JP2006274221A - Epoxy resin composition for optical semiconductor and semiconductor device - Google Patents

Epoxy resin composition for optical semiconductor and semiconductor device Download PDF

Info

Publication number
JP2006274221A
JP2006274221A JP2005100203A JP2005100203A JP2006274221A JP 2006274221 A JP2006274221 A JP 2006274221A JP 2005100203 A JP2005100203 A JP 2005100203A JP 2005100203 A JP2005100203 A JP 2005100203A JP 2006274221 A JP2006274221 A JP 2006274221A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
bisphenol
less
optical semiconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005100203A
Other languages
Japanese (ja)
Inventor
Shigeyuki Maeda
重之 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005100203A priority Critical patent/JP2006274221A/en
Publication of JP2006274221A publication Critical patent/JP2006274221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for an optical semiconductor excellent in productivity while maintaining transparency, mold-releasing property and adhesiveness, and a semiconductor device using the epoxy resin. <P>SOLUTION: The epoxy resin composition for semiconductor is mainly composed of an epoxy resin (A) obtained by the reaction of a bisphenol A type epoxy resin and bisphenol F, an acid anhydride curing agent (B), an alcohol having two hydroxy groups in one molecule (C), a mold-releasing agent (D) and a dispersing agent (E), and is produced by a first process step of preliminary fusion and mixing of (A), (B) and (C) components to give a fused mixture having a glass transition point of 20-35°C and a second process step of mixing and kneading the fused mixture obtained in the first process step and the other components which have not been used in the first step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光半導体用エポキシ樹脂組成物及び半導体装置に関するものである。   The present invention relates to an epoxy resin composition for an optical semiconductor and a semiconductor device.

発光素子及び受光素子等の光半導体の封止材料としては、透明性、耐湿性及び耐熱性に優れるエポキシ樹脂組成物を用いた樹脂封止が主流となっており、中でもエポキシ樹脂組成物を用いてトランスファー成形で樹脂封止する方法は、作業性及び量産性の面で優れている。
さらに、パッゲージ実装方式は、ピン挿入型から面実装型への要求が急速に高まっている。面実装型は、ピン挿入型のようにリード部のみを加熱するのではなく、パッケージ全体を加熱することによりリード部に予め付けられた半田を溶かして実装する方式であり、ピン挿入型に比べてより高い耐熱性(耐半田性)が必要となる。これに対応するためには、リードフレーム、光半導体素子等のパッケージ内部の部材とエポキシ樹脂組成物の密着性をより高めることが必要であり、密着性及び透明性を低下させる要因の1つである離型剤の添加量を抑え、なおかつ良好な離型性を付与する必要がある。
上記課題を解決するために、エポキシ樹脂などを有機溶媒と混合することによりエポキシ樹脂組成物中の各成分を分子レベルで均一分散させて透明性を得る方法(例えば、特許文献1参照。)、特定構造の化合物を用いて透明性と離型性を両立させる方法(例えば、特許文献2及び特許文献3参照。)などが提案されているが、有機溶媒を使用するものは、ボイドが発生し易く、十分な離型性が得られない。また、特定構造の化合物を使用するだけでは離型性と透明性の両立が十分ではなかった。
また、透明性、耐半田性及び離型性に優れる光半導体封止用エポキシ樹脂組成物及びその製造方法として特定構造のエポキシ樹脂と特定構造の硬化剤とを無溶媒下で溶融混練して中間反応物とし、その後他の成分と混合する方法がある。(例えば、特許文献4参照。)しかし、溶融混練して得られる中間反応物を粉砕する場合、粉砕時の発熱により中間反応物が軟化し粉砕機に付着して生産性を著しく低下させたり、粉砕後の粉末がブロッキング(固結)したりするという問題もあった。
特許第2656336号公報(第1〜8頁) 特許第2781279号公報(第1〜18頁) 特開平11−343395号公報(第2〜6頁) 特開2002−302533号公報(第2〜10頁)
As sealing materials for optical semiconductors such as light-emitting elements and light-receiving elements, resin sealing using an epoxy resin composition having excellent transparency, moisture resistance and heat resistance has become the mainstream, among which epoxy resin compositions are used. The method of resin sealing by transfer molding is excellent in terms of workability and mass productivity.
Furthermore, the demand for the package mounting system from the pin insertion type to the surface mounting type is rapidly increasing. The surface mount type does not heat only the lead part as in the pin insertion type, but rather heats the entire package to melt the solder applied in advance to the lead part and mount it, compared to the pin insertion type. Higher heat resistance (solder resistance) is required. In order to cope with this, it is necessary to further increase the adhesion between the epoxy resin composition and the members inside the package such as the lead frame and the optical semiconductor element, which is one of the factors that decrease the adhesion and transparency. It is necessary to suppress the addition amount of a certain release agent and to impart good release properties.
In order to solve the above problems, a method of obtaining transparency by uniformly dispersing each component in an epoxy resin composition at a molecular level by mixing an epoxy resin or the like with an organic solvent (see, for example, Patent Document 1). A method for achieving both transparency and releasability using a compound having a specific structure has been proposed (for example, see Patent Document 2 and Patent Document 3). However, those using an organic solvent generate voids. It is easy and sufficient releasability cannot be obtained. Moreover, the compatibility between the releasability and transparency is not sufficient only by using a compound having a specific structure.
Also, an epoxy resin composition for sealing an optical semiconductor that is excellent in transparency, solder resistance and releasability, and as a method for producing the same, an epoxy resin having a specific structure and a curing agent having a specific structure are melted and kneaded in the absence of a solvent. There is a method of making it a reactant and then mixing it with other components. (For example, refer to Patent Document 4) However, when pulverizing the intermediate reactant obtained by melt-kneading, the intermediate reactant softens due to heat generated during pulverization and adheres to the pulverizer, thereby significantly reducing productivity. There was also a problem that the powder after pulverization was blocked (consolidated).
Japanese Patent No. 2656336 (pages 1-8) Japanese Patent No. 2781279 (pages 1 to 18) JP-A-11-343395 (pages 2-6) JP 2002-302533 A (pages 2 to 10)

本発明は、上記のような問題点を解決するためになされたもので、その目的とするところは、透明性、離型性、及び密着性を維持しつつ生産性に優れた光半導体用エポキシ樹脂組成物を提供することにある。   The present invention has been made to solve the above-described problems, and the object of the present invention is to provide an epoxy for optical semiconductors that is excellent in productivity while maintaining transparency, releasability, and adhesion. The object is to provide a resin composition.

