JP2006273930A - Particulate formed body carrying functional particle and its manufacturing process - Google Patents

Particulate formed body carrying functional particle and its manufacturing process Download PDF

Info

Publication number
JP2006273930A
JP2006273930A JP2005091925A JP2005091925A JP2006273930A JP 2006273930 A JP2006273930 A JP 2006273930A JP 2005091925 A JP2005091925 A JP 2005091925A JP 2005091925 A JP2005091925 A JP 2005091925A JP 2006273930 A JP2006273930 A JP 2006273930A
Authority
JP
Japan
Prior art keywords
polymer
functional particles
molded body
polymer solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005091925A
Other languages
Japanese (ja)
Inventor
Shinya Tange
真也 丹下
Shinichiro Mori
真一朗 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Engineering Ltd
Original Assignee
Teijin Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Engineering Ltd filed Critical Teijin Engineering Ltd
Priority to JP2005091925A priority Critical patent/JP2006273930A/en
Publication of JP2006273930A publication Critical patent/JP2006273930A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a formed body in which functional particles are carried on an easy-to-handle particulate polymer formed body without sacrificing functions inherent in the functional particles. <P>SOLUTION: A polymer solution in which the functional particles have been mixed and dispersed beforehand is sprayed into a gas to form particles. The particles formed are placed in a coagulation liquid. The polymer contained in the polymer solution is phase-separated in the coagulation liquid to form a formed body having numerous pores in it. The efficiency of contact of the functional particles carried in the formed body with an objective substance is improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、機能性粒子が持つ物質吸着、物質反応などの性能を損なうことなく、吸着および反応工程などにおけるハンドリングが容易である粒状で機能性粒子を高分子に担持させる機能性粒子担持成形体の製造方法およびその成形体に関するものである。   The present invention provides a functional particle-supported molded article in which functional particles are supported on a polymer in a granular form that is easy to handle in adsorption and reaction processes without impairing the performance of the functional particles such as substance adsorption and substance reaction. This invention relates to a manufacturing method of the above and a molded product thereof.

近年、環境問題を引き起こす物質に対し、その物質を分解する光触媒や金属触媒による分解や吸着剤による吸着回収する機能性粒子の開発が活発に行われている。しかし、その機能性粒子は用途によって、他の有機、無機の物質で成形された素材に担持させ、機能性粒子が対象とする物質に効果的に接触させる必要がある。その成形体や素材、またその成形体に担持させる方法についてはさまざまな研究が成されている。   In recent years, with respect to substances that cause environmental problems, functional particles have been actively developed that decompose with a photocatalyst or metal catalyst that decomposes the substance or adsorb and recover with an adsorbent. However, the functional particles need to be supported on a material molded with another organic or inorganic substance depending on the application, and the functional particles need to effectively contact the target substance. Various studies have been made on the molded body and material, and the method of supporting the molded body on the molded body.

機能性粒子を粒状成形体に担持する方法としては、バインダーを用いて造粒する方法が一般的である。しかしながら、バインダーを用いて造粒するだけでは、バインダーに機能性粒子が被覆されてしまったり、機能性粒子間の距離が狭くなりすぎるため成形体内部への目的物質の拡散抵抗が大きくなってしまったりし、有効に機能性粒子の能力を発現できないといった問題がある。   As a method of supporting functional particles on a granular molded body, a method of granulating using a binder is common. However, simply granulating with a binder may result in the functional particles being coated on the binder, or the distance between the functional particles will be too narrow, increasing the diffusion resistance of the target substance into the molded body. There is a problem that the ability of functional particles cannot be expressed effectively.

この問題を解決する手段としては、例えば、金属酸化物などを用いて、あらかじめ機能性粒子を混合した湿潤ゲルを形成し、これを乾燥して内部の溶媒を取り除くことで、多孔質の担持体を得る方法(例えば、特許文献1参照。)が開示されている。   As a means for solving this problem, for example, a porous gel is formed by forming a wet gel in which functional particles are mixed in advance using a metal oxide or the like, and drying the gel to remove the internal solvent. Is disclosed (for example, see Patent Document 1).

この方法を用いれば、成形体の内部への拡散抵抗が小さくなり、成形体内部の機能性粒子も空孔表面に出ているものは有効に利用でき、成形品の持つ空間容積をより効率的に利用できているといえるが、多孔質の担持体とするために湿潤ゲルに疎水化処理や超臨界処理が必要となるために、工程が複雑になりコストがかかるといった問題点が残される。また、成形体内部の高次構造中に機能性粒子が埋め込まれたままになるため、なお拡散抵抗が高く有効に利用できない機能性粒子が多く残されるといった問題がある。   If this method is used, the diffusion resistance to the inside of the molded body will be reduced, and the functional particles inside the molded body that are exposed on the pore surface can be used effectively, and the space volume of the molded product can be made more efficient. However, since the wet gel needs to be subjected to a hydrophobic treatment or a supercritical treatment in order to obtain a porous carrier, there remains a problem that the process becomes complicated and costly. In addition, since the functional particles remain embedded in the higher order structure inside the molded body, there is still a problem that many functional particles that have high diffusion resistance and cannot be used effectively remain.

