JP2006275510A - Ice making device, freezing refrigerator, and ice making method - Google Patents

Ice making device, freezing refrigerator, and ice making method Download PDF

Info

Publication number
JP2006275510A
JP2006275510A JP2006188023A JP2006188023A JP2006275510A JP 2006275510 A JP2006275510 A JP 2006275510A JP 2006188023 A JP2006188023 A JP 2006188023A JP 2006188023 A JP2006188023 A JP 2006188023A JP 2006275510 A JP2006275510 A JP 2006275510A
Authority
JP
Japan
Prior art keywords
ice
ice making
tray
making
generating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006188023A
Other languages
Japanese (ja)
Other versions
JP2006275510A5 (en
JP4140641B2 (en
Inventor
Katsumasa Sakamoto
克正 坂本
Makoto Okabe
誠 岡部
Hiroshige Konishi
広繁 小西
Keiji Oya
恵司 大矢
Mariko Nakano
真理子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006188023A priority Critical patent/JP4140641B2/en
Publication of JP2006275510A publication Critical patent/JP2006275510A/en
Publication of JP2006275510A5 publication Critical patent/JP2006275510A5/ja
Application granted granted Critical
Publication of JP4140641B2 publication Critical patent/JP4140641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a house refrigerator with an ice making device having inexpensive structural members for refining highly transparent ice while avoiding incomplete formation of ice and eliminating the need for a mechanism which treats clouded ice melted water, and to provide a device and method for easily manufacturing transparent ice with less energy. <P>SOLUTION: The ice making device is mounted with a single-structure ice making tray 11 partitioned into a plurality of ice making blocks for storing water and making ice. The ice making tray 11 has a plurality of ice forming parts in the ice making blocks, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、製氷装置において氷を生成する際に、製氷皿に供給された水の中に溶存する気体成分やイオン成分などを分離し、透明度の高い氷を得る製氷を行う技術に関するものである。   TECHNICAL FIELD The present invention relates to a technique for making ice to obtain highly transparent ice by separating gas components and ion components dissolved in water supplied to an ice tray when generating ice in an ice making device. .

従来、家庭用の冷凍冷蔵庫などにおいては、給水装置から供給された水を製氷皿に貯留して製氷し、製氷後に駆動装置で製氷皿を反転して離氷させ、この氷をためておく自動製氷装置が普及している。しかし、一般的には白濁した氷が形成される。   Conventionally, in a refrigerator-freezer for home use, the water supplied from the water supply device is stored in an ice tray to make ice, and after ice making, the ice tray is inverted by the drive device to separate the ice, and the ice is stored. Ice making equipment is widespread. However, generally cloudy ice is formed.

一般的に物質が結晶を形成する場合、単一の成分で結晶が形成される。水が凍結して氷になる場合も同様であるため、水中に溶解している不純物は凍結過程で氷―水界面に排出され、氷―水界面では不純物が過飽和状態になっている。そして、過飽和水層の不純物が水中に拡散する速度よりも氷の成長する速度が大きい場合、氷は不純物を取り込みながら成長し氷はこの取り込んだものにより白濁する。   In general, when a substance forms crystals, crystals are formed with a single component. The same applies to the case where water freezes to become ice, so that impurities dissolved in water are discharged to the ice-water interface during the freezing process, and the impurities are supersaturated at the ice-water interface. When the growth rate of ice is larger than the diffusion rate of impurities in the supersaturated water layer into the water, the ice grows while taking in the impurities, and the ice becomes clouded by the taken-in one.

氷が白濁して見えるのは、氷に光を反射して白く見える部分が形成されるためであるが、これは水中に溶解した物質、特に氷中に溶存しているガス成分(CO2、O2など)が微小な気泡として氷に閉じ込められているためである。氷の中に入った光は、気泡表面で屈折したり反射したりする。気体成分の体積としては同一であっても、より細かい気泡が沢山形成されているほうがそれだけ光の経路が変えられる確率は高くなる、すなわち光が散乱反射しやすくなるため、白っぽく見えるようになる。 Ice appears to be cloudy because light is reflected on the ice to form parts that appear white. This is due to substances dissolved in water, especially gas components dissolved in ice (CO 2 , This is because O 2 etc.) are trapped in ice as fine bubbles. Light that enters the ice is refracted and reflected on the surface of the bubble. Even if the volume of the gas component is the same, the probability that the path of the light is changed is increased as more fine bubbles are formed, that is, the light is more easily scattered and reflected, so that it looks whitish.

ただし、一般的に目にする氷は、透明度によらず、多くの単結晶氷が固まってできる多結晶氷であり、結晶間に供給水中に溶解していた物質が残っている場合が多い。従って、透明な氷を作る目的は、氷の実際の味向上よりはむしろ見た目のおいしさ感や美しさを追及することにあり、食品に関係する冷蔵庫では大きな問題になり多くの公知技術が知られている。   However, the ice generally seen is polycrystalline ice that is formed by solidifying a large amount of single crystal ice regardless of transparency, and there are many cases in which a substance dissolved in the supply water remains between the crystals. Therefore, the purpose of making transparent ice is not to improve the actual taste of ice, but to pursue the deliciousness and beauty of its appearance. This is a major problem in refrigerators related to food, and many known technologies are known. It has been.

例えば製氷皿を多数のコアなで連結された2重構造としたもの(特許文献1参照)、この製氷皿をヒーターを設けた断熱槽の開放面に取り付けた自動製氷装置が提案されている(特許文献2参照)。また不純物の入っている水を貯水したり水切り排水し、一部を揚水する技術がある(特許文献3参照)。   For example, an ice making apparatus having a double structure in which an ice tray is connected with a large number of cores (see Patent Document 1) and an automatic ice making apparatus in which this ice tray is attached to an open surface of a heat insulating tank provided with a heater have been proposed ( Patent Document 2). Further, there is a technique for storing water containing impurities, draining and draining water, and pumping a part of the water (see Patent Document 3).

特許2524811号公報(第6図、第10図など)Japanese Patent No. 2524811 (FIGS. 6, 10, etc.) 実開平6−4561号公報(図1など)Japanese Utility Model Publication No. 6-4561 (FIG. 1 etc.) 特許登録第2781429号(請求項1など)Patent registration No. 2781429 (claim 1 etc.)

従来の製氷装置では、透明氷を得る部分と白濁水を集める部分の間を連通する孔が小さいと、水の表面張力により下皿に水が入っていかず、上皿に白濁氷ができる可能性があったり、氷の体積膨張による圧力で、製氷皿が破損する危険性があるという問題があった。更に給水時セパレータ下部に気泡が溜まることがある。この気泡が、上皿氷表面が凍結し、脱気面がなくなってから浮き上がってくることで、異形の氷が形成される。また離氷時、皿底面全体にわたり固体層の厚みが大きくなることにより、離氷時のひねりトルクが大きくなりモーター寸法のみならず余分なエネルギーが必要になるという問題があった。更に離氷後、下皿氷を溶かすために、10W程度の高入力で30〜60分連続通電を必要とし、製氷皿下に設けられた貯氷箱内の氷や他室への影響、消費電力が悪化するなど実用に
ならないという問題があった。更に、氷融解後の水を給水タンクに戻す機構や氷を水から引上げ、乾燥させるための水切り篭などが必要というごとく構造が複雑になり、寸法が大きく、且つ、製造費用もかかるという問題があった。
In conventional ice making equipment, if the hole communicating between the part that obtains clear ice and the part that collects cloudy water is small, water may not enter the lower dish due to the surface tension of water, and there is a possibility that cloudy ice can form on the upper dish There was a problem that there was a risk that the ice tray was damaged by the pressure due to the volume expansion of ice. Furthermore, air bubbles may accumulate at the bottom of the separator during water supply. This bubble rises after the surface of the upper ice plate freezes and the deaeration surface disappears, and deformed ice is formed. In addition, when the ice is removed, the thickness of the solid layer is increased over the entire bottom surface of the plate, which increases the twisting torque at the time of the ice removal and requires extra energy as well as the motor size. Furthermore, to melt the lower tray ice after deicing, continuous energization is required for 30 to 60 minutes with a high input of about 10 W, the effect on the ice in the ice storage box provided under the ice tray and other rooms, power consumption There was a problem that it was not practical, such as worsening. Furthermore, there is a problem that the structure is complicated, the size is large, and the manufacturing cost is high, such as a mechanism for returning the water after melting the ice to the water supply tank and a drainer for pulling the ice from the water and drying it. there were.

本発明は、以上のような問題点を解決するためになされたもので、氷の不出来を解消でき、また、白濁氷融解水を処理する機構が不要であり、安価な構成部材で透明度の高い氷を精製できる製氷装置および製氷方法を提供することを目的とする。更に本発明は透明氷を簡単に製造できるエネルギーの少ない装置、方法を得ることが目的である。更に本発明はおいしそうな透明氷を食品収納部分のスペースを減らさずに得られる実用的な冷蔵庫を提供することを目的としている。   The present invention has been made to solve the above-described problems, and can solve the problem of ice, and does not require a mechanism for treating cloudy ice-melted water. An object is to provide an ice making apparatus and an ice making method capable of purifying high ice. It is a further object of the present invention to provide a low energy device and method that can easily produce transparent ice. A further object of the present invention is to provide a practical refrigerator in which delicious transparent ice can be obtained without reducing the space in the food storage part.

本発明の製氷装置は、区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに機械力を加えられて生成された氷が離氷可能な製氷皿と、製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、第1の氷生成部といったいに設けられ設けられ第1の氷生成部と開口部にて給水が連通し第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせる第2の氷生成部と、第1の氷生成部で生成された氷に開口部を通じて連続して製氷される第2の氷生成部で生成された氷と、を備え、開口部は開口部近傍の氷が機械力を受けて切断可能な寸法および形状とするものである。   The ice making device of the present invention stores water in each of a plurality of partitioned ice making blocks, receives ice to make ice, and makes ice generated by applying mechanical force to the ice making tray, and the ice making tray. The first ice generator and the first ice generator that are provided in the partitioned ice making block and receive ice to promote ice making, and are supplied with water through the first ice generator and the opening. Is made continuously through the opening to the second ice generating unit that delays ice making by reducing the influence of the cold from the first ice generating unit, and the ice generated by the first ice generating unit And the ice produced in the second ice producing part, and the opening has a size and shape that allows the ice near the opening to be cut by receiving mechanical force.

本発明の製氷装置は、区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともにひねりを与えられ生成された氷が離氷する製氷皿と、製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、製氷ブロックに設けられ第1の氷生成部と開口部にて給水が連通し第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせられる第2の氷生成部であって、第1の氷生成部よりも生成された氷が製氷皿から分離しにくい寸法および形状とする第2の氷生成部と、を備え、製氷皿がひねりを受けて開口部近傍で切断された第1の氷生成部で生成された氷が離氷するものである。   The ice making device of the present invention is divided into an ice making tray in which water is stored in each of a plurality of divided ice making blocks and ice is received by receiving cold air and the generated ice is deiced, and the ice making tray is partitioned. A first ice generating unit provided in the ice making block that receives cold air to promote ice making, and a water supply communicates between the first ice generating unit and the opening provided in the ice making block from the first ice generating unit. Second ice generating unit that can delay ice making by reducing the effect of receiving ice, and has a size and shape that makes it difficult for the ice generated from the first ice generating unit to be separated from the ice tray. And the ice produced in the first ice production part cut in the vicinity of the opening when the ice tray is twisted is deiced.

本発明の製氷装置は、区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに生成された氷が離氷可能な製氷皿と、製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、製氷ブロックの下方に設けられ第1の氷生成部と開口部にて給水が連通し第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせる第2の氷生成部と、第1の氷生成部で生成された氷に開口部通じて接続される第2の氷生成部で生成された氷と、を備え、第1の氷生成部は製氷皿の開放面に開放され、第2の氷生成部は第1の氷生成部と連通する開口部へ膨張可能に開放されているものである。   The ice making device according to the present invention includes an ice making tray in which water is stored in each of a plurality of partitioned ice making blocks and ice is received by receiving cold air, and the generated ice can be deiced, and the ice making blocks partitioned in the ice making tray A first ice generation unit that is provided with cold air to promote ice making, and a water supply communicates between the first ice generation unit and the opening provided below the ice making block, and cool air is supplied from the first ice generation unit. A second ice generator that delays ice making with less influence, and an ice generated in the second ice generator connected through an opening to the ice generated in the first ice generator; The first ice generating unit is opened to the open surface of the ice tray, and the second ice generating unit is opened to be able to expand to an opening communicating with the first ice generating unit.

本発明の製氷方法は、製氷室に配置され製氷皿の上方より冷気を吹き付けて、製氷皿上面を開放して設けた第1の氷生成部の製氷を促進するステップと、第1の氷生成部の下方に設けられ第1の氷生成部と連通する第2の氷生成部を加熱して第1の氷生成部よりも製氷を遅らせるステップと、第1の氷生成部での氷の生成状態により加熱を停止させ製氷させるステップと、製氷皿にひねりを加え第2の氷生成部の氷と第1の氷生成部で生成された氷とを切断させるステップと、を備えたものである。   The ice making method of the present invention includes a step of accelerating ice making in a first ice generating unit provided in an ice making chamber by blowing cool air from above the ice making plate to open the top surface of the ice making plate, and first ice generation A step of heating a second ice generating unit provided below the unit and communicating with the first ice generating unit to delay ice making relative to the first ice generating unit, and generation of ice in the first ice generating unit A step of stopping the heating according to the state and making ice, and a step of twisting the ice tray to cut the ice of the second ice generating unit and the ice generated by the first ice generating unit. .