本発明は、
[1]ビスフェノールA型エポキシ樹脂とビスフェノールFを反応させて得られるエポキシ樹脂(A)、酸無水物硬化剤(B)、1分子内に2個の水酸基を有するアルコール(C)離型剤(D)、及び分散剤(E)を主成分とする光半導体用エポキシ樹脂組成物であって、(A)、(B)及び(C)成分を予め溶融混合する第1の工程と、第1の工程で得られる溶融混合物と第1の工程で使用しなかったその他の成分とを混合、混練する第2の工程と、を含み、前記第1の工程で得られる溶融混合物のガラス転移点が20℃以上、35℃以下であることを特徴とする光半導体用エポキシ樹脂組成物、
[2]前記第1の工程で溶融混合する成分として、さらに、一般式(1)で示される離型剤(d)を含有する第[1]項記載の光半導体用エポキシ樹脂組成物、
The present invention
[1] Epoxy resin (A) obtained by reacting bisphenol A type epoxy resin and bisphenol F, acid anhydride curing agent (B), alcohol (C) mold release agent having two hydroxyl groups in one molecule ( D) and an epoxy resin composition for optical semiconductors mainly composed of a dispersant (E), the first step of previously melt-mixing the components (A), (B) and (C), A second step of mixing and kneading the molten mixture obtained in step (1) and other components not used in the first step, wherein the glass transition point of the molten mixture obtained in the first step is An epoxy resin composition for optical semiconductors, characterized in that it is 20 ° C. or higher and 35 ° C. or lower,
[2] The epoxy resin composition for optical semiconductors according to item [1], further containing a release agent (d) represented by general formula (1) as a component to be melt-mixed in the first step,

Figure 2006274221
Figure 2006274221

(但し、式中のR1は炭素数25〜35の直鎖アルキル基。n1は2以上、10以下。)
[3]前記第1の工程で溶融混合する成分として、さらに、一般式(2)で示される分散剤(e)を含有する第[1]又は[2]項記載の光半導体用エポキシ樹脂組成物、
(However, R1 in the formula is a linear alkyl group having 25 to 35 carbon atoms. N1 is 2 or more and 10 or less.)
[3] The epoxy resin composition for optical semiconductors according to [1] or [2], which further contains a dispersant (e) represented by the general formula (2) as a component to be melt-mixed in the first step. object,

Figure 2006274221
Figure 2006274221

(但し、式中のR2は炭素数10〜14の直鎖アルキル基。n2は8以上、12以下。)
[4]上記1分子内に2個の水酸基を有するアルコール(C)の含有量が、全エポキシ樹脂組成物中に0.5重量%以上、1.5重量%以下である第[1]〜[3]項のいずれか1項に記載の光半導体用エポキシ樹脂組成物、
[5]一般式(1)で示される離型剤(d)の含有量が、全エポキシ樹脂組成物中に1.2重量%以上、2重量%以下である第[2]〜[4]項のいずれか1項に記載の光半導体用エポキシ樹脂組成物、
[6]一般式(2)で示される分散剤(e)の含有量が、全エポキシ樹脂組成物中に0.1重量%以上、0.8重量%以下である第[3]〜[5]項のいずれか1項に記載の光半導体用エポキシ樹脂組成物、
[7]第[1]〜[6]項のいずれか1項に記載の光半導体用エポキシ樹脂組成物を用いて封止されていることを特徴とする光半導体装置、
である。
(However, R2 in the formula is a linear alkyl group having 10 to 14 carbon atoms. N2 is 8 or more and 12 or less.)
[4] The content of the alcohol (C) having two hydroxyl groups in one molecule is 0.5 wt% or more and 1.5 wt% or less in the total epoxy resin composition. The epoxy resin composition for optical semiconductors according to any one of items [3],
[5] Nos. [2] to [4], wherein the content of the release agent (d) represented by the general formula (1) is 1.2% by weight or more and 2% by weight or less in the total epoxy resin composition. The epoxy resin composition for optical semiconductors according to any one of items,
[6] Nos. [3] to [5] in which the content of the dispersant (e) represented by the general formula (2) is 0.1 wt% or more and 0.8 wt% or less in the total epoxy resin composition. ] The epoxy resin composition for optical semiconductors of any one of claim | items,
[7] An optical semiconductor device sealed with the epoxy resin composition for optical semiconductors according to any one of the items [1] to [6],
It is.

本発明に従うと、優れた透明性、離型性、及び密着性を維持しつつ生産性に優れた光半導体用エポキシ樹脂組成物を得ることが可能となり、急速に要求が高まっている面実装型のパッケージ実装方式への対応に好適である。   According to the present invention, it is possible to obtain an epoxy resin composition for optical semiconductors that is excellent in productivity while maintaining excellent transparency, releasability, and adhesion. This is suitable for the package mounting method.

本発明は、ビスフェノールA型エポキシ樹脂とビスフェノールFを反応させて得られるエポキシ樹脂、酸無水物硬化剤、1分子内に2個の水酸基を有するアルコール、離型剤、及び分散剤を主成分とする光半導体用エポキシ樹脂組成物であって、主成分の一部又は全部を予め溶融混合する第1の工程と第1の工程で得られる溶融混合物と第1の工程で使用しなかったその他の成分とを混合、混練する第2の工程とを含み、前記第1の工程で得られる特定の溶融混合物を用いることによって、優れた透明性、離型性、及び密着性を維持しつつ優れた生産性を発現させ、なおかつ特定構造の離型剤、分散剤を予め溶融混合する主成分中に配合することで、少量の添加量で前記性能を得ることが可能になるため、密着性の低下を抑えることが出来る。
以下、本発明について詳細に説明する。
The present invention mainly comprises an epoxy resin obtained by reacting a bisphenol A type epoxy resin and bisphenol F, an acid anhydride curing agent, an alcohol having two hydroxyl groups in a molecule, a release agent, and a dispersant. An epoxy resin composition for an optical semiconductor, wherein the first step of melting and mixing part or all of the main component in advance, the molten mixture obtained in the first step, and the other not used in the first step A second step of mixing and kneading the components, and by using the specific molten mixture obtained in the first step, it is excellent while maintaining excellent transparency, releasability, and adhesion Adhesion is reduced because it is possible to obtain the above performance with a small amount of addition by formulating productivity and adding a release agent and dispersant having a specific structure into the main component that is previously melt-mixed. Can be suppressed
Hereinafter, the present invention will be described in detail.