また、多孔質の成形体中に機能性粒子を担持する方法としては、繊維状成形体に関するものとして、溶融した熱可塑性樹脂中にあらかじめ機能性粒子を混合し、さらにこの混合溶液中に、後工程で抽出できる剤を混合して、押し出し成形した後に剤を抽出して繊維内に空孔を設ける方法(例えば、特許文献2参照。)も開示されている。しかしながら、この方法も、成形体内部に担持され、空孔表面に出ている機能性粒子を有効に利用することはできるが、抽出工程が必要となり、さらに抽出工程で発生する液を処理する工程もあらたに必要となり、本来の工程がより複雑になるばかりか、回収工程における物質損失や動力使用量増加があらたに生じるといった問題、および、空孔の表面に機能性粒子を担持させるのが難しいといった問題が残されていた。   Further, as a method for supporting the functional particles in the porous molded body, as for the fibrous molded body, the functional particles are mixed in advance in the molten thermoplastic resin, and further, A method is also disclosed in which an agent that can be extracted in the process is mixed, and after extrusion molding, the agent is extracted to provide pores in the fiber (for example, see Patent Document 2). However, this method can also effectively use the functional particles carried inside the molded body and appearing on the surface of the pores. However, an extraction step is necessary, and a step of treating the liquid generated in the extraction step In addition to the need for a new process, the original process becomes more complicated, and there are problems such as material loss and increased power consumption in the recovery process, and it is difficult to support functional particles on the surface of the pores. The problem was left.

また、高分子成形体の表面に機能性粒子を担持させる方法としては、溶液状のバインダーに機能性付与粒子を分散させ、このバインダー溶液中に高分子成形品を浸漬させる「ディッピング法」や、同じく溶液状のバインダーに機能性付与粒子を分散させたバインダー溶液を高分子成形品にスプレーして固着する「スプレーコート法」、バインダーとして熱可塑性樹脂を用い、あらかじめ混合した熱可塑性樹脂と機能性粒子を高分子成形品に散布し、加熱圧着する方法(例えば、特許文献3参照。)、バインダーを使用せず熱可塑性高分子繊維から成る不織布に、機能性付与粒子を直接加熱・固着させる方法(例えば、特許文献4等参照。)などがあるが、いずれも成形体表面のみへの機能性粒子の担持となるため、成形品の持つ空間容積を効率的に利用できず、かつ、機能性粒子表面のバインダーによる被覆や工程の複雑化などの問題があり、簡便な工程で製造が可能で、かつ、成形体の持つ空間容積を効率的に利用しながら機能性粒子の機能を十分に発現させる機能性粒子の担持方法が切望されていた。   In addition, as a method of supporting functional particles on the surface of the polymer molded body, the “dipping method” in which the functional particles are dispersed in a solution-like binder and the polymer molded product is immersed in the binder solution, Similarly, the spray coating method, in which a binder solution in which functional particles are dispersed in a solution-like binder is sprayed and fixed onto a polymer molded product, uses a thermoplastic resin as a binder, and a premixed thermoplastic resin and functionality A method in which particles are dispersed on a polymer molded product and heat-pressed (for example, see Patent Document 3), or a method in which functionally imparted particles are directly heated and fixed to a nonwoven fabric made of thermoplastic polymer fibers without using a binder. (For example, refer to Patent Document 4 etc.). However, since functional particles are supported only on the surface of the molded body, the space volume of the molded product is effective. Cannot be used on a regular basis, and there are problems such as coating the surface of the functional particles with a binder and complication of the process. Manufacturing is possible in a simple process, and the space volume of the compact is efficiently used. However, there has been a strong demand for a method for supporting functional particles that fully express the function of the functional particles.

特開2005−52729号公報(特許請求の範囲)Japanese Patent Laying-Open No. 2005-52729 (Claims) 特開平6−49705号公報(特許請求の範囲)JP-A-6-49705 (Claims) 特開平10−99421号公報(特許請求の範囲)JP-A-10-99421 (Claims) 特開平7−268767号公報(特許請求の範囲)JP-A-7-268767 (Claims)

本発明の目的は、前述の従来の成形方法では工程が複雑となるためコストがかかり、かつ機能を十分に発現させることができなかった機能性粒子を、機能を十分に生かして粒状の成形体に担持する成形方法を提供すること、およびその成形品を提供することである。   The object of the present invention is that the above-described conventional molding method is complicated and costly, and the functional particles that have not been able to fully exhibit their functions are used in the form of granular products. It is to provide a molding method to be carried on the substrate, and to provide a molded product thereof.