本発明は、以上説明したように、透明氷を簡単に製造できるエネルギーの少ない装置、方法が得ることができる。更に本発明はおいしそうな透明氷を食品収納部分のスペースを減らさずに得られる実用的な冷蔵庫を提供できる。   As described above, the present invention can provide an apparatus and method with less energy that can easily produce transparent ice. Furthermore, the present invention can provide a practical refrigerator in which delicious transparent ice can be obtained without reducing the space in the food storage portion.

実施の形態1.
以下、本発明の実施の形態1について、図1から図5に従い説明する。
Embodiment 1 FIG.
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1は本発明にかかる製氷装置が適用された家庭用冷凍冷蔵庫の正面断面図で、正面の扉を除いた場合の状態を説明している。図2(a)は本発明にかかる製氷皿の側断面図で(b)は製氷装置の上面図、図3は製氷装置の上面図、図4、5は本発明にかかる製氷皿の横断面図である。   FIG. 1 is a front sectional view of a domestic refrigerator-freezer to which an ice making device according to the present invention is applied, and illustrates a state where a front door is removed. 2A is a side sectional view of the ice making tray according to the present invention, FIG. 2B is a top view of the ice making device, FIG. 3 is a top view of the ice making device, and FIGS. 4 and 5 are cross-sectional views of the ice making tray according to the present invention. FIG.

冷凍冷蔵庫本体1は、外箱2、内箱3、および外箱2と内箱3の間に充填された断熱材4により構成され、食品を収納する複数の区画が設けられ、製氷室5の上部に設置された冷蔵室6、製氷室5の下部に設置された野菜室7、冷凍冷蔵庫1の扉に設けられた図示されていない操作パネルによりエンドユーザが任意に温度を設定できる切替室8、冷凍室9などがあり、各室を区画形成する断熱材4を充填した区画壁10で分けられている。なお図1では貯氷箱21と製氷皿11を同じ製氷室5の中に収納する例を説明しているがこれらを別の室に設けてもかまわない。また、前出の図示しない操作パネルは、冷蔵庫の各部屋の温度調節や運転モードをエンドユーザが選択したり、現状の各部屋の温度や運転モードなどを表示しエンドユーザに伝えることができる。   The refrigerator-freezer main body 1 is composed of an outer box 2, an inner box 3, and a heat insulating material 4 filled between the outer box 2 and the inner box 3, and is provided with a plurality of compartments for storing food. A refrigerating room 6 installed in the upper part, a vegetable room 7 installed in the lower part of the ice making room 5, and a switching room 8 in which the end user can arbitrarily set the temperature by an operation panel (not shown) provided on the door of the refrigerator 1 And a freezer compartment 9 and the like, which are divided by a partition wall 10 filled with a heat insulating material 4 for partitioning each chamber. Although FIG. 1 illustrates an example in which the ice storage box 21 and the ice tray 11 are stored in the same ice making chamber 5, they may be provided in different chambers. Further, the above-described operation panel (not shown) can be used by the end user to select the temperature adjustment and operation mode of each room of the refrigerator, or can display the current temperature and operation mode of each room to inform the end user.

図2、図3などに記載されている製氷皿11は製氷室5内に設置され、ポリプロピレンなどの樹脂材質からなる成型品であり、上面は開口し、その内側が凹状に形成された複数の製氷ブロックに区画され、図2(a)(b)の空気の流れが示すように製氷皿11の上面である開放面に冷蔵庫壁面から送風機により吹き出される冷気を受けて上部から氷が生成され、上面を冷却した冷気は下部に循環して再び冷蔵庫壁面に吸い込まれている。図3のように隣接する製氷ブロック間の壁面には、皿の内側寄りに設けられた各ブロックに給水を流し込みやすくする切り欠き溝で結ばれているものもある。また図1のようにこの製氷皿11に給水する水を貯留する給水タンク12から製氷皿11に水を流す給水配管13が設けられており、図示されていないが、この給水配管13の出口には凍結防止のためのヒータが設けられ、制御装置からの指示に基づき給水配管の電磁弁を開閉し製氷皿11へ一定量の給水が行われる。図2の製氷皿11の支持軸14を回転駆動するモータおよび減速ギアなどを内蔵した駆動装置15がフレーム16に設置されている。支持軸14の一端は製氷皿11を支持するフレーム16に連通し、他端を前記駆動装置15に接続し、離氷時に、この駆動が行われ製氷皿11が反転したときに、製氷皿11の反転を制限しひねりを加え脱氷を促進するストッパー17もフレーム16に設けられている。製氷皿に加えられるひねりは駆動装置が支持軸を回転させて製氷皿がストッパー17にて停止しても、更に支持軸を例えば45゜廻すことにより製氷皿にひねりが加えられストッパー側と駆動装置側で製氷皿が変形することになる。   The ice tray 11 described in FIG. 2 and FIG. 3 is a molded product made of a resin material such as polypropylene, which is installed in the ice making chamber 5. The top surface is opened, and a plurality of recesses are formed on the inside. As shown by the air flow in FIGS. 2 (a) and 2 (b), ice is generated from above by receiving cold air blown from the refrigerator wall surface by the blower on the open surface, which is the upper surface of the ice tray 11, as shown in the air flow in FIGS. The cold air whose upper surface has been cooled circulates in the lower part and is sucked into the refrigerator wall surface again. Some of the wall surfaces between adjacent ice making blocks as shown in FIG. 3 are connected by notch grooves for facilitating pouring of water into each block provided closer to the inside of the dish. Further, as shown in FIG. 1, a water supply pipe 13 for flowing water from the water supply tank 12 for storing water supplied to the ice tray 11 to the ice tray 11 is provided. Although not shown, an outlet of the water supply pipe 13 is provided. Is provided with a heater for preventing freezing, and a certain amount of water is supplied to the ice tray 11 by opening and closing the electromagnetic valve of the water supply pipe based on an instruction from the control device. A driving device 15 including a motor for rotating and driving the support shaft 14 of the ice tray 11 shown in FIG. One end of the support shaft 14 communicates with a frame 16 that supports the ice tray 11, and the other end is connected to the driving device 15. When the ice tray 11 is inverted when this drive is performed at the time of ice removal, the ice tray 11 is reversed. The frame 16 is also provided with a stopper 17 that restricts reversal of the rotation and accelerates deicing by twisting. Even if the driving device rotates the support shaft and the ice tray stops at the stopper 17, the twist is applied to the ice tray by rotating the support shaft, for example, 45 °, and the twist is applied to the ice tray. The ice tray will deform on the side.

製氷皿11の水がほぼ凍結したことを認識できるような位置、例えば製氷皿11下部には、図4で示すサーミスタおよび直接サーミスタに冷気があたらないようサーミスタ下部に設けた断熱材からなる温度センサ18が取り付けられている。製氷皿11底面に設けられた開口部19と一体に成型され、製氷皿11と開口部19で連通し、給水した水が貯められる溝状の突起部20が下方に突出して設けられている。この突起部20は、区画された上部の複数の製氷ブロックごとに設けられている。更に製氷装置の下方には、製氷皿11から反転して離氷した氷を受け止め貯氷する貯氷箱21がある。このように製氷皿が製氷する区画は上部の複数の製氷ブロック部である第1の氷生成部とこれより大幅に少ない内容積である溝状の突起部20である第2の氷生成部からなっている。   A temperature sensor comprising a heat-insulating material provided at a position where the water in the ice tray 11 can be recognized substantially frozen, for example, the thermistor shown in FIG. 18 is attached. A groove-like protrusion 20 is formed protruding downward and formed integrally with an opening 19 provided on the bottom surface of the ice tray 11 and communicated with the ice tray 11 and the opening 19 to store the supplied water. The protrusion 20 is provided for each of the plurality of upper ice making blocks. Further, below the ice making device, there is an ice storage box 21 for receiving and storing ice that has been inverted from the ice making tray 11 and deiced. In this way, the ice trays make ice from the first ice generating unit that is a plurality of ice making blocks at the top and the second ice generating unit that is the groove-shaped protrusion 20 that has a significantly smaller internal volume. It has become.

なお、図示されていないが、冷凍冷蔵庫本体1には冷媒を圧縮する圧縮機、冷媒を絞るキャピラリーチューブ、ガス状態の冷媒の熱を庫外に放熱して凝縮させる凝縮器、液状態の冷媒を気化させ得られる冷熱で庫内空気を冷却する冷却器、冷却器等の冷凍サイクルと、この冷却機を通過し各室へ冷気を運ぶ通気ダクトと送風機、および各室への冷気供給量を調節するダンパ等の冷気循環装置と、冷蔵庫の各機器動作を制御する制御基板等の制御装置がある。これらの装置により冷気を供給して冷蔵庫内各個室の温度を変化させたり所定の温度に保ったり、霜取りや製氷、照明などの制御を行っている。   Although not shown, the refrigerator-freezer body 1 includes a compressor that compresses the refrigerant, a capillary tube that squeezes the refrigerant, a condenser that radiates and condenses the heat of the gaseous refrigerant to the outside, and a liquid refrigerant. Adjusting the refrigeration cycle of the cooler, cooler, etc. that cools the air in the cabinet with the cool heat that can be vaporized, the ventilation duct and blower that carries the cool air to each room through this cooler, and the amount of cool air supplied to each room There are cool air circulation devices such as dampers and control devices such as control boards for controlling the operation of each device of the refrigerator. Cold air is supplied by these devices to change the temperature of each individual room in the refrigerator, to keep it at a predetermined temperature, and to control defrosting, ice making, lighting, and the like.

次に、図2から図5に基づいて本実施例にかかわる製氷動作の工程の一例を述べる。まず、給水タンク12から給水配管13を通って製氷皿11の一部に水が供給され切り欠き溝を通り各製氷ブロックへ水が供給される。さらにこのとき、開口部19を通り突起部20にも水が供給される。なお、切り欠き溝は、突起部20に水が流れ込みやすいように、開口部19と直列の位置に設けられていてもよい。また、開口部19が複数ある場合には、それぞれの開口部19と直列になるように、一つの製氷ブロック間壁面に複数の切り欠き溝があってもよい。   Next, an example of the steps of the ice making operation according to the present embodiment will be described based on FIGS. First, water is supplied from the water supply tank 12 through the water supply pipe 13 to a part of the ice tray 11 and is supplied to each ice making block through the notch groove. Further, at this time, water is also supplied to the protrusion 20 through the opening 19. The notch groove may be provided at a position in series with the opening 19 so that water can easily flow into the protrusion 20. In addition, when there are a plurality of openings 19, a plurality of notch grooves may be provided on one wall surface between the ice making blocks so as to be in series with each of the openings 19.

なお本発明の図面や説明では、突起部20を各ブロックごとに下方に複数軸方向に長い溝形状で設けている例で説明しているが、これは製氷皿を離氷時に捻りやすくしてモーターのトルクを従来と大差ないものとすることや、製氷皿反転時にこの回転半径内に突起部20を収めるようにして製氷装置全体の寸法を増加させないためであり、この突起部の位置や寸法、形状、方向等が製氷皿をねじりやすい位置、寸法、形状、方向等で回転半径内に収まったりこの回転半径を大きく超えるものでなければ、例えば円が連続している溝のようなものや、各ブロック毎でなく複数のブロックにつながっていたり、製氷皿の内側側面に開口部を設けるなどの、構造でもよいことは当然である。またこの第2の氷生成部の内容積を大きくしすぎると透明氷の生成により時間がかかり、また使用するエネルギーが大きくなる。一方あまり小さすぎると透明度が低下する氷しか得られない。実用的な時間、例えば3.5時間以内にエネルギーをあまり増やさずに透明氷を生成しようとすると突起部内容積は製氷皿の離氷する内容積の10−20パーセントぐらいが望ましい。   In the drawings and description of the present invention, an example is described in which the protrusion 20 is provided in the shape of a groove that is long in a plurality of axial directions below each block, but this makes it easier to twist the ice tray when deicing. This is because the torque of the motor is not much different from the conventional one, and the size of the entire ice making device is not increased by accommodating the protruding portion 20 within this turning radius when the ice tray is reversed. If the shape, direction, etc. are within the rotation radius at a position, size, shape, direction, etc. that are easy to twist the ice tray, or if it does not greatly exceed this rotation radius, for example, a groove like a continuous circle, Of course, the structure may be such as connecting to a plurality of blocks instead of each block, or providing an opening on the inner side surface of the ice tray. Further, if the internal volume of the second ice generating part is excessively increased, it takes time to generate transparent ice, and the energy used is increased. On the other hand, if it is too small, only ice with reduced transparency can be obtained. If the transparent ice is to be generated without increasing the energy within a practical time, for example, 3.5 hours, the internal volume of the protrusion is preferably about 10-20% of the internal volume of the ice tray.

開口部19は、水が流れる少なくとも一方向に延びた形状をしている。最大長さは製氷皿11の氷一粒づつ形成される製氷ブロック長さである。これによって、水の表面張力に負けずに突起部20に水を流し込むことができる。さらに他の一方向は、これよりも短い形状である必要がある。例えば5mm以下、最適であるのは2〜3mm幅である。これによって、製氷完了後、駆動装置15およびストッパー17により製氷皿11に加えられる離氷のためのひねりにより氷が開口部19近傍で破断することができる。すなわち突起部20はその入り口である開口部19が最も面積を大きくするが細長くすることによりスムースな給水や離氷時の切断に都合が良い。このような開口部形状として想定される最も簡易な形状は、例えば長方形や楕円形などであるが、突起部19に給水時に確実に水が入り、かつ離氷時に開口部19近傍で氷が破断できるのであれば、他のいかなる形状であっても構わない。   The opening 19 has a shape extending in at least one direction in which water flows. The maximum length is the length of the ice making block formed for each ice cube in the ice tray 11. Thereby, water can be poured into the protrusion 20 without losing the surface tension of water. Further, the other direction needs to have a shorter shape. For example, a width of 2 mm to 3 mm is optimal for 5 mm or less. Thus, after the ice making is completed, the ice can be broken in the vicinity of the opening 19 by the twist for deicing applied to the ice tray 11 by the driving device 15 and the stopper 17. In other words, the projection 20 has an opening 19 which is the largest entrance, but the area is the largest, but it is convenient for smooth water supply and cutting during deicing by making it elongated. The simplest shape assumed as such an opening shape is, for example, a rectangle or an ellipse, but water reliably enters the protrusion 19 when water is supplied, and the ice breaks in the vicinity of the opening 19 when the ice is removed. Any other shape is possible as long as it is possible.

