insulating substrates, the thin insulating substrate mainly applies an appropriate tensile stress to the silicon substrate, A thick insulating substrate applies almost no tensile stress to the silicon substrate, and acts to suppress the change in the tensile stress of the silicon substrate due to changes in the environmental temperature to a small extent, allowing an appropriate tensile stress to act on the silicon diaphragm with better controllability. In addition, it is possible to suppress a change in the tensile stress of the silicon diaphragm accompanying a change in environmental temperature. As a result, it is possible to stably perform highly accurate measurement with high reproducibility by reducing variations in measurement values due to environmental temperature fluctuations.
Here, the stress caused by the thick insulating substrate is small even if it is a compressive stress, and the stress applied to the diaphragm as a whole of the sensor may be a tensile stress.

また、圧力測定の環境温度における厚い絶縁性基板の熱膨張率をシリコン基板の熱膨張率により近いものを選択することにより、測定値の温度依存性が改善される理由の詳細は現在のところ明らかではないが次のように考えられる。即ち、厚い絶縁性基板とシリコン基板とで熱膨張率が近いため、熱膨張率の小さな薄い基板に対して両者は熱的に一体の厚い基板と考えることができる。ここで、シリコン基板に熱膨張率の小さな薄い絶縁性基板が接合されても、厚い絶縁性基板とシリコン基板とからなる一体の厚い基板の熱膨張特性が支配的となり、環境温度が変動してもシリコンの受ける応力はほとんど変化せず、結果として圧力の測定値のばらつきが抑えられるためと考えられる。   Details of the reason why the temperature dependence of the measured value is improved by selecting the thermal expansion coefficient of the thick insulating substrate closer to the thermal expansion coefficient of the silicon substrate at the ambient temperature of the pressure measurement is clear at present. However, it is thought as follows. That is, since the thermal expansion coefficient is close between the thick insulating substrate and the silicon substrate, it can be considered that both are thermally integrated and thick with respect to the thin substrate having a small thermal expansion coefficient. Here, even if a thin insulating substrate with a small thermal expansion coefficient is bonded to the silicon substrate, the thermal expansion characteristics of the thick integrated substrate consisting of the thick insulating substrate and the silicon substrate are dominant, and the environmental temperature fluctuates. However, it is considered that the stress applied to silicon hardly changes, and as a result, variations in measured pressure values are suppressed.

前記環境温度において、前記他方の絶縁性基板と前記シリコン基板との熱膨張率差の温度に対する変化量を、前記一方の絶縁性基板と前記シリコンとの熱膨張率差の温度に対する変化量よりも小さくするのが好ましい。
このような構成とすることにより、例えば、環境温度が変動したときでも、他方の基板(例えば厚い絶縁性基板)がシリコン基板と同様に伸縮することから、引張り応力を残しながら、温度依存性を小さくでき、結果として環境温度の影響の少ない高精度の温度測定が可能となる。
さらに、前記他方の絶縁性基板と前記シリコン基板との10〜50℃における熱膨張率の差は5ppm以下とするのが好ましい。これにより、圧力測定値の温度依存性をさらに低減させることができる。
At the environmental temperature, the change amount with respect to the temperature of the difference in thermal expansion coefficient between the other insulating substrate and the silicon substrate is larger than the change amount with respect to the temperature of the difference in thermal expansion coefficient between the one insulating substrate and the silicon. It is preferable to make it smaller.
By adopting such a configuration, for example, even when the environmental temperature fluctuates, the other substrate (for example, a thick insulating substrate) expands and contracts in the same manner as a silicon substrate. As a result, the temperature can be measured with high accuracy and less influenced by the environmental temperature.
Further, the difference in coefficient of thermal expansion at 10 to 50 ° C. between the other insulating substrate and the silicon substrate is preferably 5 ppm or less. Thereby, the temperature dependence of the pressure measurement value can be further reduced.

また、本発明において、前記一方の絶縁性基板と前記シリコン基板との接合は、前記他方の絶縁性基板と前記シリコン基板との接合よりも、高温であって、かつ先に行うのが好ましい。これにより、シリコンダイヤフラムへの引張り応力の制御をより高度に行うことができ、例えば、2枚の絶縁性基板とも同じ材質を用いた場合であっても、シリコンダイヤフラムに適切な引張り応力を加えることが可能となる。   In the present invention, the bonding between the one insulating substrate and the silicon substrate is preferably performed at a higher temperature and before the bonding between the other insulating substrate and the silicon substrate. As a result, the tensile stress on the silicon diaphragm can be controlled more precisely. For example, even when the same material is used for the two insulating substrates, an appropriate tensile stress is applied to the silicon diaphragm. Is possible.

なお、本発明において、環境温度とは、圧力センサを使用する環境の温度である。従って、センサの使用目的に応じて異なり、必ずしも室温近傍に限定されるものではない。また、所定の温度における熱膨張率とは0℃における基準値Lと該所定の温度における熱膨張量ΔL(=L−L)との比(ΔL/L)をいう。 In the present invention, the environmental temperature is the temperature of the environment in which the pressure sensor is used. Therefore, it differs depending on the purpose of use of the sensor and is not necessarily limited to the vicinity of room temperature. The coefficient of thermal expansion at a predetermined temperature refers to the ratio (ΔL / L 0 ) between the reference value L 0 at 0 ° C. and the amount of thermal expansion ΔL (= L−L 0 ) at the predetermined temperature.

本発明により、即ち、シリコンダイヤフラムに最小限の引張り応力を加える構成とすることにより、測定の再現性の高い圧力センサを歩留まり良く製造することができ、高精度圧力センサの生産性を大幅に向上させることができる。   According to the present invention, that is, by adopting a configuration in which a minimum tensile stress is applied to the silicon diaphragm, a pressure sensor with high reproducibility of measurement can be manufactured with high yield, and the productivity of the high-precision pressure sensor is greatly improved. Can be made.

また、圧力測定温度域における厚い絶縁性基板の熱膨張率をシリコン基板と略同一とすることにより、測定値の温度依存性を大幅に低減することができ、例えば真空容器内でヒータ等を使用しセンサ周辺の環境温度が変動する系であっても、高精度かつ安定した圧力測定が可能となり、高機能デバイス等の生産に対応した圧力センサを提供することができる。    In addition, by making the thermal expansion coefficient of a thick insulating substrate in the pressure measurement temperature range substantially the same as that of a silicon substrate, the temperature dependence of the measured value can be greatly reduced. For example, a heater or the like is used in a vacuum vessel However, even in a system in which the ambient temperature around the sensor fluctuates, highly accurate and stable pressure measurement is possible, and a pressure sensor can be provided that is compatible with production of highly functional devices and the like.

以下に実施例を挙げて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

本発明の静電容量型センサの一構成例を図1の模式的断面図に示す。本実施例の静電容量型圧力センサは、図に示すように、測定電極11が形成された第1の絶縁性基板10と、ダイヤフラム21が形成されたシリコン基板20と、通気口31が形成された第2の絶縁性基板30と、からなる三層構造を有し、ダイヤフラム21の両側に圧力基準室1と圧力測定室2とが形成されている。圧力基準室1には、例えば非蒸発型ゲッタ3が配置され、内部を真空に保持している。     One structural example of the capacitive sensor of the present invention is shown in the schematic cross-sectional view of FIG. As shown in the figure, the capacitance type pressure sensor of the present embodiment is formed with a first insulating substrate 10 on which a measurement electrode 11 is formed, a silicon substrate 20 on which a diaphragm 21 is formed, and a vent 31. A pressure reference chamber 1 and a pressure measurement chamber 2 are formed on both sides of the diaphragm 21. In the pressure reference chamber 1, for example, a non-evaporable getter 3 is disposed, and the inside is kept in a vacuum.