本発明に用いるビスフェノールA型エポキシ樹脂とビスフェノールFを反応させて得られるエポキシ樹脂(A)について、ビスフェノールA型エポキシ樹脂のエポキシ当量、ビスフェノールA型エポキシ樹脂とビスフェノールFの重量割合、及び反応生成物であるエポキシ樹脂(A)のエポキシ当量は特に限定するものではない。ここでのビスフェノールA型エポキシ樹脂は、ビスフェノールAとエピクロルヒドリンとを反応させて得られる周知のものであり、エポキシ当量は500以下のものが好ましい。これより大きいエポキシ当量のものを用いると、ビスフェノールA型エポキシ樹脂を改質するために必要なビスフェノールFを反応させた場合にエポキシ当量が大きくなり過ぎて、溶融混合物の粘度が高くなり、混合、混練後のエポキシ樹脂組成物の流動性を損なってしまう。また、この反応に用いるビスフェノールFの重量割合は、ビスフェノールA型エポキシ樹脂のエポキシ当量や反応生成物であるエポキシ樹脂(A)のエポキシ当量によって変わり得るが、ビスフェノールA型エポキシ樹脂100重量%に対して10重量%以上、60重量%以下が好ましく、15重量%以上、45重量%以下が特に好ましい。これを上回る割合でビスフェノールFを用いると反応生成物であるエポキシ樹脂(A)のエポキシ当量が大きくなり過ぎて、溶融混合物の粘度が高くなり、混合、混練後のエポキシ樹脂組成物の流動性を損なってしまう。一方これを下回る割合でビスフェノールFを用いるとビスフェノールA型エポキシ樹脂の改質効果があまり見られなくなる。なお本発明に用いるエポキシ樹脂(A)とともに、従来公知のエポキシ樹脂を1種類以上併用してもよく、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリグリシジルイソシアヌレートなどが挙げられるが、透明性の観点から、着色の少ないビスフェノール型エポキシ樹脂、トリグリシジルイソシアヌレートを用いることが好ましい。   About epoxy resin (A) obtained by reacting bisphenol A type epoxy resin and bisphenol F used in the present invention, epoxy equivalent of bisphenol A type epoxy resin, weight ratio of bisphenol A type epoxy resin and bisphenol F, and reaction product The epoxy equivalent of the epoxy resin (A) is not particularly limited. The bisphenol A type epoxy resin here is a well-known one obtained by reacting bisphenol A and epichlorohydrin, and preferably has an epoxy equivalent of 500 or less. If an epoxy equivalent higher than this is used, the epoxy equivalent becomes too large when bisphenol F required to modify the bisphenol A type epoxy resin is reacted, and the viscosity of the molten mixture becomes high. The fluidity of the epoxy resin composition after kneading is impaired. The weight ratio of bisphenol F used in this reaction may vary depending on the epoxy equivalent of the bisphenol A type epoxy resin and the epoxy equivalent of the epoxy resin (A) as the reaction product, but with respect to 100% by weight of the bisphenol A type epoxy resin. 10 wt% or more and 60 wt% or less is preferable, and 15 wt% or more and 45 wt% or less is particularly preferable. When bisphenol F is used in a proportion exceeding this, the epoxy equivalent of the reaction product epoxy resin (A) becomes too large, the viscosity of the molten mixture becomes high, and the fluidity of the epoxy resin composition after mixing and kneading is increased. It will be lost. On the other hand, when bisphenol F is used at a ratio lower than this, the modification effect of the bisphenol A type epoxy resin is hardly observed. In addition to the epoxy resin (A) used in the present invention, one or more conventionally known epoxy resins may be used in combination. For example, bisphenol type epoxy such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc. Resin, biphenyl type epoxy resin, hydrogenated bisphenol A type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, triglycidyl isocyanurate, etc. It is preferable to use a resin, triglycidyl isocyanurate.

本発明に用いる酸無水物硬化剤(B)としては、モノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、あるいは3−メチル−ヘキサヒドロ無水フタル酸と4−メチル−ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸などが挙げられる。またこれらは単独でも混合して用いてもよい。
本発明に用いる酸無水物硬化剤の酸無水物当量に対して全エポキシ樹脂のエポキシ当量
を0.5〜1.5に設定することが好ましく、特に0.8〜1.2がより好ましい。上記範囲を外れると、耐湿性、硬化性などが低下する恐れがあるので好ましくない。
Examples of the acid anhydride curing agent (B) used in the present invention include monomers, oligomers and polymers in general, and the molecular weight and molecular structure thereof are not particularly limited. For example, phthalic anhydride, maleic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, or 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride Examples thereof include a mixture, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride. These may be used alone or in combination.
It is preferable to set the epoxy equivalent of all epoxy resins to 0.5 to 1.5 with respect to the acid anhydride equivalent of the acid anhydride curing agent used in the present invention, and more preferably 0.8 to 1.2. If it is out of the above range, the moisture resistance, curability and the like may be lowered, which is not preferable.

本発明においては、ビスフェノールA型エポキシ樹脂とビスフェノールFを反応させて得られるエポキシ樹脂(A)と酸無水物硬化剤(B)を緩やかに反応させ、なおかつ優れた透明性を付与する目的で、1分子内に2個の水酸基を有するアルコール(C)を用いる。これによって溶融混合工程で得られる溶融混合物の分子量分布が安定し、なおかつ短時間で取得することが可能となり、透明性も良好となる。例えばエチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールなどが挙げられる。またこれらは単独でも混合して用いてもよい。なお溶融混合物の分子量分布の安定性、及び取得するまでの時間から1,5−ペンタンジオールが好ましい。   In the present invention, the epoxy resin (A) obtained by reacting the bisphenol A type epoxy resin and bisphenol F and the acid anhydride curing agent (B) are allowed to react slowly, and excellent transparency is imparted. Alcohol (C) having two hydroxyl groups in one molecule is used. As a result, the molecular weight distribution of the molten mixture obtained in the melt mixing step is stabilized, can be obtained in a short time, and transparency is also improved. For example, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and the like can be mentioned. These may be used alone or in combination. In addition, 1,5-pentanediol is preferred because of the stability of the molecular weight distribution of the molten mixture and the time until acquisition.