また、突起部20は、極端に細い部分がない形状としたり水のたまる位置に蓋をかぶせたりするような形状を避けるなど、水が流入したときに気泡が溜まりにくいと想定される方向、位置、形状から選択されれ場よく、その場合は横向きなどでもよく他に制限される要素はない。また、その深さも同様に気泡が溜まりにくい高さである。その条件内であれば、突起部20は、開口部19の形状・大きさを開口部19垂直方向へ押し出した形状でなく、開口部19から離れるにつれ縮小または拡大した形状であってもよい。また、突起部底面は必ずしも平面である必要はなく、水流が滑らかに突起部20に入るように円弧状または傾斜がついた、例えば逆三角形のような形状であってもよい。また、突起部20は、製造上の容易さからそれぞれ独立した形状として記載したが、より水流が流れやすい形状として、任意の個数が連結した形を取ってもよい。開口部近傍で切断しやすい開口の形状は支持軸が軸の両端でねじられる形となるため、軸に沿って平行な細長い開口が氷の破談のためには余り力が必要とせず望ましい。但し開口の形状は図に示すストレートな長方形以外でも、波状やくの字状でも細長く軸に沿って設けられておれば良く、更に円がつながって細長い形状などどのようなものでも力が大きくならなければ駆動装置への影響は小さい。   Further, the protrusion 20 has a shape and shape that does not have an extremely thin portion, or avoids a shape that covers the water accumulation position, such as a direction and position where bubbles are unlikely to accumulate when water flows in. The shape may be selected from the shape, in which case it may be in the horizontal direction and there are no other limited elements. Similarly, the depth is a height at which bubbles are difficult to collect. As long as it is within the conditions, the protrusion 20 may not be a shape in which the shape and size of the opening 19 are pushed in the vertical direction of the opening 19 but may be a shape that is reduced or enlarged as the distance from the opening 19 increases. Further, the bottom surface of the protruding portion is not necessarily a flat surface, and may have a circular arc shape or an inclined shape such as an inverted triangle so that the water flow smoothly enters the protruding portion 20. Moreover, although the protrusion part 20 was described as an independent shape from the ease of manufacture, it may take a shape in which any number is connected as a shape in which the water flow can flow more easily. The shape of the opening that is easy to cut in the vicinity of the opening is such that the support shaft is twisted at both ends of the shaft, so that a long and narrow opening parallel to the shaft is desirable because it does not require excessive force for ice breaking. However, the shape of the opening is not limited to the straight rectangle shown in the figure, it may be wavy or square-shaped, and it should be long and long along the axis. In this case, the influence on the driving device is small.

なお、製氷皿底面についても平面として記載したが、これに限定されるものではなく、図5に示すように、皿底面が湾曲していたり、V字型であったり、突起部周囲のみが落ち込んだ形で湾曲していたりと、任意の形状であって構わない。このような形状をとることで、氷の厚みが増して見えるので、同一体積の氷でも大きな氷に見える効果が得られる。   Although the bottom surface of the ice tray is also described as a flat surface, the present invention is not limited to this, and as shown in FIG. 5, the bottom surface of the dish is curved, V-shaped, or only the periphery of the protrusion is depressed. It may be an arbitrary shape such as an oval curve. By taking such a shape, the thickness of the ice appears to increase, so that even the same volume of ice can be seen as a large ice.

次に、供給された水は製氷室5で凍結される。一般的に、低温部に晒されている面から凍結が始まる。その際、氷は水分子でのみ結晶を形成し、水に溶解していた物質(Caなどのミネラル成分やO、CO2などの気体成分)は全て結晶の外の未凍結部に放出される。このとき、5mm/時間程度以下という凍結速度は十分遅いため、始めのうちは溶解した物質が、凍結速度よりも速く未凍結部に拡散し、透明な氷が生成され、その後、過飽和に達した気体成分が大きく集積し、光の散乱反射をある程度抑止した大気泡が1つまたは複数形成され、気泡入りグラスのような、透明度には影響しない氷のアクセントを得た意匠的に優れた氷を生成することができる。製氷皿のブロックごとにこのような過程で透明な氷が生成されていく。 Next, the supplied water is frozen in the ice making chamber 5. Generally, freezing starts from the surface exposed to the low temperature part. At that time, ice forms crystals only with water molecules, and all substances dissolved in water (mineral components such as Ca and gaseous components such as O 2 and CO 2 ) are released to the unfrozen part outside the crystals. The At this time, since the freezing rate of about 5 mm / hour or less is sufficiently slow, initially the dissolved substance diffuses to the unfrozen part faster than the freezing rate, transparent ice is generated, and then reaches supersaturation. Designed with excellent design ice that has a large concentration of gas components and one or more large bubbles that suppress the scattering and reflection of light to some extent, and has an ice accent that does not affect transparency, such as glass with bubbles. Can be generated. Transparent ice is generated by this process for each block of the ice tray.

この凍結時に、凍結速度が拡散速度を下回るように製氷皿11上面から冷気を供給し、製氷皿11の側面とフレーム16の隙間を通り貯氷箱21と製氷皿11下面の間の空間を通って流れていく。このとき、製氷皿11の上面は下面よりも低温かつ高風速の空気に接しているため、凍結は主に製氷皿11の上面から下面に向かって進行し、水に溶解していた物質のほとんどは未凍結部、すなわち製氷皿11下部へ向かって拡散していく。さらに凍結が進むと、突起部20のみ未凍結部となり製氷皿11には透明な氷が形成され、最後に突起部20が水に溶解していた物質のほとんどを含む形で白濁凍結して製氷が完了する。   During this freezing, cold air is supplied from the upper surface of the ice tray 11 so that the freezing speed is lower than the diffusion speed, passes through the gap between the side surface of the ice tray 11 and the frame 16, and passes through the space between the ice storage box 21 and the lower surface of the ice tray 11. It will flow. At this time, since the upper surface of the ice tray 11 is in contact with air at a lower temperature and higher wind speed than the lower surface, freezing mainly proceeds from the upper surface to the lower surface of the ice tray 11 and most of the substances dissolved in water. Diffuses toward the unfrozen portion, that is, the lower part of the ice tray 11. When the freezing further proceeds, only the protrusion 20 becomes an unfrozen part, and transparent ice is formed on the ice tray 11. Finally, the protrusion 20 is frozen in white turbidity in a form containing most of the substance dissolved in water, and ice making. Is completed.

この過程で、氷の体積は約10%増加する。従って、増加した体積分氷が伸張できる開放空間がないと、体積膨張の圧力により製氷皿が破損する可能性がある。従来例にある製氷皿のように、製氷皿内に仕切りを設けた構造では、仕切に圧力がかかり、そこから製氷皿が破損する。本発明では、製氷皿11においても突起部20内においても、体積膨張した分、氷は製氷皿11上方の開放空間に向かって伸張していくため、製氷皿11および突起部20には、通常の製氷皿と同程度の力しかかからず、破損の危険性もない。すなわち開口部19の開口と突起部の内容積の関係は氷の膨張に対しこれを制限する蓋が無く開かれており、面積や方向も氷の上の開放空間への伸びを制限するもので無いので信頼性の高い装置ができる。   In this process, the ice volume increases by about 10%. Therefore, if there is no open space in which the increased volumetric ice can stretch, the ice tray may be damaged by the pressure of volume expansion. In a structure in which a partition is provided in the ice tray like the ice tray in the conventional example, pressure is applied to the partition, and the ice tray is broken from there. In the present invention, since the ice expands toward the open space above the ice tray 11 by the volume expansion in both the ice tray 11 and the protrusion 20, It is only as strong as an ice tray, and there is no risk of breakage. In other words, the relationship between the opening of the opening 19 and the internal volume of the projection is open without a lid that restricts the expansion of ice, and the area and direction also limit the extension of the ice to the open space. Since there is no device, a highly reliable device can be made.

このような動作を効果的に行うためには、突起部20を最も凍結の遅い部位に設置する必要がある。例えば、製氷速度が氷水平面どの位置でも常に同等であれば、突起部は底面の任意の位置に設置してもよいが、例えば製氷皿側面で、製氷皿外側のほうがより冷気が回り、冷却が早く進むのであれば、製氷皿11底面の内側に少なくとも一つは突起部20を設ける必要がある。なお、突起部20の個数や配置は特に限定しない。また、ここでは開口部19および突起部20を製氷皿11底面に設置するように記載したが、製氷皿11側面に設置されていても構わない。   In order to perform such an operation effectively, it is necessary to install the protruding portion 20 at a site that is most slowly frozen. For example, if the ice making speed is always the same at any position on the ice water plane, the protrusion may be installed at an arbitrary position on the bottom surface. In order to proceed quickly, it is necessary to provide at least one protrusion 20 inside the bottom surface of the ice tray 11. The number and arrangement of the protrusions 20 are not particularly limited. Although the opening 19 and the protrusion 20 are described as being installed on the bottom surface of the ice tray 11 here, they may be installed on the side surface of the ice tray 11.

突起部20は、製氷皿11に形成される氷の透明度に影響のない程度にまで、溶解していた物質を集積するために必要な容積を持つ。製氷速度によってその体積は異なるが、製氷時間約1時間であれば体積の約60%、製氷時間約3時間で約10%、製氷時間3.5時間で約5%である。おおよそ1時間から3時間ぐらいで製氷させると家庭用冷蔵庫の食品としての透明氷生成には実用的である。すなわち短い時間で生成させると透明度が中途半端になるし、あまり長い時間かけると、すなわち氷の生成速度を2mm/時間というような長い時間かけると、より透明な氷が得られるが、冷蔵庫に必要な生成する透明氷の量が不足する。ただしこれは製氷する水の量にもよるので、少なくとも3.5時間以内を製氷サイクルとして透明氷を生成することが望ましい。   The protrusion 20 has a volume necessary for accumulating dissolved substances to such an extent that the transparency of ice formed on the ice tray 11 is not affected. The volume varies depending on the ice making speed, but if the ice making time is about 1 hour, the volume is about 60%, the ice making time is about 10%, and the ice making time is about 5%. Making ice in about 1 to 3 hours is practical for producing transparent ice as food for household refrigerators. In other words, if it is generated in a short time, the transparency becomes halfway, and if it takes too long, that is, if it takes a long time such as 2 mm / hour of ice generation, more transparent ice can be obtained, but it is necessary for the refrigerator. Insufficient amount of clear ice to form. However, since this depends on the amount of water to be made, it is desirable to produce transparent ice with an ice making cycle of at least 3.5 hours.

製氷が終わると、離氷を行う。離氷のタイミングは、製氷皿11から離氷した氷が完全に凍結し、貯氷箱21に落下する際に製氷皿11からも突起部20からも水が落下してこない状態である。この状態が可能であれば、製氷皿11または突起部20に未凍結部が残っていても構わない。   When ice making is finished, the ice is removed. The timing of deicing is a state in which the ice deiced from the ice tray 11 is completely frozen and water does not fall from the ice tray 11 or the protrusion 20 when falling into the ice storage box 21. If this state is possible, an unfrozen portion may remain in the ice tray 11 or the protrusion 20.

離氷動作に移るタイミングは、温度センサ18があらかじめ製氷完了と確認できるある温度になったときである。ただし、このタイミングは給水開始や給水後温度センサ18があらかじめ設定した温度検出時など、冷蔵庫内の任意の動作を基点に算出された所定時間経過後としてもよく、さらに、温度と時間双方を併用した動作によってもよい。このタイミング検知により、先に述べたように、駆動装置15およびストッパー17により製氷皿11に加えられる離氷のためのひねりにより氷が開口部19近傍で破断する。   The timing for moving to the deicing operation is when the temperature sensor 18 reaches a certain temperature at which it can be confirmed in advance that ice making is complete. However, this timing may be after the elapse of a predetermined time calculated based on an arbitrary operation in the refrigerator, such as at the start of water supply or when the temperature sensor 18 after water supply detects a temperature in advance, and both temperature and time are used in combination. It is also possible to do this. By this timing detection, as described above, the ice breaks in the vicinity of the opening 19 due to the twist for deicing applied to the ice tray 11 by the driving device 15 and the stopper 17.

このとき、突起部20周囲は所定の温度以下になっていなくてはならない。所定の温度とは、突起部20の氷の周辺部が融解し、製氷皿11の氷に突起部20の氷が連結した状態で離氷する可能性を回避できる温度帯の上限値が望ましいがこれより低い温度であればよい。   At this time, the periphery of the protrusion 20 must be below a predetermined temperature. The predetermined temperature is preferably an upper limit value of a temperature range that can avoid the possibility that the peripheral portion of the ice of the protrusion 20 melts and the ice of the protrusion 20 is connected to the ice of the ice tray 11. The temperature may be lower than this.