本発明者らは、上記従来技術に鑑み鋭意検討を重ねた結果、本発明に到達した。
即ち、本発明の目的は、機能性粒子を分散した高分子溶液の成形に際し、高分子溶液を気体中に噴霧し粒状にした後に、凝固液に投入し、凝固液中で高分子溶液中に含まれる高分子を相分離させて成形体内部に多数の空孔を形成させる成形方法であって、機能性粒子が担持されていることを特徴とする粒状高分子成形体によって達成される。
The inventors of the present invention have arrived at the present invention as a result of intensive studies in view of the above prior art.
That is, an object of the present invention is to form a polymer solution in which functional particles are dispersed, and after spraying the polymer solution into a gas and granulating it, the solution is poured into a coagulating liquid, and into the polymer solution in the coagulating liquid. This is a molding method for forming a large number of pores inside a molded body by phase-separating the contained polymer, and is achieved by a granular polymer molded body characterized in that functional particles are supported.

予め機能性粒子を分散混合した高分子溶液を気体中に噴霧し粒状にした後に、凝固液に投入し、凝固液中で高分子溶液中に含まれる高分子を相分離させて成形体内部に多数の空孔を形成させることで、成形体中の機能性粒子と目的物質の接触性を飛躍的に向上することができ、その機能性粒子の持つ分解、反応や吸着といった機能を十分に生かした状態で、工程でのハンドリングが容易な粒状成形体を提供することが可能となる。   A polymer solution in which functional particles are dispersed and mixed in advance is sprayed into a gas and granulated, and then charged into a coagulation liquid, and the polymer contained in the polymer solution is phase-separated in the coagulation liquid to form the inside of the compact By forming a large number of pores, the contact between the functional particles in the compact and the target substance can be dramatically improved, and the functions of the functional particles such as decomposition, reaction, and adsorption can be fully utilized. In this state, it is possible to provide a granular molded body that can be easily handled in the process.

以下、本発明について詳細に説明する。
本発明は、産業排出物および生活排出物の分解触媒や吸着剤、各種製造工程における反応触媒や吸着剤に代表される機能性粒子を、その機能性粒子本来の機能を損なうことなく工程でのハンドリングの容易な粒状の高分子成形体に担持させて、単位空間内に占める機能性粒子の接触性を向上させる目的で用いられる。
Hereinafter, the present invention will be described in detail.
The present invention relates to industrial particles and industrial waste decomposition catalysts and adsorbents, functional particles represented by reaction catalysts and adsorbents in various manufacturing processes, without impairing the original functions of the functional particles. It is used for the purpose of improving the contact property of the functional particles occupying in the unit space by being supported on a granular polymer compact that is easy to handle.

本発明において機能性粒子とは、粒子自体が特定物質、複数物質を機能性粒子に吸着する、または粒子組成内に取り込む、または粒子内組成物と交換するような吸着粒子のみならず、粒子自体が対象物質に対し分解や変質、また合成を促進するような触媒粒子、またそれ自体が反応する粒子などを意味するが、ここでは特に粒子の機能を限定するものではない。機能性粒子の形状としては、粉末、顆粒または多孔質顆粒のいずれでも良いが、粒径としては、0.01〜500μmのものを用いる。粒径が0.01μm未満であると粒子が凝集しやすくなり高分子溶液中に分散させることが難しくなる。一方、粒径が500μmを超えると機能性粒子の能力が十分に発揮されず、かつ、気体中への噴霧が困難となる。   In the present invention, the functional particle refers not only to an adsorbed particle in which the particle itself adsorbs a specific substance or a plurality of substances to the functional particle, or is incorporated into the particle composition, or exchanged with the intraparticle composition, but also the particle itself. Means a catalyst particle that promotes decomposition, alteration or synthesis of the target substance, or a particle that reacts with itself, but the function of the particle is not particularly limited here. The functional particles may be in the form of powder, granules or porous granules, but those having a particle diameter of 0.01 to 500 μm are used. When the particle size is less than 0.01 μm, the particles are likely to aggregate and difficult to disperse in the polymer solution. On the other hand, when the particle diameter exceeds 500 μm, the ability of the functional particles is not sufficiently exhibited, and spraying into the gas becomes difficult.

また、湿式凝固できる高分子としては、一般的にアラミド系樹脂、アクリル系樹脂、ビニルアルコール系樹脂、セルロース系樹脂が知られているが、ここでは本項記載の方式で成形される製造方法とそれから得られる成形体の構造が重要であるために、特に高分子の種類を限定するものではない。   In addition, as polymers that can be wet-solidified, aramid resins, acrylic resins, vinyl alcohol resins, and cellulose resins are generally known. Here, a manufacturing method that is molded by the method described in this section Since the structure of the molded product obtained therefrom is important, the type of polymer is not particularly limited.

また、凝固により形成される成形体中の空孔の形状も例えば円形などに限定するものではなく、各種形状をとることができる。空孔の大きさはその空孔の最長部が、0.1〜150μmの範囲にあることが好ましく、この中でも20〜100μmの空孔を持つ形態は更に好ましい。また、これらの空孔は、1000倍以上の電子顕微鏡で観察される断面形状において、独立した空孔であっても、その一部が繋がった連続の孔であっても構わないが、好ましくはその空孔同士は一部が繋がっている、または空孔同士の間に存在することが好ましく、さらに微細な空孔で接続されている方が好ましい。   Also, the shape of the pores in the formed body formed by solidification is not limited to a circular shape, for example, and can take various shapes. As for the size of the pores, the longest portion of the pores is preferably in the range of 0.1 to 150 μm, and among these, a form having pores of 20 to 100 μm is more preferable. In addition, these holes may be independent holes in the cross-sectional shape observed with an electron microscope of 1000 times or more, or may be continuous holes that are partially connected, but preferably It is preferable that the holes are partially connected or exist between the holes, and more preferably connected by fine holes.

粒状成形体の外形形状については、高分子溶液の濃度や噴霧装置(例えば、スプレーノズル)と凝固液液面との距離、高分子溶液・減湿圧空の流量などにより、真球、楕円球、歪形球、ストランド状などの形をとることが出来る。外形寸法については、平均粒径が0.05〜2.0mmであることが好ましい。平均粒径が0.05mm未満になると、機能性粒子を使った各種工程において成形体が目的物質とともに工程外に流出しやすくなる。流出を抑える方法の一つとして例えばメッシュの細かいフィルターを設置する方法が考えられるが、フィルターを設置すると通気・通水抵抗が大きくなるため、処理能力面および設備能力面から非常に不利となり実用的ではない。流出した成形体を例えばサイクロンなどにより回収する方法も考えられるが、成形体の回収装置の追加は実用的ではない。一方、平均粒径が2.0mmを超えると、成形体内部まで目的物質が到達するための拡散抵抗が大きくなるために、機能性粒子の能力を十分に発揮することはできない。以上のハンドリング性および機能性粒子の能力発現を考慮したさらに好ましい平均粒径は、0.3〜1.5mmである。   The outer shape of the granular molded body may be a true sphere, an elliptical sphere, depending on the concentration of the polymer solution, the distance between the spraying device (for example, spray nozzle) and the coagulation liquid level, the flow rate of the polymer solution / dehumidified pressure air, It can take the form of a distorted sphere or strand. About an external dimension, it is preferable that an average particle diameter is 0.05-2.0 mm. When the average particle size is less than 0.05 mm, the molded body easily flows out of the process together with the target substance in various processes using functional particles. For example, a filter with a fine mesh can be installed as one of the methods to suppress the outflow. However, if the filter is installed, the resistance to ventilation and water flow increases, so it is very disadvantageous in terms of processing capacity and equipment capacity, and is practical. is not. A method of recovering the molded body that has flowed out, for example, with a cyclone is also conceivable, but the addition of a recovery device for the molded body is not practical. On the other hand, when the average particle diameter exceeds 2.0 mm, the diffusion resistance for the target substance to reach the inside of the molded body increases, and thus the ability of the functional particles cannot be sufficiently exhibited. A more preferable average particle diameter in consideration of the above handling properties and ability expression of functional particles is 0.3 to 1.5 mm.

これら、空孔を有して機能性粒子を担持した粒状成形体は、高分子が溶媒に溶解した高分子溶液に機能性粒子を混合分散させてできた混合物を、ギヤポンプなどの押し出し機や圧空や窒素などの圧力で噴霧装置に押し出して、噴霧装置から気体中に粒状で噴霧した後に、凝固液に投入することで製造される。   These granular molded bodies having pores and supporting functional particles are obtained by mixing a mixture obtained by mixing and dispersing functional particles in a polymer solution in which a polymer is dissolved in a solvent. It is manufactured by extruding to a spraying device with a pressure of nitrogen or nitrogen, etc., spraying in a granular form from a spraying device into a gas, and then charging it into a coagulation liquid.

この製造工程で、機能性粒子を混合する高分子溶液は、高分子100重量部が400〜2500重量部の溶媒に溶解しており、この中でも高分子溶液の溶媒量は高分子100重量部に対し、800〜2300重量部の溶媒量とすることが好ましく、更には1200〜1900重量部とすることが好ましい。次に、前記高分子溶液中に高分子100重量部に対し10〜9900重量部の機能性粒子を分散混合する。成形体中の機能性粒子の量は多いほど望ましいが、機能性粒子の比重、嵩、形状、および成形体の使用環境に応じてその混合量は決定される。   In this production process, in the polymer solution in which the functional particles are mixed, 100 parts by weight of the polymer is dissolved in a solvent of 400 to 2500 parts by weight. Among these, the solvent amount of the polymer solution is 100 parts by weight of the polymer. On the other hand, the solvent amount is preferably 800 to 2300 parts by weight, and more preferably 1200 to 1900 parts by weight. Next, 10 to 9900 parts by weight of functional particles are dispersed and mixed in 100 parts by weight of the polymer in the polymer solution. The larger the amount of the functional particles in the molded body, the better, but the mixing amount is determined depending on the specific gravity, bulk, shape, and usage environment of the molded body.

次に前記機能性粒子を混合分散させた混合物を、ギヤポンプなどの押し出し機や圧空や窒素などの圧力で噴霧装置に押し出して、噴霧装置から気体中に粒状で噴霧した後に、凝固液に投入することで製造される。   Next, the mixture in which the functional particles are mixed and dispersed is extruded to a spraying device with an extruder such as a gear pump or a pressure such as compressed air or nitrogen, sprayed in a granular form from the spraying device into a gas, and then charged into the coagulating liquid. It is manufactured by.

噴霧装置には、高分子溶液のみを吐出噴霧し粒状体を作る1流体用ノズル、あるいは、高分子溶液の吐出時に圧空や窒素など補助媒体を使って粒状体を作る2流体用ノズル等のスプレーノズルを使用し得る。2流体用ノズルの補助媒体と高分子溶液との混合は、ノズル内部で混合する内部混合式、あるいは、ノズル外部で混合する外部混合式のいずれも使用し得る。ただし、補助媒体中に貧溶媒が含まれる場合は、ノズル内での閉塞を防止するため必要に応じて貧溶媒を除去する必要がある。   The spraying device has a 1-fluid nozzle that discharges and sprays only the polymer solution to create a granular material, or a 2-fluid nozzle that forms auxiliary particles such as compressed air and nitrogen when discharging the polymer solution. A nozzle can be used. As the mixing of the auxiliary medium of the two-fluid nozzle and the polymer solution, either an internal mixing method of mixing inside the nozzle or an external mixing method of mixing outside the nozzle can be used. However, when a poor solvent is contained in the auxiliary medium, it is necessary to remove the poor solvent as necessary in order to prevent clogging in the nozzle.

凝固液中では、高分子溶液に含まれる高分子が相分離を起こし、成形体内に大小の空孔ができる。凝固液の液組成は用いた高分子に対する貧溶媒を用い、高分子溶液中の高分子と溶媒を相分離させることにより空孔を形成させる。この貧溶媒の種類は、用いる高分子の種類により任意に選択ができるが、例えば、アラミド系高分子とその良溶媒の一つであるNメチル−2ピロリドン(以下、NMPと略記することがある。)からなる高分子溶液に機能性粒子を混合する場合であれば、凝固液に水やメチルアルコールなどの貧溶媒、若しくはそれら溶媒を50重量%以上含む溶液で凝固することにより、目的とする粒状成形体の製造は可能となる。また、ポリアクリル系高分子とその良溶媒であるジメチルスルホオキサド(以下、DMSoと略記することがある。)からなる高分子溶液に機能性粒子を混合する場合であれば、凝固液に水やクロロホルム、メチルアルコールなどの貧溶媒、若しくはそれら溶媒を50重量%以上含む溶液で凝固することにより、目的とする粒状成形体の製造は可能となる。   In the coagulation liquid, the polymer contained in the polymer solution undergoes phase separation, and large and small pores are formed in the molded body. The liquid composition of the coagulation liquid uses a poor solvent for the polymer used, and pores are formed by phase separation of the polymer and the solvent in the polymer solution. The type of the poor solvent can be arbitrarily selected depending on the type of polymer used. For example, N-methyl-2-pyrrolidone (hereinafter, abbreviated as NMP), which is an aramid polymer and one of its good solvents, may be used. If the functional particles are mixed with the polymer solution consisting of.), The target is obtained by coagulating with a poor solvent such as water or methyl alcohol or a solution containing 50% by weight or more of these solvents in the coagulation liquid. Production of a granular compact becomes possible. Further, when functional particles are mixed with a polymer solution composed of a polyacrylic polymer and dimethyl sulfoxide (hereinafter, may be abbreviated as DMSo) which is a good solvent for the polyacrylic polymer, water is added to the coagulation liquid. By solidifying with a poor solvent such as chlorobenzene, chloroform or methyl alcohol, or a solution containing 50% by weight or more of these solvents, it is possible to produce the desired granular molded body.

凝固で形成された空孔に機能性粒子を担持した粒状成形体は、その後に乾燥・熱処理をしても効果は発現するが、機能性粒子の性能を発現する目的物質が液体の場合は、凝固後は乾燥をせずに湿潤状態のままで使用する方が好ましい。乾燥を行うと、成形体の空孔内に気体を咬み込むため、脱気を行わないと十分な効果が発現できなくなる場合がある。
また、機能性粒子が目的とする物質は、気体状、液体状の流体、また目的物質が流体に溶解したもの、または流体により搬送できる固体であれば特に限定されるものではない。
さらに、成形体中の機能性粒子は、前述の通り外部流体との接触性が高いため、機能性粒子に固有の再生方法に耐える高分子を選択することで、機能性粒子単体のときと同様の再生方法で能力を再生することができる。
The granular compact with functional particles carried in the pores formed by solidification is effective even after drying and heat treatment, but if the target substance that expresses the performance of functional particles is a liquid, It is preferable to use it in a wet state without drying after coagulation. When drying is performed, gas is bitten into the pores of the molded body, so that sufficient effects may not be achieved unless deaeration is performed.
The target substance of the functional particles is not particularly limited as long as it is a gaseous or liquid fluid, the target substance dissolved in the fluid, or a solid that can be transported by the fluid.
Furthermore, since the functional particles in the molded body have high contact properties with the external fluid as described above, by selecting a polymer that can withstand the regeneration method inherent to the functional particles, it is the same as when functional particles are used alone. The ability can be replayed with the replay method.

以下、本発明を実施例によって更に具体的に説明するが、本発明はこれにより何等限定を受けるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

[実施例1]
メタ系アラミドのポリマー3.9重量%、平均粒径3μmのMg−Al−Cl型ハイドロタルサイト吸着剤35.1%、NMP61.0重量%からなる高分子溶液を(成形体中の機能性粒子の担持量が高分子100重量部に対して900重量部、高分子100重量部に対し、1564重量部の溶媒が用いられている高分子溶液)、室温で吐出口孔径φ0.5mmの2流体外部混合形ノズルより、ポリマー流量10ml/min、減湿圧空圧力0.04MPaにて、気体中に噴霧し、次いで凝固液槽に投入した。凝固液は、室温で、水99重量%、NMP1重量%の溶液を用いた。凝固により得られた粒状成形体は、吸着剤を成形体全重量の90重量%を含み、内部にボイド(空孔)を有していた(図1)。さらに、ボイドの表面を拡大するとさらに径の小さいミクロボイドを有していた(図2)。
[Example 1]
A polymer solution comprising 3.9% by weight of meta-aramid polymer, 35.1% Mg-Al-Cl hydrotalcite adsorbent having an average particle size of 3 μm, and 61.0% by weight of NMP (functionality in the molded body) The amount of particles supported is 900 parts by weight with respect to 100 parts by weight of the polymer, and a polymer solution in which 1564 parts by weight of the solvent is used with respect to 100 parts by weight of the polymer. From the fluid external mixing type nozzle, it was sprayed into the gas at a polymer flow rate of 10 ml / min and a dehumidification pressure air pressure of 0.04 MPa, and then charged into a coagulation liquid tank. As the coagulation liquid, a solution of 99% by weight of water and 1% by weight of NMP was used at room temperature. The granular compact obtained by coagulation contained 90% by weight of the adsorbent with respect to the total weight of the compact and had voids (voids) inside (FIG. 1). Furthermore, when the surface of a void was expanded, it had a micro void with a smaller diameter (FIG. 2).

本粒状成形体より、平均粒径0.5〜1.4mmの成形体を分級して取り出し、ハイドロタルサイト重量で1gの成形体を、リン濃度0.9mg/Lの溶液500mL中に浸漬し、プロペラ翼を用いて100rpmで攪拌し、リン吸着速度を測定した。その結果を図3に示す。   From this granular molded body, a molded body having an average particle size of 0.5 to 1.4 mm is classified and taken out, and 1 g of the molded body with hydrotalcite weight is immersed in 500 mL of a solution having a phosphorous concentration of 0.9 mg / L. The mixture was stirred at 100 rpm using a propeller blade, and the phosphorus adsorption rate was measured. The result is shown in FIG.

ここで、Mg−Al−Cl型ハイドロタルサイト吸着剤は、リン酸イオンの吸着剤であり、図3中のリン濃度は溶液500mL中のリン酸イオン濃度をモリブデン青法を用いて定量し、その値をリン濃度に換算したものである。   Here, the Mg—Al—Cl type hydrotalcite adsorbent is an adsorbent of phosphate ions, and the phosphorus concentration in FIG. 3 is determined by quantifying the phosphate ion concentration in 500 mL of the solution using the molybdenum blue method. This value is converted to phosphorus concentration.

[実施例2]
メタ系アラミドのポリマー4.0重量%、平均粒径3μmのMg−Al−Cl型ハイドロタルサイト吸着剤33.8%、NMP62.3重量%からなる高分子溶液を用いること(成形体中の機能性粒子の担持量が高分子100重量部に対して567重量部)以外は実施例1と同様にして成形した。得られた粒状成形体は、吸着剤を成形体全重量の85重量%を含み、内部にボイドを有していた。
[Example 2]
Use a polymer solution comprising 4.0% by weight of meta-aramid polymer, 33.8% Mg-Al-Cl type hydrotalcite adsorbent having an average particle size of 3 μm, and 62.3% by weight of NMP (in the molded body) Molding was performed in the same manner as in Example 1 except that the amount of the functional particles supported was 567 parts by weight with respect to 100 parts by weight of the polymer. The obtained granular compact contained 85% by weight of the total weight of the adsorbent and had voids inside.

本粒状成形体より、0.5〜1.4mmの成形体を分級して取り出し、ハイドロタルサイト重量で1gの成形体を、リン濃度0.9mg/Lの溶液500mL中に浸漬し、実施例1と同様の方法で、リン吸着速度を測定した。その結果を図3に示す。   From this granular molded body, a molded body of 0.5 to 1.4 mm was classified and taken out, and 1 g of the molded body with hydrotalcite weight was immersed in 500 mL of a solution having a phosphorus concentration of 0.9 mg / L. 1 was used to measure the phosphorus adsorption rate. The result is shown in FIG.

[実施例3]
凝固液組成を、水70重量%、NMP30重量%とする以外は、実施例1と同様にして成形し、リン吸着速度を測定した。その結果を図3に示す。
[Example 3]
Except that the composition of the coagulation liquid was 70% by weight of water and 30% by weight of NMP, it was molded in the same manner as in Example 1 and the phosphorus adsorption rate was measured. The result is shown in FIG.

[実施例4]
凝固液温度を、50℃とする以外は、実施例1と同様にして成形し、リン吸着速度を測定した。その結果を図3に示す。
[Example 4]
Except that the temperature of the coagulation liquid was 50 ° C., molding was performed in the same manner as in Example 1, and the phosphorus adsorption rate was measured. The result is shown in FIG.

[実施例5]
気体中に噴霧したポリマー溶液に、水100重量%の凝固液を噴霧した後に、凝固液槽に投入する以外は、実施例1と同様にして成形し、リン吸着速度を測定した。その結果を図3に示す。
[Example 5]
The polymer solution sprayed into the gas was sprayed with a coagulating liquid of 100% by weight of water and then charged into the coagulating liquid tank, and then molded in the same manner as in Example 1, and the phosphorus adsorption rate was measured. The result is shown in FIG.

[比較例1]
造粒品中にバインダーを5重量%含む平均粒径2mmの市販のハイドロタルサイト造粒品をハイドロタルサイト重量で1g、リン濃度0.9mg/Lの溶液にし、プロペラ翼を用いて100rpmで攪拌し、リン吸着速度を測定した。その結果を図3に示す。
[Comparative Example 1]
A commercially available hydrotalcite granulated product having an average particle diameter of 2 mm containing 5% by weight of binder in the granulated product is made into a solution having a hydrotalcite weight of 1 g and a phosphorous concentration of 0.9 mg / L at 100 rpm using a propeller blade. The mixture was stirred and the phosphorus adsorption rate was measured. The result is shown in FIG.

本発明は機能性粒子が持つ分解、反応、吸着の本来の特性を損なうことなく、分解、反応、吸着の各工程におけるハンドリングが容易な粒状の高分子成形体に機能粒子を担持させる技術であり、気体、液体中に含まれる物質を効果的に分解、反応、回収できる成形体に関するものである。   The present invention is a technology for supporting functional particles on a granular polymer molded body that is easy to handle in each step of decomposition, reaction, and adsorption without impairing the original characteristics of decomposition, reaction, and adsorption of functional particles. The present invention relates to a molded body that can effectively decompose, react, and recover substances contained in gas and liquid.

本発明の成形体の断面を電子顕微鏡により撮影した写真図である。It is the photograph which image | photographed the cross section of the molded object of this invention with the electron microscope. 図1のボイド(空孔)表面の拡大写真図である。It is an enlarged photograph figure of the void (hole) surface of FIG. 本発明により得られた成形体の性能評価、および比較評価のグラフである。It is a graph of the performance evaluation of the molded object obtained by this invention, and comparative evaluation.

Claims (9)

機能性粒子を分散した高分子溶液の成形において、高分子溶液を気体中に噴霧し粒状にした後に、凝固液に投入し、凝固液中で高分子溶液中に含まれる高分子を相分離させて成形体内部に多数の空孔を形成させることを特徴とする機能性粒子を担持した粒状高分子成形体の製造方法。   In forming a polymer solution in which functional particles are dispersed, the polymer solution is sprayed into a gas and granulated, and then poured into a coagulation liquid, and the polymer contained in the polymer solution is phase-separated in the coagulation liquid. A method for producing a granular polymer molded article carrying functional particles, wherein a large number of pores are formed inside the molded article. 高分子溶液の気体中への噴霧をスプレーノズルにより行う、請求項1記載の製造方法。   The production method according to claim 1, wherein the polymer solution is sprayed into the gas by a spray nozzle. 高分子100重量部に対し、400〜2500重量部の溶媒が用いられている高分子溶液を噴霧する、請求項1に記載の高分子成形体の製造方法。   The manufacturing method of the polymer molded object of Claim 1 which sprays the polymer solution in which the solvent of 400-2500 weight part is used with respect to 100 weight part of polymers. 前記成形体中の機能性粒子の担持量が高分子100重量部に対して10〜9900重量部である、請求項1に記載の高分子成形体の製造方法。   The method for producing a polymer molded body according to claim 1, wherein the amount of the functional particles supported in the molded body is 10 to 9900 parts by weight with respect to 100 parts by weight of the polymer. 凝固液中の貧溶媒濃度を制御することにより、成形体内部の空孔形成条件を制御する、請求項1に記載の製造方法。   The manufacturing method of Claim 1 which controls the void | hole formation conditions inside a molded object by controlling the poor solvent density | concentration in coagulation liquid. 凝固液の温度を制御することにより、成形体内部の空孔形成条件を制御する、請求項1に記載の製造方法。   The manufacturing method of Claim 1 which controls the hole formation conditions inside a molded object by controlling the temperature of coagulation liquid. 気体中に噴霧した高分子溶液に、さらに凝固液を噴霧して局所的に凝固させた後に、凝固液中で高分子溶液を凝固する、請求項1に記載の製造方法。   The production method according to claim 1, wherein the polymer solution sprayed in the gas is further solidified by spraying a coagulating solution and then coagulating the polymer solution in the coagulating solution. 請求項1〜7のいずれか記載の製造方法により得られる、機能性粒子を担持した粒状高分子成形体。   A granular polymer molded article carrying functional particles, obtained by the production method according to claim 1. 前記成形体の形状が粒状であり、平均粒径が0.05〜2.0mmである、請求項8に記載の高分子成形体。   The polymer molded body according to claim 8, wherein the molded body has a granular shape and an average particle diameter of 0.05 to 2.0 mm.
JP2005091925A 2005-03-28 2005-03-28 Particulate formed body carrying functional particle and its manufacturing process Pending JP2006273930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091925A JP2006273930A (en) 2005-03-28 2005-03-28 Particulate formed body carrying functional particle and its manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091925A JP2006273930A (en) 2005-03-28 2005-03-28 Particulate formed body carrying functional particle and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2006273930A true JP2006273930A (en) 2006-10-12

Family

ID=37208991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091925A Pending JP2006273930A (en) 2005-03-28 2005-03-28 Particulate formed body carrying functional particle and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2006273930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523743A (en) * 2007-04-05 2010-07-15 テイジン・アラミド・ビー.ブイ. Polymer foam
WO2021049901A1 (en) * 2019-09-11 2021-03-18 (주)엘지하우시스 Thermoplastic polymer particles and method for preparing same
WO2021049900A1 (en) * 2019-09-11 2021-03-18 (주)엘지하우시스 Thermoplastic polymer particles and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523743A (en) * 2007-04-05 2010-07-15 テイジン・アラミド・ビー.ブイ. Polymer foam
WO2021049901A1 (en) * 2019-09-11 2021-03-18 (주)엘지하우시스 Thermoplastic polymer particles and method for preparing same
WO2021049900A1 (en) * 2019-09-11 2021-03-18 (주)엘지하우시스 Thermoplastic polymer particles and method for manufacturing same
KR20210031577A (en) * 2019-09-11 2021-03-22 (주)엘지하우시스 Thermoplasticity polymer particles and method for preparing the same
KR102615889B1 (en) 2019-09-11 2023-12-20 (주)엘엑스하우시스 Thermoplasticity polymer particles and method for preparing the same

Similar Documents

Publication Publication Date Title
Yeskendir et al. From metal–organic framework powders to shaped solids: recent developments and challenges
CN103180243B (en) Porous graphene material and preparation method and uses as electrode material thereof
JP4277065B2 (en) Molded activated carbon
JP6052821B2 (en) Carbon dioxide capture substrate and method for producing the same
CN101780350A (en) Filter material for purifying drinking water and preparation method thereof
JP6237059B2 (en) Molded body containing porous metal complex and filter using the same
Lim et al. Extrusion of honeycomb monoliths employed with activated carbon-LDPE hybrid materials
JP2015508018A5 (en)
Fonseca et al. Fabrication of metal-organic framework architectures with macroscopic size: A review
WO2018207633A1 (en) Carbon dioxide absorbent and method for producing same, and carbon dioxide separation system
CN106794444A (en) The manufacture method of the adsorbent comprising activated carbon
CN101780351A (en) Filter material for treating waste water and gases and preparation method thereof
CN111801151A (en) Acid gas absorbing material and method for producing same
JP2006273930A (en) Particulate formed body carrying functional particle and its manufacturing process
JP2006265468A (en) Manufacturing method of formed body and formed body
KR102492879B1 (en) Metahalloysite powder and method for producing the same
Liu et al. Additively Manufacturing Metal− Organic Frameworks and Derivatives: Methods, Functional Objects, and Applications
WO2015109381A1 (en) Carbon monolith and method of producing same
KR101599781B1 (en) Method of fabricating bag filter for removing sulfur oxides and nitrogen oxide using foam coating or bead coating and bag filter fabricated by the same
JP4339674B2 (en) Functional particle-supporting fiber and method for producing the same
JP6990906B2 (en) Porous molded body of mesoporous fine particles, carrier for supporting enzymes, enzyme complexes thereof, and methods for producing them.
KR101443306B1 (en) Hybrid filter and manufacturing method thereof
JP2010125401A (en) Aldehyde removing material
JP3971542B2 (en) Microorganism carrier
WO2019235045A1 (en) Active carbon molded body