本発明における(A)〜(E)成分の一部又は全部を予め溶融混合して得られる溶融混合物は、ガラス転移点が20℃以上、35℃以下であることを必須とする。溶融混合の方法としては反応釜、加熱ニーダ等が挙げられ、特に限定はしないが、これにより得られる溶融混合物は、溶融混合後に冷却・粉砕される際の生産性、溶融混合物と溶融混合物に使用しなかったその他の成分とを混合、混練したエポキシ樹脂組成物の均一性及び流動性において非常に重要ある。ガラス転移点が下限値を下回ると、室温で粉砕する時の発熱により溶融混合物が軟化するため、これが粉砕機に付着するなどして生産性を著しく損ない、さらに粉砕後の粉末がブロッキング(固結)するため、粉砕した溶融混合物と溶融混合物に使用しなかったその他の成分とを混合する際に部分的に不均一になり易く、そのため混練後のエポキシ樹脂組成物も不均一になって部分的に離型性を損なうため、連続成形性を低下させる。一方ガラス転移点が上限値を上回ると、溶融混合後に冷却・粉砕される際の生産性、及び混合、混練したエポキシ樹脂組成物の均一性は良好であるが、溶融粘度が高くなり過ぎる傾向があり、混合、混練後のエポキシ樹脂組成物の流動性を著しく損なってしまう。なお、ここで良好な流動性、透明性を付与しながら、ガラス転移点を20℃以上、35℃以下とするためには、ビスフェノールA型エポキシ樹脂とビスフェノールFを反応させて得られるエポキシ樹脂(A)を用いることが必須である。ここで、前記エポキシ樹脂(A)の代わりに溶融混合物を冷却後固体として取り出すことが可能なビスフェノールA型エポキシ樹脂を使用した場合、溶融混合物の粘度が高くなり過ぎて、混合、混練後のエポキシ樹脂組成物の流動性を著しく損なってしまう。逆に混合、混練後のエポキシ樹脂組成物の流動性を良好とするビスフェノールA型エポキシ樹脂を使用した場合、溶融混合物を固体として取り出すことが困難になる。一方ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂を併用した場合、溶融混合物を固体として取り出すことは可能であり、なおかつビスフェノールF型エポキシ樹脂の効果により混合・混練後のエポキシ樹脂組成物の流動性は良好となるが、ビスフェノールF型エポキシ樹脂の影響で透明性を損なってしまう。   The molten mixture obtained by previously melting and mixing some or all of the components (A) to (E) in the present invention must have a glass transition point of 20 ° C. or higher and 35 ° C. or lower. Examples of the melt mixing method include a reaction kettle and a heating kneader. Although there is no particular limitation, the melt mixture obtained by this is used for the productivity when cooled and pulverized after melt mixing, the melt mixture and the melt mixture. It is very important in the uniformity and fluidity of the epoxy resin composition mixed and kneaded with other components that were not. If the glass transition point is below the lower limit, the molten mixture softens due to the heat generated when pulverizing at room temperature. This causes adhesion to the pulverizer and significantly impairs productivity, and the pulverized powder is blocked (consolidated). Therefore, when the pulverized molten mixture and other components not used in the molten mixture are mixed, it tends to be partially non-uniform, and the epoxy resin composition after kneading is also partially non-uniform. Further, the moldability is impaired, so that the continuous moldability is lowered. On the other hand, if the glass transition point exceeds the upper limit, the productivity when cooled and pulverized after melt mixing and the uniformity of the mixed and kneaded epoxy resin composition are good, but the melt viscosity tends to be too high. Yes, the fluidity of the epoxy resin composition after mixing and kneading is significantly impaired. Here, an epoxy resin obtained by reacting bisphenol A type epoxy resin and bisphenol F in order to set the glass transition point to 20 ° C. or more and 35 ° C. or less while imparting good fluidity and transparency. It is essential to use A). Here, when a bisphenol A type epoxy resin that can be taken out as a solid after cooling is used instead of the epoxy resin (A), the viscosity of the molten mixture becomes too high, and the epoxy after mixing and kneading The fluidity of the resin composition is significantly impaired. On the other hand, when a bisphenol A type epoxy resin that improves the fluidity of the epoxy resin composition after mixing and kneading is used, it is difficult to take out the molten mixture as a solid. On the other hand, when bisphenol A type epoxy resin and bisphenol F type epoxy resin are used in combination, it is possible to take out the molten mixture as a solid, and the fluidity of the epoxy resin composition after mixing and kneading due to the effect of bisphenol F type epoxy resin. However, the transparency is impaired by the influence of the bisphenol F type epoxy resin.

ここでの(A)〜(E)成分の一部又は全部を予め溶融混合して得られる溶融混合物のガラス転移点は、パーキンエルマー製の温度変調示差走査熱量計PYRIS Diamond DSCを用い、ステップ温度2℃、昇温速度5℃/分、温度保持時間1分、窒素雰囲気(20ml/分)の条件のもと測定した値であり、X軸を温度、Y軸を比熱容量とした微分比熱容量曲線において、ガラス転移点前の安定した箇所における接線とガラス転移点後の安定した箇所における接線との中間点の線が微分比熱容量曲線と交わる温度をガラス転移点とした。   The glass transition point of the melt mixture obtained by previously melt-mixing some or all of the components (A) to (E) here is a step temperature using a temperature-modulated differential scanning calorimeter PYRIS Diamond DSC manufactured by PerkinElmer. It is a value measured under the conditions of 2 ° C., heating rate 5 ° C./min, temperature holding time 1 min, nitrogen atmosphere (20 ml / min), differential specific heat capacity with X axis as temperature and Y axis as specific heat capacity. In the curve, the glass transition point was defined as the temperature at which the intermediate line between the tangent line at the stable position before the glass transition point and the tangent line at the stable position after the glass transition point intersects the differential specific heat capacity curve.