また、製氷皿11の氷は開口部19近傍以外で破断することなく、且つ開口部19近傍で破断した後、速やかに落下する仕様をとる必要がある。まず、製氷皿11の側面が底面から上方に向けて外側に向けて十分な傾斜角度をとることである。具体的には側面の少なくとも一面、例えば製氷皿11を駆動装置15およびストッパー17による離氷動作後に最も残氷性の高い個所近傍の面、の傾斜角度は鉛直方向に対し少なくとも10゜以上の傾斜角度を取ることが望ましい。また製氷皿から離氷される氷をスムースに落下させるため製氷皿側面の傾斜角度を大きくするだけでなく、皿側面内部の氷と製氷皿の摩擦を最小限にすべく型磨きを十分にした金型にて成型することが望ましい。具体的には型磨きレベルを透明プラスチック製品レベル(#2000)まで加工してあると離氷に有利である。なお、本製氷皿のような構造を取る場合、離氷トルクは現在一般的に自動製氷に用いられている製氷皿から氷を離氷する際のトルクと殆ど変わらないので、従来例で示した製氷皿のように高トルク化が必要な場合の新規部品追加などが不要で、寸法が変わること無く、且つ製造費用が上がらない。   In addition, it is necessary to take a specification that the ice in the ice tray 11 does not break outside the vicinity of the opening 19 and quickly drops after breaking near the opening 19. First, the side surface of the ice tray 11 has a sufficient inclination angle toward the outside from the bottom surface upward. Specifically, the inclination angle of at least one of the side surfaces, for example, the surface in the vicinity of the portion having the highest residual ice property after the ice making operation of the ice tray 11 by the driving device 15 and the stopper 17 is at least 10 ° or more with respect to the vertical direction. It is desirable to take an angle. In addition to increasing the angle of inclination on the side of the ice tray in order to smoothly drop the ice released from the ice tray, the mold has been polished sufficiently to minimize friction between the ice on the side of the tray and the ice tray. It is desirable to mold with a mold. Specifically, if the mold polishing level is processed to the level of transparent plastic product (# 2000), it is advantageous for deicing. In addition, when taking a structure like this ice tray, the ice-breaking torque is almost the same as the torque when the ice is removed from the ice tray currently generally used for automatic ice making. There is no need to add new parts when high torque is required as in an ice tray, the dimensions do not change, and manufacturing costs do not increase.

また、上述のように製氷皿11の上方がより広い面積を取れることで、製氷皿下方よりも冷却速度を早くする効果が促進される。   Moreover, the effect which makes a cooling rate quicker than the ice-making tray lower part is accelerated | stimulated by taking the wider area above the ice-making tray 11 as mentioned above.

さらにこのような製氷皿を反転させて捻り離氷させるとき、突起部20の内面側にて生成された氷は落下しない仕様をとる必要がある。まず、突起部20の側面が底面から上方に向けて外側に向けて必要最低限の傾斜角度(例えば10°以下の角度)をとるものとする。必要最低限の傾斜角度とは、離氷動作で氷は取れないが、製氷皿11および開口部19および突起部20からなる部材を成型する際に、型からは確実に抜ける、という角度の範囲内にあることを示す。これにより製氷皿内側表面である側面の角度は突起部内側の側面の角度より大きい、言い換えると突起部側の側面角度を製氷皿側の側面角度より小さくすることになる。この角度の違いは金型の角度を変えてもよいし、金型の側面に相当する部分の磨き方を変えても良い。   Furthermore, when such an ice tray is inverted and twisted to remove ice, it is necessary to take specifications that the ice generated on the inner surface side of the protrusion 20 does not fall. First, it is assumed that the side surface of the protruding portion 20 has a minimum necessary inclination angle (for example, an angle of 10 ° or less) from the bottom surface to the upper side and outward. The minimum necessary tilt angle is an angle range in which ice cannot be removed by the deicing operation, but when the member made of the ice tray 11, the opening 19, and the protrusion 20 is molded, it is surely removed from the mold. Indicates that it is inside. As a result, the angle of the side surface, which is the inner surface of the ice tray, is larger than the angle of the side surface inside the projection, in other words, the side angle on the projection portion side is smaller than the side angle on the ice tray side. This difference in angle may change the angle of the mold or may change the way of polishing the portion corresponding to the side surface of the mold.

さらに、突起部20内部が磨かれていないことである。前述のように、供給水が突起部20により流れ込みやすくするために側面に傾斜を大きくつけたい場合には、さらに表面を粗くすることにより、さらに突起部20内に氷を留めておくことがより確実となる。   Furthermore, the inside of the protrusion 20 is not polished. As described above, when it is desired to increase the inclination of the side surface so that the supplied water can easily flow into the protrusion 20, it is possible to keep the ice in the protrusion 20 by making the surface further rough. It will be certain.

さらに、突起部20の高さは、離氷時に氷が抜けない任意の高さで、部材の肉厚込みで製氷皿11横幅最大部と支持軸14の位置で規定される回転軌跡の半径範囲内に収まる高さである必要がある。突起部20の高さを製氷皿11横幅最大部よりも長く取り、回転軌跡の半径を突起部20の高さで設定しても構わないが、その場合、フレーム16の幅変更など、製氷室5内の製氷皿11および開口部19および突起部20以外の構成部品の構造まで変更しなくてはならなくなるため、より安価な製造方法とることができるものとしては、突起部19の高さを、上述のように製氷皿11横幅最大部で規定される回転軌跡の半径範囲内に収まる高さに収めることが望ましい。   Furthermore, the height of the protrusion 20 is an arbitrary height at which the ice does not escape during deicing, and the radius range of the rotation trajectory defined by the position of the maximum width of the ice tray 11 and the support shaft 14 by thickening the member. It must be high enough to fit inside. The height of the protrusion 20 may be longer than the maximum width of the ice tray 11 and the radius of the rotation trajectory may be set by the height of the protrusion 20. 5, the structure of the component parts other than the ice tray 11, the opening 19, and the protrusion 20 must be changed. Therefore, as a cheaper manufacturing method, the height of the protrusion 19 is As described above, it is desirable that the ice tray 11 be within a height range that is within the radius range of the rotation locus defined by the maximum width of the ice tray 11.

また、前述のように、突起部20の個数は限定していない。このため、支持軸14に近い位置と遠い位置に設置することも可能であるが、このとき、当然のことながら支持軸14に近い方が製氷皿11の底面から回転軌跡までの距離は長い。従って、支持軸14に近い位置の突起部20は、支持軸14に遠い位置の突起部20よりも長くしてあってもよい。これによって、製氷が製氷皿11の上面のみでなく側面からも徐々に製氷されていく場合に、より溶解した物質を多量に含み白濁部を形成しやすい水を突起部20に閉じ込め凍結させることができる。   Further, as described above, the number of the protrusions 20 is not limited. For this reason, it is possible to install it at a position close to and far from the support shaft 14, but as a matter of course, the distance from the bottom surface of the ice tray 11 to the rotation trajectory is longer near the support shaft 14. Therefore, the protrusion 20 near the support shaft 14 may be longer than the protrusion 20 far from the support shaft 14. As a result, when ice making is gradually made not only from the upper surface but also from the side surface of the ice tray 11, water that contains a larger amount of a more dissolved substance and easily forms a cloudy part can be trapped and frozen in the protrusion 20. it can.

この離氷動作の後、給水し、次のサイクルの製氷工程に入るが、このとき、給水された水により突起部20内に残る氷は徐々に融解する。融解は、突起部20に残る氷上面のみでなく、側面からも水が徐々に回り込み、融解していくので、突起部底まで十分に水が回り込むと、突起部20に残っていた氷は浮き上がり、製氷皿11に貯留されている水によって融解されながら混合していく。なお、このとき製氷皿11に貯留された水の表面が完全に凍結していなければ、気体成分は水面から放出されるため、次の製氷工程で白濁成分が大幅に増加することがない。   After this deicing operation, water is supplied and the ice making process of the next cycle is started. At this time, the ice remaining in the protrusion 20 is gradually melted by the supplied water. Melting is not only from the top surface of the ice remaining on the protrusion 20, but also from the side, and the water gradually melts and melts. Therefore, when the water sufficiently flows to the bottom of the protrusion, the ice remaining on the protrusion 20 floats up. Then, mixing is performed while being melted by the water stored in the ice tray 11. At this time, if the surface of the water stored in the ice tray 11 is not completely frozen, the gas component is released from the water surface, so that the cloudy component does not increase significantly in the next ice making step.

なお、貯氷箱21に蓄えられる氷の透明感を明確にするために、製氷箱21内部を氷の透明度明瞭にする配色にしたり、青色LEDを照射するなど、透明度を効果的に演出できる配色や明るさなどの環境を整えていてもよい。 In addition, in order to clarify the transparency of ice stored in the ice storage box 21, a color scheme that makes the transparency of the ice making box 21 clear, the blue LED irradiation, etc. can be used to effectively produce transparency. You may arrange environment, such as brightness.

さらに、冷蔵庫運転開始時や製氷皿清掃後の1回目の製氷時、すなわち突起部20に水又は氷が存在しない場合とそれ以外の場合で、常に同一の大きさの氷を供給するために、後者で供給水量を突起部20の体積分減らしてもよい。   Furthermore, in order to always supply the same size of ice at the start of refrigerator operation or at the first ice making after cleaning the ice tray, that is, when water or ice does not exist in the protrusion 20 and in other cases, In the latter case, the amount of supplied water may be reduced by the volume of the protrusion 20.

上記説明では、製氷皿11上方から冷却する方法について述べたが、次に突起部近傍にヒータなどの加熱手段を備える構成を次に説明する。これにより、白濁部を形成する物質を確実に突起部に追い込み、製氷皿に透明氷を生成することができ、離氷後の給水時に突起部20の氷が製氷皿11の貯留水中に浮上するまでの時間を短縮できる。以下、図6〜図13に従い説明する。なお、以下の説明で、先の説明と等しいものに関しては説明を省略する。   In the above description, the method of cooling from above the ice tray 11 has been described. Next, a configuration in which heating means such as a heater is provided in the vicinity of the protrusion will be described. Thereby, the substance which forms a cloudiness part can be reliably driven into a projection part, and transparent ice can be produced | generated to an ice tray, and the ice of the projection part 20 floats in the stored water of the ice tray 11 at the time of water supply after deicing. Can be shortened. Hereinafter, a description will be given with reference to FIGS. In the following description, the description that is the same as the previous description is omitted.

図6は本発明にかかる製氷装置の説明図で(a)は側断面図、(b)は上面図、図7、8は本発明にかかる製氷皿の横断面図、図9は本発明にかかる製氷皿を上面から見て製氷皿下に設置したヒーターを投資した図、図10は本発明にかかる製氷工程のフローチャート、図11は本発明にかかる製氷工程のタイムチャート、図12、13は本発明にかかる製氷実験結果の一例である。   6A and 6B are explanatory views of an ice making device according to the present invention. FIG. 6A is a side sectional view, FIG. 6B is a top view, FIGS. 7 and 8 are transverse sectional views of the ice tray according to the present invention, and FIG. FIG. 10 is a flow chart of an ice making process according to the present invention, FIG. 11 is a time chart of the ice making process according to the present invention, and FIGS. It is an example of the ice-making experiment result concerning this invention.

ニクロム線などの発熱体を、シリコンゴムなどで被覆したコードヒータ22を製氷皿11の下側に設け、図9に示すように、製氷皿11の各製氷ブロック毎に設けられた突起部20の間に密着するように設置している。ヒータ22は、低温でもひび割れたりしない耐寒性のある部材でかつ離氷時の製氷皿ひねりに追随できる柔軟性を持つ部材、例えばシリコン材等で形成されている必要がある。また、ヒータをなるべくコンパクトに設置するために、図9に示すように最大でも製氷皿11の側面外周程度と非常に短い長さにしており、発熱密度が高くても変質しない部材であることも必要である。ただし、このヒータは、製氷室5が十分に冷却されておらず、かつ給水もない空焼き状態でも製氷皿11を含む冷蔵庫本体1のあらゆる部材を変形・故障させないものであり、二重絶縁されているなど、安全面でも十分な信頼性を持つ。製氷皿に取り付けられるヒーターの発熱本体はこの製氷皿を人が触ったり水にぬれることがあるため金属面等発熱部が剥き出しにされることがなく、しかも2重絶縁にするため安全なものになる。   A cord heater 22 in which a heating element such as a nichrome wire is coated with silicon rubber or the like is provided on the lower side of the ice tray 11, and as shown in FIG. 9, the protrusion 20 provided for each ice making block of the ice tray 11 is provided. It is installed so that it is in close contact. The heater 22 needs to be formed of a cold-resistant member that does not crack even at low temperatures and a flexible member that can follow the ice tray twisting at the time of deicing, such as a silicon material. Further, in order to install the heater as compactly as possible, it may be a member that does not deteriorate even when the heat generation density is high, as shown in FIG. is necessary. However, this heater does not cause any deformation or failure of the members of the refrigerator body 1 including the ice tray 11 even when the ice making chamber 5 is not sufficiently cooled and is baked without water supply, and is double insulated. It has sufficient reliability in terms of safety. Heating body of the heater attached to the ice tray is safe because it does not expose the heat generating parts such as metal surfaces because the ice tray may be touched by people or get wet. Become.