この圧力センサは、例えば次のようにして作製する。測定電極11を形成した第1の絶縁性基板10と、圧力基準室用の凹部を形成したシリコン基板20と、を重ね合わせ、真空中で、300〜450℃程度に加熱した状態で、数100V〜1kVの電圧を印加して、両者を陽極接合法により接合する。これにより圧力基準室1が形成される。続いて、シリコン基板の圧力基準室1と反対側からエッチングしてダイヤフラム21を形成した後、通気口31を形成した第2の絶縁性基板30と重ね合わせ、同様に陽極接合法により接合する。最後に、端子ピン12,13を取り付けて圧力センサを完成する。   This pressure sensor is manufactured as follows, for example. The first insulating substrate 10 on which the measurement electrode 11 is formed and the silicon substrate 20 on which the recess for the pressure reference chamber is formed are overlapped and heated to about 300 to 450 ° C. in a vacuum. A voltage of ˜1 kV is applied, and both are bonded by an anodic bonding method. Thereby, the pressure reference chamber 1 is formed. Subsequently, after the diaphragm 21 is formed by etching from the opposite side of the pressure reference chamber 1 of the silicon substrate, it is overlapped with the second insulating substrate 30 in which the vent 31 is formed, and similarly bonded by anodic bonding. Finally, the terminal pins 12 and 13 are attached to complete the pressure sensor.

本実施例においては、第1の絶縁性基板は、第2の絶縁性基板よりも板厚を薄くする。また、第1の絶縁性基板の接合温度での熱膨張率(ΔL/L)は、シリコン基板よりも小さいものを選択する。さらに、圧力測定を行う環境温度域での第2の絶縁性基板の熱膨張率が、第1の絶縁性基板に比べ、シリコン基板の熱膨張率により近い値となるように選択する。このような材質、板厚の絶縁性基板を選択することにより、例えば室温に戻ったときのダイヤフラムに加わる応力を常に小さな引張り応力とすることができ、測定の再現性が得られ、安定した測定が可能となる。また、環境温度の変動に起因する測定値のばらつきも抑えることができる。ここで、環境温度において、第2の絶縁性基板とシリコン基板との熱膨張率差の温度に対する変化量を、第1の絶縁性基板とシリコンとの熱膨張率差の温度に対する変化量よりも小さくすることにより、環境温度の影響のより一層低減したより高精度の温度測定が可能となる。 In this embodiment, the first insulating substrate is thinner than the second insulating substrate. Further, a coefficient of thermal expansion (ΔL / L 0 ) at the bonding temperature of the first insulating substrate is selected to be smaller than that of the silicon substrate. Further, the thermal expansion coefficient of the second insulating substrate in the environmental temperature range where pressure measurement is performed is selected so as to be a value closer to the thermal expansion coefficient of the silicon substrate than the first insulating substrate. By selecting an insulating substrate with such a material and thickness, the stress applied to the diaphragm when returning to room temperature, for example, can always be a small tensile stress, and measurement reproducibility can be obtained and stable measurement is performed. Is possible. In addition, variations in measured values due to environmental temperature fluctuations can be suppressed. Here, at the environmental temperature, the change amount with respect to the temperature of the difference in thermal expansion coefficient between the second insulating substrate and the silicon substrate is larger than the change amount with respect to the temperature of the difference in thermal expansion coefficient between the first insulating substrate and silicon. By reducing the size, it becomes possible to perform temperature measurement with higher accuracy with the influence of the environmental temperature being further reduced.

具体的な各基板の板厚としては、シリコン基板は例えば 0.2 〜0.5mm、第1の絶縁性基板は、0.5〜0.8mm、第2の絶縁性基板は、1〜3mmのものが好適に用いられる。また、絶縁性基板の材質としては、シリコンダイヤフラムに適正な引張り応力を加える観点から、シリコン基板と熱膨張特性の近似するガラス、例えばパイレックス(登録商標)、旭テクノグラス製SW−Yガラス及びSW−YYガラス、HOYA製SD−1ガラス及びSD−2ガラスが好適に用いられ、上記熱膨張率の大小関係を満たすように選ばれる。   Specifically, the thickness of each substrate is, for example, 0.2 to 0.5 mm for a silicon substrate, 0.5 to 0.8 mm for a first insulating substrate, and 1 to 3 mm for a second insulating substrate. Are preferably used. In addition, as a material of the insulating substrate, from the viewpoint of applying an appropriate tensile stress to the silicon diaphragm, glass similar in thermal expansion characteristics to the silicon substrate, for example, Pyrex (registered trademark), SW-Y glass and SW made by Asahi Techno Glass -YY glass, HOYA SD-1 glass and SD-2 glass are preferably used, and are selected so as to satisfy the above-mentioned relationship of thermal expansion coefficients.

以上の熱膨張率の関係を満たすガラスの組み合わせとして、例えば、第1の絶縁性基板としてパイレックスガラス、第2の絶縁性基板としてSW−Yガラスの組み合わせが挙げられる。これらのガラス基板及びシリコン基板の熱膨張率特性を図2及び3に示し、これらガラス基板を用いて作製したセンサの動作を以下に説明する。
図2及び3には、接合温度域及び圧力測定温度(環境温度)域における熱膨張率の一例として、それぞれ300〜450℃及び0〜50℃の熱膨張率特性を示している。
As a combination of glasses satisfying the above relationship of thermal expansion coefficients, for example, a combination of Pyrex glass as the first insulating substrate and SW-Y glass as the second insulating substrate can be given. The thermal expansion characteristics of these glass substrates and silicon substrates are shown in FIGS. 2 and 3, and the operation of a sensor manufactured using these glass substrates will be described below.
2 and 3 show thermal expansion coefficient characteristics of 300 to 450 ° C. and 0 to 50 ° C., respectively, as an example of the thermal expansion coefficient in the bonding temperature range and the pressure measurement temperature (environment temperature) range.

図2が示すように、接合温度におけるパイレックスガラスの熱膨張率はSW−Yガラスに比べて小さく、またSW−Yガラスの熱膨張率はシリコンとほぼ同じである。ここで、パイレックス、シリコン基板及びSW−Yの板厚をそれぞれ例えば0.7mm、0.5mm及び2.0mmとすると、シリコンとパイレックスガラスを陽極接合した後、室温に戻すとシリコンには引張り応力が加わることになる。一方、SW−Yガラスとシリコン基板の熱膨張率は非常に近いため、室温に戻してもシリコンとSW−Yガラス間にはほとんど応力が発生しない。このため全体として、ダイヤフラムに適度の引張り応力を作用させることができる。   As shown in FIG. 2, the thermal expansion coefficient of Pyrex glass at the bonding temperature is smaller than that of SW-Y glass, and the thermal expansion coefficient of SW-Y glass is substantially the same as that of silicon. Here, when the thicknesses of Pyrex, silicon substrate and SW-Y are 0.7 mm, 0.5 mm and 2.0 mm, respectively, silicon and Pyrex glass are anodically bonded and then returned to room temperature. Will be added. On the other hand, since the thermal expansion coefficients of SW-Y glass and silicon substrate are very close, even when the temperature is returned to room temperature, almost no stress is generated between silicon and SW-Y glass. Therefore, as a whole, an appropriate tensile stress can be applied to the diaphragm.

また、図3が示すように、環境温度域においても、SW−Yガラスの熱膨張率はパイレックスガラスよりもシリコンの値に近く、シリコンとの熱膨張率の差は5ppm以下である。従って、厚いSW−Yガラスとシリコン基板とは熱的に一体として機能すると考えられることから薄いパイレックス基板の影響は小さくなり、環境温度が変化しても引張り応力をほぼ一定に保つことができる。即ち、環境温度の変動があっても、ダイヤフラムの歪みは抑えられ、測定値のばらつきを抑えることができる。   As shown in FIG. 3, even in the environmental temperature range, the thermal expansion coefficient of SW-Y glass is closer to that of silicon than Pyrex glass, and the difference in thermal expansion coefficient from silicon is 5 ppm or less. Accordingly, since it is considered that the thick SW-Y glass and the silicon substrate function as one body thermally, the influence of the thin Pyrex substrate is reduced, and the tensile stress can be kept substantially constant even when the environmental temperature changes. That is, even if the environmental temperature varies, the distortion of the diaphragm can be suppressed, and the variation in the measured value can be suppressed.

なお、前に、第1及び第2の絶縁性基板の両者にシリコンと熱膨張特性が非常に近いSW−Yガラスを用いると、特に低圧域の測定値の再現性が低下したり、素子間のばらつきが増加しやすくなると述べた。これは、接合温度における熱膨張率が非常に近いため、接合時にシリコン基板とSW−Yガラスに温度分布があると、その分布に応じてシリコンとガラスとの膨張量の大小が逆転し、室温に戻したときに、部分的に圧縮応力が生じ、これが原因となって測定値の再現性が低下したものと考えられる。   In addition, when SW-Y glass having a thermal expansion characteristic very close to that of silicon is used for both the first and second insulating substrates, the reproducibility of measured values in the low-pressure region is reduced, It was said that the variation of would be likely to increase. This is because the thermal expansion coefficient at the bonding temperature is very close, so if there is a temperature distribution in the silicon substrate and the SW-Y glass at the time of bonding, the magnitude of expansion between the silicon and the glass is reversed according to the distribution, and the room temperature It is considered that the reproducibility of the measured value was lowered due to a partial compression stress that was caused by this.

本実施例の圧力センサは、第1の絶縁性基板を第2の絶縁性基板より薄くし、かつ、接合温度での熱膨張率(ΔL/L)をシリコンよりも小さくした構成であるが、逆に第2の絶縁性基板の板厚を薄く、熱膨張率をシリコンよりも小さくする構成であっても良い。 The pressure sensor of this example has a configuration in which the first insulating substrate is thinner than the second insulating substrate and the coefficient of thermal expansion (ΔL / L 0 ) at the junction temperature is smaller than that of silicon. On the contrary, the second insulating substrate may have a thin plate thickness and a thermal expansion coefficient smaller than that of silicon.

実施例1では、第1及び第2の絶縁性基板の熱膨張率を選択して、ダイヤフラムの引張り応力を調節したが、本実施例ではシリコン基板との接合温度を変えて応力を調節した圧力センサを説明する。
本実施例では、第1及び第2の絶縁性基板のいずれもパイレックスガラスを用いた場合について説明する。第1のガラス基板(例えば0.7mm厚)とシリコン基板(例えば、0.5mm)は例えば400℃で接合し、シリコン基板と第2のガラス基板(例えば2mm板)は例えば300℃で接合して、圧力センサを作製する。
In Example 1, the thermal expansion coefficients of the first and second insulating substrates were selected and the tensile stress of the diaphragm was adjusted. In this example, the pressure was adjusted by changing the bonding temperature with the silicon substrate. The sensor will be described.
In this embodiment, a case where Pyrex glass is used for both the first and second insulating substrates will be described. The first glass substrate (for example, 0.7 mm thick) and the silicon substrate (for example, 0.5 mm) are bonded at, for example, 400 ° C., and the silicon substrate and the second glass substrate (for example, 2 mm plate) are bonded at, for example, 300 ° C. To produce a pressure sensor.

図2より明らかなようにパイレックスガラスの熱膨張率は、低温になるほどシリコンに熱膨張率が近くなる傾向がある。従って、圧力測定の環境温度(通常は200℃以下)シリコン基板には、400℃で接合した第1のガラス基板側で引張り応力を生じ、300℃で接合した第2のガラス基板側では相対的にそれよりも小さな応力が生じる。即ち、厚い基板である第2のガラス基板がシリコン基板に与える応力が小さいことから、シリコン基板は引張り応力を保ったまま圧力センサ全体としては歪みを小さくすることができ、センサの測定再現性及び温度依存性を向上させることができる。
なお、本実施例では、第1と第2のガラス基板は同じ材質としたが、異なる材質のものを用いてもよいことは言うまでもない。この場合、引張り応力の制御をより精密に行うことができ、センサ設計の自由度が増大する。
As is clear from FIG. 2, the thermal expansion coefficient of Pyrex glass tends to be closer to that of silicon as the temperature becomes lower. Accordingly, a tensile stress is generated on the first glass substrate side bonded at 400 ° C. on the silicon substrate bonded at 400 ° C. relative to the second glass substrate side bonded at 300 ° C. Less stress is generated on the surface. That is, since the stress applied to the silicon substrate by the second glass substrate, which is a thick substrate, is small, the strain of the entire pressure sensor can be reduced while maintaining the tensile stress of the silicon substrate. Temperature dependence can be improved.
In the present embodiment, the first and second glass substrates are made of the same material, but needless to say, different materials may be used. In this case, the tensile stress can be controlled more precisely, and the degree of freedom in sensor design increases.

以上の実施例では静電容量型センサの場合について説明してきたが、ダイヤフラムを利用した他の圧力センサ、例えば、ダイヤフラム上に半導体ピエゾ抵抗素子の抵抗がダイヤフラムの歪み(即ち、圧力)により変化することと利用した半導体抵抗素子型、ダイヤフラムの共振周波数が圧力による歪みで変化することを利用した振動型等の圧力センサについても同様に適用できることは言うまでもない。また、接合法も陽極接合に限らず、接合時に加熱するものであればどのような接合法であっても良い。   In the above embodiments, the case of the capacitive sensor has been described. However, the resistance of the semiconductor piezoresistive element on the diaphragm changes due to the distortion (that is, the pressure) of the diaphragm. Needless to say, the present invention can also be applied to a pressure sensor such as a semiconductor resistance element type and a vibration type that utilizes the fact that the resonance frequency of the diaphragm changes due to strain due to pressure. Further, the bonding method is not limited to anodic bonding, and any bonding method may be used as long as heating is performed at the time of bonding.

本発明の隔膜型圧力センサの一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the diaphragm type | mold pressure sensor of this invention. 接合温度域における熱膨張率特性を示すグラフである。It is a graph which shows the thermal expansion coefficient characteristic in a joining temperature range. 圧力測定の環境温度域における熱膨張率特性を示すグラフである。It is a graph which shows the thermal expansion coefficient characteristic in the environmental temperature range of a pressure measurement. 従来の隔膜型圧力センサの一例を示す模式的断面図である。It is a typical sectional view showing an example of the conventional diaphragm type pressure sensor.

符号の説明Explanation of symbols

1 基準圧力室、
2 圧力測定室、
3 非蒸発型ゲッタ、
4 アダプタ、
5 O−リング、
6 押さえ板、
10 第1の絶縁性基板、
11 測定電極、
12,13 端子ピン
20 シリコン基板、
21 ダイヤフラム、
30 第2の絶縁性基板、
31 通気口。
1 reference pressure chamber,
2 Pressure measurement chamber,
3 Non-evaporable getter,
4 adapters,
5 O-ring,
6 holding plate,
10 first insulating substrate;
11 Measuring electrode,
12, 13 terminal pin 20 silicon substrate,
21 Diaphragm,
30 second insulating substrate;
31 Vent.

Claims (6)

第1の絶縁性基板、ダイヤフラムを形成したシリコン基板、及び通気口を形成した第2の絶縁性基板を接合して、前記ダイヤフラムと前記第1の絶縁性基板及び前記通気口との間にそれぞれ圧力基準室及び圧力測定室を形成し、外部から前記通気口を通して前記圧力測定室に加わる圧力に応じて変位するダイヤフラムの変位量を計測して前記圧力を求める隔膜型圧力センサにおいて、
前記第1及び第2の絶縁性基板のうち一方の絶縁性基板は、環境温度において前記シリコン基板に引張り応力の第1の応力を加え、他方の絶縁性基板は、前記環境温度において前記シリコン基板に前記第1の応力よりも小さい引張り応力又は圧縮応力の第2の応力を加えて、前記ダイヤフラムに常に引張り応力が作用するようにし、さらに前記第2の応力の温度に対する変化量は、前記第1の応力の温度に対する変化量よりも小さくなるように構成したことを特徴とする隔膜型圧力センサ。
A first insulating substrate, a silicon substrate on which a diaphragm is formed, and a second insulating substrate on which a vent is formed are joined, and the diaphragm and the first insulating substrate and the vent are respectively connected. In the diaphragm type pressure sensor that forms a pressure reference chamber and a pressure measurement chamber, and measures the displacement amount of the diaphragm that is displaced according to the pressure applied to the pressure measurement chamber from the outside through the vent, and obtains the pressure,
One of the first and second insulating substrates applies a first stress of tensile stress to the silicon substrate at an environmental temperature, and the other insulating substrate has the silicon substrate at the environmental temperature. A tensile stress or a compressive stress second stress smaller than the first stress is applied to the diaphragm so that a tensile stress always acts on the diaphragm, and the change amount of the second stress with respect to the temperature is the first stress. 1. A diaphragm type pressure sensor characterized by being configured to be smaller than an amount of change of stress of 1 with respect to temperature.
第1の絶縁性基板、ダイヤフラムを形成したシリコン基板、及び通気口を形成した第2の絶縁性基板を接合して、前記ダイヤフラムと前記第1の絶縁性基板及び前記通気口との間にそれぞれ圧力基準室及び圧力測定室を形成し、外部から前記通気口を通して前記圧力測定室に加わる圧力に応じて変位するダイヤフラムの変位量を計測して前記圧力を求める隔膜型圧力センサにおいて、
前記第1及び第2の絶縁性基板のうち一方の絶縁性基板は、接合温度において、前記シリコン基板の熱膨張率よりも小さい熱膨張率を有し、他方の絶縁性基板は、環境温度において、前記一方の絶縁性基板よりシリコン基板に近い熱膨張率を有することを特徴とする隔膜型圧力センサ。
A first insulating substrate, a silicon substrate on which a diaphragm is formed, and a second insulating substrate on which a vent is formed are joined, and the diaphragm and the first insulating substrate and the vent are respectively connected. In the diaphragm type pressure sensor that forms a pressure reference chamber and a pressure measurement chamber, and measures the displacement amount of the diaphragm that is displaced according to the pressure applied to the pressure measurement chamber from the outside through the vent, and obtains the pressure,
One of the first and second insulating substrates has a thermal expansion coefficient smaller than that of the silicon substrate at a bonding temperature, and the other insulating substrate has an environmental temperature. A diaphragm type pressure sensor having a coefficient of thermal expansion closer to that of a silicon substrate than that of the one insulating substrate.
前記一方の絶縁性基板の厚さは、前記他方の絶縁性基板の厚さより薄くしたことを特徴とする請求項2に記載の隔膜型圧力センサ。   3. The diaphragm type pressure sensor according to claim 2, wherein the thickness of the one insulating substrate is thinner than the thickness of the other insulating substrate. 前記環境温度において、前記他方の絶縁性基板と前記シリコン基板との熱膨張率差の温度に対する変化量を、前記一方の絶縁性基板と前記シリコンとの熱膨張率差の温度に対する変化量よりも小さくしたことを特徴とする請求項2又は3に記載の隔膜型圧力センサ。   At the environmental temperature, the change amount with respect to the temperature of the difference in thermal expansion coefficient between the other insulating substrate and the silicon substrate is larger than the change amount with respect to the temperature of the difference in thermal expansion coefficient between the one insulating substrate and the silicon. The diaphragm type pressure sensor according to claim 2 or 3, wherein the diaphragm type pressure sensor is small. 前記他方の絶縁性基板と前記シリコン基板との10〜50℃における熱膨張率の差は5ppm以下であることを特徴とする請求項2〜4のいずれか1項に記載の隔膜型圧力センサ。   The diaphragm type pressure sensor according to any one of claims 2 to 4, wherein a difference in coefficient of thermal expansion at 10 to 50 ° C between the other insulating substrate and the silicon substrate is 5 ppm or less. 前記一方の絶縁性基板と前記シリコン基板との接合は、前記他方の絶縁性基板と前記シリコン基板との接合よりも、高温であって、かつ先に行うことを特徴とする請求項1〜5のいずれか1項に記載の隔膜型圧力センサ。   6. The bonding between the one insulating substrate and the silicon substrate is performed at a higher temperature and before the bonding between the other insulating substrate and the silicon substrate. The diaphragm type pressure sensor according to any one of the above.
JP2005093956A 2005-03-29 2005-03-29 Diaphragm type pressure sensor Withdrawn JP2006275702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093956A JP2006275702A (en) 2005-03-29 2005-03-29 Diaphragm type pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093956A JP2006275702A (en) 2005-03-29 2005-03-29 Diaphragm type pressure sensor

Publications (1)

Publication Number Publication Date
JP2006275702A true JP2006275702A (en) 2006-10-12

Family

ID=37210627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093956A Withdrawn JP2006275702A (en) 2005-03-29 2005-03-29 Diaphragm type pressure sensor

Country Status (1)

Country Link
JP (1) JP2006275702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210592A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd Manufacturing method of vacuum locking device
JP2009250874A (en) * 2008-04-09 2009-10-29 Nagano Keiki Co Ltd Physical quantity sensor and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210592A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd Manufacturing method of vacuum locking device
JP2009250874A (en) * 2008-04-09 2009-10-29 Nagano Keiki Co Ltd Physical quantity sensor and method for manufacturing the same
US8096189B2 (en) 2008-04-09 2012-01-17 Nagano Keiki Co., Ltd. Physical quantity sensor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4683618B2 (en) Diaphragm type pressure sensor and manufacturing method thereof
US6568274B1 (en) Capacitive based pressure sensor design
CN103308239B (en) MEMS capacitive pressure sensor
EP3252449B1 (en) Miniaturized load sensor device having low sensitivity to thermo-mechanical packaging stress, in particular force and pressure sensor
US9513181B2 (en) Flat covered leadless pressure sensor assemblies suitable for operation in extreme environments
JPS6356935B2 (en)
US7497126B2 (en) Pressure sensor
US7798010B2 (en) Sensor geometry for improved package stress isolation
Hsieh et al. Investigation of a pressure sensor with temperature compensation using two concentric wheatstone-bridge circuits
EP1309840A2 (en) Capacitive based pressure sensor design
JP2008209284A (en) Pressure measuring device and method
JP2006275702A (en) Diaphragm type pressure sensor
JP4542397B2 (en) Manufacturing method of capacitive pressure sensor
JP2012063363A (en) Pressure sensor
JPH07174652A (en) Semiconductor pressure sensor and its manufacture as well as pressure detection method
JP6985086B2 (en) Pressure sensor
JP4414746B2 (en) Capacitive pressure sensor
US20090212899A1 (en) Low Pressure Transducer Using Beam and Diaphragm
US20160084723A1 (en) Pressure Sensor
US7367234B2 (en) Pressure sensor
JP2007093234A (en) Pressure sensor
KR101235998B1 (en) Method for producing micro-absolute pressure type pressure sensor
JP2007093242A (en) Pressure sensor
JP2006250837A (en) Pressure sensor
JP2019027849A (en) Capacitive pressure sensor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080313

A711 Notification of change in applicant

Effective date: 20100225

Free format text: JAPANESE INTERMEDIATE CODE: A712

A761 Written withdrawal of application

Effective date: 20100906

Free format text: JAPANESE INTERMEDIATE CODE: A761