本発明においては、上記成分に加え、更に一般式(1)で示される離型剤(d)を全エポキシ樹脂組成物に対し1.2重量%以上、2重量%以下、一般式(2)で示される分散剤(e)を全エポキシ樹脂組成物に対し0.1重量%以上、0.8重量%以下配合することが出来る。これらの化合物は直鎖状アルコールをエトキシ化したものであり、アルキル部分の炭素数と化合物全体に占めるエチルエーテルの重量割合のバランスが透明性と離型性にとって非常に重要となる。エチルエーテル部分の重量割合が大きくなると透明性には優れるが、十分な離型性が得られず、逆にアルキル部分の重量割合が大きくなると離型性には優れるが、十分な透明性が得られない。一般式(1)で示される離型剤(d)で例えばR1の炭素数が30の場合、n1が2以上、10以下であることが必須である。n1が下限値を下回ると透明性を損ない易く、n1が上限値を超えると殆ど離型性を発現しない。また分散剤として、エチルエーテル部分の重量割合が一般式(1)で示される離型剤(d)に比べて大きい一般式(2)で示される分散剤(e)を併用すると、より少ない一般式(1)で示される離型剤(d)の配合量で離型性を発現できるため、透明性、及び離型剤によって阻害される密着性の低下を抑制することができる。これは、一般式(2)で示される分散剤(e)を配合することにより、マトリックス樹脂中に分散している一般式(1)で示される離型剤(d)のドメインがより微細化されるためであると推定している。一般式(2)で示される分散剤(e)で例えばR2の炭素数が12の場合、n2が8以上、12以下であることが必須である。n2が下限値を下回る、もしくは上限値を超えると、分散剤としての効果が小さく、一般式(1)で示される離型剤(d)を単独で用いた場合に比べて離型性、透明性に及ぼす影響が殆ど変わらない。 In the present invention, in addition to the above components, the release agent (d) represented by the general formula (1) is added in an amount of 1.2% by weight or more and 2% by weight or less based on the total epoxy resin composition. The dispersant (e) represented by can be blended in an amount of 0.1% by weight to 0.8% by weight based on the total epoxy resin composition. These compounds are ethoxylated linear alcohols, and the balance between the number of carbon atoms in the alkyl moiety and the weight ratio of ethyl ether in the entire compound is very important for transparency and releasability. Transparency is excellent when the weight ratio of the ethyl ether portion is large, but sufficient releasability cannot be obtained. Conversely, when the weight ratio of the alkyl portion is large, the releasability is excellent, but sufficient transparency is obtained. I can't. In the release agent (d) represented by the general formula (1), for example, when R1 has 30 carbon atoms, it is essential that n1 is 2 or more and 10 or less. When n1 is less than the lower limit, transparency is easily impaired, and when n1 exceeds the upper limit, release properties are hardly exhibited. In addition, when the dispersant (e) represented by the general formula (2) is used in combination with the release agent (d) represented by the general formula (1), the weight ratio of the ethyl ether portion is smaller than that of the general formula (1). Since the release property can be expressed by the blending amount of the release agent (d) represented by the formula (1), it is possible to suppress a decrease in transparency and the adhesiveness that is inhibited by the release agent. This is because the domain of the release agent (d) represented by the general formula (1) dispersed in the matrix resin is further refined by blending the dispersant (e) represented by the general formula (2). It is estimated that this is because. In the dispersant (e) represented by the general formula (2), for example, when R2 has 12 carbon atoms, it is essential that n2 is 8 or more and 12 or less. When n2 is below the lower limit value or exceeds the upper limit value, the effect as a dispersant is small, and the release property and transparency are higher than when the release agent (d) represented by the general formula (1) is used alone. The effect on sex is almost unchanged.

本発明のエポキシ樹脂組成物は、成分(A)〜(E)成分の一部又は全部が予め溶融混合されていれば良く、溶融混合の方法としては、反応釜、加熱ニーダ等が挙げられる。本発明の樹脂組成物は、成分(A)〜(E)成分の一部又は全部を反応釜等で溶融混合し、溶融混合物を得た後にその他の成分を加えて、ミキサー等を用いて混合後、加熱ニーダ、加熱ロール、押し出し機等を用いて混練し、続いて冷却、粉砕することで得ることができる。成分(A)〜(E)成分の一部又は全部を予め溶融混合しない場合は光デバイス機能を満足しうる透明性を得ることができず、また、連続成形性が悪くなり光半導体装置の生産が低くなり好ましくない。 In the epoxy resin composition of the present invention, any or all of the components (A) to (E) may be previously melt-mixed, and examples of the melt-mixing method include a reaction kettle and a heating kneader. In the resin composition of the present invention, some or all of the components (A) to (E) are melt-mixed in a reaction kettle, etc., and after obtaining a molten mixture, the other components are added and mixed using a mixer or the like. Thereafter, it can be obtained by kneading using a heating kneader, a heating roll, an extruder, etc., followed by cooling and pulverization. If some or all of the components (A) to (E) are not melted and mixed in advance, the transparency that satisfies the optical device function cannot be obtained, and the continuous formability deteriorates and the optical semiconductor device is produced. Is unpreferable.

本発明のエポキシ樹脂組成物には、上記(A)〜(E)成分以外に必要に応じてフェノール系化合物、アミン系化合物、ホスファイト系化合物、有機硫黄系化合物等の酸化防止剤、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ベンゾエート系化合物、シアノアクリレート系化合物等の紫外線吸収剤、ガラス粉末、シリカ粉末、アルミナ粉末等の無機充填材等が適宜配合可能である。   The epoxy resin composition of the present invention includes, in addition to the above components (A) to (E), antioxidants such as phenol compounds, amine compounds, phosphite compounds, organic sulfur compounds, and the like, benzophenone Compounds, benzotriazole compounds, benzoate compounds, ultraviolet absorbers such as cyanoacrylate compounds, and inorganic fillers such as glass powder, silica powder, and alumina powder can be appropriately blended.

本発明の半導体装置は、光半導体素子が本発明のエポキシ樹脂組成物により封止されてなるものであり、このエポキシ樹脂組成物が室温で固形の場合は、タブレット状にしたものをトランスファー成形することにより、また液状の場合には、キャスティング方式等を採用して注型、硬化することができる。   In the semiconductor device of the present invention, an optical semiconductor element is encapsulated with the epoxy resin composition of the present invention. When this epoxy resin composition is solid at room temperature, a tablet-shaped one is transfer molded. In the case of liquid, it can be cast and cured by adopting a casting method or the like.