このヒータ22を製氷皿11の底面に密着させると、その部分も凍結速度が突起部20同様に遅くなり白濁部が形成されてしまう可能性がある。ただし、不必要に離しすぎると製氷皿11の底面からも凍結が進み、開口部19が閉塞され、製氷皿11には白濁部の多い氷が形成される可能性がある。これらを回避するために、製氷皿11の底面には突起部20に供給されるよりは少ない熱が供給されるようなヒータ設置構造を取る必要がある。これは、例えば、図7、8に示されるように、ヒータ22を突起部20の側面に密着させ第1の氷生成部分である製氷皿11底面からはやや離した(例えば2〜5mm程度離した)構造を取るとよ
い。
When the heater 22 is brought into close contact with the bottom surface of the ice tray 11, the freezing speed of that portion is also slowed similarly to the protruding portion 20, and a cloudy portion may be formed. However, if it is unnecessarily separated, freezing proceeds from the bottom surface of the ice tray 11, the opening 19 is closed, and ice with a lot of cloudiness may be formed on the ice tray 11. In order to avoid these, it is necessary to adopt a heater installation structure in which less heat is supplied to the bottom surface of the ice tray 11 than is supplied to the protrusions 20. For example, as shown in FIGS. 7 and 8, the heater 22 is brought into close contact with the side surface of the protrusion 20 and is slightly separated from the bottom surface of the ice tray 11 that is the first ice generation part (for example, about 2 to 5 mm). It is good to take a structure.

また、加熱手段であるヒータ22の設置位置をより容易に確実にするために、ヒータ22を製氷皿11底面に接するように設置したい場合には、ヒータ22の被覆内部の発熱体をわざと製氷皿11の底面と反対側に偏らせて成形したものを用いてもよい。また、製氷皿11の底面のヒータ22に接する部位で、皿厚みを増してもよく、製氷皿11とヒータ22間に断熱材を設置してもよい。   Further, in order to more easily ensure the installation position of the heater 22 that is a heating means, when the heater 22 is to be installed in contact with the bottom surface of the ice tray 11, the heating element inside the cover of the heater 22 is intentionally placed in the ice tray. 11 may be formed so as to be biased to the opposite side of the bottom surface. Further, the thickness of the tray may be increased at a portion of the bottom surface of the ice tray 11 in contact with the heater 22, and a heat insulating material may be installed between the ice tray 11 and the heater 22.

上述のように、突起部20が2つある場合はその間に挟みこむようにして設置したが、製氷皿11底面との距離を明確に保つために突起部20底面に設置してもよい(図8(a))。また、ヒータ22の設置が容易なように、突起部20全体を覆うように設置してもよい(図8(b))。いずれにしても、凍結を最も遅らせたい位置に効率的に熱を供給できるように設置してあれば、いかなる設置位置であっても構わない。   As described above, when there are two protrusions 20, they are installed so as to be sandwiched between them, but in order to keep the distance from the bottom of the ice tray 11 clear, they may be installed on the bottom of the protrusions 20 (FIG. 8 ( a)). Moreover, you may install so that the protrusion part 20 whole may be covered so that installation of the heater 22 may be easy (FIG.8 (b)). In any case, any installation position may be used as long as heat can be efficiently supplied to a position where freezing is most delayed.

なお、このヒータ22も離氷時の回転軌跡内に設置させる必要があることは、自明である。ヒータ22の設置方法としては、複数の突起部20に挟みこむようにして設置する方法だけでなく、突起部20が一つしかない場合には、突起部20と並行に設けた止め板を設け、その間に挟みこんでもよい。また、突起部20とヒータ22をアルミテープなど熱伝導性の高い部材で被覆し、突起部20全体に熱が効率的に伝わるように設置してもよい。また、ヒータ22の落下を防止できる爪止め構造を設けてもよい。また、この爪止め構造は、温度センサ18の設置カバーと一体成形されたものであってもよい。   It is obvious that the heater 22 needs to be installed in the rotation locus at the time of deicing. The heater 22 is not only installed by being sandwiched between the plurality of protrusions 20, but when there is only one protrusion 20, a stop plate provided in parallel with the protrusion 20 is provided. It may be sandwiched between. Alternatively, the protrusion 20 and the heater 22 may be covered with a member having high thermal conductivity such as aluminum tape so that heat is efficiently transmitted to the entire protrusion 20. Further, a claw structure that can prevent the heater 22 from falling may be provided. Further, the claw stop structure may be integrally formed with the installation cover of the temperature sensor 18.

上述の説明ではヒータ22は1本であるものとして説明したが、製氷皿11の上面からの冷却量が製氷ブロック部位毎に大きく異なる、例えば冷風の当たり方に大きな差異がある、などの場合には、ヒータ22を複数本設置し、個別の入力を与えてもよい。また、ヒータ22は突起部20に密着するものとして記載したが、上述全てと同等の伝熱効果が得られるものであれば必ずしも突起部20に密着せず、離れた位置にあってもよい。またヒーターの周りを断熱材で覆いこの加熱手段が発生する熱の大半が突起部20である第2の氷生成部のみに伝わるようにすると効率的に加熱することができる。   In the above description, it is assumed that there is only one heater 22. However, when the amount of cooling from the top surface of the ice tray 11 is greatly different for each ice making block, for example, there is a large difference in how the cold air hits. May install a plurality of heaters 22 and give individual inputs. In addition, the heater 22 is described as being in close contact with the protrusion 20, but the heater 22 may not necessarily be in close contact with the protrusion 20 as long as a heat transfer effect equivalent to that described above can be obtained, and may be in a remote position. In addition, if the heater is covered with a heat insulating material so that most of the heat generated by the heating means is transmitted only to the second ice generation unit, which is the protrusion 20, it can be heated efficiently.

上述のように設置されたヒータ22は、連続通電でもよいが、図10、11に示すように給水後から、一定期間通電し、その後断電することで、使用するエネルギー量を低減し製氷速度を上げても透明度の高い氷を得ることができる。 The heater 22 installed as described above may be continuously energized, but as shown in FIGS. 10 and 11, the energization is performed for a certain period after the water supply, and then the power is cut off, thereby reducing the amount of energy used and the ice making speed. Even if you raise the value, you can get highly transparent ice.

図10、11で示した制御方法に沿って、ヒータ22の制御動作を含む製氷動作について説明する。ステップ1にて図11のごとく給水用電磁弁を通電させて給水ポンプを一定時間動作させ定められた水量を製氷皿11に給水する。ステップ1で行われた給水完了直後にステップ2でヒータ22に通電が開始される。これにより、前回のサイクルで突起部に内蔵され残された氷は水の供給と加熱により解かされ、不純物などや貴方が製氷皿全体に広がり一部は開放面から放出される。ステップ3で、温度センサ18の出力が、実験などによって求められた製氷皿11内の水の凍結と相関のある値をもとに設定された所定の温度Ta、例えば−1度より低い温度に達するまで一定量の通電を行う。所定の温度Taに達したらステップ4でヒータを断電する。このとき、製氷皿11には透明氷が形成されているが、突起部20の水はまだ未凍結部が残っている状態である。ヒータ22が断電し加熱を停止することで突起部20の中の未凍結部は急速に凍結する。これは突起部20に熱供給が無くなり、冷蔵庫の製氷室5環境を形成する冷気にさらされるためである。   The ice making operation including the control operation of the heater 22 will be described along the control method shown in FIGS. In step 1, the water supply solenoid valve is energized as shown in FIG. 11 to operate the water supply pump for a certain period of time to supply the determined amount of water to the ice tray 11. Immediately after the completion of the water supply performed in step 1, energization of the heater 22 is started in step 2. As a result, the ice remaining in the protrusion in the previous cycle is melted by supplying and heating water, and impurities and you spread throughout the ice tray and a part is released from the open surface. In step 3, the output of the temperature sensor 18 is set to a predetermined temperature Ta set based on a value correlated with the freezing of the water in the ice tray 11 obtained by experiments or the like, for example, a temperature lower than -1 degree. Energize a certain amount until it reaches. When the predetermined temperature Ta is reached, the heater is turned off in step 4. At this time, transparent ice is formed on the ice tray 11, but the water of the protrusion 20 is still in an unfrozen portion. When the heater 22 is turned off and heating is stopped, the unfrozen portion in the protrusion 20 is rapidly frozen. This is because the protrusion 20 loses heat supply and is exposed to the cold air forming the ice making room 5 environment of the refrigerator.

ステップ5で、温度センサ18の出力が、実験などによって求められた突起部20内の水の凍結と相関のある値をもとに設定された所定の温度Tbに到達したと判断されると、ステップ6から始まる離氷工程に移る。ステップ6で離氷用駆動装置15が正転し、製氷皿11を反転させていき、ステップ7で時間tr経過するまで正転方向に動作し続ける。このとき、製氷皿11の一端がストッパ−17に押しつけられ皿がひねられ、捩れることによる開口部19にかかる応力で製氷皿11と突起部20の氷が分断し、製氷皿11の氷は貯氷箱21に落下する。ステップ8で駆動装置15が逆転し、製氷皿11を元の位置に向けて回転させ、ステップ9で時間tr経過するまで逆転方向に動作し続け、ステップ10で製氷皿11が元の位置に戻り、駆動装置15が停止する。この離氷時には突起部20の中の氷はそのまま残ることになる。ステップ11で、貯氷箱21が満氷であるかどうか検知し、この給水、製氷、離氷を行う工程が1サイクルの製氷工程であり、満氷になるまでステップ1に戻り製氷動作サイクルを繰り返す。   When it is determined in step 5 that the output of the temperature sensor 18 has reached a predetermined temperature Tb set based on a value correlated with the freezing of water in the protrusion 20 obtained by experiments or the like, Move to the de-icing process starting from step 6. In step 6, the ice removing drive device 15 rotates in the normal direction to reverse the ice tray 11, and continues to operate in the normal direction until the time tr elapses in step 7. At this time, one end of the ice tray 11 is pressed against the stopper 17, the tray is twisted, and the ice on the ice tray 11 and the protrusion 20 is divided by the stress applied to the opening 19 by twisting, and the ice on the ice tray 11 is It falls into the ice storage box 21. In step 8, the driving device 15 reversely rotates and rotates the ice tray 11 toward the original position. In step 9, it continues to operate in the reverse direction until time tr elapses, and in step 10, the ice tray 11 returns to the original position. Then, the driving device 15 stops. At the time of this ice removal, the ice in the protrusion 20 remains as it is. In step 11, it is detected whether or not the ice storage box 21 is full of ice, and the process of supplying water, making ice, and removing ice is a one-cycle ice making process. The process returns to step 1 until the ice is full and the ice making operation cycle is repeated. .

上述の制御に基づいた実験結果一例を図12に示す。横軸は製氷時間、縦軸は氷の透明度である。例えば透明度95%以上のものを得たい場合、最適な製氷時間約2.5〜3.5時間程度である。この領域よりも製氷時間が早いものは、ヒータ22の通電量が小さい場合やヒータ22を断電するタイミングが早すぎた場合である。また、遅いものは、ヒータ22の通電量が大きい場合やヒータ22を断電するタイミングが遅すぎた場合である。さらに、供給水量を変えた場合は、より少ない水量では、一点鎖線で示すように同一の透明度を得る為の製氷時間が早くなり、より多い水量では、破線で示すように同一の透明度を得るための製氷時間が遅くなる。透明度を若干低くしても早く満氷にしたい場合は温度Taを高くしたり通電量を低く抑えると良い。透明氷を大量に必要としない場合は設定温度Taをより低くしたり通電量を大きくし、更に水量を増やすと良い。   An example of the experimental results based on the above control is shown in FIG. The horizontal axis is ice making time, and the vertical axis is ice transparency. For example, when it is desired to obtain a product having a transparency of 95% or more, the optimum ice making time is about 2.5 to 3.5 hours. The ice making time earlier than this region is when the energization amount of the heater 22 is small or when the heater 22 is cut off too early. Moreover, a slow thing is a case where the amount of electricity supply of the heater 22 is large, or the timing which cuts off the heater 22 is too late. Furthermore, if the amount of water supplied is changed, the smaller the amount of water, the faster the ice making time for obtaining the same transparency as shown by the one-dot chain line, and the larger amount of water for obtaining the same transparency as shown by the broken line. The ice making time is slow. If it is desired to quickly fill the ice even if the transparency is slightly lowered, the temperature Ta may be increased or the energization amount may be kept low. If a large amount of transparent ice is not required, it is better to lower the set temperature Ta or increase the energization amount and further increase the amount of water.

ヒータ22の能力は、冷却能力によって決まる。冷却能力が大きくなればヒータ22の能力も比例的に大きなものを選択する必要がある。ただし、このとき、製氷室5に貯氷箱21を設けている場合は、貯氷箱21内に貯められている氷がヒータ22からのふく射熱で融解したりすることがないようにする必要がある。図13は、貯氷箱内に、ある熱容量を持つ物質を置き、その中心の温度変化を見たものである。ヒータ22通電開始前後で、温度は大きな変化がなく、ヒータ22が通電している間中に大幅に昇温することもない。従って、通常の家庭用冷蔵庫の製氷室5構造で、貯氷箱21内の氷に熱的な影響をほとんど与えない構造を検討することが可能であることがわかる。   The capacity of the heater 22 is determined by the cooling capacity. If the cooling capacity increases, it is necessary to select a heater 22 having a proportionally large capacity. However, at this time, when the ice storage box 21 is provided in the ice making chamber 5, it is necessary to prevent the ice stored in the ice storage box 21 from being melted by the radiant heat from the heater 22. FIG. 13 shows a temperature change at the center when a substance having a certain heat capacity is placed in an ice storage box. There is no significant change in temperature before and after the start of energization of the heater 22, and the temperature does not increase significantly while the heater 22 is energized. Therefore, it can be seen that it is possible to study a structure that hardly affects the ice in the ice storage box 21 with the structure of the ice making room 5 of a normal household refrigerator.

なお、ヒータ22の通電タイミングを給水完了直後としたが、突起部20に流入した水が凍結し始めないうちに通電開始できるタイミングがあればいつでもよく、例えば、給水開始と同時に、または、温度センサ18で検出される温度が所定温度に到達したとき、または、これらのタイミングから所定の時間が経過したときなどであってもよい。   It should be noted that the energization timing of the heater 22 is set immediately after the completion of the water supply. However, any time may be used as long as the current that can be energized before the water flowing into the protrusion 20 starts to freeze, for example, at the same time as the start of water supply or a temperature sensor. It may be when the temperature detected at 18 reaches a predetermined temperature, or when a predetermined time elapses from these timings.

突起部20への加熱を停止するヒータ22の断電タイミングに関しても同様で、温度センサ18で検出される温度が所定温度に到達したとき以外にも、製氷皿11に供給された水がほぼ凍結し、突起部20には未凍結部が多く残る状態で断電できるタイミングであればいつでもよく、例えば、上述のヒータ22の通電開始タイミングから所定時間経過後、または上述のヒータ22の通電開始タイミングから所定時間経過後に温度センサ18で検出される温度が所定温度に到達したときなどであってもよい。   The same applies to the timing at which the heater 22 that stops heating the projection 20 is turned off, and the water supplied to the ice tray 11 is almost frozen in addition to when the temperature detected by the temperature sensor 18 reaches a predetermined temperature. However, any timing may be used as long as it can be disconnected when a large number of unfrozen portions remain on the protrusion 20, for example, after a predetermined time has elapsed from the energization start timing of the heater 22 or the energization start timing of the heater 22. May be when the temperature detected by the temperature sensor 18 reaches a predetermined temperature after a predetermined time has elapsed.

また、製氷中のヒータ22の通電量を一定としたが、これを任意に変化させてもよい。例えば、冷蔵庫の圧縮機オンオフなどによる、冷却量の増減に伴ってヒータ22の通電量を増減させることで、透明度に影響なく製氷スピードを早めつつ製氷時の消費電力量を低減できる。また、製氷皿への冷気吹き付けがなくなるデフロスト時に通電量を低減又は断電することでも、やはり透明度に影響なく製氷スピードを早めつつ製氷時の消費電力量を低減できる。   Further, although the energization amount of the heater 22 during ice making is made constant, this may be arbitrarily changed. For example, by increasing / decreasing the energization amount of the heater 22 as the cooling amount increases / decreases due to the compressor on / off of the refrigerator, the power consumption during ice making can be reduced while increasing the ice making speed without affecting the transparency. In addition, reducing the amount of energization or de-energizing at the time of defrosting when no cold air is blown to the ice tray can also reduce the power consumption during ice making while increasing the ice making speed without affecting the transparency.

次に、製氷皿の清掃方法について説明する。冷蔵庫に具備した図示しない制御基板は、製氷した回数を記憶する。そしてあらかじめ設定された所定の回数に達したときに、図示しない操作パネル上に、例えばLEDを点滅させるなどの方法で、エンドユーザに清掃を勧める。エンドユーザは、例えば、図示しない操作小パネル上に設置された清掃スイッチを押して清掃モードを動作させる。これによりヒータ22に通電を開始し、突起部20内の氷を融解し、その後製氷皿を反転して排水させることができる機構を設けておく。このことにより、突起部20に供給水中に含まれるミネラル成分が残存していたとしても除去できるため、いつまでも清潔に透明氷を得ることができる。なおこの排水機構は製氷皿を反転させる正転時に突起部20内から流れ出した排水を蓄えておけばよく簡単な機構で寸法を増加させるものとはならない。また融解を促進するために給水しても良い。更に、給水と排水の動作を複数回行い、より清掃効果があがるようにしても良い。   Next, a method for cleaning the ice tray will be described. A control board (not shown) provided in the refrigerator stores the number of times of ice making. When the predetermined number of preset times is reached, cleaning is recommended to the end user by, for example, blinking an LED on an operation panel (not shown). For example, the end user operates a cleaning mode by pressing a cleaning switch installed on a small operation panel (not shown). Thereby, energization of the heater 22 is started, the ice in the protrusion 20 is melted, and then a mechanism that allows the ice tray to be reversed and drained is provided. Thereby, even if the mineral component contained in the supply water remains in the protruding portion 20, it can be removed, so that transparent ice can be obtained cleanly indefinitely. The drainage mechanism only needs to store the drainage that flows out from the protrusion 20 during normal rotation when the ice tray is inverted, and the size is not increased by a simple mechanism. Further, water may be supplied to promote melting. Further, the operation of water supply and drainage may be performed a plurality of times so that the cleaning effect is improved.

また、別の清掃方法として、清掃モードを動作させると、製氷皿11に給水・製氷し、製氷完了後、ヒータ22に、突起部20の氷周囲のみを融解できる時間だけ通電し、その後製氷皿を反転して製氷皿11と突起部20に形成された氷がつながった状態で排出されることで、突起部20に残存するミネラル成分を除去してもよい。   As another cleaning method, when the cleaning mode is operated, water is supplied to the ice tray 11 and ice is made. After the ice making is completed, the heater 22 is energized only for a period of time when only the ice around the protrusion 20 can be melted. The mineral component remaining on the protrusion 20 may be removed by discharging the ice tray 11 and the ice formed on the protrusion 20 in a connected state.

また、冷蔵庫本体1には、通常製氷と透明製氷を、エンドユーザが選択できるスイッチが設け、通常製氷を選択するときはヒータ22の動作を停止し、あらかじめ設定された時間で製氷を行う動作に切り替えができるので、エンドユーザの意思で消費電力量を節約することもできる。   Further, the refrigerator body 1 is provided with a switch that allows the end user to select normal ice making and transparent ice making. When normal ice making is selected, the operation of the heater 22 is stopped and ice making is performed in a preset time. Since switching is possible, the power consumption can be saved by the end user.

この発明にかかわる冷蔵庫は、複数の製氷ブロックに区画され水を貯留し製氷する一重構造の製氷皿において、前期製氷ブロック毎に氷生成部を複数設けた製氷皿を搭載し氷の透明部と白濁部を分離させてエンドユーザに透明な氷を提供することが可能な製氷装置である。これにより従来の冷蔵庫に設けられていた製氷装置と同程度の構造と寸法でエネルギーもほとんど増やさずに透明な氷を得ることができる。水を貯留し製氷する製氷皿の一部に穴を設けた第1の氷生成部と第1の氷生成部に設けた穴と同一形状の開口部を有する第2の氷生成部を一体で製造しており、このような一重構造の製氷皿の成型は、2つの金型間のキャビティに溶融させた樹脂を射出させて成型させることに製氷皿と突起部を一体にしたものを簡単な製造装置で短時間に製造できる。しかも製氷皿の第1の氷生成部の皿の内側表面が、前記第2の氷生成部の皿の内側表面よりも滑らかである様に、上の製氷皿に相当する金型の内側に相当する壁面の表面をつるつるにし、下の突起部の内側に相当する壁面を磨くことなくそのままとしておけばよい。   The refrigerator according to the present invention is a single-structure ice tray that is partitioned into a plurality of ice making blocks and stores water to make ice, and is equipped with an ice making tray provided with a plurality of ice generating units for each ice making block, and the transparent portion of the ice and the cloudiness It is an ice making device that can provide transparent ice to the end user by separating the parts. As a result, transparent ice can be obtained with almost the same structure and dimensions as an ice making apparatus provided in a conventional refrigerator, with little increase in energy. A first ice generating unit having a hole in a part of an ice tray for storing water and making ice and a second ice generating unit having an opening having the same shape as the hole provided in the first ice generating unit are integrated. Such a single-structured ice tray is manufactured by simply injecting molten resin into a cavity between two molds and molding the ice tray and projections into a simple one. It can be manufactured in a short time with a manufacturing device. Moreover, it corresponds to the inside of the mold corresponding to the upper ice tray so that the inner surface of the first ice generating portion of the ice tray is smoother than the inner surface of the second ice generating portion. The surface of the wall surface to be smoothed can be left as it is without polishing the wall surface corresponding to the inside of the lower projection.

本発明の製氷皿内側側面および突起部内側側面が、下面側から上面側に向かい外側に傾斜させ、更に製氷皿である第1の氷生成部の皿の側面の下面側から上面側に向かう傾斜角度が、突起部である第2の氷生成部の皿の側面の下面側から上面側に向かう傾斜角度よりも鉛直方向に対し大きな角度としておくことにより製氷皿からは離氷しやすく、突起部の氷は簡単に離氷しない。この場合、第1の氷生成部において、製氷皿側面が下面側から上面側に向かい外側に大きい角度で傾斜させ離氷させやすくしてもよいが、ねじりを与えるのでそのひねり角度によって決まるものでもあるので、上の製氷皿からは氷のブロックが抜けやすく、下の突起部からは抜けにくい角度であれば良い。   The ice tray inner side surface and the protrusion inner side surface of the present invention are inclined outward from the lower surface side toward the upper surface side, and further inclined from the lower surface side to the upper surface side of the side surface of the plate of the first ice generating unit which is an ice tray. By making the angle larger than the inclination angle from the lower surface side to the upper surface side of the side surface of the plate of the second ice generating unit, which is a protruding portion, it is easy to release ice from the ice tray, and the protruding portion The ice does not deice easily. In this case, in the first ice generating part, the side surface of the ice tray may be inclined outward from the lower surface side to the upper surface side at a large angle to facilitate ice detachment, but it may be determined by the twist angle because it is twisted. Therefore, it is sufficient that the ice block is easily removed from the upper ice tray and is not easily removed from the lower protrusion.

本発明の突起部である第2の氷生成部に近接した加熱手段に対し、少なくとも冷却手段は加熱手段と対向する面を冷却することが望ましい。この加熱手段は、第1の氷生成部よりも離しておくことが望ましい。   It is desirable that at least the cooling means cools the surface facing the heating means, with respect to the heating means close to the second ice generating portion which is the protrusion of the present invention. It is desirable that this heating means be separated from the first ice generating unit.

次に、ウイスキーをロックや水割りで飲む場合などに要求される見た目の良い(意匠性のよい)大きな透明氷(通常の製氷による通常の氷の大きさよりも大きな透明氷)の製造方法について説明する。本実施の形態では、製氷皿11への給水量を可変にしてユーザの満足する大きさの氷を得ることを目的としている。図14は、本発明の実施の形態1を表す冷蔵庫の製氷行程のフローを説明する図、図15は、給水量を可変させた場合の製氷行程のタイムチャートを説明する図である。   Next, a description will be given of a method for producing a large transparent ice having a good appearance (good design) required when drinking whiskey in a rock or in water (clear ice larger than the size of normal ice by normal ice making). . The purpose of the present embodiment is to obtain ice having a size that satisfies the user by changing the amount of water supplied to the ice tray 11. FIG. 14 is a diagram illustrating the flow of the ice making process of the refrigerator representing the first embodiment of the present invention, and FIG. 15 is a diagram illustrating a time chart of the ice making process when the amount of water supply is varied.

図を用いて、ヒータ22および給水ポンプ23の制御動作を含む製氷動作について説明する。本実施の形態では、例えば図示しない冷蔵庫本体正面あるいは側面あるいは庫内壁などに設けられた操作パネルに透明氷を選択できる製氷モード切替ボタンを設けており、ユーザがこの製氷モード切替ボタンを透明氷に切替えるか、あるいは切替ボタンではなく透明氷選択ボタンが設けられたものにおいては、透明氷ボタンが押されたかなど、透明製氷モードが選択されているかどうかをステップ31にて判定して給水量の調節を行う。   The ice making operation including the control operation of the heater 22 and the water supply pump 23 will be described with reference to the drawings. In the present embodiment, for example, an ice making mode switching button for selecting transparent ice is provided on an operation panel provided on the front or side of the refrigerator main body or the inner wall of the refrigerator (not shown), and the user makes the ice making mode switching button transparent ice. In the case where the transparent ice selection button is provided instead of the switching button, it is determined in step 31 whether the transparent ice making mode is selected, such as whether the transparent ice button has been pressed or not, and the water supply amount is adjusted. I do.

ステップ31にて透明氷製氷モードが選択されている場合には、ステップ32にて図示しない制御装置がステップ31にて透明氷製造指令を受け、この制御装置にあらかじめ設定された給水ポンプ駆動時間t1だけ給水ポンプ23を駆動し製氷皿11へ給水する。透明製氷モードが選択されていない場合にはステップ33であらかじめ図示しない制御装置に設定された給水ポンプ駆動時間t2だけ給水ポンプ23を駆動し製氷皿11へ給水する。このとき、ポンプの駆動時間t1は駆動時間t2より長い時間であり、例えばt1=10秒、t2=7秒などt1/t2=1.1〜3程度に設定すればよい。すなわち、ステップ31で製氷モードを判断して、ステップ32、ステップ33にて製氷皿11への給水量を変更して氷の大きさを変更している。   If the transparent ice making mode is selected in step 31, a control device (not shown) receives a transparent ice production command in step 31 and a feed water pump drive time t1 preset in the control device is received in step 31. Only the water supply pump 23 is driven to supply water to the ice tray 11. If the transparent ice making mode is not selected, the water supply pump 23 is driven for the water supply pump drive time t2 set in advance in a control device (not shown) in step 33 to supply water to the ice tray 11. At this time, the pump drive time t1 is longer than the drive time t2, and may be set to about t1 / t2 = 1.1-3, such as t1 = 10 seconds and t2 = 7 seconds. That is, the ice making mode is determined in step 31, and the amount of water supplied to the ice tray 11 is changed in steps 32 and 33 to change the size of the ice.