以下に、実施例を挙げて本発明を説明するが、これらの実施例に限定されるものではない。配合割合は重量部とする。
実施例1
ビスフェノールA型エポキシ樹脂とビスフェノールFを反応させて得られるエポキシ樹脂、トリグリシジルイソシアヌレート、離型剤1、及び分散剤1を容量30Lの反応釜に投入し、全て溶融するまで加温した。その後反応釜内壁の温度を95℃に安定させ、4−メチルヘキサヒドロ無水フタル酸及び1,5−ペンタンジオールを投入し、適切な分子量分布が得られるまで緩やかに反応させた。適切な分子量分布が得られたら速やかに樹脂を反応釜から取り出し、冷却して固化させた後に粉砕した。ここで粉砕したものに、2−メチルイミダゾール、2,6−ジターシャルブチル−4−メチルフェノール、4−ドデシロキシ−2−ヒドロキシベンゾフェノン及びガラス粉末を添加し、ミキサーを用いて常温混合してから表面温度が80℃と15℃の2本ロールを用いて混練して、冷却後粉砕してエポキシ樹脂組成物を得た。
ビスフェノールA型エポキシ樹脂とビスフェノールFを反応させて得られるエポキシ樹脂(三井化学(株)製、R364PD、軟化点98℃、エポキシ当量980)
40.77重量部
トリグリシジルイソシアヌレート(日産化学(株)製、TEPIC−S、融点100℃、エポキシ当量101) 17.48重量部
4−メチルヘキサヒドロ無水フタル酸(新日本理化(株)製、MH−700、酸無水物当量164) 32.00重量部
1,5−ペンタンジオール 0.85重量部
離型剤1 1.50重量部
(一般式(1)において、R1は炭素数30の直鎖アルキル基。n1は2.5。)
分散剤1 0.50重量部
(一般式(2)において、R2は炭素数12の直鎖アルキル基。n2は10。)
2−メチルイミダゾール 1.10重量部
2,6−ジターシャルブチル−4−メチルフェノール 0.40重量部
4−ドデシロキシ−2−ヒドロキシベンゾフェノン 0.40重量部
ガラス粉末(メジアン径25μm、屈折率1.570) 5.00重量部
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The blending ratio is parts by weight.
Example 1
Epoxy resin obtained by reacting bisphenol A type epoxy resin and bisphenol F, triglycidyl isocyanurate, mold release agent 1 and dispersant 1 were charged in a 30 L reactor and heated until all were melted. Thereafter, the temperature of the inner wall of the reaction kettle was stabilized at 95 ° C., 4-methylhexahydrophthalic anhydride and 1,5-pentanediol were added, and the reaction was gently continued until an appropriate molecular weight distribution was obtained. When an appropriate molecular weight distribution was obtained, the resin was immediately removed from the reaction kettle, cooled and solidified, and then pulverized. 2-Methylimidazole, 2,6-ditertiarybutyl-4-methylphenol, 4-dodecyloxy-2-hydroxybenzophenone and glass powder are added to the pulverized product and mixed at room temperature using a mixer, and then the surface. The mixture was kneaded using two rolls having temperatures of 80 ° C. and 15 ° C., cooled and pulverized to obtain an epoxy resin composition.
Epoxy resin obtained by reacting bisphenol A type epoxy resin and bisphenol F (Mitsui Chemicals, R364PD, softening point 98 ° C., epoxy equivalent 980)
40.77 parts by weight triglycidyl isocyanurate (manufactured by Nissan Chemical Co., Ltd., TEPIC-S, melting point 100 ° C., epoxy equivalent 101) 17.48 parts by weight 4-methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd.) MH-700, acid anhydride equivalent 164) 32.00 parts by weight 1,5-pentanediol 0.85 parts by weight Release agent 1 1.50 parts by weight (In the general formula (1), R1 has 30 carbon atoms) Linear alkyl group, n1 is 2.5.)
Dispersant 1 0.50 part by weight (In the general formula (2), R2 is a linear alkyl group having 12 carbon atoms. N2 is 10.)
2-methylimidazole 1.10 parts by weight 2,6-ditertiarybutyl-4-methylphenol 0.40 parts by weight 4-dodecyloxy-2-hydroxybenzophenone 0.40 parts by weight Glass powder (median diameter 25 μm, refractive index 1. 570) 5.00 parts by weight

評価方法
スパイラルフロー(流動性):EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で測定した。単位はcm。
光透過率(透明性):トランスファー成形機を用い、金型温度160℃、注入圧9.8MPa、硬化時間2分で15×35mm、厚み1mmの試験片を成形し、160℃、2時間で後硬化した。得られた試験片を日立製の分光光度計U−330形(60φ、開口比率7.8%の積分球を搭載)を用いて波長500nmの光透過率を測定した。単位は%。
連続成形性(離型性):トランスファー成形機を用い、金型クリーニング樹脂(住友ベークライト(株)製、EMEC−3)を10ショット、金型離型回復樹脂(住友ベークライト(株)製、EMEC−100)を3ショット成形した後、金型温度160℃、注入圧9.8MPa、硬化時間2分の成形条件でSOT(3ピン、2.9×2mm、厚み1.1mm、銅製リードフレーム、半導体素子は未搭載)を連続で成形し、樹脂硬化物が金型から離型するかどうかを評価した。パッケージ、ランナー、カルが金型に貼り付くまでのショット数を数え、400ショット以上の場合を◎、200ショット以上、400ショット未満の場合を○、100ショット以上、200ショット未満の場合を△、100ショット未満の場合を×とした。
せん断密着強度(密着性):トランスファー成形機を用い、金型温度160℃、注入圧9.8MPa、硬化時間2分で9×9mm、厚み0.3mmの銀メッキした銅製フレーム及びメッキ無しの銅製フレーム上に2×2mm、高さ3mmの樹脂硬化物を成形し、160℃、2時間で後硬化した。硬化後の得られた、銀メッキした銅製フレームの試験片8個及びメッキ無しの銅製フレームの試験片8個を室温に冷却後、DAGE社製の2400Aを用いてツール移動速度2mm/秒でせん断密着強度を測定した。また、同様の方法で得られた試験片を85℃、相対湿度60%の環境下で168時間加湿処理を行い、その後260℃の半田槽に10秒間浸漬した。半田処理後のこれら試験片のせん断密着強度を同様の方法で測定した。単位はN。
作業性(生産性):第1の工程で得られる溶融混合物を粉砕した後の状態を確認した。粉砕機への溶融混合物の付着、ブロッキングのないものを○、粉砕機への溶融混合物の付着、ブロッキングのあるものを×とした。
Evaluation method Spiral flow (fluidity): Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. The unit is cm.
Light transmittance (transparency): Using a transfer molding machine, a test piece having a mold temperature of 160 ° C., an injection pressure of 9.8 MPa, a curing time of 2 minutes, 15 × 35 mm, and a thickness of 1 mm was molded, and 160 ° C. for 2 hours. Post-cured. The light transmittance at a wavelength of 500 nm was measured for the obtained test piece using a spectrophotometer U-330 type (60φ, equipped with an integrating sphere with an aperture ratio of 7.8%) manufactured by Hitachi. Units%.
Continuous moldability (mold release): Using a transfer molding machine, 10 shots of mold cleaning resin (Sumitomo Bakelite Co., Ltd., EMEC-3), mold release recovery resin (Sumitomo Bakelite Co., Ltd., EMEC) -100) after three shot molding, SOT (3 pins, 2.9 × 2 mm, thickness 1.1 mm, copper lead frame, molding temperature 160 ° C., injection pressure 9.8 MPa, molding time 2 minutes, The semiconductor element was not mounted) was continuously molded, and it was evaluated whether or not the cured resin was released from the mold. Count the number of shots until the package, runner, and cal stick to the mold, ◎ if 400 shots or more, ◎ 200 shots or more, less than 400 shots ◯, 100 shots or more, less than 200 shots △, The case of less than 100 shots was rated as x.
Shear adhesion strength (adhesiveness): Using a transfer molding machine, mold temperature 160 ° C., injection pressure 9.8 MPa, curing time 2 minutes, 9 × 9 mm, 0.3 mm thick silver plated copper frame and unplated copper A resin cured product having a size of 2 × 2 mm and a height of 3 mm was molded on the frame and post-cured at 160 ° C. for 2 hours. After curing, 8 silver-plated copper frame specimens and 8 unplated copper frame specimens were cooled to room temperature and sheared at a tool moving speed of 2 mm / sec using DAGE 2400A. The adhesion strength was measured. Moreover, the test piece obtained by the same method was humidified for 168 hours in an environment of 85 ° C. and 60% relative humidity, and then immersed in a solder bath at 260 ° C. for 10 seconds. The shear adhesion strength of these test pieces after soldering was measured by the same method. The unit is N.
Workability (productivity): The state after pulverizing the molten mixture obtained in the first step was confirmed. The adhesion of the molten mixture to the pulverizer and the one having no blocking were evaluated as “◯”, and the adhesion of the molten mixture to the pulverizer and the one having the blocking was evaluated as “x”.

実施例2〜12、比較例1〜5
表1、表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得、同様に評価した。これらの評価結果を表1、表2に示す。
実験例1以外で用いた離型剤、分散剤、エポキシ樹脂を以下に示す。
離型剤2(一般式(1)において、R1は炭素数30の直鎖アルキル基。n1は10。)
分散剤2(一般式(2)において、R2は炭素数12の直鎖アルキル基。n2は16。)
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、エピコート1004、軟化点97℃、エポキシ当量920)
ビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン(株)製、エピコート4004P、軟化点85℃、エポキシ当量880)
Examples 2-12, Comparative Examples 1-5
According to the composition of Table 1 and Table 2, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner. These evaluation results are shown in Tables 1 and 2.
The release agent, dispersant, and epoxy resin used in Examples other than Experimental Example 1 are shown below.
Release agent 2 (In general formula (1), R1 is a linear alkyl group having 30 carbon atoms. N1 is 10.)
Dispersant 2 (In General Formula (2), R2 is a linear alkyl group having 12 carbon atoms. N2 is 16.)
Bisphenol A type epoxy resin (Japan Epoxy Resin Co., Ltd., Epicoat 1004, softening point 97 ° C., epoxy equivalent 920)
Bisphenol F type epoxy resin (Japan Epoxy Resin Co., Ltd., Epicoat 4004P, softening point 85 ° C., epoxy equivalent 880)

Figure 2006274221
Figure 2006274221

Figure 2006274221
Figure 2006274221

本発明の光半導体用エポキシ樹脂組成物は、透明性、離型性、及び密着性を維持しつつ生産性に優れ、更により少ない離型剤の配合量で良好な離型性を発現することから、リードフレーム、光半導体素子等のパッケージ内部の部材との優れた密着性を付与することが出来るので、面実装型の樹脂封止型半導体装置として好適に用いることができる。
The epoxy resin composition for optical semiconductors of the present invention is excellent in productivity while maintaining transparency, releasability and adhesion, and exhibits good releasability with a smaller amount of release agent. Therefore, since excellent adhesion to members inside the package such as a lead frame and an optical semiconductor element can be imparted, it can be suitably used as a surface mount type resin-encapsulated semiconductor device.

Claims (7)

ビスフェノールA型エポキシ樹脂とビスフェノールFを反応させて得られるエポキシ樹脂(A)、酸無水物硬化剤(B)、1分子内に2個の水酸基を有するアルコール(C)、離型剤(D)、及び分散剤(E)を主成分とする光半導体用エポキシ樹脂組成物であって、(A)、(B)及び(C)成分を予め溶融混合する第1の工程と、第1の工程で得られる溶融混合物と第1の工程で使用しなかったその他の成分とを混合、混練する第2の工程と、を含み、前記第1の工程で得られる溶融混合物のガラス転移点が20℃以上、35℃以下であることを特徴とする光半導体用エポキシ樹脂組成物。 Epoxy resin (A) obtained by reacting bisphenol A type epoxy resin and bisphenol F, acid anhydride curing agent (B), alcohol having two hydroxyl groups in one molecule (C), mold release agent (D) And an epoxy resin composition for optical semiconductors mainly composed of a dispersant (E), the first step of previously melt-mixing the components (A), (B) and (C), and the first step And the second step of mixing and kneading the other components not used in the first step, and the glass transition point of the molten mixture obtained in the first step is 20 ° C. Above, the epoxy resin composition for optical semiconductors characterized by being 35 degrees C or less. 前記第1の工程で溶融混合する成分として、さらに一般式(1)で示される離型剤(d)を含有する請求項1記載の光半導体用エポキシ樹脂組成物。
Figure 2006274221
(但し、式中のR1は炭素数25〜35の直鎖アルキル基。n1は2以上、10以下。)
The epoxy resin composition for optical semiconductors of Claim 1 which contains the mold release agent (d) shown by General formula (1) further as a component melt-mixed at a said 1st process.
Figure 2006274221
(However, R1 in the formula is a linear alkyl group having 25 to 35 carbon atoms. N1 is 2 or more and 10 or less.)
前記第1の工程で溶融混合する成分として、さらに一般式(2)で示される分散剤(e)を含有する請求項1又は2記載の光半導体用エポキシ樹脂組成物。
Figure 2006274221
(但し、式中のR2は炭素数10〜14の直鎖アルキル基。n2は8以上、12以下。)
The epoxy resin composition for optical semiconductors of Claim 1 or 2 which contains further the dispersing agent (e) shown by General formula (2) as a component melt-mixed at the said 1st process.
Figure 2006274221
(However, R2 in the formula is a linear alkyl group having 10 to 14 carbon atoms. N2 is 8 or more and 12 or less.)
上記1分子内に2個の水酸基を有するアルコール(C)の含有量が、全エポキシ樹脂組成物中に0.5重量%以上、1.5重量%以下である請求項1〜3のいずれか1項に記載の光半導体用エポキシ樹脂組成物。   The content of the alcohol (C) having two hydroxyl groups in one molecule is 0.5 wt% or more and 1.5 wt% or less in the total epoxy resin composition. 2. The epoxy resin composition for optical semiconductors according to item 1. 一般式(1)で示される離型剤(d)の含有量が、全エポキシ樹脂組成物中に1.2重量%以上、2重量%以下である請求項2〜4のいずれか1項に記載の光半導体用エポキシ樹脂組成物。   The content of the release agent (d) represented by the general formula (1) is 1.2% by weight or more and 2% by weight or less in the total epoxy resin composition. The epoxy resin composition for optical semiconductors as described. 一般式(2)で示される分散剤(e)の含有量が、全エポキシ樹脂組成物中に0.1重量%以上、0.8重量%以下である請求項3〜5のいずれか1項に記載の光半導体用エポキシ樹脂組成物。   The content of the dispersant (e) represented by the general formula (2) is 0.1 wt% or more and 0.8 wt% or less in the total epoxy resin composition. The epoxy resin composition for optical semiconductors described in 1. 請求項1〜6のいずれか1項に記載の光半導体用エポキシ樹脂組成物を用いて封止されていることを特徴とする光半導体装置。
An optical semiconductor device sealed with the epoxy resin composition for optical semiconductors according to any one of claims 1 to 6.
JP2005100203A 2005-03-30 2005-03-30 Epoxy resin composition for optical semiconductor and semiconductor device Pending JP2006274221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100203A JP2006274221A (en) 2005-03-30 2005-03-30 Epoxy resin composition for optical semiconductor and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100203A JP2006274221A (en) 2005-03-30 2005-03-30 Epoxy resin composition for optical semiconductor and semiconductor device

Publications (1)

Publication Number Publication Date
JP2006274221A true JP2006274221A (en) 2006-10-12

Family

ID=37209271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100203A Pending JP2006274221A (en) 2005-03-30 2005-03-30 Epoxy resin composition for optical semiconductor and semiconductor device

Country Status (1)

Country Link
JP (1) JP2006274221A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100200882A1 (en) * 2007-09-25 2010-08-12 Hayato Kotani Thermosetting light-reflecting resin composition, optical semiconductor element mounting board produced therewith, method for manufacture thereof, and optical semiconductor device
JP2011219576A (en) * 2010-04-07 2011-11-04 Shin-Etsu Chemical Co Ltd Epoxy composition for sealing optical semiconductor
JP2013203928A (en) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing, electronic equipment and method for manufacturing electronic equipment
US9340700B2 (en) 2011-09-12 2016-05-17 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100200882A1 (en) * 2007-09-25 2010-08-12 Hayato Kotani Thermosetting light-reflecting resin composition, optical semiconductor element mounting board produced therewith, method for manufacture thereof, and optical semiconductor device
US8785525B2 (en) * 2007-09-25 2014-07-22 Hitachi Chemical Company, Ltd. Thermosetting light-reflecting resin composition, optical semiconductor element mounting board produced therewith, method for manufacture thereof, and optical semiconductor device
JP2011219576A (en) * 2010-04-07 2011-11-04 Shin-Etsu Chemical Co Ltd Epoxy composition for sealing optical semiconductor
US9340700B2 (en) 2011-09-12 2016-05-17 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2013203928A (en) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing, electronic equipment and method for manufacturing electronic equipment

Similar Documents

Publication Publication Date Title
JP3891554B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
TW200948843A (en) Modified epoxy resin, epoxy resin compositions and cured articles
JP5605394B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2013073606A1 (en) Silane-containing composition, curable resin composition, and sealing material
KR20120095879A (en) Curable resin composition for optical semiconductor encapsulation, and cured product of same
JP2006312720A (en) Epoxy resin composition and semiconductor device
JPH10330600A (en) Epoxy resin composition and epoxy resin composition for semiconductor sealing
JP2006274221A (en) Epoxy resin composition for optical semiconductor and semiconductor device
JP2001234032A (en) Epoxy resin composition for optical semiconductor sealing use
TWI801488B (en) Resin composition and its cured product, adhesives for electronic parts, semiconductor devices, and electronic parts
JP4892955B2 (en) Epoxy resin composition and semiconductor device
JP3562565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2006193566A (en) Method for producing epoxy resin composition for optical semi-conductor
TW201038661A (en) Epoxy resin composition for optical semiconductor light-receiving element encapsulation and process for producing the same, and optical semiconductor device
JP2002012743A (en) Epoxy resin composition for sealing optical semiconductor, and optical semiconductor device sealed with its cured material
JP2010001496A (en) Epoxy resin composition for sealing optical semiconductor element, and optical semiconductor device
JP2006328360A (en) Epoxy resin composition and semiconductor device
JP2009173728A (en) Epoxy resin composition and cured product
JP6900749B2 (en) Carbon black dispersed phenol resin composition, epoxy resin composition and method for producing these
JP2011236318A (en) Epoxy resin composition for sealing optical semiconductor device and optical semiconductor device using the same
JP2002234990A (en) Sealing epoxy resin composition for optical semiconductor and optical semiconductor
JP2006037009A (en) Epoxy resin composition and semiconductor device
JP2000327883A (en) Epoxy resin composition and semiconductor device
JP5040404B2 (en) Epoxy resin composition for sealing material, cured product thereof and semiconductor device
JP2005015622A (en) Epoxy resin composition for photosemiconductor encapsulation and photosemiconductor device