ステップ33で製氷皿11への給水が行われたときは、そのままステップ37に進む。このとき、前回のサイクルで製氷皿11の突起部20に内蔵され残された氷は水の供給と加熱により解かされ、不純物などや気泡が製氷皿全体に広がり一部は開放面から放出される。ステップ32で駆動時間t1にて製氷皿11への給水が行われたときは、給水完了直後にステップ34でヒータ22に通電が開始される。このとき、前回のサイクルで製氷皿の突起部20に残された氷は今回の水の供給とヒータ22による加熱により解かされ、不純物などや気泡が製氷皿全体に広がり一部は製氷皿11の開放面から放出される。   When water is supplied to the ice tray 11 in step 33, the process proceeds to step 37 as it is. At this time, the ice remaining in the protrusion 20 of the ice tray 11 in the previous cycle is melted by supplying and heating water, and impurities and bubbles are spread throughout the ice tray and a part is released from the open surface. . When water is supplied to the ice tray 11 at the drive time t1 in step 32, energization of the heater 22 is started in step 34 immediately after the completion of water supply. At this time, the ice remaining on the protrusion 20 of the ice tray in the previous cycle is dissolved by the current water supply and heating by the heater 22, and impurities and bubbles are spread throughout the ice tray and a part of the ice tray 11 is partially melted. Released from the open surface.

ステップ35で、温度センサ18の出力が、実験などによって求められた製氷皿11内の水の凍結と相関のある値をもとに設定された所定の温度Ta(例えば−1度より低い温度)に達するまで一定量の通電を行う。所定の温度Taに達したらステップ36にてヒータ22への通電を断電する。このとき、製氷皿11の中の第1の氷生成部には透明氷が形成されているが、突起部20の水はまだ未凍結部が残っている状態である。ヒータ22が断電し加熱を停止することで突起部20の中の第2の氷生成部内は急速に凍結する。これは冷蔵庫の冷凍室を形成する−18度の冷気が供給されているためである。   In step 35, the output of the temperature sensor 18 is set to a predetermined temperature Ta (for example, a temperature lower than -1 degree) set based on a value correlated with the freezing of the water in the ice tray 11 obtained by an experiment or the like. A certain amount of power is applied until the value is reached. When the predetermined temperature Ta is reached, in step 36, the power supply to the heater 22 is cut off. At this time, transparent ice is formed in the first ice generating part in the ice tray 11, but the water of the protruding part 20 is still in a state where an unfrozen part remains. When the heater 22 is turned off and the heating is stopped, the inside of the second ice generating part in the protrusion 20 is rapidly frozen. This is because the cold air of -18 degrees forming the freezer compartment of the refrigerator is supplied.

ステップ37で、温度センサ18の出力が、実験などによって求められた突起部20内の水の凍結と相関のある値をもとに設定された所定の温度Tbに到達したと判断されると、ステップ38から始まる離氷工程に移る。なお、ここではステップ37の設定値Tbは、製氷モードによらず同一の値(例えば−6度)が、例えば透明製氷モード選択時は−10度、通常製氷モード選択時は−6度というように、製氷モードによって設定値Tbを変えてもよい。ステップ38で離氷用駆動装置15が正転し、製氷皿11を反転させていき、ステップ39で時間tr経過するまで正転方向に動作し続ける。   When it is determined in step 37 that the output of the temperature sensor 18 has reached a predetermined temperature Tb set based on a value correlated with the freezing of the water in the protrusion 20 obtained by experiments or the like. The process proceeds to the de-icing process starting from step 38. Here, the set value Tb in step 37 is the same value (for example, −6 degrees) regardless of the ice making mode, for example, −10 degrees when the transparent ice making mode is selected, and −6 degrees when the normal ice making mode is selected. In addition, the set value Tb may be changed according to the ice making mode. In step 38, the ice removing drive device 15 rotates in the normal direction to reverse the ice tray 11 and continues to operate in the normal direction until the time tr elapses in step 39.

このとき、製氷皿11の一端がストッパ−17に押しつけられ皿がひねられ、捩れることによる開口部19にかかる応力で製氷皿11と突起部20の氷が分断し、製氷皿11の氷は貯氷箱21に落下する。ステップ40で駆動装置15が逆転し、製氷皿11を元の位置に向けて回転させ、ステップ41で時間tr経過するまで逆転方向に動作し続け、ステップ42で製氷皿11が元の位置に戻り、駆動装置15が停止する。この離氷時には突起部20の中の氷はそのまま残ることになる。ステップ43で、貯氷箱21が満氷であるかどうか検知し、この給水、製氷、離氷を行う工程が1サイクルの製氷工程であり、満氷になるまでステップ31に戻り製氷動作サイクルを繰り返す。   At this time, one end of the ice tray 11 is pressed against the stopper 17, the tray is twisted, and the ice on the ice tray 11 and the protrusion 20 is divided by the stress applied to the opening 19 by twisting, and the ice on the ice tray 11 is It falls into the ice storage box 21. In step 40, the driving device 15 reversely rotates, rotates the ice tray 11 toward the original position, and continues to operate in the reverse direction until time tr elapses in step 41. In step 42, the ice tray 11 returns to the original position. Then, the driving device 15 stops. At the time of this ice removal, the ice in the protrusion 20 remains as it is. In step 43, it is detected whether or not the ice storage box 21 is full of ice, and the process of supplying water, making ice, and removing ice is a one-cycle ice making process. The process returns to step 31 until the ice is full and the ice making operation cycle is repeated. .

また、透明氷を生成する際において、このように給水量を増加させることは透明氷の生成手段において大きな氷を生成でき、氷の意匠性改善につながるので、本実施の形態で説明した第1の氷生成部、第2の氷生成部を設けた製氷皿による透明製氷方式以外においても有効である   In addition, when generating transparent ice, increasing the amount of water supply in this way can generate large ice in the transparent ice generating means, leading to improvement in the design of the ice, so the first described in the present embodiment. It is also effective in cases other than the transparent ice making system using the ice tray provided with the ice generating part and the second ice generating part.

本発明は、以上説明したように、自動製氷装置が設置されている通常の冷蔵庫の製氷室構成部材に大幅な変更を加えることなく、異形な氷形成を回避でき、また、容易な製造方法で安価に製氷皿を製造でき、貯氷箱内の氷に悪影響を与えることなく、清掃性にも優れた製氷装置を提供できる。この結果実用的な冷蔵庫を得ることができる。また、製氷皿への給水時間(ポンプの駆動時間)を可変にする給水量可変手段を備えているので、給水時間を通常よりも長くして製氷皿への給水量を多くすることにより意匠性の優れた大きな透明氷を造ることができる。   As described above, the present invention can avoid the formation of irregular ice without significantly changing the components of the ice making chamber of a normal refrigerator in which an automatic ice making apparatus is installed, and can be easily manufactured. An ice tray can be manufactured at low cost, and an ice making device excellent in cleanability can be provided without adversely affecting the ice in the ice storage box. As a result, a practical refrigerator can be obtained. In addition, it is equipped with water supply amount variable means that makes the water supply time (pump drive time) variable to the ice tray, so that the design can be improved by increasing the water supply time to make the water supply time longer than usual. Can produce large transparent ice.

また、区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに機械力を加えられて生成された氷が離氷可能な製氷皿11と、前記製氷皿への給水量を可変する給水量調節手段である制御装置と、を備え、透明氷の製造指令を受けた場合に製氷皿11への給水量を多くするようにしたので、通常の製氷時に比べて製氷皿11への給水量が多くなり、ウイスキーをロックや水割りで飲む場合などに適した大きな透明氷が得られ、意匠性の良いおいしそうな透明氷が得られる。   The ice making tray 11 is configured to store water in each of a plurality of partitioned ice making blocks, receive ice to make ice, and make ice generated by applying mechanical force, and the amount of water supplied to the ice making tray. And a control device which is a water supply amount adjusting means for changing the water supply amount, and when the transparent ice production instruction is received, the water supply amount to the ice tray 11 is increased. The amount of water supplied to the water increases, and large transparent ice suitable for drinking whiskey in the rock or with water is obtained, and transparent ice that looks delicious with good design is obtained.

本発明の実施の形態1における製氷装置が適用された家庭用冷凍冷蔵庫の正面断面図である。It is front sectional drawing of the domestic refrigerator-freezer to which the ice making apparatus in Embodiment 1 of this invention was applied. 本発明の実施の形態1における製氷皿の説明図である。It is explanatory drawing of the ice tray in Embodiment 1 of this invention. 本発明の実施の形態1における製氷装置の上面図である。It is a top view of the ice making device in Embodiment 1 of the present invention. 本発明の実施の形態1における製氷装置の横断面図である。It is a cross-sectional view of the ice making device in Embodiment 1 of the present invention. 本発明の実施の形態1における他の製氷装置の横断面図である。It is a cross-sectional view of the other ice making apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における他の製氷装置の側断面図である。It is a sectional side view of the other ice making apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における他の製氷装置の横断面図である。It is a cross-sectional view of the other ice making apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における他の製氷装置の横断面図である。It is a cross-sectional view of the other ice making apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における製氷装置の底面図である。It is a bottom view of the ice making device in Embodiment 1 of the present invention. 本発明の実施の形態1における製氷工程のフローを説明する図である。It is a figure explaining the flow of the ice making process in Embodiment 1 of this invention. 本発明の実施の形態1における製氷工程のタイムチャートを説明する図である。It is a figure explaining the time chart of the ice making process in Embodiment 1 of this invention. 本発明の実施の形態1における製氷実験結果の一例を説明する図である。It is a figure explaining an example of the ice-making experiment result in Embodiment 1 of this invention. 本発明の実施の形態1における製氷実験結果の一例を説明する図である。It is a figure explaining an example of the ice-making experiment result in Embodiment 1 of this invention. 本発明の実施の形態1における製氷工程のフローを説明する図である。It is a figure explaining the flow of the ice making process in Embodiment 1 of this invention. 本発明の実施の形態1における製氷工程のタイムチャートを説明する図である。It is a figure explaining the time chart of the ice making process in Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 冷蔵庫本体、 5 製氷室、 11 製氷皿、 12 給水タンク、 13 給水配管、 15 駆動装置、 16 フレーム、 17 ストッパー、 18 温度センサ、 19 開口部、 20 突起部、 21 貯氷箱、 22 ヒーター、23 給水ポンプ   DESCRIPTION OF SYMBOLS 1 Refrigerator main body, 5 Ice making room, 11 Ice making tray, 12 Water supply tank, 13 Water supply piping, 15 Drive apparatus, 16 Frame, 17 Stopper, 18 Temperature sensor, 19 Opening part, 20 Protrusion part, 21 Ice storage box, 22 Heater, 23 Water supply pump

Claims (20)

区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに機械力を加えられて生成された氷が離氷可能な製氷皿と、前記製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、前記第1の氷生成部と一体に設けられ前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせる第2の氷生成部と、前記第1の氷生成部で生成された氷に前記開口部通じて連続して製氷される前記第2の氷生成部で生成された氷と、を備え、前記開口部は前記開口部近傍の氷が前記機械力を受けて切断可能な寸法および形状とすることを特徴とする製氷装置。 A plurality of ice making blocks that store water supply and receive ice to make ice and make ice that is generated by applying mechanical force to ice making trays, and ice making blocks partitioned by the ice making plates A first ice generating unit that is provided with cold air and promotes ice making; and the first ice generating unit and the first ice generating unit are connected to the first ice generating unit and an opening to communicate the water supply. A second ice generating unit that delays ice making by reducing the influence of cold air from the first ice generating unit, and the ice that is continuously produced through the opening to the ice generated by the first ice generating unit And an ice produced by a second ice producing unit, wherein the opening has a size and shape that allows the ice near the opening to be cut by receiving the mechanical force. 区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともにひねりを与えられ生成された氷が離氷する製氷皿と、前記製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、前記製氷ブロックに設けられ前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせられる第2の氷生成部であって、前記第1の氷生成部よりも生成された氷が前記製氷皿から分離しにくい寸法および形状とする第2の氷生成部と、を備え、前記製氷皿がひねりを受けて前記開口部近傍で切断された前記第1の氷生成部で生成された氷が離氷することを特徴とする製氷装置。 Water is stored in each of the plurality of partitioned ice making blocks, and ice is made by receiving cold air, and twisted and the generated ice is de-iced, and the ice making blocks provided in the ice making blocks are provided with cold air. Receiving the first ice generating unit that promotes ice making, and the water supply communicates between the first ice generating unit and the opening provided in the ice making block, and receives cold air from the first ice generating unit. A second ice generator that is capable of delaying ice making with less influence and having a size and shape that makes it more difficult for the ice generated from the first ice generator to be separated from the ice tray. An ice making device, wherein the ice produced by the first ice producing unit cut in the vicinity of the opening when the ice making tray is twisted is deiced. 区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに生成された氷が離氷可能な製氷皿と、前記製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、前記製氷ブロックの下方に設けられ前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせる第2の氷生成部と、前記第1の氷生成部で生成された氷に前記開口部通じて連続して製氷される前記第2の氷生成部で生成された氷と、を備え、前記第1の氷生成部は前記製氷皿の開放面に開放され、前記第2の氷生成部は前記第1の氷生成部と連通する開口部へ膨張可能に開放されていることを特徴とする製氷装置。 Water is stored in each of a plurality of partitioned ice making blocks to receive cold air to make ice, and the generated ice can be deiced, and the ice making blocks partitioned by the ice making tray receive cold air. The first ice generating unit that promotes ice making, and the water supply communicates between the first ice generating unit and the opening provided below the ice making block, and is affected by cold from the first ice generating unit. Generated in the second ice generation unit that delays ice making and the ice generated in the first ice generation unit continuously through the opening. Ice, and the first ice generating unit is opened to an open surface of the ice tray, and the second ice generating unit is opened to be expandable to an opening communicating with the first ice generating unit. An ice making device characterized by that. 区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに生成された氷が離氷可能な製氷皿と、前記製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、前記製氷ブロックの下方に設けられた開口部にて前記第1の氷生成部と前記給水が連通し前記第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせる第2の氷生成部と、を備え、前記第2の氷生成部は、前記製氷ブロックに形成した前記第1の氷生成部から下方に突出させた形状であることを特徴とする製氷装置。 Water is stored in each of a plurality of partitioned ice making blocks to receive cold air to make ice, and the generated ice can be deiced, and the ice making blocks partitioned by the ice making tray receive cold air. The first ice generator and the water supply communicate with each other through the first ice generator that promotes ice making and an opening provided below the ice making block, and receive cold air from the first ice generator. A second ice generating part that delays ice making with less influence, and the second ice generating part has a shape protruding downward from the first ice generating part formed in the ice making block. An ice making device characterized by that. 区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともにひねりを与えられ生成された氷が離氷する製氷皿と、前記製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、前記製氷ブロックに設けられ前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせられる第2の氷生成部と、を備え、前記第2の氷生成部の容積は、前記第1の氷生成部の容積の10−20パーセントであることを特徴とする製氷装置。 Water is stored in each of the plurality of partitioned ice making blocks, and ice is made by receiving cold air, and twisted and the generated ice is de-iced, and the ice making blocks provided in the ice making blocks are provided with cold air. Receiving the first ice generating unit that promotes ice making, and the water supply communicates between the first ice generating unit and the opening provided in the ice making block, and receives cold air from the first ice generating unit. A second ice generator that can delay ice making with less influence, and the volume of the second ice generator is 10-20 percent of the volume of the first ice generator. Ice making equipment. 区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに生成された氷が離氷可能な製氷皿と、前記製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、前記製氷ブロックに設けられ前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より製氷を遅らせる様に加熱手段にて加熱される第2の氷生成部と、を備え、前記加熱手段は前記第1の氷生成部の温度により加熱を停止することを特徴とする製氷装置。 Water is stored in each of a plurality of partitioned ice making blocks to receive cold air to make ice, and the generated ice can be deiced, and the ice making blocks partitioned by the ice making tray receive cold air. A first ice generator that promotes ice making, and the water supply communicates at the first ice generator and the opening provided in the ice making block so as to delay ice making from the first ice generator. An ice making device, wherein the heating means stops the heating according to the temperature of the first ice producing unit. 区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに生成された氷が離氷可能な製氷皿と、前記製氷皿に区画された製氷ブロックに設けられ冷気を受けて製氷が促進される第1の氷生成部と、前記製氷ブロックに設けられ前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より製氷を遅らせる様に加熱手段にて加熱される第2の氷生成部と、を備え、前記第2の氷生成部は、前記製氷皿の上方に形成した前記第1の氷生成部から下方に突出させた形状とし、前記加熱手段は前記第2の氷生成部の少なくとも一面に設けたことを特徴とする製氷装置。 Water is stored in each of a plurality of partitioned ice making blocks to receive cold air to make ice, and the generated ice can be deiced, and the ice making blocks partitioned by the ice making tray receive cold air. A first ice generator that promotes ice making, and the water supply communicates at the first ice generator and the opening provided in the ice making block so as to delay ice making from the first ice generator. A second ice generator heated by the means, and the second ice generator is shaped to protrude downward from the first ice generator formed above the ice tray, The ice making apparatus, wherein the heating means is provided on at least one surface of the second ice generating unit. 前記加熱手段は、ヒーター本体を2重に絶縁したものであることを特徴とする請求項6又は7記載の製氷装置。 The ice making device according to claim 6 or 7, wherein the heating means is a double insulation of a heater body. 前記加熱手段のヒーター本体を、前記第1の氷生成部から所定寸法以上離した位置に設けることを特徴とする請求項6乃至6のいずれかに記載の製氷装置。 The ice making device according to any one of claims 6 to 6, wherein a heater body of the heating means is provided at a position separated from the first ice generating unit by a predetermined dimension or more. 前記第2の氷生成部の容積は、前記第1の氷生成部の容積より小さく、前記製氷皿の回転半径以内の寸法にて設けられていることを特徴とする請求項1乃至9のいずれかに記載の製氷装置。 The volume of the said 2nd ice production | generation part is smaller than the volume of the said 1st ice production | generation part, and is provided in the dimension within the rotation radius of the said ice tray, The any one of Claim 1 thru | or 9 characterized by the above-mentioned. An ice making device according to claim 1. 前記製氷皿は、2つの金型間のキャビティに溶融した樹脂を流し込んで形成したものであることを特徴とする請求項1乃至10のいずれかに記載の製氷装置。 The ice making apparatus according to any one of claims 1 to 10, wherein the ice tray is formed by pouring molten resin into a cavity between two molds. 前記製氷皿の第1の氷生成部の内側表面を形成する前記金型の面は、プラスチック製品のレベルまで磨き加工を行われたものであることを特徴とする請求項11に記載の製氷装置。 12. The ice making apparatus according to claim 11, wherein the surface of the mold forming the inner surface of the first ice generating portion of the ice tray is polished to the level of a plastic product. . 前記製氷皿への給水量を可変する給水量調節手段を備え、透明氷の製造指令を受けた場合に前記製氷皿への給水量を多くするようにしたことを特徴とする請求項1乃至12のいずれかに記載の製氷装置。 13. A water supply amount adjusting means for changing the amount of water supplied to the ice tray is provided, and the amount of water supplied to the ice tray is increased when a production instruction for transparent ice is received. The ice making device according to any one of the above. 請求項1乃至13のいずれかに記載の前記製氷皿を製氷室内に配置し、この製氷皿の上方から、冷却した冷気を吹き付けて製氷することを特徴とする冷凍冷蔵庫。 A refrigerator-freezer, wherein the ice tray according to any one of claims 1 to 13 is placed in an ice making chamber, and cooled cold air is blown from above the ice tray. 製氷室に配置され製氷皿の上方より冷気を吹き付けて、製氷皿上面を開放して設けた第1の氷生成部の製氷を促進するステップと、前記第1の氷生成部の下方に設けられ前記第1の氷生成部と連通する第2の氷生成部を加熱して前記第1の氷生成部よりも製氷を遅らせるステップと、前記第1の氷生成部での氷の生成状態により加熱を停止させ製氷させるステップと、前記製氷皿にひねりを加え前記第2の氷生成部の氷と前記第1の氷生成部で生成された氷とを切断させるステップと、を備えたことを特徴とする製氷方法。 A step of accelerating the ice making of the first ice generating unit provided in the ice making chamber by blowing cool air from above the ice tray to open the top surface of the ice tray, and provided below the first ice generating unit. Heating a second ice generating unit communicating with the first ice generating unit to delay ice making relative to the first ice generating unit, and heating according to an ice generation state in the first ice generating unit And stopping the ice making, and adding a twist to the ice tray to cut the ice of the second ice generating unit and the ice generated by the first ice generating unit. And ice making method. 前記製氷皿の第1の氷生成部から離氷させた後で、前記製氷皿に給水し、前記第2の氷生成部を加熱して前記第1および第2の氷生成部にて製氷を行うステップと、を備え、前記製氷離氷の1サイクルの時間を、前記第2の氷生成部での加熱状態により変更可能であることを特徴とする請求項15記載の製氷方法。 After removing the ice from the first ice generating unit of the ice tray, water is supplied to the ice tray, and the second ice generating unit is heated to produce ice in the first and second ice generating units. The ice making method according to claim 15, further comprising: a step of changing a cycle time of the ice making and deicing according to a heating state in the second ice generating unit. 前記製氷皿にて行う製氷と離氷の1サイクルを3.5時間以内に行うことを特徴とする請求項15又は16に記載の製氷方法。 The ice making method according to claim 15 or 16, wherein one cycle of ice making and de-icing performed in the ice tray is performed within 3.5 hours. 給水ポンプの駆動時間を可変することによって給水タンクから前記製氷皿への給水量を可変する給水量調節ステップを備えたことを特徴とする請求項15乃至17のいずれかに記載の製氷方法。 18. The ice making method according to claim 15, further comprising a water supply amount adjusting step of changing a water supply amount from the water supply tank to the ice tray by changing a driving time of the water supply pump. 前記給水量調節ステップは、透明氷の製造指令を受けた場合に前記駆動時間を長くして前記製氷皿への給水量を多くするようにしたことを特徴とする請求項18記載の製氷方法。 19. The ice making method according to claim 18, wherein the water supply amount adjusting step increases the water supply amount to the ice tray by extending the driving time when receiving a transparent ice production instruction. 区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに機械力を加えられて生成された氷が離氷可能な製氷皿と、前記製氷皿への給水量を可変する給水量調節手段と、を備え、透明氷の製造指令を受けた場合に前記製氷皿への給水量を多くするようにしたことを特徴とする製氷装置。 Water is stored in each of a plurality of partitioned ice making blocks, and ice is made by receiving cold air. At the same time, ice produced by applying mechanical force can be deiced, and the amount of water supplied to the ice making tray is variable. A water supply amount adjusting means, wherein the water supply amount to the ice tray is increased when a transparent ice production instruction is received.
JP2006188023A 2003-03-24 2006-07-07 Ice making equipment, refrigerator-freezer Expired - Fee Related JP4140641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188023A JP4140641B2 (en) 2003-03-24 2006-07-07 Ice making equipment, refrigerator-freezer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003079653 2003-03-24
JP2006188023A JP4140641B2 (en) 2003-03-24 2006-07-07 Ice making equipment, refrigerator-freezer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003197940A Division JP3852607B2 (en) 2003-03-24 2003-07-16 Ice making device, freezer refrigerator, ice making method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008073740A Division JP2008157619A (en) 2003-03-24 2008-03-21 Ice making device and refrigerator-freezer

Publications (3)

Publication Number Publication Date
JP2006275510A true JP2006275510A (en) 2006-10-12
JP2006275510A5 JP2006275510A5 (en) 2008-02-21
JP4140641B2 JP4140641B2 (en) 2008-08-27

Family

ID=37210451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188023A Expired - Fee Related JP4140641B2 (en) 2003-03-24 2006-07-07 Ice making equipment, refrigerator-freezer

Country Status (1)

Country Link
JP (1) JP4140641B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157619A (en) * 2003-03-24 2008-07-10 Mitsubishi Electric Corp Ice making device and refrigerator-freezer
JP2010266173A (en) * 2009-05-18 2010-11-25 Sharp Corp Ice-making machine
JP2011257063A (en) * 2010-06-09 2011-12-22 Sharp Corp Ice-making device for refrigerator-freezer
WO2013039164A1 (en) * 2011-09-14 2013-03-21 シャープ株式会社 Refrigerator
US9541320B2 (en) 2010-06-24 2017-01-10 Woongjin Coway Co., Ltd Ice making method
US20210396444A1 (en) * 2018-10-02 2021-12-23 Lg Electronics Inc. Refrigerator
US11879679B2 (en) * 2018-10-02 2024-01-23 Lg Electronics Inc. Refrigerator and control method therefor
US11920846B2 (en) * 2018-10-02 2024-03-05 Lg Electronics Inc. Refrigerator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157619A (en) * 2003-03-24 2008-07-10 Mitsubishi Electric Corp Ice making device and refrigerator-freezer
JP2010266173A (en) * 2009-05-18 2010-11-25 Sharp Corp Ice-making machine
JP2011257063A (en) * 2010-06-09 2011-12-22 Sharp Corp Ice-making device for refrigerator-freezer
US9541320B2 (en) 2010-06-24 2017-01-10 Woongjin Coway Co., Ltd Ice making method
EP2585772A4 (en) * 2010-06-24 2017-03-01 Woongjin Coway Co., Ltd. Ice making method
WO2013039164A1 (en) * 2011-09-14 2013-03-21 シャープ株式会社 Refrigerator
JP2013061118A (en) * 2011-09-14 2013-04-04 Sharp Corp Refrigerator
CN103782118A (en) * 2011-09-14 2014-05-07 夏普株式会社 Refrigerator
CN103782118B (en) * 2011-09-14 2016-06-29 夏普株式会社 Refrigerator
US20210396444A1 (en) * 2018-10-02 2021-12-23 Lg Electronics Inc. Refrigerator
US11879679B2 (en) * 2018-10-02 2024-01-23 Lg Electronics Inc. Refrigerator and control method therefor
US11920846B2 (en) * 2018-10-02 2024-03-05 Lg Electronics Inc. Refrigerator

Also Published As

Publication number Publication date
JP4140641B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP3852607B2 (en) Ice making device, freezer refrigerator, ice making method
JP4140641B2 (en) Ice making equipment, refrigerator-freezer
JP2006275510A5 (en)
EP2096384B1 (en) Method of controlling ice making assembly for refrigerator
JPWO2004081470A1 (en) Ice making equipment
JPH09269172A (en) Icemaker
JP2008157619A (en) Ice making device and refrigerator-freezer
JP3852609B2 (en) Ice making equipment, refrigerator
JP2004278894A (en) Ice plant
KR20090092385A (en) Controlling method of an ice making assembly for refrigerator
KR20060013721A (en) Manufacturing apparatus and method for transparent ice
JP2006022980A (en) Ice making apparatus
WO2008082215A1 (en) Refrigerator
JP4396767B2 (en) Freezer refrigerator
JP2004324903A (en) Ice making device
JP2001041621A (en) Ice maker and deep freezer refrigerator having the same
KR20080061469A (en) System and method for making ice
JP4197012B2 (en) Freezer refrigerator
KR20080061179A (en) Apparatus and method for making ice
EP2097695B1 (en) Refrigerator
JP4211025B2 (en) Ice making apparatus, refrigerator, and ice making method for refrigerator
JP4461857B2 (en) Ice making equipment
KR100722051B1 (en) ice maker in the refrigerator and control method of the same
JPH04313662A (en) Icemaker for refrigerator
KR20080001004A (en) Refrigerator and method for ice making using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4140641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees