JP6990906B2 - Porous molded body of mesoporous fine particles, carrier for supporting enzymes, enzyme complexes thereof, and methods for producing them. - Google Patents

Porous molded body of mesoporous fine particles, carrier for supporting enzymes, enzyme complexes thereof, and methods for producing them. Download PDF

Info

Publication number
JP6990906B2
JP6990906B2 JP2017152336A JP2017152336A JP6990906B2 JP 6990906 B2 JP6990906 B2 JP 6990906B2 JP 2017152336 A JP2017152336 A JP 2017152336A JP 2017152336 A JP2017152336 A JP 2017152336A JP 6990906 B2 JP6990906 B2 JP 6990906B2
Authority
JP
Japan
Prior art keywords
fine particles
enzyme
mesoporous
molded body
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017152336A
Other languages
Japanese (ja)
Other versions
JP2018090767A (en
Inventor
多加子 長瀬
俊一 松浦
達朗 角田
和佳子 松浦
剛一 佐藤
嘉道 清住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JP2018090767A publication Critical patent/JP2018090767A/en
Application granted granted Critical
Publication of JP6990906B2 publication Critical patent/JP6990906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、メソポーラス微粒子の多孔質成形体、酵素担持用担体、その酵素複合体及びこれらの製造方法に関するものである。 The present invention relates to a porous molded body of mesoporous fine particles, a carrier for carrying an enzyme, an enzyme complex thereof, and a method for producing these.

無機の高機能性材料としては、古くから粘土やゼオライト、珪藻土、活性炭など天然のミクロないしメソ孔を有する微粒子が知られている。これらの微粒子は、その分子オーダーの規則的な細孔や、特定の分子やイオンに対する吸着性、構造から生じる触媒能などの特性から、分子篩、吸着剤、反応触媒などとして、工業プロセスのみでなく、一般の生活の中でも様々に利用されてきた。 As an inorganic highly functional material, fine particles having natural micro or mesopores such as clay, zeolite, diatomaceous earth, and activated carbon have been known for a long time. These fine particles are not only used in industrial processes as molecular sieves, adsorbents, reaction catalysts, etc. due to their characteristics such as regular pores on the order of molecules, adsorptivity to specific molecules and ions, and catalytic ability resulting from the structure. , Has been used in various ways in ordinary life.

ゼオライトの利用例として、特許文献1には、液体混合物の分離膜として、通気性を有する支持体上にゼオライトが固定されてなる分離膜が開示されている。さらに、支持体が、織物、編物、組物、又はセラミック、金属、若しくは合成樹脂よりなる連続発泡体よりなることも開示されている。 As an example of the use of zeolite, Patent Document 1 discloses a separation membrane in which zeolite is fixed on a breathable support as a separation membrane of a liquid mixture. Further, it is also disclosed that the support is made of a woven fabric, a knitted fabric, a braid, or a continuous foam made of a ceramic, a metal, or a synthetic resin.

また、特許文献2には、超高分子量ポリエチレン樹脂と、耐熱性を有する微細フィラーとを含有してなる、有機溶剤又は有機洗浄剤用フィルタ濾材が開示されている。さらに、微細フィラーが、ゼオライト、チタン酸カリウム、酸化チタン、セピオライト、活性炭から選ばれた1種又は2種以上であることも開示されている。 Further, Patent Document 2 discloses a filter filter medium for an organic solvent or an organic detergent, which comprises an ultra-high molecular weight polyethylene resin and a fine filler having heat resistance. Further, it is also disclosed that the fine filler is one or more selected from zeolite, potassium titanate, titanium oxide, sepiolite, and activated carbon.

また、特許文献3には、ポリアミド樹脂にて構成された中空糸膜について開示されている。さらに、ポリアミド樹脂がフィラー粒子を樹脂の質量に対して5~100質量%、すなわち中空糸膜中に約4.7~50質量%含むものであることも開示されている。 Further, Patent Document 3 discloses a hollow fiber membrane made of a polyamide resin. Further, it is also disclosed that the polyamide resin contains 5 to 100% by mass of filler particles, that is, about 4.7 to 50% by mass in the hollow fiber membrane.

また、本発明者らは、特許文献4において、天然ゼオライト中空糸多孔体、ゼオライト膜複合多孔体及びその製造方法について報告した。この天然ゼオライト中空糸多孔体は、天然ゼオライト粉末と、3-50重量%の有機高分子によって構成される、湿式紡糸された中空糸多孔体であって、細孔径が0.01-100ミクロンの範囲に複数の径の細孔が分布する多元多孔体であり、浸水可能な耐水性を有し、乾燥処理後も、含水状態にすることによって、可逆的にフレキシビリティ性能を示すことを特徴とする。 Further, the present inventors have reported in Patent Document 4, a natural zeolite hollow fiber porous body, a zeolite membrane composite porous body, and a method for producing the same. This natural zeolite hollow fiber porous body is a wet-spun hollow fiber porous body composed of natural zeolite powder and 3-50% by weight of an organic polymer, and has a pore diameter of 0.01-100 microns. It is a multi-dimensional porous body in which pores of multiple diameters are distributed in a range, has water resistance that allows water to enter, and is characterized by exhibiting reversibly flexibility performance by keeping it in a water-containing state even after drying treatment. do.

メソ孔を有する合成微粒子としては、メソポーラスシリカ等のメソポーラス物質が知られている。このメソポーラス物質の利用法としては、例えば、これらの規則性のメソ孔に、生体触媒である酵素やタンパク質を固定化して固定化支持体としての利用法が挙げられる。例えば非特許文献1は、酵素を利用した医薬品等の機能性化学品の生産プロセスにおいて、生成物と酵素の分離、酵素の再利用等に向けた酵素の固定化支持体としてのメソポーラスシリカ微粒子の利用法を開示する。 As synthetic fine particles having mesopores, mesoporous substances such as mesoporous silica are known. Examples of the usage of this mesoporous substance include a method of immobilizing an enzyme or protein as a biocatalyst in these regular mesopores and using it as an immobilized support. For example, Non-Patent Document 1 describes mesoporous silica fine particles as an enzyme-immobilized support for separation of products and enzymes, reuse of enzymes, etc. in the production process of functional chemicals such as pharmaceuticals using enzymes. Disclose the usage.

また、近年、利用し易くするためにメソポーラスシリカを成型体に加工する方法が報告されている。例えば非特許文献2は、メソポーラスシリカ微粒子粉末を用いた中空糸状成型法を開示する。また、非特許文献3は、ペレット状成型法を開示する。 Further, in recent years, a method of processing mesoporous silica into a molded body has been reported in order to make it easier to use. For example, Non-Patent Document 2 discloses a hollow filament molding method using mesoporous silica fine particle powder. Further, Non-Patent Document 3 discloses a pellet-shaped molding method.

特開2009-61369号公報Japanese Unexamined Patent Publication No. 2009-61369 特開2004-275845号公報Japanese Unexamined Patent Publication No. 2004-275845 特開2010-104983号公報JP-A-2010-104983 特開2012-72534号公報Japanese Unexamined Patent Publication No. 2012-72534

ニルス カールソン(Nils Carlsson)ら、「メソポーラスシリカに固定化された酵素:物理的化学的視点(Enzymes immobilized in mesoporous silica: A physical-chemical perspective)」、Advances in Colloid and Interface Science、2014年、205巻、p.339-360Nils Carlsson et al., "Enzymes Immobilized on Mesoporous Silica: Physical-Chemical Perspectives silica: A Physical-Chemical Perceptive, Vol. 20 Incecenc", Ad. , P. 339-360 アリ エー. ロウナグヒ(Ali A. Rownaghi)ら、「二酸化炭素捕捉用単分散球状メソポーラスナノシリカ-トーロン中空繊維複合体のその場形成(In situ Formation of a Monodispersed Spherical Mesoporous Nanosilica-Torlon Hollow-Fiber Composite for Carbon Dioxide Capture)」、ChemSusChem、2015年、8巻、p.3439-3450Aria. Ali A. Rownaghi et al., "In situ Formation of a Monodispersed Sforicial Mesoporous Microge-Rosi-Rosi-Rosia-Toronica-Toronica-Torlon Hollow Fiber Complex , ChemSusChem, 2015, Volume 8, p. 3439-3450 ハルシュ マヘシワリ(Harsh Maheshwari)ら、「強固なメソポーラスシリカ成形体:物理的・機械的特性に関する微細構造変化のマルチスケール特性評価(Robust mesoporous silica compacts: multi-scale characterization of microstructural changes related to physical-mechanical properties)」、Journal of Materials Science、2016年、51巻、p.4470-4480Harsh Maheshwari et al., "Robust mesoporous silica compacts: multi-scale silica ceramics characterization". ) ”, Journal of Materials Science, 2016, Vol. 51, p. 4470-4480

ゼオライトは、規則的に配列したミクロ孔を有し、その骨格構造中の主成分であるSiの一部がAlに置換したアルミノシリケートであり、このSi/Alの比率が、ゼオライトの触媒としての強度や機能に影響するだけでなく、ゼオライト自体の吸着分子、反応分子、反応溶媒との親和性を左右する。ゼオライト中の細孔は3~10Å程度の3次元規則細孔であるのに対し、粘土は2次元の層状構造、珪藻土はナノサイズから数ミクロンサイズにわたる比較的大きな細孔を有している。また、これら、主にシリカによる骨格を有するものの他、活性炭はカーボンが主成分で2nm~10nm程度のサイズの細孔を有している。 Zeolites are aluminosilicates that have regularly arranged micropores and a part of Si, which is the main component in the skeleton structure, is replaced with Al, and this Si / Al ratio serves as a catalyst for zeolite. Not only does it affect the strength and function, but it also affects the affinity of the zeolite itself with the adsorption molecules, reaction molecules, and reaction solvents. The pores in zeolite are three-dimensional ordered pores of about 3 to 10 Å, whereas clay has a two-dimensional layered structure and diatomaceous earth has relatively large pores ranging in size from nano-sized to several micron. In addition to those having a skeleton mainly made of silica, activated carbon is mainly composed of carbon and has pores having a size of about 2 nm to 10 nm.

このような天然に産出する多孔体の他に、天然にはなかなか得られない1nm以上の規則細孔を有したシリケートであるメソポーラスシリカや、シリカの代わりにチタニアを骨格とするメソポーラス酸化チタン、カーボンによるメソポーラスカーボン、陰イオンの吸着が可能な層状化合物であるハイドロタルサイト等、天然では得られない機能や細孔サイズを有する機能性材料が、近年様々に開発されてきている。これらの微粒子の機能は、粒子の表面で反応対象と接触することによって発現するため、機能の向上を目指して、より高い表面積を有する微粒子化が進められてきている。 In addition to such naturally occurring porous materials, mesoporous silica, which is a silicate having ordered pores of 1 nm or more, which is difficult to obtain naturally, and mesoporous titanium oxide and carbon having titania as a skeleton instead of silica. In recent years, various functional materials having functions and pore sizes that cannot be obtained in nature, such as mesoporous carbon and hydrotalcite, which is a layered compound capable of adsorbing anions, have been developed. Since the functions of these fine particles are exhibited by contacting the reaction target on the surface of the particles, fine particles having a higher surface area have been promoted with the aim of improving the functions.

メソポーラスシリカをはじめとするメソポーラス物質は、ゼオライトが1nm以下の規則細孔を有するのに対して、1~50nm程度の規則細孔を有する多孔体粒子群である。層状シリケートを原料に4級アルキルアミンをテンプレートにしてメソポーラスシリカが合成されたのを初めとして、この中のシリカの一部をアルミナに置き換えたアルミノシリケート、シリカの代わりにアルミナやチタニアを原料にした、メソポーラス酸化アルミニウム、メソポーラス酸化チタン、カーボンによるメソポーラスカーボンなどが合成されてきている。 Mesoporous substances such as mesoporous silica are a group of porous particles having regular pores of about 1 to 50 nm, whereas zeolite has regular pores of 1 nm or less. Mesoporous silica was synthesized using layered silicate as a raw material using a quaternary alkylamine as a template, aluminosilicate in which a part of silica was replaced with alumina, and alumina or titania was used as a raw material instead of silica. , Mesoporous aluminum oxide, mesoporous titanium oxide, mesoporous carbon made of carbon, etc. have been synthesized.

これらのメソポーラス物質はいずれも有機物を鋳型とした合成品で、規則孔にタンパクや酵素などの様々な有機物を固定化することが可能であることから、様々な分野での利用が期待されているが、非常に高価であり、またサブミクロン大の微粒子が多く、分離精製が難しいことが産業上での利用法の課題になっている。 All of these mesoporous substances are synthetic products using organic substances as templates, and since they can immobilize various organic substances such as proteins and enzymes in the regular pores, they are expected to be used in various fields. However, it is very expensive, and there are many submicron-sized fine particles, which makes separation and purification difficult, which is an issue of industrial usage.

一方、新規に合成された微粒子の多くは、1次粒子のままでは分散性が低く、また分散性を高めた後は分離回収が困難になるという欠点を有している。工業的にこれらの機能性微粒子を利用するためには、もとの表面積を極力維持した状態での成形・部材化又は分離手法が必須になってくる。例えば、ゼオライトは自己焼結性に乏しいため、一般的には、無機や有機のバインダーを介してのペレット成形が行なわれるが、いずれの手法に於いても、バインダー量が少ないと強度や耐水性が下がり、バインダー量が多いと微粒子表面をバインダーがつぶしてしまい、本来の機能が充分に発現されないという問題が生じ、特に薄膜状への成形を試みた場合、この問題は大きい。 On the other hand, most of the newly synthesized fine particles have a drawback that the dispersibility is low as they are as primary particles, and it becomes difficult to separate and recover them after the dispersibility is improved. In order to industrially utilize these functional fine particles, it is indispensable to form / member or separate them while maintaining the original surface area as much as possible. For example, since zeolite has poor self-sintering properties, pellet molding is generally performed via an inorganic or organic binder, but in either method, if the amount of the binder is small, the strength and water resistance are reduced. If the amount of the binder is large, the binder crushes the surface of the fine particles, which causes a problem that the original function is not sufficiently exhibited, and this problem is particularly large when an attempt is made to form a thin film.

成形手法として、特許文献1には、ゼオライトが固定されてなる分離膜の製膜化手法のひとつとして、水熱合成などの合成の段階から、基板上などに2次成長させるなどの成形手法が記載されているが、この手法は、得られるものの可塑性が低くなりがちであり、また熱水合成が可能な特定の微粒子の場合の成形でなければ採用できない。 As a molding method, Patent Document 1 describes a molding method such as secondary growth on a substrate from the stage of synthesis such as hydrothermal synthesis as one of the membrane forming methods of a separation membrane in which zeolite is fixed. As described, this method tends to be less plastic, although it is obtained, and can only be adopted in the case of specific fine particles capable of hydrothermal synthesis.

一方、有機高分子の成形体に無機微粒子をフィラーとして複合化することによって、有機高分子膜の強度を向上させたり、光学的性質や耐熱性・耐火性等の機能を付与させることができる。これらでは、有機高分子とフィラーとの親和性やフィラー粒子の配向性が、複合体の性質に大きく影響すると考えられ、フィラー粒子や樹脂側を表面修飾して親和性を高めることが盛んにおこなわれている。 On the other hand, by compounding the inorganic fine particles as a filler in the molded body of the organic polymer, it is possible to improve the strength of the organic polymer film and impart functions such as optical properties, heat resistance and fire resistance. In these cases, it is considered that the affinity between the organic polymer and the filler and the orientation of the filler particles have a great influence on the properties of the composite, and surface modification of the filler particles and the resin side is actively performed to enhance the affinity. It has been.

特許文献2には、洗浄用有機溶媒のフィルタ濾材として、高分子量ポリエチレン樹脂に耐熱性を有する繊維状の無機フィラーを配合することによって得られた、平均孔径0.01~5μmの貫通孔を有し、膜厚が25~300μmである多孔質膜が開示されている。しかし、特許文献2に記載されている有機高分子膜の溶融成形の手法は、有機高分子の高温加熱溶融・混練・押出成形を行うため、これらの成形過程に耐性を有する微粒子以外には使用することができない。また、溶融混練中に無機粒子の表面が潰れてしまうため、可塑剤及び細孔の形成剤として多量の鉱物オイルやフタル酸ジ-2-エチルヘキシルを使用せねばならず、更にこの可塑剤を抽出除去するための抽出剤として、多量のヘキサン、ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素系や、発がん性の高いトリクロロエチレン、テトラクロロエチレン等のハロゲン化炭化水素系の有機溶剤を用いなければならない。 Patent Document 2 has through holes having an average pore size of 0.01 to 5 μm, which are obtained by blending a high molecular weight polyethylene resin with a fibrous inorganic filler having heat resistance as a filter filter medium for an organic solvent for cleaning. However, a porous membrane having a film thickness of 25 to 300 μm is disclosed. However, since the method of melt molding of an organic polymer film described in Patent Document 2 performs high temperature heating melting, kneading, and extrusion molding of an organic polymer, it is used except for fine particles having resistance to these molding processes. Can not do it. In addition, since the surface of the inorganic particles is crushed during melt-kneading, a large amount of mineral oil or di-2-ethylhexyl phthalate must be used as a plasticizer and a pore-forming agent, and this plasticizer is further extracted. As an extractant for removal, a large amount of saturated hydrocarbon-based organic solvents such as hexane, heptane, octane, nonane, and decane, and halogenated hydrocarbon-based organic solvents such as trichlorethylene and tetrachloroethylene, which are highly carcinogenic, must be used.

このような溶融成形手法の他に、有機高分子の成形手法として相分離法が考えられる。相分離法は、溶媒中に有機高分子を溶解してスラリーとし、これを非溶媒又は貧溶媒の侵入や温度変化等で凝集させて成形する手法である。特許文献3には、ポリアミド中空糸膜とその製造方法として、熱誘起相分離法での製膜方法が開示されている。しかし、この手法では有機高分子スラリーを170℃以上に加熱して作製せねばならず、100℃以下に温度低下させることによって製膜し、且つフィラーを樹脂に対して100重量%まで、つまり構成物の50重量%以上担持させると強度が得られない恐れがある。このように、この相分離法は、有機高分子膜の性質に主眼を置いた製膜方法として用いられており、上述のような強度の問題から、機能性微粒子を主原料として多孔体化する製膜方法といては適していない。 In addition to such a melt molding method, a phase separation method can be considered as a molding method for organic polymers. The phase separation method is a method in which an organic polymer is dissolved in a solvent to form a slurry, which is then aggregated by invasion of a non-solvent or a poor solvent or a temperature change to form a slurry. Patent Document 3 discloses a polyamide hollow fiber membrane and a film forming method by a heat-induced phase separation method as a method for producing the same. However, in this method, the organic polymer slurry must be prepared by heating to 170 ° C. or higher, the film is formed by lowering the temperature to 100 ° C. or lower, and the filler is up to 100% by weight with respect to the resin, that is, the composition. If 50% by weight or more of the object is supported, the strength may not be obtained. As described above, this phase separation method is used as a film-forming method focusing on the properties of the organic polymer film, and due to the above-mentioned strength problem, the functional fine particles are used as the main raw material to form a porous body. It is not suitable as a film forming method.

特許文献4では、貧溶媒中での相分離を利用して、無機吸着体と有機高分子の複合体の成形を行なっている。この手法に依れば無機吸着体を主原料として50重量%以上含む多孔性成形体を製造することが可能であり、且つこの成形体は水溶液中で数年にわたって安定であり、粉落ちなしに濾過膜として使用できる強度を有している。 In Patent Document 4, a composite of an inorganic adsorbent and an organic polymer is formed by utilizing phase separation in a poor solvent. According to this method, it is possible to produce a porous molded product containing 50% by weight or more of an inorganic adsorbent as a main raw material, and this molded product is stable in an aqueous solution for several years without powder dropping. It has strength that can be used as a filtration membrane.

しかしながら、特許文献4では、成形用スラリーを作成するにあたって無機微粒子を高分散させるためとして、無機粒子をスラリー用の良溶媒中で粉砕しながら分散させることが特徴となっている。しかし、特許文献4の手法に従い、先にシリカ/アルミナ比の高い合成ゼオライトを溶媒に分散した状態で有機高分子としてポリサルホンを混入すると、溶媒と微粒子の相互作用や親和性のバランスによってポリサルホンの溶媒中への溶解が阻害され、無機粒子が均一に分散したスラリーが得られないケースや成形体からの粉落ちが多くなってしまうケースがあった。また、このような問題を避けるため、無機粒子との親和性の高い有機高分子を用いた場合、無機粒子の表面のみでなく細孔内部まで有機高分子が浸入して、成型時に無機粒子のミクロ孔が塞がり潰れてしまい易いことが判明した。このように、従来技術では、種々のサイズの細孔をもち、天然ゼオライトとは親疎水性の異なる表面を有する多孔質シリケート微粒子を成形する際に、粉落ちを防止できる構造の緻密性と液透過性や細孔機能を保持する多孔性を両立することが難しいという問題があった。 However, Patent Document 4 is characterized in that the inorganic particles are dispersed while being pulverized in a good solvent for the slurry in order to highly disperse the inorganic fine particles in producing the slurry for molding. However, according to the method of Patent Document 4, when polysulfone is first mixed as an organic polymer in a state where synthetic zeolite having a high silica / alumina ratio is dispersed in a solvent, the solvent of polysulfone is determined by the interaction between the solvent and the fine particles and the balance of affinity. In some cases, dissolution into the solvent was hindered, and a slurry in which the inorganic particles were uniformly dispersed could not be obtained, or in some cases, powder was often dropped from the molded body. Further, in order to avoid such a problem, when an organic polymer having a high affinity with inorganic particles is used, the organic polymer penetrates not only on the surface of the inorganic particles but also inside the pores, and the inorganic particles are molded during molding. It was found that the micropores were easily blocked and crushed. As described above, in the prior art, when forming porous silicate fine particles having pores of various sizes and having a surface having a surface different from that of natural zeolite, the structure is dense and liquid permeation can be prevented from falling off. There is a problem that it is difficult to achieve both the porosity and the porosity that retains the pore function.

また、非特許文献1が提案するような、従来のメソポーラスシリカ微粒子を利用した固定化酵素に関する基礎研究では、主に粉末の状態の「メソポーラスシリカ微粒子粉末」が使用されており、一般にも微粒子粉末状で使用されることが多いが、特にバイオリアクターなどの装置、器具の一部としてメソポーラスシリカ微粒子粉末を利用する場合には、微粒子粉末の微粉化、粉落ちといった問題があった。 Further, in the basic research on the conventional immobilization enzyme using mesoporous silica fine particles as proposed in Non-Patent Document 1, "mesoporous silica fine particle powder" in the form of powder is mainly used, and generally, fine particle powder is used. Although it is often used in the form of a mesoporous silica fine particle powder as a part of a device or instrument such as a bioreactor, there are problems such as pulverization of the fine particle powder and powder removal.

また、非特許文献2が開示する有機高分子をバインダーとして得られた成形体は、有機高分子の影響によって、メソポーラスシリカ本来の細孔径や表面積を維持することが困難になることがあるといった問題があった。 Further, the molded product obtained by using the organic polymer disclosed in Non-Patent Document 2 as a binder may have a problem that it may be difficult to maintain the original pore diameter and surface area of mesoporous silica due to the influence of the organic polymer. was there.

また、非特許文献3が開示する焼結により得られた成形体は、焼結温度の影響によって、メソポーラスシリカ本来の細孔径や表面積を維持することが困難になることがあるといった問題があった。 Further, the molded product obtained by sintering disclosed in Non-Patent Document 3 has a problem that it may be difficult to maintain the original pore diameter and surface area of mesoporous silica due to the influence of the sintering temperature. ..

したがって、本発明の課題は、メソポーラスシリカ、メソポーラス酸化アルミ、メソポーラス酸化チタンのようなメソ孔を有する多孔質シリケート、また、これと類似した表面性状を有する機能性微粒子の特性を保持しながら、同時に高い耐水性や濾過性、反応性を有する多元多孔質成形体及びこれを作製できる新規な手法を提供することである。また、この手法によって、ポリエーテルサルホンに限定されず、用途に応じ、より安価なEVOHといった親水性樹脂をバインダーとして使用しても良好な結果が得られる。 Therefore, the subject of the present invention is to retain the characteristics of porous silicates having mesopores such as mesoporous silica, mesoporous aluminum oxide, and mesoporous titanium oxide, and functional fine particles having similar surface properties. At the same time, it is an object of the present invention to provide a multi-dimensional porous molded body having high water resistance, filterability and reactivity, and a novel method capable of producing the same. Further, by this method, good results can be obtained even if a hydrophilic resin such as EVO H , which is cheaper, is used as a binder, not limited to the polyether sulfone, depending on the application.

また、本発明の課題は、メソポーラスシリカ等のメソポーラス物質の微粒子粉末を用途に合わせて中空糸状又はペレット状などの適宜の形状に成形して用いても安定で機械的強度が高く、粉末状のメソポーラスシリカ微粒子と同様の物性を維持し、更に、酵素の固定化支持体として粉末と同様の効果を発揮できる、メソポーラス微粒子の多孔質成形体、その酵素複合体及びそれらの製造方法を提供することである。 Further, the subject of the present invention is that even if fine particle powder of mesoporous substance such as mesoporous silica is molded into an appropriate shape such as hollow filament or pellet shape according to the application, it is stable, has high mechanical strength, and is in powder form. To provide a porous molded body of mesoporous fine particles, an enzyme complex thereof, and a method for producing them, which can maintain the same physical properties as the mesoporous silica fine particles and can exert the same effect as powder as an immobilized support for the enzyme. Is.

本発明者らは、前記課題を達成すべく鋭意検討を行った結果、多孔質粒子の成形手法としては、有機高分子との混合スラリーを貧溶媒中で相分離する方法が、貧溶媒の浸入経路が貫通孔となって成形体の反応性を高め、多孔質微粒子の表面を一部表出させるという観点から好ましいが、細孔表面を塞ぐことなく保持するためには、スラリー調製の際に、良溶媒に溶解した有機高分子が多孔質粒子の細孔に侵入して重合、又は、多孔質粒子の表面を完全に覆って、成形体の貫通孔から微粒子の表面を遮蔽してしまうことを、避けることに留意することが大切であるという見解に至った。 As a result of diligent studies to achieve the above problems, the present inventors have conducted a method of phase-separating a mixed slurry with an organic polymer in a poor solvent as a method for forming porous particles, in which the poor solvent infiltrates. It is preferable from the viewpoint that the path becomes a through hole to enhance the reactivity of the molded body and partially expose the surface of the porous fine particles. , The organic polymer dissolved in a good solvent invades the pores of the porous particles and polymerizes, or completely covers the surface of the porous particles and shields the surface of the fine particles from the through holes of the molded body. I came to the view that it is important to keep in mind to avoid.

その観点から、
1.多孔質粒子の成形用スラリーの調製は、先に有機高分子を良溶媒中に入れて充分に溶解できる温度で溶解してから、微粒子が反応を起こさず、有機高分子が粘性スラリー状を保てる温度で高速攪拌しながら、微粒子を少しずつ投入するといった手順で行うことが好ましく、
2.また、粉落ちを防止するためには構造中にシリケート表面に形成されるシラノールとの親和性が高い官能基を有する親水性の有機高分子をバインダーとすることが有効であるが、親水性有機高分子でも低分子の状態であったり、粘性が低く細孔内部へと侵入し易いものは避けることが好ましいという知見を得た。更に、これらの親水性の有機高分子は疎水性有機高分子に比べて水中で緻密な凝集構造を取り易いので、サブミクロンサイズの微粒子間に入り込んで成形体が緻密になり易いが、本発明の手法に依り、微粒子との混合スラリー作製にあたり、先に有機高分子を溶解した粘性スラリーに微粒子を添加した際に微粒子の含む気体や粘性スラリーの高速攪拌によって生じるナノサイズであって欠陥にならない程度に極微小な気泡を意図的に混入させることができ、成形後の粒子間に空隙が生じ易く、濾過性や柔軟性が向上することを見い出した。更に、親水性有機高分子が貧溶媒と微粒子との親和性のバランスから、微粒子を完全に包埋する凝集構造をとってしまう場合、成形体形成後の後処理によって、成形体構造を大きく破壊することなく、また強度低下を招くことなく微粒子へのアクセシビリティーを上げることができることを見出した。
From that point of view
1. 1. To prepare a slurry for forming porous particles, first put the organic polymer in a good solvent and dissolve it at a temperature at which it can be sufficiently dissolved, then the fine particles do not react and the organic polymer can maintain a viscous slurry form. It is preferable to carry out the procedure such as adding fine particles little by little while stirring at high speed at a temperature.
2. 2. Further, in order to prevent powder falling, it is effective to use a hydrophilic organic polymer having a functional group having a high affinity with silanol formed on the silicate surface in the structure as a binder, but hydrophilic organic. It was found that it is preferable to avoid macromolecules that are in a small molecule state or that have low viscosity and easily penetrate into the pores. Further, since these hydrophilic organic polymers are more likely to have a dense aggregated structure in water than the hydrophobic organic polymers, they are likely to enter between submicron-sized fine particles and become dense in the molded body. In order to prepare a mixed slurry with fine particles, the nano-sized particles generated by high-speed stirring of the gas containing the fine particles and the viscous slurry when the fine particles are added to the viscous slurry in which the organic polymer is first dissolved are not defective. It has been found that extremely minute bubbles can be intentionally mixed, voids are likely to be generated between the molded particles, and the filterability and flexibility are improved. Furthermore, when the hydrophilic organic polymer has an aggregated structure that completely embeds the fine particles due to the balance of affinity between the poor solvent and the fine particles, the post-treatment after the formation of the molded body greatly destroys the molded body structure. It was found that the accessibility to fine particles can be improved without doing so and without causing a decrease in strength.

本発明者らは、これらの知見に基づき本発明を完成するに至った。 The present inventors have completed the present invention based on these findings.

すなわち本発明は、以下の態様を含む。
(1)細孔直径がnm~50nmのメソ孔を有する、シリケート、アルミノシリケート、アルミナ又はチタニアを主成分とし、粒径が0.01μm~200μmである機能性微粒子と、有機高分子とを含む多孔質成形体であって、
前記有機高分子がポリエーテルサルホン又はポリエチレンモル比44%以上のEVOH樹脂であり、
細孔直径が50nm~100μmのマクロ孔を有し、
空隙率が34%以上の多孔体であり、
前記成形体中の前記機能性微粒子の含有率が46質量%以上であり、
前記機能性微粒子の表面の少なくとも一部が前記成形体から表出しており、
前記機能性微粒子の前記メソ孔の細孔容積が、原料機能性微粒子の40%以上保持されている、
ことを特徴とするメソポーラス微粒子の多孔質成形体。
That is, the present invention includes the following aspects.
(1) Functional fine particles having mesopores with a pore diameter of 2 nm to 50 nm, mainly composed of silicate, aluminosilicate, alumina or titania, and a particle size of 0.01 μm to 200 μm, and an organic polymer. It is a porous molded body containing
The organic polymer is a polyether salphon or an EVOH resin having a polyethylene molar ratio of 44% or more.
It has macropores with a pore diameter of 50 nm to 100 μm.
It is a porous body with a porosity of 34% or more.
The content of the functional fine particles in the molded product is 46% by mass or more, and the content is 46% by mass or more.
At least a part of the surface of the functional fine particles is exposed from the molded product.
The pore volume of the mesopores of the functional fine particles is maintained at 40% or more of the raw material functional fine particles.
A porous molded body of mesoporous fine particles.

(2)水中で24時間以上連続攪拌した時の前記多孔質成形体の攪拌前後での重量変化が1%以下であることを特徴とする、前記(1)に記載のメソポーラス微粒子の多孔質成形体。 (2) The porosity of the mesoporous fine particles according to (1) above, characterized in that the weight change of the porous molded body before and after stirring in water for 24 hours or more is 1% or less. Molded body.

(3)前記多孔質成形体の形状が、粒状、中空粒子状又は中空糸状であることを特徴とする、前記(1)又は(2)に記載のメソポーラス微粒子の多孔質成形体。 (3) The porous molded body of mesoporous fine particles according to (1) or (2) above, wherein the shape of the porous molded body is granular, hollow particle-like or hollow thread-like.

(4)前記機能性微粒子及び/又は前記有機高分子が複数種による混合体であることを特徴とする、前記(1)~(3)のいずれか1つに記載のメソポーラス微粒子の多孔質成形体。 (4) The porosity of the mesoporous fine particles according to any one of (1) to (3) above, wherein the functional fine particles and / or the organic polymer are a mixture of a plurality of types. Molded body.

(5)前記機能性微粒子の原料機能性微粒子の機能が、吸着性能であり、多孔質成形体の成形後に前記機能の特性発現が保持されていることを特徴とする、前記(1)~(4)のいずれか1つに記載のメソポーラス微粒子の多孔質成形体。 (5) Raw Material of the Functional Fine Particles The function of the functional fine particles is adsorption performance, and the characteristics of the functional fine particles are maintained after molding of the porous molded body. 4) The porous molded body of mesoporous fine particles according to any one of.

(6)数ミクロンサイズの粒子を分散液中から加圧濾過できることを特徴とする、前記(1)~(5)のいずれか1つに記載のメソポーラス微粒子の多孔質成形体。 (6) The porous molded body of mesoporous fine particles according to any one of (1) to (5) above, wherein particles having a size of several microns can be pressure-filtered from the dispersion liquid.

)前記有機高分子を予め溶解させた有機溶媒中に、撹拌した状態で、乾燥した状態の前記機能性微粒子を分散させることによって、前記機能性微粒子の含む気体を意図的に混入させてナノバブルを含む原料スラリーを得る工程と、
非溶媒中に前記原料スラリーを射出することによって成形する工程と、を含むことを特徴とする前記(1)~()のいずれか1つに記載のメソポーラス微粒子の多孔質成形体の製造方法。
( 7 ) The gas contained in the functional fine particles is intentionally mixed by dispersing the functional fine particles in a dried state in an organic solvent in which the organic polymer is previously dissolved in a stirred state. And the process of obtaining a raw material slurry containing nanobubbles
The production of a porous molded body of mesoporous fine particles according to any one of (1) to ( 6 ) above, which comprises a step of molding by injecting the raw material slurry into a non-solvent. Method.

)前記有機高分子が親水基を有する、前記()に記載のメソポーラス微粒子の多孔質成形体の製造方法。 ( 8 ) The method for producing a porous molded body of mesoporous fine particles according to ( 7 ) above, wherein the organic polymer has a hydrophilic group.

)前記メソポーラス微粒子の多孔質成形体を、減圧下のエタノール中又は良溶媒の低濃度水溶液中において低温加熱処理する工程、を更に含むことを特徴とする前記(7)又は(8)に記載のメソポーラス微粒子の多孔質成形体の製造方法。 ( 9 ) The above-mentioned (7) or (8) further comprises a step of subjecting the porous molded body of the mesoporous fine particles to a low-temperature heat treatment in ethanol under reduced pressure or in a low-concentration aqueous solution of a good solvent. ) . The method for producing a porous molded body of mesoporous fine particles.

10)前記機能性微粒子原料機能性微粒子の機能が、1種類又は2種類以上の酵素及び/又はタンパク質の固定化能を含み、前記成形体中の前記機能性微粒子の含有率が46質量%以上である、前記(1)~()のいずれか1つに記載の多孔質成形体である酵素担持用担体。 ( 10 ) Raw material of the functional fine particles The function of the functional fine particles includes the ability to immobilize one or more kinds of enzymes and / or proteins, and the content of the functional fine particles in the molded body is 46 mass. % Or more, the enzyme-supporting carrier which is the porous molded body according to any one of (1) to ( 6 ) above.

11)前記(10)に記載の酵素担持用担体と酵素との複合体。 ( 11 ) The complex of the enzyme-supporting carrier and the enzyme according to ( 10 ) above.

12)前記酵素は、酸化還元酵素、加水分解酵素、転移酵素、脱離酵素、異性化酵素、及び/又は合成酵素である、前記(11)に記載の複合体。 ( 12 ) The complex according to ( 11 ) above, wherein the enzyme is an oxidoreductase, a hydrolase, a transfer enzyme, a desorption enzyme, an isomerase, and / or a synthase.

13)前記酵素の酵素反応は、酸化還元反応、加水分解反応、転移反応、脱離反応、異性化反応、及び/又は合成反応である、前記(11)又は(12)に記載の複合体。 ( 13 ) The complex according to ( 11 ) or ( 12 ) above, wherein the enzymatic reaction of the enzyme is an oxidation-reduction reaction, a hydrolysis reaction, a transfer reaction, an elimination reaction, an isomerization reaction, and / or a synthetic reaction. ..

14)前記酵素の酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質のそれぞれが細孔直径2nm~50nmのメソ孔に固定化された前記(11)~(13)のいずれか1つに記載の複合体を製造する方法であって、
前記酵素及び/又はタンパク質を、pH3~11に調整した緩衝液中でメソポーラス微粒子の多孔質成形体に固定化させる固定化工程を含む、製造方法。
( 14 ) Any of the above ( 11 ) to ( 13 ) in which one or more enzymes and / or proteins involved in the enzymatic reaction of the enzyme are immobilized in mesopores having a pore diameter of 2 nm to 50 nm. A method for producing the complex according to one.
A production method comprising an immobilization step of immobilizing the enzyme and / or protein on a porous molded body of mesoporous fine particles in a buffer solution adjusted to pH 3-11.

15)さらに、固定化終了後のメソポーラス微粒子の多孔質成形体をpH3~11に調整した緩衝液で複数回洗浄する洗浄工程を含む、前記(14)に記載の製造方法。 ( 15 ) The production method according to ( 14 ) above, further comprising a washing step of washing the porous molded body of mesoporous fine particles after immobilization with a buffer solution adjusted to pH 3 to 11 multiple times.

16)前記酵素の酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質のそれぞれがメソポーラス微粒子の多孔質成形体に固定化された、前記(11)~(13)のいずれか1つに記載の複合体を用いた酵素反応方法であって、
前記酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3~11に調整した緩衝液中で固定化する固定化工程、
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を含むpH3~11の緩衝液中に、反応基質を添加するか、又は
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含むpH3~11の緩衝液中に添加して前記酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む酵素反応方法。
( 16 ) Any one of ( 11 ) to ( 13 ) above, wherein each of one or more kinds of enzymes and / or proteins involved in the enzymatic reaction of the enzyme is immobilized on a porous molded body of mesoporous fine particles. It is an enzymatic reaction method using the complex described in the above.
Immobilization step of immobilizing the enzyme and / or protein in a porous molded body of mesoporous fine particles in a buffer solution adjusted to pH 3 to 11.
A reaction substrate is added to a buffer solution having a pH of 3 to 11 containing a complex of a porous molded body of mesoporous fine particles obtained in the immobilization step and an enzyme, or the mesoporous fine particles obtained in the immobilization step. The enzyme reaction method, which comprises an enzyme reaction step of adding a complex of the porous molded product and the enzyme to a buffer solution having a pH of 3 to 11 containing a reaction substrate to carry out an enzyme reaction involving the enzyme and / or protein.

17)前記酵素の酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質のそれぞれがメソポーラス微粒子の多孔質成形体に固定化された、前記(11)~(13)のいずれか1項に記載の複合体を用いた酵素反応方法であって、
前記酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3~11に調整した緩衝液中で固定化する固定化工程、
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体をpH3~11の緩衝液で洗浄する洗浄工程、
前記洗浄工程で得られた洗浄後のメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含む反応液中で、前記酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む酵素反応方法。
18)前記酵素反応が、反応基質から機能性の有用物質を製造する方法である、前記(16)又は(17)に記載の酵素反応方法。
19)前記酵素反応が、環境中に存在する反応基質となる環境汚染物質を分解する方法である、前記(16)又は(17)に記載の酵素反応方法。
20)前記酵素反応方法が、被検試料中に存在するか又は存在する可能性のある反応基質を検出又は定量する方法である、前記(16)又は(17)に記載の酵素反応方法。
21)前記(11)~(13)のいずれか1つに記載の複合体を含む、前記酵素及び/又はタンパク質が関わる酵素反応用キット、センサー又は装置。
( 17 ) Any one of ( 11 ) to ( 13 ) above, wherein each of one or more kinds of enzymes and / or proteins involved in the enzymatic reaction of the enzyme is immobilized on a porous molded body of mesoporous fine particles. An enzymatic reaction method using the complex described in the section.
Immobilization step of immobilizing the enzyme and / or protein in a porous molded body of mesoporous fine particles in a buffer solution adjusted to pH 3 to 11.
A washing step of washing a composite of a porous molded body of mesoporous fine particles obtained in the immobilization step and an enzyme with a buffer solution having a pH of 3 to 11.
An enzymatic reaction step in which a complex of a porous molded body of mesoporous fine particles after washing obtained in the washing step and an enzyme is subjected to an enzymatic reaction involving the enzyme and / or a protein in a reaction solution containing a reaction substrate. Enzyme reaction method including.
( 18 ) The enzymatic reaction method according to ( 16 ) or ( 17 ) above, wherein the enzymatic reaction is a method for producing a functional useful substance from a reaction substrate.
( 19 ) The enzymatic reaction method according to ( 16 ) or ( 17 ) above, wherein the enzymatic reaction is a method for decomposing an environmental pollutant that is a reaction substrate existing in the environment.
( 20 ) The enzyme reaction method according to ( 16 ) or ( 17 ) above, wherein the enzyme reaction method is a method for detecting or quantifying a reaction substrate that is or may be present in a test sample.
( 21 ) A kit, sensor or apparatus for an enzyme reaction involving the enzyme and / or protein, which comprises the complex according to any one of ( 11 ) to ( 13 ).

本発明により、メソポーラスシリカ、メソポーラス酸化アルミ、メソポーラス酸化チタンのようなメソ孔を有する多孔質シリケート、また、これと類似した表面性状を有する機能性微粒子の特性を保持しながら、同時に高い耐水性や濾過性、反応性を有する多元多孔質成形体及びこれを作製できる新規な手法が提供される。また、この手法によって、ポリエーテルサルホンに限定されず、用途に応じ、より安価なEVOHといった親水性樹脂をバインダーとして使用しても良好な結果が得られる。 According to the present invention, porous silicates having mesopores such as mesoporous silica, mesoporous aluminum oxide, and mesoporous titanium oxide, and functional fine particles having similar surface textures are maintained at the same time. A multi-dimensional porous molded body having water resistance, filterability, and reactivity, and a novel method capable of producing the same are provided. Further, by this method, good results can be obtained even if a hydrophilic resin such as EVO H , which is cheaper, is used as a binder, not limited to the polyether sulfone, depending on the application.

また、本発明により、メソポーラスシリカ等のメソポーラス物質の微粒子粉末を用途に合わせて中空糸状又はペレット状などの適宜の形状に成形して用いても安定で機械的強度が高く、粉末状のメソポーラスシリカ微粒子と同様の物性を維持し、更に、酵素の固定化支持体として粉末と同様の効果を発揮できる、メソポーラス微粒子の多孔質成形体、その酵素複合体及びそれらの製造方法が提供される。 Further, according to the present invention, even if fine particle powder of mesoporous substance such as mesoporous silica is molded into an appropriate shape such as hollow filament or pellet shape according to the application, it is stable and has high mechanical strength, and powdered mesoporous silica. Provided are a porous molded body of mesoporous fine particles, an enzyme complex thereof, and a method for producing the same, which can maintain the same physical properties as the fine particles and can exert the same effect as the powder as an immobilized support for the enzyme.

実施例1の成形体の長手方向に直交した断面のSEM像。An SEM image of a cross section orthogonal to the longitudinal direction of the molded product of Example 1. 実施例1の成形体の長手方向断面のSEM像。An SEM image of a longitudinal cross section of the molded product of Example 1. 実施例1の成形体の水銀ポロシメトリによる細孔径分布曲線図。The pore size distribution curve figure by the mercury porosimetry of the molded article of Example 1. FIG. 実施例1の成形体と原料粒子Aとの室温での窒素吸着等温線を示した図。The figure which showed the nitrogen adsorption isotherm of the molded article of Example 1 and the raw material particle A at room temperature. 参考例13と参考例14と原料粒子Fとの室温での窒素吸着等温線を示した図。The figure which showed the nitrogen adsorption isotherm of the reference example 13 and the reference example 14 and the raw material particle F at room temperature. 実施例18の成形体の外観像。External view of the molded product of Example 18. 実施例23の(a)メソポーラスシリカの粉末、(b)成形体、(c)酵素複合体の外観像。Appearance image of (a) mesoporous silica powder, (b) molded product, and (c) enzyme complex of Example 23. 実施例18の成形体とアゾ還元酵素との複合体の調製方法、アゾ染料の分解反応、及び、固定化酵素の再使用までの手順を模式的に示した図。The figure schematically showing the procedure for preparing the complex of the molded product of Example 18 and the azo reductase, the decomposition reaction of the azo dye, and the reuse of the immobilized enzyme. 実施例30におけるAzoRの固定化量及び固定化率を示した図。The figure which showed the immobilization amount and the immobilization rate of AzoR in Example 30. 実施例30の吸光度変化及びメチルレッドの分解率を示した図。The figure which showed the change in the absorbance of Example 30 and the decomposition rate of methyl red. 実施例31の各種メソポーラス微粒子に対するAzoRの固定化量を示した図。The figure which showed the immobilization amount of AzoR with respect to various mesoporous fine particles of Example 31. 実施例31の各種AzoR-メソポーラス微粒子複合体によるメチルレッドの分解率及び耐久性を示した図。The figure which showed the decomposition rate and durability of methyl red by various AzoR-mesoporous fine particle complex of Example 31. 実施例31における(a)実施例23の成形体、(b)そのAzoR複合体、(c)比較例8の成形体、及び(d)そのAzoR複合体の外観像。31 is an external view of (a) the molded product of Example 23, (b) the AzoR complex thereof, (c) the molded product of Comparative Example 8, and (d) the AzoR complex thereof. 脱色率に与える遊離AzoR濃度の影響を示した図。The figure which showed the influence of the free AzoR concentration on the decolorization rate. 実施例32の各種メソポーラス微粒子に対するグルコース脱水素酵素の固定化量を示した図。The figure which showed the immobilization amount of glucose dehydrogenase with respect to various mesoporous fine particles of Example 32. 実施例32の各種GDH-メソポーラス微粒子複合体による生成NADH濃度及び固定化酵素の耐久性を示した図。The figure which showed the density | concentration of the generated NADH by the various GDH-mesoporous fine particle complex of Example 32, and the durability of the immobilized enzyme. 生成NADH濃度に与える未固定の遊離GDH濃度の影響を示した図。The figure which showed the influence of the unfixed free GDH concentration on the produced NADH concentration. 実施例33の各種メソポーラス微粒子に対するリパーゼの固定化量を示した図。The figure which showed the immobilization amount of the lipase with respect to the various mesoporous fine particles of Example 33. 実施例33の各種リパーゼ-メソポーラス微粒子複合体によるトリグリセリド分解における遊離ピレン濃度及び固定化酵素の耐久性を示した図。The figure which showed the free pyrene concentration and the durability of the immobilized enzyme in the triglyceride decomposition by the various lipase-mesoporous fine particle complex of Example 33. トリグリセリド分解により遊離する蛍光物質(ピレン)濃度に与える未固定の遊離リパーゼ濃度の影響を示した図。The figure which showed the influence of the unfixed free lipase concentration on the concentration of fluorescent substance (pyrene) released by triglyceride decomposition. 実施例34の各種メソポーラス微粒子および活性炭に対するプロテアーゼの固定化量を示した図。The figure which showed the immobilization amount of protease with various mesoporous fine particles and activated carbon of Example 34. 実施例34の各種プロテアーゼ-メソポーラス微粒子複合体およびプロテアーゼ-活性炭複合体によるゼラチンの分解活性及び固定化酵素の耐久性を示した図。The figure which showed the degrading activity of gelatin and the durability of the immobilized enzyme by various protease-mesoporous fine particle complex and protease-activated carbon complex of Example 34.

次に、本発明の好適な実施の形態を説明する。なお、本発明において、数値範囲の記載は、両端値のみならず、その中に含まれる全ての任意の中間値を含むものである。 Next, a preferred embodiment of the present invention will be described. In the present invention, the description of the numerical range includes not only both-end values but also all arbitrary intermediate values contained therein.

本発明の、ミクロないしメソポーラス微粒子の多孔質成形体は、機能性微粒子と有機高分子とを含む多孔質成形体である(以下、本発明の、ミクロないしメソポーラス微粒子の多孔質成形体を、本発明の多孔質成形体と称することがある)。 The porous molded body of micro or mesoporous fine particles of the present invention is a porous molded body containing functional fine particles and an organic polymer (hereinafter, the porous molded body of micro or mesoporous fine particles of the present invention is referred to as the present invention. It may be referred to as the porous molded body of the present invention).

本発明に係る機能性微粒子は、細孔直径が0.3nm~50nmのミクロないしメソ孔を有する、シリケート、アルミノシリケート、アルミナ又はチタニアを主成分とする。 The functional fine particles according to the present invention are mainly composed of silicate, aluminosilicate, alumina or titania having micro or mesopores having a pore diameter of 0.3 nm to 50 nm.

ここで、ミクロ孔とは、マイクロ孔やマイクロポアとも呼ばれ、細孔直径が1nm未満の細孔をいう。メソ孔とは、ミクロ孔より大きく、細孔直径が1nm以上50nm以下の細孔をいう。従って、細孔直径が0.3nm~50nmのミクロないしメソ孔を有するとは、細孔直径が0.3nm~50nmの細孔を有するとの意味である。 Here, the micropores are also called micropores or micropores, and refer to pores having a pore diameter of less than 1 nm. Mesopores are pores that are larger than micropores and have a pore diameter of 1 nm or more and 50 nm or less. Therefore, having micro or mesopores having a pore diameter of 0.3 nm to 50 nm means having pores having a pore diameter of 0.3 nm to 50 nm.

本発明に係る機能性粒子の細孔直径は、0.3nm~50nmであり、好ましくは0.3nm~10nm、より好ましくは0.5nm~5nmである。 The pore diameter of the functional particles according to the present invention is 0.3 nm to 50 nm, preferably 0.3 nm to 10 nm, and more preferably 0.5 nm to 5 nm.

また、シリケート、アルミノシリケート、アルミナ又はチタニアは、純粋なシリケート、アルミノシリケート、アルミナ又はチタニアのほか、他の金属元素がシリケートやアルミノシリケート又はチタニア構造の骨格中の欠陥部に導入されたもの、シリケートやアルミノシリケートの構造中のシリコンやアルミニウム元素の一部が他の金属に置換したもの(金属置換体)を含む。 In addition, silicates, aluminosilicates, aluminas or titanias are pure silicates, aluminosilicates, aluminas or titanias, as well as other metallic elements introduced into defects in the skeleton of silicates, aluminosilicates or titania structures, silicates. And some of the silicon and aluminum elements in the structure of aluminosilicate are replaced with other metals (metal substituents).

また、シリケート、アルミノシリケート、アルミナ又はチタニアを主成分とするとは、機能性微粒子がこれらの純相のもの、又はこれらの質量割合が、通常50%以上、好ましくは90%以上の混合物であることをいう。 Further, when the main component is silicate, aluminosilicate, alumina or titania, the functional fine particles are those in a pure phase thereof, or the mass ratio thereof is usually 50% or more, preferably 90% or more. To say.

また、機能性微粒子の機能は、特に限定されないが、例えば吸着性能や除去能が挙げられる。これらの機能は、多孔質成形体の成形後に特性発現が保持されていると好ましい。 The function of the functional fine particles is not particularly limited, and examples thereof include adsorption performance and removal ability. It is preferable that these functions retain their characteristics after molding the porous molded product.

本発明に係るシリケート、アルミナ、アルミノシリケート、アルミナ及びチタニアの種類や構造、結晶性は、特に限定されない。 The type, structure, and crystallinity of silicate, alumina, aluminosilicate, alumina, and titania according to the present invention are not particularly limited.

また、本発明に係る機能性微粒子の粒径は、0.01μm~200μmであり、好ましくは0.01μm~10μmであり、より好ましくは0.1μm~5μmである。ここで粒径とは、凝集粒子のサイズを意味する。結晶粒子径がこの範囲より小さい粒子が凝集塊を形成して分離していないものを含むことができる。後述する原料スラリーの調整の際には、前記の範囲の粒径を有する機能性微粒子は、そのままの粒径で分散し、又は、凝集粒子がほぐれてより微細な粒径となって分散する。本発明の多孔質成形体が中空糸状もしくは微細粒状である場合、多孔質成形体、原料スラリー、又は溶媒中では、機能性微粒子は、好ましくは粒径0.01μm~10μmの範囲で分散し、より好ましくは0.1μm~5μmの範囲で分散する。粒径は、例えば、透過型電子顕微鏡観察による20~30個の粒子の直径の平均値として求めることができる。 The particle size of the functional fine particles according to the present invention is 0.01 μm to 200 μm, preferably 0.01 μm to 10 μm, and more preferably 0.1 μm to 5 μm. Here, the particle size means the size of the agglomerated particles. Particles having a crystal particle size smaller than this range may form agglomerates and are not separated. When preparing the raw material slurry described later, the functional fine particles having a particle size in the above range are dispersed with the same particle size, or the aggregated particles are loosened and dispersed with a finer particle size. When the porous molded body of the present invention is hollow filamentous or finely granular, the functional fine particles are preferably dispersed in the porous molded body, the raw material slurry, or the solvent in the range of particle size of 0.01 μm to 10 μm. More preferably, the dispersion is in the range of 0.1 μm to 5 μm. The particle size can be determined, for example, as an average value of the diameters of 20 to 30 particles observed by transmission electron microscopy.

本発明に係る機能性微粒子は、スラリー溶媒中に有機高分子と共に安定に分散できるように化学修飾又は処理された改質機能性微粒子とすることができる。機能性微粒子の化学修飾又は処理としては、例えば、シラノール基末端の有機鎖修飾などが挙げられる。 The functional fine particles according to the present invention can be modified functional fine particles chemically modified or treated so that they can be stably dispersed together with an organic polymer in a slurry solvent. Examples of the chemical modification or treatment of the functional fine particles include modification of the organic chain at the terminal of the silanol group.

本発明に係る機能性微粒子は、単独であっても複数種であってもよいが、複数種による混合体であると、一つの成形体で同時に複数の反応対象を選択的に吸着又は除去できるなど、複数の機能を付与できる点で好ましい。 The functional fine particles according to the present invention may be used alone or in a plurality of types, but when a mixture of a plurality of types is used, a single molded product can selectively adsorb or remove a plurality of reaction targets at the same time. It is preferable in that multiple functions can be added.

本発明の多孔質成形体の機能性粒子の含有率は、46質量%以上であり、好ましくは50質量%以上であり、より好ましくは60質量%以上、さらに好ましくは67質量%以上である。 The content of the functional particles of the porous molded product of the present invention is 46% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 67% by mass or more.

本発明に係る有機高分子は、特に限定されないが、本発明の多孔質成形体中の多孔体とする、ミクロないしメソ孔を有する、シリケート、アルミナ、アルミノシリケート又はチタニアを主成分とする機能性微粒子との親和性が高い官能基(例えばヒドロキシル基、スルホニル基、カルボキシル基などの親水基)を有すると好ましく、比較的低温でジメチルスルホキシドをはじめとする両親媒性の汎用的な有機溶剤に対して、重量に関し、7~20重量%程度以上溶解可能であり、これらを分散した際に均一なスラリーを調製可能で、更にそのスラリーを非溶媒もしくは貧溶媒中で凝集させて成形できるものであるとより好ましい。より具体的には、熱可塑性樹脂の中で、比較的親水性の高いポリエーテルサルホン、ポリサルホン、OH基を有するポリエチレン-ポリビニルアルコール共重合樹脂(EVOH樹脂)、ポリエチレン-酢酸ビニル共重合樹脂のケン化物、アクリル樹脂(PMMA樹脂)、ポリアミドイミド樹脂などが好ましい。さらに好ましくはポリエーテルサルホンやポリエチレンモル比44%以上のポリエチレン-ポリビニルアルコール共重合樹脂、ポリアミドイミド樹脂である。 The organic polymer according to the present invention is not particularly limited, but has functionality of silicate, alumina, aluminosilicate or titania as a main component, which is a porous body in the porous molded body of the present invention and has micro or mesopores. It is preferable to have a functional group having a high affinity with fine particles (for example, a hydrophilic group such as a hydroxyl group, a sulfonyl group, or a carboxyl group), and it is suitable for a general-purpose amphipathic organic solvent such as dimethylsulfoxide at a relatively low temperature. In terms of weight, it can be dissolved in an amount of about 7 to 20% by weight or more, a uniform slurry can be prepared when these are dispersed, and the slurry can be further aggregated and molded in a non-solvent or a poor solvent. And more preferable. More specifically, among the thermoplastic resins, polyether sulfone, polysulfone having relatively high hydrophilicity, polyethylene-polyvinyl alcohol copolymer resin (EVOH resin) having an OH group, and polyethylene-vinyl acetate copolymer resin. Kenzoku, acrylic resin (PMMA resin), polyamideimide resin and the like are preferable. More preferably, it is a polyether sulfone, a polyethylene-polyvinyl alcohol copolymer resin having a polyethylene molar ratio of 44% or more, or a polyamide-imide resin.

本発明に係る有機高分子は、単独であっても複数種であってもよいが、成形体の強度などの物理的性質、耐薬品性、耐熱性などの化学的性質は有機高分子の性質に依存するところが大きいため、複数種による混合体とすることによってこれらの成形体の性質を制御することも可能である。 The organic polymer according to the present invention may be used alone or in a plurality of types, but the physical properties such as the strength of the molded body and the chemical properties such as chemical resistance and heat resistance are the properties of the organic polymer. Since it depends largely on the above, it is possible to control the properties of these molded bodies by using a mixture of a plurality of types.

本発明に係る有機高分子は、化学修飾又は処理された改質機能性微粒子であると好ましい。有機高分子の化学修飾又は処理としては、例えば、ポリエーテルサルホンへのヒドロキシル基の付与やポリエチレン-酢酸ビニル共重合樹脂のケン化処理などが挙げられる。 The organic polymer according to the present invention is preferably chemically modified or treated modified functional fine particles. Examples of the chemical modification or treatment of the organic polymer include the addition of a hydroxyl group to the polyether sulfone and the saponification treatment of the polyethylene-vinyl acetate copolymer resin.

本発明に係る有機高分子の親水基の含有比は特に限定されないが、70モル%未満であると好ましく、56モル%未満であるとより好ましい。親水基の含有比が低いと親水性が高くなり過ぎず、凝固用の貧溶媒表面でフィルム状に広がらずに任意形状の成形が容易になる傾向にある。 The content ratio of the hydrophilic group of the organic polymer according to the present invention is not particularly limited, but is preferably less than 70 mol%, more preferably less than 56 mol%. When the content ratio of the hydrophilic group is low, the hydrophilicity does not become too high, and it tends to be easy to form an arbitrary shape without spreading like a film on the surface of a poor solvent for coagulation.

また、本発明に係る有機高分子のポリエチレン含有率は特に限定されないが、70モル%未満であると好ましく、48モル%以下であるとより好ましい。ポリエチレン含有率が低いと溶媒に溶け、微粒子との親和性も上昇する傾向にある。 The polyethylene content of the organic polymer according to the present invention is not particularly limited, but is preferably less than 70 mol%, more preferably 48 mol% or less. When the polyethylene content is low, it dissolves in a solvent and tends to increase the affinity with fine particles.

本発明の多孔質成形体における、有機高分子の含有率は、成形体の形状や、機能性微粒子の種類により適宜選択されるが、多孔質成形体の全重量に対して通常5~50重量%、好ましくは15~40重量%前後である。有機高分子の含有率がこの範囲にあると、成形体が機械的に安定であり、機能性微粒子の粒子間隙が塞がれずにミクロないしメソ孔が機能する傾向にある。 The content of the organic polymer in the porous molded product of the present invention is appropriately selected depending on the shape of the molded product and the type of functional fine particles, but is usually 5 to 50 weight with respect to the total weight of the porous molded product. %, Preferably around 15-40% by weight. When the content of the organic polymer is in this range, the molded product is mechanically stable, and the micro or mesopores tend to function without closing the particle gaps of the functional fine particles.

本発明の多孔質成形体は、その製造方法によっては限定されないが、例えば、有機高分子を予め溶解させた有機溶媒中にミクロないしメソ孔を有するシリケート、アルミノシリケート、アルミナ又はチタニアを主成分とする機能性微粒子を分散させて原料スラリーを得る工程と、非溶媒中に前記原料スラリーを射出することによって成形する工程と、を含む方法により製造できる。 The porous molded article of the present invention is not limited depending on the production method thereof, but for example, the main component is silicate, aluminosilicate, alumina or titania having micro or mesopores in an organic solvent in which an organic polymer is previously dissolved. It can be produced by a method including a step of dispersing the functional fine particles to obtain a raw material slurry and a step of molding by injecting the raw material slurry into a non-solvent.

また、本発明の多孔質成形体の有機高分子がPMMA樹脂又はポリアミドイミド樹脂である場合は、成形後に重合促進剤又は硬化促進剤で処理する工程を更に含む方法により製造できる。 When the organic polymer of the porous molded product of the present invention is a PMMA resin or a polyamide-imide resin, it can be produced by a method further including a step of treating with a polymerization accelerator or a curing accelerator after molding.

この製造方法は、機能性微粒子と有機高分子を含む原料スラリーから相分離法によって、成形体を得る方法である。 This production method is a method for obtaining a molded product by a phase separation method from a raw material slurry containing functional fine particles and an organic polymer.

有機高分子は、機能性微粒子のバインダーとして機能する他、マクロ孔を形成することによって機能性微粒子間の間隙が多孔体形成後の使用時にも潰れないように保持する役目を担う。有機高分子は、特に限定されず、前述の成形体に係る有機高分子として例示したものが挙げられるが、室温では揮発しにくい種類の有機溶媒に比較的低温で可溶であり、機能性微粒子との親和性が高いものが適宜選択される。シリケートやアルミノシリケートとの親和性から親水基を有するものが好ましい。また、原料スラリー中において、ミクロないしメソ孔への浸入を防ぐ観点、成形に際して、低濃度で十分な粘性と成形性が得られる観点、成型後の成形体の構造や強度の観点から、ポリスチレン換算の重量平均分子量(Mw)が50,000以上の比較的分子量の高いものが好ましい。原料スラリーへの有機高分子の添加量は、成形体の形状や、機能性微粒子の種類により適宜選択されるが、得られる乾燥後の成形体の全重量に対して通常5~50重量%、好ましくは15~40重量%前後である。有機高分子の添加率が少なすぎると安定な成形体の形成が困難となり、多過ぎると原料機能性微粒子の粒子間隙が塞がれてしまい、ミクロないしメソ孔が機能しなくなる傾向にある。また、PMMA樹脂などを用いると、成形後に再重合処理を行うことで、成形体の強度を高められる。 In addition to functioning as a binder for functional fine particles, the organic polymer has a role of retaining the gaps between the functional fine particles so as not to be crushed even during use after forming the porous body by forming macropores. The organic polymer is not particularly limited, and examples thereof include those exemplified as the organic polymer related to the above-mentioned molded product. However, it is soluble in a kind of organic solvent that is difficult to volatilize at room temperature at a relatively low temperature, and is functional fine particles. Those having a high affinity with are appropriately selected. Those having a hydrophilic group are preferable because of their affinity with silicates and aluminosilicates. Further, from the viewpoint of preventing infiltration into micro or mesopores in the raw material slurry, from the viewpoint of obtaining sufficient viscosity and moldability at a low concentration during molding, and from the viewpoint of the structure and strength of the molded product after molding, polystyrene conversion A relatively high molecular weight having a weight average molecular weight (Mw) of 50,000 or more is preferable. The amount of the organic polymer added to the raw material slurry is appropriately selected depending on the shape of the molded product and the type of functional fine particles, but is usually 5 to 50% by weight based on the total weight of the obtained dried molded product. It is preferably around 15 to 40% by weight. If the addition rate of the organic polymer is too small, it becomes difficult to form a stable molded body, and if it is too large, the particle gaps of the raw material functional fine particles are closed, and the micro or mesopores tend to not function. Further, when PMMA resin or the like is used, the strength of the molded product can be increased by performing the repolymerization treatment after molding.

有機高分子を溶解させる溶剤としては、前述のように、有機高分子を比較的低温で溶剤の重量に対して6~20重量%程度以上溶解可能であり、樹脂を凝固させるための非溶媒・貧溶媒と相溶性があるものであり、且つ、多孔体とするミクロないしメソ孔を有するシリケート、アルミノシリケート、アルミナ又はチタニアを主成分とする機能性微粒子を、それと化学的又は物理的反応を起こすことなく、均一に分散させることが可能な溶媒であることが好ましい。そのような溶媒として、例えば、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドンが挙げられる。 As the solvent for dissolving the organic polymer, as described above, the organic polymer can be dissolved at a relatively low temperature in an amount of about 6 to 20% by weight or more based on the weight of the solvent, and is a non-solvent for coagulating the resin. Functional fine particles that are compatible with a poor solvent and have micro or mesopores that are porous and are mainly composed of silicate, aluminosilicate, alumina or titania, cause a chemical or physical reaction with it. It is preferable that the solvent can be uniformly dispersed without any problem. Examples of such a solvent include dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and n-methylpyrrolidone.

本発明において、機能性微粒子を、有機高分子を溶解させた有機溶媒に分散させた、原料スラリーの調製は、ミクロないしメソ孔を有するシリケート、アルミノシリケート又はチタニアを主成分とする機能性微粒子を前述のバインダーとなる有機高分子と共に前述の溶媒に加えて攪拌することで行うことができる。 In the present invention, the preparation of the raw material slurry in which the functional fine particles are dispersed in an organic solvent in which an organic polymer is dissolved is prepared by using silicates having micro or mesopores, aluminosilicates or functional fine particles containing titania as a main component. This can be done by adding the above-mentioned solvent together with the above-mentioned organic polymer serving as a binder and stirring the mixture.

原料の機能性微粒子は、添加前に十分乾燥させておくと、原料スラリー中での有機高分子の成形前の局部的な重合を防ぎ、成形後の複合体の強度の低下を防ぐ点で好ましい。乾燥温度は、特に限定されないが、原料微粒子の性質変化が起きない範囲で脱湿される温度が好ましい。原料スラリー中の機能性微粒子濃度は、特に限定されないが、機能性微粒子の種類やサイズによる粘性の違い、成形体や有機高分子の種類によって適宜選択される。中空糸膜成形に関しては、原料スラリー中の機能性微粒子濃度は、好ましくは6~40重量%(質量%)である。この濃度が低くなると成形が困難になる、又は成形体中の多孔性が低くなり、濃度が高くなると成形体中でのバインダーとなる有機物との分布が不均一になり易く、柔軟性や耐圧性が得られない恐れがある。 When the functional fine particles of the raw material are sufficiently dried before addition, it is preferable in that the local polymerization of the organic polymer in the raw material slurry before molding is prevented and the strength of the composite after molding is prevented from being lowered. .. The drying temperature is not particularly limited, but is preferably a temperature at which dehumidification does not occur within a range in which the properties of the raw material fine particles do not change. The concentration of the functional fine particles in the raw material slurry is not particularly limited, but is appropriately selected depending on the type and size of the functional fine particles, the difference in viscosity, and the type of the molded product or the organic polymer. For hollow fiber membrane molding, the concentration of functional fine particles in the raw material slurry is preferably 6 to 40% by weight (mass%). When this concentration is low, molding becomes difficult, or the porosity in the molded body becomes low, and when the concentration is high, the distribution with the organic substance that becomes the binder in the molded body tends to be uneven, and the flexibility and pressure resistance are high. May not be obtained.

原料スラリー調製時の機能性微粒子、有機高分子の添加の順番は特に限定されないが、予め加温した溶媒へ有機高分子を十分に溶解させた粘性スラリーを高速攪拌している状態で、乾燥した状態の原料粉末を少量ずつ添加投入して、分散させる方法であると、比較的低温で短時間に均一で粘性が高いスラリーを得やすく、更にナノバブルの発生をより効果的にできるので好ましい。有機高分子を後から添加する手法では、微粒子と溶媒との親和性のバランスから、添加濃度によって、有機高分子の溶解が阻害され、結果、安定なスラリーが得にくい場合がある。 The order of adding the functional fine particles and the organic polymer at the time of preparing the raw material slurry is not particularly limited, but the viscous slurry in which the organic polymer is sufficiently dissolved in a preheated solvent is dried at high speed. A method in which the raw material powder in the state is added little by little and dispersed is preferable because it is easy to obtain a uniform and highly viscous slurry at a relatively low temperature in a short time, and more effectively, nanobubbles can be generated. In the method of adding the organic polymer later, the dissolution of the organic polymer is inhibited depending on the concentration of addition due to the balance of the affinity between the fine particles and the solvent, and as a result, it may be difficult to obtain a stable slurry.

原料スラリー調製時の撹拌速度は、特に限定されないが、気相中で200rpm以上であることが好ましい。攪拌速度がこの範囲にあるとマクロ孔が形成され易くなる。 The stirring speed at the time of preparing the raw material slurry is not particularly limited, but is preferably 200 rpm or more in the gas phase. When the stirring speed is in this range, macropores are likely to be formed.

本発明のミクロないしメソポーラス微粒子の多孔質成形体の製造方法においては、上記によって調整した原料スラリーを非溶媒中に射出することによって凝固させて成形することができるが、原料スラリーを貧溶媒中で凝固させて成形することもできる。これにより、数オングストロームから数十ミクロン径の細孔径分布を有する自立性の耐水性複合多孔体材料を得ることができる。
非溶媒としては、例えば水アルコールなどが挙げられる。貧溶媒としては、原料スラリーに用いる溶媒の水溶液などが挙げられる。
In the method for producing a porous molded body of micro or mesoporous fine particles of the present invention, the raw material slurry prepared as described above can be solidified and molded by injecting it into a non-solvent, but the raw material slurry can be molded in a poor solvent. It can also be solidified and molded. This makes it possible to obtain a self-supporting water-resistant composite porous material having a pore diameter distribution of several angstroms to several tens of microns.
Examples of the non-solvent include water alcohol and the like. Examples of the poor solvent include an aqueous solution of the solvent used for the raw material slurry.

本発明のミクロないしメソポーラス微粒子の多孔質成形体の製造方法においては、前記ミクロないしメソポーラス微粒子の多孔質成形体を、減圧下のエタノール中又は良溶媒の低濃度水溶液中において低温加熱処理する工程、を更に含むことができる。 In the method for producing a porous molded body of micro or mesoporous fine particles of the present invention, a step of subjecting the porous molded body of micro or mesoporous fine particles to a low-temperature heat treatment in ethanol under reduced pressure or in a low-concentration aqueous solution of a good solvent. Can be further included.

成形の方法は、多孔質成形体の種類によって、それに適した型などを用いることができ、例えば成形体の形状が中空糸である場合には、ノズル等を用い、既存の手法で成形することができる。 As the molding method, a mold suitable for the porous molded body can be used depending on the type of the porous molded body. For example, when the shape of the molded body is a hollow thread, molding is performed by an existing method using a nozzle or the like. Can be done.

本発明の多孔質成形体は、50nm~100μm径の範囲にマクロ孔を有し、空隙率が34%以上の多孔体であり、機能性微粒子の表面の少なくとも一部が前記成形体から表出しており、前記機能性微粒子の前記ミクロないしメソ孔の細孔容積が、原料機能性微粒子の40%以上保持されている。 The porous molded body of the present invention has macropores in the range of 50 nm to 100 μm and has a porosity of 34% or more, and at least a part of the surface of the functional fine particles is exposed from the molded body. The pore volume of the micro or mesopores of the functional fine particles is maintained at 40% or more of the raw material functional fine particles.

本明細書において、多孔質成形体が50nm~100μm径の範囲にマクロ孔を有するとは、多孔質成形体作製の際に凝固液である貧溶媒の原料スラリー側への進入路、つまり接触界面で、原料の凝固が起きることによって、多孔質成形体の外側から内部に通じるマクロスコピックな細孔が形成されていることを意味している。このマクロ孔のサイズはポロシメーター等で測定した際に細孔径分布曲線の当範囲にピークを有していることで確認でき、原料粒子の特性である微細孔とその粒子がバインダーの有機高分子と形成するマクロスコピックな細孔が共存しているということを意味する。また、この貧溶媒の進入路は同時に原料スラリー中の微粒子間の隙間に相当するため、このマクロ孔に原料粒子の表面が表出し易い。 In the present specification, the fact that the porous molded product has macropores in the range of 50 nm to 100 μm means that the poor solvent, which is a coagulating liquid, is an approach path to the raw material slurry side, that is, a contact interface when the porous molded product is produced. This means that the coagulation of the raw material causes the formation of macroscopic pores leading from the outside to the inside of the porous molded product. The size of these macropores can be confirmed by having a peak in this range of the pore size distribution curve when measured with a porosimeter, etc., and the fine pores, which are the characteristics of the raw material particles, and the particles are the organic polymer of the binder. It means that the macroscopic pores to be formed coexist. Further, since the entry path of the poor solvent corresponds to the gap between the fine particles in the raw material slurry at the same time, the surface of the raw material particles is easily exposed in the macropores.

また、本発明の多孔質成形体は、成形後にエタノール中、又は低温の良溶媒中などにて、短時間減圧脱気処理することによって、マクロ孔の壁にできる緻密層に微小孔を設けることによって、マクロ孔に原料粒子の表面が表出するように改質することが可能である。 Further, in the porous molded body of the present invention, micropores are provided in the dense layer formed on the wall of the macropores by degassing under reduced pressure for a short time in ethanol or a good solvent at a low temperature after molding. It is possible to modify the macropores so that the surface of the raw material particles is exposed.

本発明の多孔質成形体は、このような特性を有するので、通常の成形体と比較して吸着又は除去や反応対象となる物質が成形体中を拡散し、内包する原料粒子の表面と接触し易く、結果として反応速度や反応効率が高くなるという点で優れる。 Since the porous molded product of the present invention has such characteristics, a substance to be adsorbed or removed or reacted is diffused in the molded product as compared with a normal molded product, and comes into contact with the surface of the raw material particles contained therein. It is easy to carry out, and as a result, it is excellent in that the reaction speed and the reaction efficiency are increased.

また、本発明の多孔質成形体は、耐熱性、耐水性及び調湿性の他に、イオン交換性、吸着性等ミクロないしメソポーラス微粒子の特性を有する。 Further, the porous molded body of the present invention has properties of micro or mesoporous fine particles such as ion exchange property and adsorptive property in addition to heat resistance, water resistance and humidity control.

本発明の多孔質成形体は、水中で24時間以上連続攪拌した時の攪拌前後での重量変化が1%以下であると好ましい。ここで重量変化があるということは、多孔質成形体中から微粒子が外れて水中に落ちる、又は微粒子や有機高分子の性質が変化するということを意味する。重量変化がこの範囲にあると、成形体を水中において使用した際に、この劣化による微粒子流失が殆ど起きていないと考えられる観点で好ましい。 The porous molded article of the present invention preferably has a weight change of 1% or less before and after stirring continuously in water for 24 hours or more. Here, the fact that there is a change in weight means that the fine particles are removed from the porous molded body and fall into the water, or the properties of the fine particles and the organic polymer are changed. When the weight change is in this range, it is preferable from the viewpoint that when the molded product is used in water, it is considered that almost no fine particles are washed away due to this deterioration.

本発明の多孔質成形体は、60℃以下などでの低温乾燥後は、アルコール類への浸漬によって柔軟性を取り戻すことが可能である。150℃以上での加熱は、多孔質成形体の柔軟性が失われる傾向にあるため、150℃未満で、保存や加工をすることが好ましい。 The porous molded product of the present invention can regain its flexibility by being immersed in alcohols after being dried at a low temperature of 60 ° C. or lower. Since heating at 150 ° C. or higher tends to lose the flexibility of the porous molded product, it is preferable to store or process the porous molded product at a temperature lower than 150 ° C.

本発明の多孔質成形体の形状は特に限定されないが、粒状、中空粒子状又は中空糸状であると好ましい。特に形状が中空粒子状又は中空糸状であると、中空構造が無い場合に比べて、たとえば吸着対象や除去対象物質などの反応対象物質が多孔質成形体中に拡散し易くなり、反応速度や反応効率の向上が得られるという点、モジュールなどへのスケールアップが行ない易いという点、また多孔質成形体の内側と外側から物質を供給して表面で反応させるなど原料粒子や中空構造が無い成形体にはできない反応への応用が広がるという点など様々な点での優位性が期待できる。 The shape of the porous molded product of the present invention is not particularly limited, but it is preferably granular, hollow particles, or hollow threads. In particular, when the shape is hollow particles or hollow threads, the reaction target substances such as the substances to be adsorbed and the substances to be removed are more likely to diffuse into the porous molded body than in the case where there is no hollow structure, and the reaction rate and reaction are increased. There is no raw material particles or hollow structure, such as the point that efficiency can be improved, the point that it is easy to scale up to modules, and the fact that substances are supplied from the inside and outside of the porous molded body and reacted on the surface. It can be expected to be superior in various points such as widening the application to reactions that cannot be achieved.

また、本発明の多孔質成形体は、中空糸膜やペレット状などの成形体として、水の濾過や浄化などに用いることができる精密濾過膜、水溶液中での反応物質の担体などとして使用可能である。この精密濾過膜は、耐水性の精密濾過膜でありながら、ミクロないしメソポーラス微粒子の細孔特性や反応性を併せ持つ。 Further, the porous molded body of the present invention can be used as a molded body such as a hollow fiber membrane or a pellet, as a microfiltration membrane that can be used for filtration and purification of water, a carrier of a reactant in an aqueous solution, and the like. Is. Although this microfiltration membrane is a water resistant microfiltration membrane, it also has the pore characteristics and reactivity of micro or mesoporous fine particles.

本発明の多孔質成形体から作製した複合膜は、有害物質の吸着除去作用、陽イオンを含有する水溶液のイオン交換作用を有し、かつ耐水性で自立複合膜とすることができる。この複合膜は、例えば、食品工業用排水の処理剤として好適に使用することができる。 The composite membrane produced from the porous molded body of the present invention has an action of adsorbing and removing harmful substances and an ion exchange action of an aqueous solution containing cations, and can be a water-resistant and self-supporting composite membrane. This composite membrane can be suitably used, for example, as a treatment agent for wastewater for the food industry.

本発明の多孔質成形体は、数ミクロンサイズの粒子を分散液中から加圧濾過できるものであると、膜材料などに使用する場合、微生物など原料粒子では除去不能な大きいサイズの中性粒子も同時に除去できるなどの点で好ましい。 The porous molded body of the present invention is capable of pressure-filtering particles having a size of several microns from the dispersion liquid. When used as a membrane material, neutral particles having a large size that cannot be removed by raw material particles such as microorganisms. Is preferable in that it can be removed at the same time.

本発明の成形体の成形後の保管については、乾燥せずにそのまま水中又はアルコール中で、保管すれば、フレキシビリティを保ったまま使用することが可能である。また、本発明の成形体は、液相中でも安定な成形体でありながら、成形後も成形前の機能性多孔質微粒子の細孔特性、吸着特性、反応性等を保持することができる。 Regarding the storage of the molded product of the present invention after molding, if it is stored in water or alcohol as it is without being dried, it can be used while maintaining its flexibility. Further, the molded body of the present invention can maintain the pore characteristics, adsorption characteristics, reactivity and the like of the functional porous fine particles before molding even after molding, while being a stable molded body even in the liquid phase.

本発明の成形体は、酵素担持用担体として用いることができる。本発明の成形体は、酵素担持用担体として、酵素と複合体を形成することができる。特に本発明の成形体のうち、機能性微粒子が、細孔直径が2nm~50nmのメソ孔を有し、粒径が0.01μm~200μmであるメソポーラス微粒子であり、成形体中の機能性微粒子の含有率が46質量%以上である成形体は、酵素担持用担体として好適である。また、本発明の成形体を構成する機能性微粒子の原料である機能性微粒子の機能が、1種類又は2種類以上の酵素及び/又はタンパク質の固定化能を含むと、酵素担持用担体として好適である。 The molded product of the present invention can be used as a carrier for carrying an enzyme. The molded product of the present invention can form a complex with an enzyme as a carrier for carrying an enzyme. In particular, among the molded bodies of the present invention, the functional fine particles are mesoporous fine particles having pore diameters of 2 nm to 50 nm and particle sizes of 0.01 μm to 200 μm, and are functional fine particles in the molded body. A molded product having a content of 46% by mass or more is suitable as a carrier for carrying an enzyme. Further, when the function of the functional fine particles, which is the raw material of the functional fine particles constituting the molded product of the present invention, contains the ability to immobilize one or more kinds of enzymes and / or proteins, it is suitable as a carrier for carrying an enzyme. Is.

この酵素は、特に限定されないが、酸化還元酵素、加水分解酵素、転移酵素、脱離酵素、異性化酵素、及び/又は合成酵素であると好ましい。酵素としては、具体的には、例えば、アゾ還元酵素、リパーゼ、グルコース脱水素酵素、プロテアーゼが挙げられる。
この酵素は、酸化還元反応、加水分解反応、転移反応、脱離反応、異性化反応、及び/又は合成反応の酵素反応に用いることができる。
This enzyme is not particularly limited, but is preferably an oxidative-reducing enzyme, a hydrolase, a transferase, a desorption enzyme, an isomerase, and / or a synthase. Specific examples of the enzyme include azoreductase, lipase, glucose dehydrogenase, and protease.
This enzyme can be used for enzymatic reactions of oxidation-reduction reaction, hydrolysis reaction, transfer reaction, elimination reaction, isomerization reaction, and / or synthetic reaction.

複合体を製造する方法は、特に限定されないが、例えば、前記酵素の酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質を、pH3~11に調整した緩衝液中でメソポーラス微粒子の多孔質成形体に固定化させる固定化工程を含むことができる。また、さらに、固定化終了後のメソポーラス微粒子の多孔質成形体をpH3~11に調整した緩衝液で複数回洗浄する洗浄工程を含むと更に好ましい。 The method for producing the complex is not particularly limited, but for example, one or more enzymes and / or proteins involved in the enzymatic reaction of the above enzymes are porous with mesoporous fine particles in a buffer solution adjusted to pH 3 to 11. It can include an immobilization step of immobilizing the quality molded body. Further, it is more preferable to include a washing step of washing the porous molded body of the mesoporous fine particles after the completion of immobilization with a buffer solution adjusted to pH 3 to 11 multiple times.

本発明の複合体を用いた酵素反応方法は特に限定されないが、例えば、1)酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3~11に調整した緩衝液中で固定化する固定化工程、2)前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を含むpH3~11の緩衝液中に、反応基質を添加するか、又は3)前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含むpH3~11の緩衝液中に添加して前記の酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む方法が挙げられる。また、その他の酵素反応方法としては、1)酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3~11に調整した緩衝液中で固定化する固定化工程、2)前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体をpH3~11の緩衝液で洗浄する洗浄工程、3)前記洗浄工程で得られた洗浄後のメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含む反応液中で、前記の酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む方法が挙げられる。 The enzyme reaction method using the complex of the present invention is not particularly limited, and for example, 1) immobilization of an enzyme and / or a protein in a porous molded body of mesoporous fine particles in a buffer solution adjusted to pH 3 to 11. Step 2) Add the reaction substrate to the buffer solution having a pH of 3 to 11 containing the complex of the porous molded body of the mesoporous fine particles obtained in the immobilization step and the enzyme, or 3) the immobilization step. An enzymatic reaction step in which a complex of a porous molded body of mesoporous fine particles obtained in 1 above and an enzyme is added to a buffer solution having a pH of 3 to 11 containing a reaction substrate to carry out an enzymatic reaction involving the above-mentioned enzyme and / or protein. , The method of including. Further, as another enzyme reaction method, 1) an immobilization step of immobilizing an enzyme and / or a protein in a buffer solution adjusted to pH 3 to 11 in a porous molded body of mesoporous fine particles, and 2) the immobilization step. Cleaning step of washing the complex of the obtained porous molded body of mesoporous fine particles with the enzyme with a buffer solution of pH 3 to 11 3) The porous molded body of the obtained mesoporous fine particles and the enzyme after washing obtained in the washing step. Examples thereof include an enzymatic reaction step of carrying out an enzymatic reaction involving the above-mentioned enzyme and / or protein in a reaction solution containing a reaction substrate, and a method of containing the complex with.

これらの酵素反応は、特に限定されないが、例えば、反応基質から機能性の有用物質を製造する方法、環境中に存在する反応基質となる環境汚染物質を分解する方法、被検試料中に存在するか又は存在する可能性のある反応基質を検出又は定量する方法などが挙げられる。 These enzymatic reactions are not particularly limited, but are, for example, a method for producing a functional useful substance from a reaction substrate, a method for decomposing an environmental pollutant that is a reaction substrate existing in the environment, and a method present in a test sample. Examples include methods for detecting or quantifying reaction substrates that may or may be present.

本発明の多孔質成形体と酵素との複合体は、前記の酵素及び/又はタンパク質が関わる酵素反応用キット、センサー又は装置に用いることができる。この酵素反応用キット、センサー又は装置の用途は特に限定されないが、反応基質から機能性の有用物質を製造するためのもの、環境中に存在する反応基質となる環境汚染物質を分解するためのもの、被検試料中に存在する可能性のある反応基質又は酵素反応後の産物を検出又は定量するためのものとすることができる。 The complex of the porous molded body and the enzyme of the present invention can be used for an enzyme reaction kit, a sensor or an apparatus involving the above-mentioned enzyme and / or protein. The use of this enzyme reaction kit, sensor or device is not particularly limited, but it is for producing a functional useful substance from a reaction substrate, or for decomposing an environmental pollutant which is a reaction substrate existing in the environment. , Can be used to detect or quantify the reaction substrate or the product after the enzymatic reaction that may be present in the test sample.

(実施例)
次に、実施例に基づいて本発明をさらに詳細に説明するが、本発明は以下の実施例等によって何ら限定されるものではない。本発明に係る多孔質成形体の空隙率及び細孔径分布は水銀ポロシメトリなどの測定手法で評価が可能である。また、原料微粒子のミクロないしメソ孔の細孔容積の保持率は、ガス吸着や蒸気吸着測定結果を原料粒子の測定値と比較することによって評価が可能である。
(Example)
Next, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples and the like. The porosity and pore size distribution of the porous molded product according to the present invention can be evaluated by a measuring method such as mercury porosity. Further, the retention rate of the pore volume of the micro or mesopores of the raw material fine particles can be evaluated by comparing the gas adsorption or steam adsorption measurement results with the measured values of the raw material particles.

尚、実施例で用いた微粒子の物性については表1及び表6に、得られた成形体の物性については表2~表4及び表7に一覧として示した。 The physical characteristics of the fine particles used in the examples are shown in Tables 1 and 6, and the physical characteristics of the obtained molded product are shown in Tables 2 to 4 and 7 as a list.

(実施例1)
有機高分子としてのエチレン含有量(モル比)48mol%のエチレン-ビニルアルコール共重合樹脂(エバールG156B、(株)クラレ)9.98gをジメチルスルホキシド(和光純薬工業(株)、特級)102.88gに混合し、40℃にて200rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、粒子径0.2μm~2μm、細孔径2nm~3nmのMCM41タイプの合成メソポーラスシリカ(SiO、シグマアルドリッチ No.643653)(原料粒子A)19.99gを添加して、多孔体成形用のスラリーを調製した。この時のスラリー中の粒子の濃度は15重量%、エチレン-ビニルアルコール共重合樹脂の添加量は7.5重量%で、成形体に対するMCM粒子の仕込量は67重量%あった。一晩攪拌したのち、乾湿式紡糸装置にて、スラリー用吐出口径3mmφ、芯液用吐出口径0.7mmφの2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて20.5ml/minで、37℃の湯浴に射出しながら、芯液として29℃のお湯を7ml/minで流して中空糸状に製膜した。
(Example 1)
9.98 g of an ethylene-vinyl alcohol copolymer resin (EVAL G156B, Claret Co., Ltd.) having an ethylene content (molar ratio) of 48 mol% as an organic polymer is added to dimethyl sulfoxide (Wako Pure Chemical Industries, Ltd., special grade) 102. It was mixed with 88 g and stirred at 200 rpm at 40 ° C. overnight to dissolve it. While heating and stirring this, 19.99 g of MCM41 type synthetic mesoporous silica (SiO 2 , Sigma-Aldrich No. 643653) (raw material particles A) having a particle diameter of 0.2 μm to 2 μm and a pore diameter of 2 nm to 3 nm was added. , Prepared a slurry for forming a porous body. At this time, the concentration of the particles in the slurry was 15% by weight, the amount of the ethylene-vinyl alcohol copolymer resin added was 7.5% by weight, and the amount of MCM particles charged into the molded product was 67% by weight. After stirring overnight, use a double-ended nozzle with a slurry discharge port diameter of 3 mmφ and a core liquid discharge port diameter of 0.7 mmφ in a dry-wet spinning device, and put the obtained slurry into a cylinder pump at 20.5 ml / min. Then, while injecting into a hot water bath at 37 ° C., hot water at 29 ° C. was flowed as a core liquid at 7 ml / min to form a film in the form of a hollow thread.

作製した中空糸膜は外径1.2mm、内径0.7mm(図1参照)で、60℃で一晩乾燥した後に水銀ポロシメーターで測定すると空隙率が62%前後であり、細孔径分布曲線によるとMCM41由来の4nm~10nm径のナノポア及び0.1μm-1μmのマクロポアを有する多元多孔質成形体であった(図2参照)。この中空糸状成形体の60℃乾燥物0.0299gを3mlの蒸留水中に入れ、100rpmで36時間以上連続的に浸透し、再度60℃乾燥して重量測定を行うと、0.0297gであり、重量変化は1%以内であり、殆ど粉落ちはないと考えられる。熱分析によると600℃まで加温した時200℃以上で有機高分子が分解し、この分解による減量は34重量%であることから、成形体中のMCM41粒子の含量は66重量%であると考えられる。また、窒素吸着等温線によると成形体と原料粒子の等温線のヒステリシスの相対圧(P/Po)域は一致し、原料粒子のメソ細孔のサイズは、ほぼ保たれていると考えられる。更に成形体中細孔容積は0.28cm/gであり、原料のMCM41粉末粒子のメソ孔容積は0.59cm/gであったことから、成形体の細孔容積を含有されるMCM粒子の量で換算すると粉末試料の細孔容積の71%が保持されていると考えられる(図3参照)。また、図4に、実施例1の成形体と原料粒子Aとの室温での窒素吸着等温線を示す。なお、60℃24時間減圧条件にて前処理を行い、粒子含有量で換算した。 The produced hollow fiber membrane has an outer diameter of 1.2 mm and an inner diameter of 0.7 mm (see FIG. 1), and after being dried overnight at 60 ° C., the porosity is about 62% when measured with a mercury porosity, according to the pore size distribution curve. It was a multi-dimensional porous molded body having nanopores with a diameter of 4 nm to 10 nm and macropores of 0.1 μm-1 μm derived from MCM41 (see FIG. 2). 0.0299 g of a 60 ° C. dried product of this hollow filamentous molded product was placed in 3 ml of distilled water, continuously infiltrated at 100 rpm for 36 hours or more, dried at 60 ° C. again, and weighed to be 0.0297 g. The weight change is within 1%, and it is considered that there is almost no powder loss. According to thermal analysis, the organic polymer decomposes at 200 ° C or higher when heated to 600 ° C, and the weight loss due to this decomposition is 34% by weight. Therefore, the content of MCM41 particles in the molded body is 66% by weight. Conceivable. Further, according to the nitrogen adsorption isotherm, the relative pressure (P / Po) range of the hysteresis of the isotherm of the molded body and the raw material particles is the same, and it is considered that the size of the mesopores of the raw material particles is almost maintained. Further, since the pore volume in the molded body was 0.28 cm 3 / g and the mesopore volume of the raw material MCM41 powder particles was 0.59 cm 3 / g, the MCM containing the pore volume of the molded body was contained. When converted in terms of the amount of particles, it is considered that 71% of the pore volume of the powder sample is retained (see FIG. 3). Further, FIG. 4 shows the nitrogen adsorption isotherm of the molded product of Example 1 and the raw material particles A at room temperature. In addition, the pretreatment was performed under the reduced pressure condition of 60 ° C. for 24 hours, and converted by the particle content.

(実施例2)
有機高分子としてのポリエーテルサルホン(Veradel PES 3000P、ソルベイアドバンストポリマーズ(株)、重量平均分子量(Mw)=57,000)0.54gをジメチルスルホキシド(和光特級)5.50gに50℃で完全に溶解し、これに実施例1で用いた合成メソポーラスシリカ(原料粒子A)0.55gを混合して、スラリーを調製した。この時のスラリー中の粒子の濃度は8.3重量%、ポリエーテルサルホンの添加量は8.2重量%で、成形体に対するMCM粒子の仕込量は50重量%あった。このスラリーを約32℃のお湯を入れたビーカーに滴下して2時間以上凝固させ、60℃で乾燥、更に、室温で25時間以上白濁が無くなるまで攪拌洗浄して、MCM-PESペレットを成形した。
(Example 2)
Completely 0.54 g of polyether sulfoxide (Veradel PES 3000P, Solvay Advanced Polymers Co., Ltd., weight average molecular weight (Mw) = 57,000) as an organic polymer to 5.50 g of dimethyl sulfoxide (Wako special grade) at 50 ° C. To this, 0.55 g of the synthetic mesoporous silica (raw material particles A) used in Example 1 was mixed to prepare a slurry. At this time, the concentration of the particles in the slurry was 8.3% by weight, the amount of the polyether salphon added was 8.2% by weight, and the amount of the MCM particles charged to the molded product was 50% by weight. This slurry was dropped into a beaker containing hot water at about 32 ° C. and solidified for 2 hours or more, dried at 60 ° C., and further stirred and washed at room temperature for 25 hours or more until the white turbidity disappeared to form MCM-PES pellets. ..

白濁が無くなるまで攪拌洗浄した後のペレット0.0288gを3mLの水中で室温72時間以上攪拌し、乾燥重量を測定すると殆ど重量変化は認められなかった。これを熱分析で600℃まで加温した時、有機高分子は450℃以上で分解し、分解による減量は47%であったことから、ペレット中のMCM粒子の含有量は53%程度であると考えられる。(120℃前後に原料粒子及び有機高分子にはない可逆的な吸熱ピーク及び減量が認められ、成形に由来する新たな吸着サイトが生じたと考えられる。)水銀ポロシメーターで測定すると空隙率が78%前後であり、細孔径分布曲線によるとMCM41由来の4nm~10nm径のナノポア及び0.1μm~1μmのマクロポアを有する多元多孔体であった。また、窒素吸着等温線によると成形体の細孔容積は0.50cm/gであり、同条件で測定した粉末試料の細孔容積が0.59cm/gであったことから、成形体に含有されるMCM41粒子の量で換算すると成形体中のMCM41のメソ孔容積はほぼ全て保持されていると考えられる。 After stirring and washing until the white turbidity disappeared, 0.0288 g of the pellet was stirred in 3 mL of water at room temperature for 72 hours or more, and the dry weight was measured. As a result, almost no change in weight was observed. When this was heated to 600 ° C by thermal analysis, the organic polymer decomposed at 450 ° C or higher, and the weight loss due to decomposition was 47%. Therefore, the content of MCM particles in the pellet is about 53%. it is conceivable that. (Reversible endothermic peaks and weight loss not found in the raw material particles and organic polymers were observed around 120 ° C, and it is considered that new adsorption sites derived from molding were generated.) The void ratio was 78% as measured by a mercury porosimeter. According to the pore size distribution curve, it was a multidimensional porous body having nanopores with a diameter of 4 nm to 10 nm and macropores with a diameter of 0.1 μm to 1 μm derived from MCM41. According to the nitrogen adsorption isotherm, the pore volume of the molded body was 0.50 cm 3 / g, and the pore volume of the powder sample measured under the same conditions was 0.59 cm 3 / g. When converted into the amount of MCM41 particles contained in, it is considered that almost all the mesopore volume of MCM41 in the molded body is maintained.

参考例3)
有機高分子としてメタクリル酸メチル樹脂(PMMA polymer CASNo.9011-14-7、東京化成工業(株)、M0088、Mw=135,000~140,000)0.60gをジメチルホルムアミド(和光特級)7.0gに50℃で完全に溶解し、これに実施例1で用いた合成メソポーラスシリカ(原料粒子A)0.60gを混合して、スラリーを調製した。このスラリーを約32℃のお湯を入れたビーカーに滴下して2時間以上凝固させ、60℃で一晩乾燥させて、MCM-アクリルペレットを成形した。このペレットは機械的強度が非常に低かったため、このペレット0.20gを過酸化ベンゾイル(バイオラッド)0.051gと共にエタノール(和光特級)4.98gにいれて、ゆっくりと昇温し、最終的に60℃で4時間加温して取り出した。取り出したペレットはゴムのように柔軟で割れにくい性質に変化していた。更にこれを60℃で乾燥させると、圧縮強度1.4MPa程度のペレットが得られた。
( Reference example 3)
As an organic polymer, 0.60 g of methyl methacrylate resin (PMMA polymer CASNo.9011-14-7, Tokyo Chemical Industry Co., Ltd., M788, Mw = 135,000 to 140,000) is dimethylformamide (Wako special grade) 7. It was completely dissolved in 0 g at 50 ° C., and 0.60 g of the synthetic mesoporous silica (raw material particles A) used in Example 1 was mixed with this to prepare a slurry. This slurry was dropped into a beaker containing hot water at about 32 ° C., solidified for 2 hours or more, and dried at 60 ° C. overnight to form MCM-acrylic pellets. Since this pellet had a very low mechanical strength, 0.20 g of this pellet was added to 4.98 g of ethanol (Wako special grade) together with 0.051 g of benzoyl peroxide (Biorad), and the temperature was slowly raised to finally. It was taken out after heating at 60 ° C. for 4 hours. The pellets taken out had changed to soft and hard-to-break properties like rubber. Further, when this was dried at 60 ° C., pellets having a compressive strength of about 1.4 MPa were obtained.

この重合及び硬化後のペレットについて、これを熱分析で600℃まで加温した時、有機高分子は400℃前後で分解し、分解による減量は50%であったことから、ペレット中のMCM粒子の含有量は50%程度であると考えられる。また、窒素吸着等温線によると成形体中細孔容積は0.30cm/gであり、原料のMCM41粉末粒子のメソ孔容積は0.96cm/gであったことから、成形体の細孔容積を含有されるMCM粒子の量で換算すると粉末試料の細孔容積の63%が保持されていると考えられる。 When the pellets after polymerization and curing were heated to 600 ° C by thermal analysis, the organic polymer decomposed at around 400 ° C, and the weight loss due to decomposition was 50%. Therefore, the MCM particles in the pellets. The content of is considered to be about 50%. According to the nitrogen adsorption isotherm, the pore volume in the molded body was 0.30 cm 3 / g, and the mesopore volume of the raw material MCM41 powder particles was 0.96 cm 3 / g. When converted into the amount of MCM particles contained in the pore volume, it is considered that 63% of the pore volume of the powder sample is retained.

(実施例4)
実施例1で用いた有機高分子0.10gをジメチルスルホキシド(和光特級)0.7mLに入れ、加熱攪拌して溶解し、これに粒子径10~100nm、平均細孔径4.2nmのメソポーラス酸化チタン(Alfa Aesar No.43250)(原料粒子B)0.20gを混合して、スラリーを調製した。このスラリー室温水を入れたビーカーに滴下して凝固させ、60℃で乾燥して、メソポーラスTiO-EVOHペレットを成形した。
(Example 4)
0.10 g of the organic polymer used in Example 1 was placed in 0.7 mL of dimethyl sulfoxide (Wako special grade), heated and stirred to dissolve it, and the mesoporous titanium oxide having a particle diameter of 10 to 100 nm and an average pore diameter of 4.2 nm was dissolved therein. (Alfa Aesar No. 43250) (raw material particles B) 0.20 g was mixed to prepare a slurry. The slurry was dropped into a beaker containing room temperature water to solidify it, and dried at 60 ° C. to form mesoporous TiO 2 -EVOH pellets.

熱分析によると600℃まで加温した時の有機高分子の分解による減量は47%であり、原料粒子を加熱したときの減量は18%であることから、ペレット中の粒子の含有量は65%程度であると考えられる。また、100℃で前処理し窒素吸着測定結果によって計算した成形体中の細孔容積を、含有されるメソポーラス酸化チタン粒子の量で換算すると成形体中のメソポーラス酸化チタンのメソ孔容積は64%程度保持されていると考えられる。 According to thermal analysis, the weight loss due to decomposition of the organic polymer when heated to 600 ° C. is 47%, and the weight loss when the raw material particles are heated is 18%. Therefore, the content of the particles in the pellet is 65. It is considered to be about%. Further, when the pore volume in the molded body calculated by pretreatment at 100 ° C. and the measurement result of nitrogen adsorption is converted into the amount of the mesoporous titanium oxide particles contained, the mesoporous volume of the mesoporous titanium oxide in the molded body is 64%. It is considered that the degree is maintained.

(実施例5)
原料粒子として平均細孔径が5.7nmサイズのMSU-Xタイプの合成メソポーラス酸化アルミ(Al、シグマアルドリッチ No.517747)(原料粒子C)を使用する他は、実施例2と同様にしてメソポーラスアルミナ-PESペレットを成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 5)
The same as in Example 2 except that MSU-X type synthetic mesoporous aluminum oxide (Al 2 O 3 , Sigma-Aldrich No. 517747) (raw material particles C) having an average pore diameter of 5.7 nm is used as the raw material particles. Mesoporous alumina-PES pellets were formed. According to thermal analysis, the content of particles in the pellet was about 50%.

(実施例6)
原料粒子として細孔径が8nmサイズのFSM22タイプの合成メソポーラスシリカ(原料粒子D)を使用する他は、実施例2と同様にしてFSM22-PESペレットを成形した。熱分析によると、ペレット中の粒子の含有量は55%程度であった。
(Example 6)
FSM22-PES pellets were formed in the same manner as in Example 2 except that FSM22 type synthetic mesoporous silica (raw material particles D) having a pore diameter of 8 nm was used as the raw material particles. According to thermal analysis, the content of particles in the pellet was about 55%.

参考例7)
有機高分子としてエチレン含有量44mol%のエチレン-ビニルアルコール共重合樹脂(ソアノールA4412、日本合成化学工業(株))を実施例1で用いたジメチルスルホキシドに溶解し、原料粒子として粒子径が2-3μmで、結晶粒子径1μm以下、細孔径0.90nmの合成ハイシリカゼオライト(SiO/Al=100)(原料粒子E)を使用する他は、実施例2と同様にしてハイシリカゼオライト-EVOHペレットを成形した。60℃で一晩乾燥した後、水銀ポロシメーターで測定すると空隙率が62%であった。60℃で乾燥後のペレットの熱分析によると600℃まで加温した時の減量は50重量%であり、成型体中のゼオライト粒子の含量は50重量%であると考えられる。また、窒素吸着等温線によると成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の80%以上であった。
( Reference example 7)
An ethylene-vinyl alcohol copolymer resin (Soanol A4412, Nippon Synthetic Chemical Industry Co., Ltd.) having an ethylene content of 44 mol% was dissolved in the dimethyl sulfoxide used in Example 1 as an organic polymer, and the particle size was 2- as raw material particles. High silica in the same manner as in Example 2 except that synthetic high silica zeolite (SiO 2 / Al 2 O 3 = 100) (raw material particle E) having a crystal particle diameter of 1 μm or less and a pore diameter of 0.90 nm is used at 3 μm. Zeolite-EVOH pellets were formed. After drying overnight at 60 ° C., the porosity was 62% as measured by a mercury porosity meter. According to the thermal analysis of the pellets after drying at 60 ° C., the weight loss when heated to 600 ° C. is considered to be 50% by weight, and the content of the zeolite particles in the molded body is considered to be 50% by weight. Further, according to the nitrogen adsorption isotherm, the total pore volume in the molded body was 80% or more of the powder sample in terms of the amount of zeolite particles.

参考例8)
有機高分子として実施例1で用いたエチレン含有量48mol%のエチレン-ビニルアルコール共重合樹脂34.5gを実施例1で用いたジメチルスルホキシド181.71gに混合し、48℃にて200rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、参考例7で用いた合成ハイシリカゼオライト(原料粒子E)68.01gを添加して、多孔体成形用のスラリーを調製した。この時のスラリー中のゼオライト粒子の濃度は22.0重量%で、成形体に対するゼオライト粒子の仕込量は67重量%であった。一晩攪拌したのち、スラリー用吐出口径6mmφ、芯液用吐出口径2.5mmφの2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて40.0ml/minで、34℃の水浴に射出しながら、芯液として25℃の水を70.0ml/minで流して中空糸状に製膜した。
( Reference example 8)
34.5 g of the ethylene-vinyl alcohol copolymer resin having an ethylene content of 48 mol% used in Example 1 as an organic polymer was mixed with 181.71 g of dimethyl sulfoxide used in Example 1 and mixed at 48 ° C. at 200 rpm overnight. It was stirred and dissolved. While the mixture was heated and stirred, 68.01 g of the synthetic high silica zeolite (raw material particles E) used in Reference Example 7 was added to prepare a slurry for forming a porous body. At this time, the concentration of the zeolite particles in the slurry was 22.0% by weight, and the amount of the zeolite particles charged into the molded product was 67% by weight. After stirring overnight, use a double-ended nozzle with a slurry discharge port diameter of 6 mmφ and a core liquid discharge port diameter of 2.5 mmφ, put the obtained slurry in a cylinder pump, and put it in a water bath at 34 ° C. at 40.0 ml / min. While injecting, water at 25 ° C. was flowed as a core liquid at 70.0 ml / min to form a film in the form of a hollow thread.

作製した中空糸膜は外径4.8mm、内径3.0mmであった。熱分析によると600℃まで加温した時の減量は36重量%であり、成形体中のゼオライト粒子の含量は64重量%であると考えられる。水銀ポロシメトリによると60℃で一晩乾燥した後の空隙率は40%、更に150℃で2時間加温してEVOHを結晶化させた後は、空隙率が37%であり、細孔径分布曲線によると0.28μmのマクロポアを有する多孔体であった。窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の89%以上であった。 The produced hollow fiber membrane had an outer diameter of 4.8 mm and an inner diameter of 3.0 mm. According to thermal analysis, the weight loss when heated to 600 ° C. is 36% by weight, and the content of zeolite particles in the molded product is considered to be 64% by weight. According to mercury porosity, the porosity after drying overnight at 60 ° C. is 40%, and after further heating at 150 ° C. for 2 hours to crystallize EVOH, the porosity is 37%, and the pore size distribution curve. According to the report, it was a porous body having a macropore of 0.28 μm. According to the nitrogen adsorption measurement, the total pore volume in the molded body after the drying treatment at 60 ° C. was 89% or more of the powder sample in terms of the amount of zeolite particles.

参考例9)
有機高分子として実施例1で用いた樹脂35.03gを実施例1で用いたジメチルスルホキシド181.29gに混合し、50℃にて202rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、粒子径10μm、結晶粒子径2μm-4μm、細孔径0.58nmの合成ハイシリカゼオライト(SiO/Al=40)(原料粒子F)60.20gを添加して、多孔体成形用のスラリーを調製した。この時のスラリー中の粒子の濃度は21.8重量%で成形体に対するゼオライト粒子の仕込量は63重量%あった。一晩攪拌したのち、乾湿式紡糸装置にて、2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて22.3ml/minで、25℃の水浴に射出しながら、芯液として25℃の水を11.7ml/minで流して中空糸状に製膜した。
( Reference example 9)
35.03 g of the resin used in Example 1 as an organic polymer was mixed with 181.29 g of dimethyl sulfoxide used in Example 1 and dissolved by stirring overnight at 202 rpm at 50 ° C. While heating and stirring this, 60.20 g of synthetic high silica zeolite (SiO 2 / Al 2 O 3 = 40) (raw material particles F) having a particle diameter of 10 μm, a crystal particle diameter of 2 μm-4 μm, and a pore diameter of 0.58 nm was added. Then, a slurry for forming a porous body was prepared. At this time, the concentration of the particles in the slurry was 21.8% by weight, and the amount of the zeolite particles charged into the molded product was 63% by weight. After stirring overnight, a dry-wet spinning device was used to put the obtained slurry into a cylinder pump at 22.3 ml / min and inject it into a water bath at 25 ° C. as a core liquid. A film was formed into a hollow thread by flowing water at 11.7 ml / min at 11.7 ml / min.

作製した中空糸膜は外径2.4mm、内径1.4mmであった。熱分析によると600℃まで加温した時の減量は36重量%であり、成形体中のゼオライト粒子の含量は64重量%であると考えられる。60℃で一晩乾燥し、更に150℃で2時間加熱した後、水銀ポロシメーターで測定すると空隙率が40%であり、細孔径分布曲線によると0.43μmのマクロポアを有する多孔体であった。また、窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の100%以上、そのうちゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の64%以上であった。 The produced hollow fiber membrane had an outer diameter of 2.4 mm and an inner diameter of 1.4 mm. According to thermal analysis, the weight loss when heated to 600 ° C. is 36% by weight, and the content of zeolite particles in the molded product is considered to be 64% by weight. After drying overnight at 60 ° C. and further heating at 150 ° C. for 2 hours, the porosity was 40% as measured by a mercury porosity, and according to the pore size distribution curve, it was a porous body having macropores of 0.43 μm. According to the nitrogen adsorption measurement, the total pore volume in the molded body after the drying treatment at 60 ° C. is 100% or more of the powder sample in terms of the amount of zeolite particles, of which the low pressure portion due to the zeolite pores (relative pressure P / Po < The amount of nitrogen adsorbed in 0.12) was 64% or more of the powder sample.

参考例10)
有機高分子としてポリサルホン(Udel PSF p-1700、ソルベイアドバンストポリマーズ(株))を用い、スラリー用の良溶媒として参考例3のジメチルホルムアミドを使用する他は、参考例9と同様に有機高分子を先に溶解させた溶媒を攪拌しながら原料粒子Fを投入しての成形用スラリーを調製し、参考例9と同じノズルを用い、同条件で中空糸の紡糸を行なった。
( Reference example 10)
Polysulfone (Udel PSF p-1700, Solvay Advanced Polymers Co., Ltd.) is used as the organic polymer, and dimethylformamide of Reference Example 3 is used as a good solvent for the slurry . The raw material particles F were added while stirring the previously dissolved solvent to prepare a molding slurry, and the hollow yarn was spun under the same conditions using the same nozzle as in Reference Example 9.

作製した中空糸膜は外径1.8mm、内径1.0mmであった。熱分析による成形体中のゼオライト粒子の含量は59重量%であり、紡糸に際して仕込比に対して4-5%の微粒子のロスがあったと考えられる。60℃で一晩乾燥し、水銀ポロシメーターで測定すると空隙率が66%で、細孔径分布曲線によると0.22μmと1.43μmのマクロポアを有する多元多孔体であった。また、窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の85%、そのうちゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の77%以上であった。 The produced hollow fiber membrane had an outer diameter of 1.8 mm and an inner diameter of 1.0 mm. The content of the zeolite particles in the molded product by thermal analysis was 59% by weight, and it is considered that there was a loss of 4-5% of fine particles with respect to the charging ratio at the time of spinning. After drying overnight at 60 ° C., the porosity was 66% as measured by a mercury porosity, and according to the pore size distribution curve, it was a multidimensional porous body having macropores of 0.22 μm and 1.43 μm. According to the nitrogen adsorption measurement, the total pore volume in the molded body after the drying treatment at 60 ° C. is 85% of the powder sample in terms of the amount of zeolite particles, of which the low pressure portion due to the zeolite pores (relative pressure P / Po <0). The amount of nitrogen adsorbed in 12.12) was 77% or more of that of the powder sample.

参考例11)
参考例3で用いたジメチルホルムアミド203.50gを加温攪拌した状態で有機高分子として参考例3で用いたメタクリル酸メチル樹脂20.24gを徐々に混合し、50℃にて330rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、参考例9で用いた合成ハイシリカゼオライト(原料粒子F)40.22gを添加して、更に4-5時間攪拌を続けて、多孔体成形用のスラリーを調製した。この時のスラリー中のゼオライト粒子の濃度は15.0重量%で、成形体に対するゼオライト粒子の仕込量は67重量%であった。5時間攪拌したのち、実施例1で用いた2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて20.6ml/minで、30℃の湯浴に射出しながら、芯液として25℃の水を7.6ml/minで流して中空糸状に製膜した。
( Reference example 11)
While 203.50 g of dimethylformamide used in Reference Example 3 was heated and stirred, 20.24 g of the methyl methacrylate resin used in Reference Example 3 was gradually mixed as an organic polymer, and the mixture was stirred at 50 ° C. and 330 rpm overnight. And dissolved. While this was heated and stirred, 40.22 g of the synthetic high silica zeolite (raw material particles F) used in Reference Example 9 was added, and stirring was further continued for 4-5 hours to prepare a slurry for forming a porous body. .. At this time, the concentration of the zeolite particles in the slurry was 15.0% by weight, and the amount of the zeolite particles charged into the molded product was 67% by weight. After stirring for 5 hours, the obtained slurry was put into a cylinder pump using the double-mouthed nozzle used in Example 1 and injected into a hot water bath at 30 ° C. at 20.6 ml / min to form a core liquid of 25. A film was formed into a hollow thread by flowing water at ℃ at 7.6 ml / min.

作製した中空糸膜は外径2.2mm、内径1.0mmであった。熱分析によると600℃まで加温した時の減量は39重量%であり、成形体中のゼオライト粒子の含量は61重量%であると考えられる。水銀ポロシメトリによると60℃で一晩乾燥した後の空隙率は55%であった。細孔径分布曲線によると、2.5μm径と6μm径のマクロ孔を有する多元多孔体であった。窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の82%、そのうちゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の64%以上であった。 The produced hollow fiber membrane had an outer diameter of 2.2 mm and an inner diameter of 1.0 mm. According to thermal analysis, the weight loss when heated to 600 ° C. is 39% by weight, and the content of zeolite particles in the molded product is considered to be 61% by weight. According to mercury porosity, the void ratio after drying at 60 ° C. overnight was 55%. According to the pore size distribution curve, it was a multi-dimensional porous body having macropores with a diameter of 2.5 μm and a diameter of 6 μm. According to the nitrogen adsorption measurement, the total pore volume in the molded body after drying at 60 ° C. is 82% of the powder sample in terms of the amount of zeolite particles, of which the low pressure part due to the zeolite pores (relative pressure P / Po <0.12). ) Was 64% or more of the powder sample.

参考例12)
参考例11で得られた中空糸について、強度及び柔軟性を改善するために参考例3と同様に、エタノール(和光特級99.5%)396.2gに過酸化ベンゾイル4gを入れて溶解させた容器に室温で一晩乾燥した後の中空糸を入れて、2時間40-50℃で加温し、再重合処理を行なった。更に洗浄して室温乾燥した後、再度エタノール中にて減圧下で加熱処理を2時間行なった。水銀ポロシメトリによると空隙率は、重合処理のため、40%と処理前に比べて減少し、細孔径分布曲線によると0.43、1.3、2.5μm径にマクロ孔が生じていた。窒素吸着測定によると150℃24時間の真空乾燥処理後の成形体中の全細孔容積は微粒子含有量換算で、粉末試料の97%、そのうちミクロ孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の77%以上と、処理前の中空糸に比べて細孔保持率も増加した。また、この中空糸の60℃乾燥物0.3087gを30mlの蒸留水中に入れ、120rpmで30時間以上連続的に浸透し、再度60℃で一晩乾燥して重量測定を行ったところ、粉落ちも減量も認められなかった。
( Reference example 12)
In order to improve the strength and flexibility of the hollow fiber obtained in Reference Example 11, 4 g of benzoyl peroxide was dissolved in 396.2 g of ethanol (Wako special grade 99.5%) in the same manner as in Reference Example 3. Hollow fibers after drying overnight at room temperature were placed in a container and heated at 40-50 ° C. for 2 hours for repolymerization. After further washing and drying at room temperature, heat treatment was performed again in ethanol under reduced pressure for 2 hours. According to the mercury porosity, the void ratio was 40% due to the polymerization treatment, which was smaller than that before the treatment, and macropores were formed at 0.43, 1.3, and 2.5 μm diameters according to the pore size distribution curve. According to the nitrogen adsorption measurement, the total pore volume in the molded body after vacuum drying treatment at 150 ° C. for 24 hours is 97% of the powder sample in terms of fine particle content, of which the low pressure part due to the micropores (relative pressure P / Po). The amount of nitrogen adsorbed in <0.12) was 77% or more of the powder sample, and the pore retention rate was also increased as compared with the hollow yarn before the treatment. Further, 0.3087 g of a 60 ° C. dried product of the hollow fiber was placed in 30 ml of distilled water, continuously infiltrated at 120 rpm for 30 hours or more, dried again at 60 ° C. overnight, and weighed. No weight loss was observed.

参考例13)
有機高分子としてポリアミドイミド樹脂を14重量%含有したノルマルメチルピロリドン溶液(バイロマックスHR-16NN、東洋紡(株))110.95gを45℃、335rpmで加温攪拌した状態で、参考例9-12で用いた合成ハイシリカゼオライト(原料粒子F)31.19gを添加し、一晩攪拌を続けて、多孔体成形用のスラリーを調製した。この時のスラリー中のゼオライト粒子の濃度は22重量%で、成形体に対するゼオライト粒子の仕込量は67重量%であった。5時間攪拌したのち、実施例1で用いた2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて21.4ml/minで、30℃の湯浴に射出しながら、芯液として25℃の水を10.4ml/minで流して中空糸状に製膜した。
( Reference example 13)
Reference Example 9-12 in a state where 110.95 g of a normal methylpyrrolidone solution (Vilomax HR-16NN, Toyobo Co., Ltd.) containing 14% by weight of a polyamide-imide resin as an organic polymer was heated and stirred at 45 ° C. and 335 rpm. 31.19 g of the synthetic high-silica zeolite (raw material particles F) used in the above was added, and stirring was continued overnight to prepare a slurry for forming a porous body. At this time, the concentration of the zeolite particles in the slurry was 22% by weight, and the amount of the zeolite particles charged into the molded product was 67% by weight. After stirring for 5 hours, the obtained slurry was put into a cylinder pump using the double-mouthed nozzle used in Example 1 and injected into a hot water bath at 30 ° C. at 21.4 ml / min to form a core liquid of 25. A film was formed into a hollow thread by flowing water at ° C. at 10.4 ml / min.

作製した中空糸膜は外径2.6mm、内径1.0mmで、曲げ強度は4-5MPa程度であった。熱分析によると成形体中のゼオライト粒子の含量は65重量%前後であった。水銀ポロシメトリによると60℃で一晩乾燥した後の空隙率は50%であった。細孔径分布曲線によると、20nm径以下のメソ孔と0.2μm前後の径のマクロ孔を有する多元多孔体であった。窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の98%以上となったが、ゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の24%以下とメソ孔の細孔容積は大きいがミクロ孔がかなり潰れた状態であった。 The produced hollow fiber membrane had an outer diameter of 2.6 mm and an inner diameter of 1.0 mm, and had a bending strength of about 4-5 MPa. According to thermal analysis, the content of zeolite particles in the molded product was around 65% by weight. According to mercury porosity, the void ratio after drying at 60 ° C. overnight was 50%. According to the pore size distribution curve, it was a multi-dimensional porous body having mesopores with a diameter of 20 nm or less and macropores with a diameter of about 0.2 μm. According to the nitrogen adsorption measurement, the total pore volume in the molded body after the drying treatment at 60 ° C. was 98% or more of the powder sample in terms of the amount of zeolite particles, but the low pressure part (relative pressure P / Po) due to the zeolite pores. The amount of nitrogen adsorbed in <0.12) was 24% or less of that of the powder sample, and the pore volume of the mesopores was large, but the micropores were considerably crushed.

参考例14)
参考例13で得られたポリアミドイミド中空糸について、ミクロ孔機能を改善するために、参考例12と同様に、室温乾燥後の中空糸について、減圧下のエタノール中で加熱処理を40-50℃で2時間行なった。熱分析によるとゼオライトの含有量については65重量%と変化は認められなかった。水銀ポロシメトリによると空隙率は59%と処理前に比べて増加し、細孔径分布曲線によると0.2μm径の代わりに0.43μm径にマクロ孔が生じていた。窒素吸着測定によると150℃24時間の真空乾燥処理後の成形体中の全細孔容積は0.17cm/gと原料粒子の1.4倍となり、そのうちミクロ孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の84%以上と、処理前の中空糸に比べて細孔保持率も大幅に増加した。また、この中空糸について強度測定を行なったところ、曲げ強度は4-6MPaと、処理前と比較して強度の低下は認められなかった。図5に参考例13と参考例14(参考例13の改質物)の原料粒子Fに対する室温での窒素吸着等温線比較を示す。なお、150℃24時間減圧条件にて前処理し、粒子Fの含有量による換算である。
( Reference example 14)
In order to improve the micropore function of the polyamide-imide hollow fiber obtained in Reference Example 13, the hollow fiber after drying at room temperature was heat-treated in ethanol under reduced pressure at 40-50 ° C. as in Reference Example 12. It was done for 2 hours. According to the thermal analysis, the zeolite content was 65% by weight, and no change was observed. According to the mercury porosity, the void ratio was 59%, which was higher than that before the treatment, and according to the pore size distribution curve, macropores were formed in the diameter of 0.43 μm instead of the diameter of 0.2 μm. According to the nitrogen adsorption measurement, the total pore volume in the molded body after vacuum drying at 150 ° C for 24 hours was 0.17 cm 3 / g, which was 1.4 times that of the raw material particles, of which the low pressure part due to the micropores (relative). The amount of nitrogen adsorbed at a pressure of P / Po <0.12) was 84% or more of that of the powder sample, and the pore retention rate was significantly increased as compared with the hollow yarn before the treatment. Moreover, when the strength of this hollow fiber was measured, the bending strength was 4-6 MPa, and no decrease in strength was observed as compared with that before the treatment. FIG. 5 shows a comparison of nitrogen adsorption isotherms with respect to the raw material particles F of Reference Example 13 and Reference Example 14 (modified product of Reference Example 13) at room temperature. It should be noted that the pretreatment was performed under a reduced pressure condition of 150 ° C. for 24 hours, and the conversion was based on the content of the particles F.

参考例15)
原料粒子として粒子径0.5-1μm、結晶粒子径50nm、細孔径0.58nmの合成ハイシリカゼオライト(SiO/Al=52)(原料粒子G)20.10gを実施例2で用いたジメチルスルホキシド50.10gに予め混合し、47℃にて200rpmで加温攪拌しながら、有機高分子として実施例2で用いた樹脂9.98gを添加した。200rpm-300rpmで4時間攪拌した後、加温攪拌を続けながら50℃に加温したジメチルスルホキシドを20.07g添加して更に3時間攪拌を続けて、多孔体成形用のスラリーを調製した。この時のスラリー中の粒子の濃度は20重量%で成形体に対するゼオライト粒子の仕込量は67重量%あった。実施例1で用いた2重口ノズルを用い、空走距離5cm湯浴27℃の条件で、スラリーを19~22.5mL/min流しながら、中空糸の紡糸を試みたが、芯液を0-2mL/min流すとスラリーの射出が途切れて断続的になり、中空糸成形はできず、代わりにペレット状の成形体が得られた。
( Reference example 15)
As the raw material particles, 20.10 g of synthetic high silica zeolite (SiO 2 / Al 2 O 3 = 52) (raw material particles G) having a particle diameter of 0.5-1 μm, a crystal particle diameter of 50 nm, and a pore diameter of 0.58 nm was used in Example 2. It was mixed in advance with 50.10 g of the dimethyl sulfoxide used, and 9.98 g of the resin used in Example 2 was added as an organic polymer while heating and stirring at 47 ° C. at 200 rpm. After stirring at 200 rpm-300 rpm for 4 hours, 20.07 g of dimethyl sulfoxide heated to 50 ° C. was added while continuing the heating and stirring, and the stirring was further continued for 3 hours to prepare a slurry for forming a porous body. At this time, the concentration of the particles in the slurry was 20% by weight, and the amount of the zeolite particles charged into the molded product was 67% by weight. Using the double-mouthed nozzle used in Example 1, an attempt was made to spin a hollow fiber while flowing a slurry at 19 to 22.5 mL / min under the condition of a free running distance of 5 cm and a hot water bath at 27 ° C., but the core liquid was 0. When -2 mL / min was flowed, the injection of the slurry was interrupted and became intermittent, and hollow fiber molding was not possible, and a pellet-shaped molded body was obtained instead.

洗浄乾燥後のペレット状成形体を水銀ポロシメーターで測定すると空隙率が69%前後であった。熱分析から見積もられる粒子含有量は67%で仕込比通りであった。窒素吸着測定によると成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の56%、ゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の57%であった。 When the pellet-shaped molded product after washing and drying was measured with a mercury porosity, the void ratio was around 69%. The particle content estimated from the thermal analysis was 67%, which was in line with the charging ratio. According to the nitrogen adsorption measurement, the total pore volume in the molded body is 56% of the powder sample in terms of the zeolite particle amount, and the nitrogen adsorption amount in the low pressure part (relative pressure P / Po <0.12) due to the zeolite pores is powder. It was 57% of the sample.

(実施例16)
有機高分子として実施例2で用いたポリエーテルサルホン1.68gを11.70gのジメチルスルホキシドに50℃で溶解し、これに原料粒子Aを0.85g、原料粒子Fを1.73g添加して成形用スラリーを調製した他は、実施例2と同様にペレットを作製した。この時のスラリー中の微粒子濃度は16重量%で、成形体に対する微粒子の仕込比は原料粒子Aが20重量%、原料粒子Fが41重量%であった。得られたペレットについて、熱分析を行なうと有機物の分解による減量は大凡20%で微粒子の含有量が80%と仕込比に対して高くなった。水銀ポロシメトリによると成形体の空隙率は69%で、細孔径分布曲線によると複数のマクロポアの他に5nm前後の領域にメソポアを有する多元多孔体となっていた。更に、窒素吸着測定によると成形体中の全細孔容積は微粒子含有量換算で、粉末試料の50%程度であった。
(Example 16)
1.68 g of the polyether sulfoxide used in Example 2 as an organic polymer was dissolved in 11.70 g of dimethyl sulfoxide at 50 ° C., and 0.85 g of raw material particles A and 1.73 g of raw material particles F were added thereto. Pellets were prepared in the same manner as in Example 2 except that the molding slurry was prepared. At this time, the concentration of the fine particles in the slurry was 16% by weight, and the charging ratio of the fine particles to the molded body was 20% by weight for the raw material particles A and 41% by weight for the raw material particles F. When the obtained pellets were subjected to thermal analysis, the weight loss due to the decomposition of organic matter was about 20%, and the content of fine particles was 80%, which was higher than the charging ratio. According to the mercury porosity, the void ratio of the molded body was 69%, and according to the pore size distribution curve, it was a multidimensional porous body having mesopores in a region of about 5 nm in addition to a plurality of macropores. Further, according to the nitrogen adsorption measurement, the total pore volume in the molded product was about 50% of that of the powder sample in terms of the fine particle content.

参考例17)
有機高分子としてPMMA樹脂を用いて成形し、更に過酸化ベンゾイルによる再重合処理を行なった比較例7の成形体は表2に示す通りミクロ孔の保持率が低いが、減圧下のエタノール中で40-55℃の煮沸処理を1-2時間行なったところ、表3に示すように、ミクロ孔の吸着性能試験結果に著しい改善が得られた。(参考例11及び比較例7とその改質物を用いて行なった水溶液中からのコバルト吸着試験結果を表3に示す。)
( Reference example 17)
As shown in Table 2, the molded product of Comparative Example 7, which was molded using PMMA resin as an organic polymer and further subjected to repolymerization treatment with benzoyl peroxide, has a low retention rate of micropores, but in ethanol under reduced pressure. When the boiling treatment at 40-55 ° C. was carried out for 1-2 hours, as shown in Table 3, a remarkable improvement was obtained in the adsorption performance test results of the micropores. (Table 3 shows the results of the cobalt adsorption test from the aqueous solution conducted using Reference Example 11 and Comparative Example 7 and their modified products.)

(比較例1)
実施例2において原料粒子を入れず、有機高分子であるポリエーテルサルホンを倍量添加する他は、実施例2と同様にして、ポリエーテルサルホンのみのペレットを作成した。水銀ポロシメトリによるとペレットは空隙率42%の多孔体であったが、窒素吸着によるミクロ~メソ孔の全細孔容積は0.01mL/g以下であった。
(Comparative Example 1)
In Example 2, pellets containing only polyether sulfone were prepared in the same manner as in Example 2 except that the raw material particles were not added and a double amount of polyether sulfone, which is an organic polymer, was added. According to mercury porosity, the pellet was a porous body with a void ratio of 42%, but the total pore volume of the micro to mesopores due to nitrogen adsorption was 0.01 mL / g or less.

(比較例2)
有機高分子として参考例10で用いているポリサルホン1.15gを原料粒子A1.15gと同時に、参考例3、10及び11で用いているジメチルホルムアミド20.36gに入れて攪拌を行ない成形用スラリーを調製した他は、実施例2と同様にペレット成形を試みたが、成形できなかった。
(Comparative Example 2)
1.15 g of polysulfone used in Reference Example 10 as an organic polymer was added to 1.15 g of raw material particles A and 20.36 g of dimethylformamide used in Reference Examples 3, 10 and 11 at the same time, and the mixture was stirred to prepare a molding slurry. Other than the prepared ones, pellet molding was attempted in the same manner as in Example 2, but molding was not possible.

(比較例3)
有機高分子としてエチレン含有量29mol%のエチレン-ビニルアルコール共重合樹脂(ソアノールD2908、日本合成化学工業(株))を用いた他は、参考例7と同様にしてペレットの作製を試みたが、調製したスラリーが凝固用の貧溶媒の表面に膜状に広がってしまい、ペレット状の成形はできなかった。
(Comparative Example 3)
An attempt was made to prepare pellets in the same manner as in Reference Example 7, except that an ethylene-vinyl alcohol copolymer resin (Soanol D2908, Nippon Synthetic Chemical Industry Co., Ltd.) having an ethylene content of 29 mol% was used as the organic polymer. The prepared slurry spread in the form of a film on the surface of the poor solvent for coagulation, and pellet-like molding could not be performed.

(比較例4)
スラリー用の溶媒として、参考例3、10及び11で用いているジメチルホルムアミド95.5gとジメチルアセトアミド(和光特級)54.83gの混合溶媒を用い、これに予め原料粒子F60.12gを分散させて、加温攪拌しながら、有機高分子としてのポリサルホンを添加する他は、参考例10と同様にして多孔体成形用のスラリー調製を試みたが、ポリサルホンがスラリー中に混和せず、撹拌機を停止すると底に沈殿が生じて均一なスラリーが得られなかった。
(Comparative Example 4)
As the solvent for the slurry, a mixed solvent of 95.5 g of dimethylformamide used in Reference Examples 3, 10 and 11 and 54.83 g of dimethylacetamide (Wako special grade) was used, and 60.12 g of raw material particles F was dispersed therein in advance. An attempt was made to prepare a slurry for forming a porous body in the same manner as in Reference Example 10, except that polysulfone as an organic polymer was added while heating and stirring, but polysulfone did not mix in the slurry and the stirrer was used. When stopped, precipitation occurred at the bottom and a uniform slurry could not be obtained.

(比較例5)
有機高分子として非晶性ポリエステル樹脂(バイロン200、東洋紡(株))0.54gを参考例3、10及び11で用いているジメチルホルムアミドに溶解させた後、加温攪拌しながら原料粒子F0.54gを添加して、成形用スラリーの調製を試みたが、均一なスラリーが得られなかった。
(Comparative Example 5)
After dissolving 0.54 g of an amorphous polyester resin (Byron 200, Toyobo Co., Ltd.) as an organic polymer in the dimethylformamide used in Reference Examples 3, 10 and 11, the raw material particles F0. An attempt was made to prepare a molding slurry by adding 54 g, but a uniform slurry could not be obtained.

(比較例6)
参考例15に記載の通りに、原料粒子Gを予め混合する方法で、成形用スラリーを調製したが、スラリーの射出が安定せず、中空糸の成形はできなかった。
(Comparative Example 6)
As described in Reference Example 15, a slurry for molding was prepared by a method of premixing the raw material particles G, but the injection of the slurry was not stable and the hollow fiber could not be molded.

(比較例7)
有機高分子として参考例3及び11で用いたメチルメタクリル樹脂16.23gをジメチルスルホキシド160.69gに45℃で加温攪拌して溶解した後、攪拌したまま、上愛子産天然モルデナイト粉末(新東北化学工業(株)、原料粒子H)40.0gを30メッシュのSUS金網でふるいながら添加し、成形用スラリーを調製した。この時のスラリー中の微粒子の濃度は18重量%で、成形体に対するゼオライト粒子の仕込量は71重量%であった。一晩攪拌したのち、乾湿式紡糸装置にて、実施例1で用いた2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて22.8ml/minで、40℃の湯浴に射出しながら、芯液として25℃の水を10.1ml/minで流して中空糸状に製膜した。
(Comparative Example 7)
16.23 g of the methyl methacrylic resin used in Reference Examples 3 and 11 as an organic polymer was dissolved in dimethyl sulfoxide 160.69 g by heating at 45 ° C. and then dissolved, and then the natural mordenite powder from Kamiayashi (Shin-Tohoku) was dissolved while stirring. Chemical Industry Co., Ltd., raw material particles H) 40.0 g were added while sieving with a 30-mesh SUS wire mesh to prepare a molding slurry. At this time, the concentration of the fine particles in the slurry was 18% by weight, and the amount of the zeolite particles charged into the molded product was 71% by weight. After stirring overnight, the obtained slurry was put into a cylinder pump using the double-mouthed nozzle used in Example 1 in a dry-wet spinning apparatus and injected into a hot water bath at 40 ° C. at 22.8 ml / min. At the same time, water at 25 ° C. was flowed as a core liquid at 10.1 ml / min to form a hollow thread-like film.

作製した中空糸は外径2.2mm、内径1.0mmであった。そのままでは非常に脆いので、参考例3と同様に、エタノール(和光特級99.5%)1L791.82g)に過酸化ベンゾイル8gを入れて溶解させた容器に室温で一晩乾燥した後の中空糸を入れて、2時間40-60℃で加温し、再重合処理を行なった。処理後の中空糸を洗浄乾燥して、熱分析すると有機物の分解による減量は40重量%であり、成形体中のゼオライト粒子の含量は60重量%であったが、成形時よりも成形用スラリーへの原料添加時のロスが大きかったと考えられる。水銀ポロシメトリによると空隙率は46%であった。窒素吸着測定によると150℃24時間の真空乾燥処理後の成形体中の全細孔容積は微粒子含有量換算で、粉末試料の24%、特にミクロ孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の5%以下であり、重合処理前の中空糸について測定を行なっても同様であった。 The produced hollow fiber had an outer diameter of 2.2 mm and an inner diameter of 1.0 mm. Since it is very brittle as it is, the hollow fiber after being dried overnight at room temperature in a container in which 8 g of benzoyl peroxide is dissolved in ethanol (Wako special grade 99.5%) 1L 791.82 g) as in Reference Example 3. Was added and heated at 40-60 ° C. for 2 hours for repolymerization. When the hollow yarn after the treatment was washed and dried and subjected to thermal analysis, the weight loss due to decomposition of organic substances was 40% by weight, and the content of zeolite particles in the molded product was 60% by weight, but the molding slurry was higher than that at the time of molding. It is probable that the loss when adding the raw material to the product was large. According to mercury porosity, the void ratio was 46%. According to the nitrogen adsorption measurement, the total pore volume in the molded body after vacuum drying treatment at 150 ° C. for 24 hours is 24% of the powder sample in terms of fine particle content, especially the low pressure part due to the micropores (relative pressure P / Po). The amount of nitrogen adsorbed in <0.12) was 5% or less of the powder sample, and the same was true even when the hollow yarn before the polymerization treatment was measured.

表1に、実施例、参考例及び比較例で用いた機能性微粒子の物性を示す。 Table 1 shows the physical characteristics of the functional fine particles used in Examples , Reference Examples and Comparative Examples.

Figure 0006990906000001
Figure 0006990906000001

表2~4に、実施例、参考例又は比較例で得られた(多孔質)成形体の物性を示す。 Tables 2 to 4 show the physical characteristics of the (porous) molded product obtained in Examples , Reference Examples or Comparative Examples.

Figure 0006990906000002
Figure 0006990906000002

Figure 0006990906000003
Figure 0006990906000003

Figure 0006990906000004
Figure 0006990906000004

参考例11、比較例7及び比較例7のエタノール処理後の成形体のコバルト(CoCl)吸着性能について、室温24時間における、バッチ試験によって、其々の原料粒子と比較を行なった。結果を表5に示す。吸着剤其々0.3gを30mLのコバルト水溶液50ppmに添加して行った。原料FとHではゼオライト中のSi/Al比が異なっている。ゼオライト粒子では構造中のSiをAlが置換することによって、イオン交換サイトが生じるため、原料HのCo吸着容量はFのそれに比べて、かなり大きくなっている。参考例11では原料FよりもPMMA樹脂による成形体へのコバルト吸着量が高くなっているが、比較例7のPMMA成形体は原料Hに比べて吸着量がかなり低くなっている。比較例7を参考例12、14のように、減圧下でエタノール中で加温処理すると、表5に示すように原料粒子相当のコバルトの吸着能が認められるようになった。 The cobalt (CoCl 2 ) adsorption performance of the molded articles after ethanol treatment of Reference Example 11, Comparative Example 7 and Comparative Example 7 was compared with the respective raw material particles by a batch test at room temperature for 24 hours. The results are shown in Table 5. 0.3 g of each adsorbent was added to 50 ppm of a 30 mL cobalt aqueous solution. The Si / Al ratio in the zeolite is different between the raw materials F and H. In the zeolite particles, the substitution of Si in the structure with Al creates an ion exchange site, so that the Co adsorption capacity of the raw material H is considerably larger than that of F. In Reference Example 11, the amount of cobalt adsorbed by the PMMA resin on the molded product is higher than that of the raw material F, but the amount of cobalt adsorbed on the PMMA molded product of Comparative Example 7 is considerably lower than that of the raw material H. When Comparative Example 7 was heated in ethanol under reduced pressure as in Reference Examples 12 and 14, the adsorption capacity of cobalt equivalent to that of the raw material particles was observed as shown in Table 5.

Figure 0006990906000005
Figure 0006990906000005

(実施例18)
有機高分子としてのエチレン含有量(モル比)48mol%のエチレン-ビニルアルコール共重合樹脂(エバールG156B、(株)クラレ)9.98gをジメチルスルホキシド(和光特級)102.88gに混合し、40℃にて200rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、粒子径0.2μm~2μm、細孔径2nm~3nmのMCM-41タイプの合成メソポーラスシリカ(SiO、シグマアルドリッチ No.643653)(原料粒子I)19.99gを添加して、多孔体成形用のスラリーを調製した。この時のスラリー中の粒子の濃度は15重量%、エチレン-ビニルアルコール共重合樹脂の添加量は7.5重量%で、成形体に対するMCM粒子の仕込量は67重量%あった。一晩攪拌したのち、乾湿式紡糸装置にて、スラリー用吐出口径3mmφ、芯液用吐出口径0.7mmφの2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて20.5ml/minで、37℃の湯浴に射出しながら、芯液として29℃のお湯を7ml/minで流して中空糸状に製膜して、「MCM-41-EVOH中空糸」を得た。図6に得られた成形体の外観像を示す。
(Example 18)
9.98 g of an ethylene-vinyl alcohol copolymer resin (EVAL G156B, Kuraray Co., Ltd.) having an ethylene content (molar ratio) of 48 mol% as an organic polymer is mixed with 102.88 g of dimethyl sulfoxide (Wako special grade) at 40 ° C. It was dissolved by stirring overnight at 200 rpm. While heating and stirring this, 19.99 g of MCM-41 type synthetic mesoporous silica (SiO 2 , Sigma-Aldrich No. 643653) (raw material particles I) having a particle diameter of 0.2 μm to 2 μm and a pore diameter of 2 nm to 3 nm was added. Then, a slurry for forming a porous body was prepared. At this time, the concentration of the particles in the slurry was 15% by weight, the amount of the ethylene-vinyl alcohol copolymer resin added was 7.5% by weight, and the amount of MCM particles charged into the molded product was 67% by weight. After stirring overnight, use a double-ended nozzle with a slurry discharge port diameter of 3 mmφ and a core liquid discharge port diameter of 0.7 mmφ in a dry-wet spinning device, and put the obtained slurry into a cylinder pump at 20.5 ml / min. Then, while injecting into a hot water bath at 37 ° C., hot water at 29 ° C. was flowed as a core liquid at 7 ml / min to form a hollow fiber-like film to obtain "MCM-41-EVOH hollow fiber". FIG. 6 shows an external image of the obtained molded product.

作製した中空糸膜は外径1.2mm、内径0.7mmで、60℃で一晩乾燥した後に水銀ポロシメーターで測定すると空隙率が62%前後であり、細孔径分布曲線によるとMCM-41由来の4nm~10nm径のナノポア及び0.1μm-1μmのマクロポアを有する多元多孔質成形体であった。この中空糸状成形体の60℃乾燥物0.0299gを3mlの蒸留水中に入れ、100rpmで36時間以上連続的に浸透し、再度60℃乾燥して重量測定を行うと、0.0297gであり、重量変化は1%以内であり、殆ど粉落ちはないと考えられる。熱分析によると600℃まで加温した時200℃以上で有機高分子が分解し、この分解による減量は34重量%であることから、成形体中のMCM-41粒子の含量は66重量%であると考えられる。また、窒素吸着等温線によると成形体と原料粒子の等温線のヒステリシスの相対圧(P/Po)域は一致し、原料粒子のメソ細孔のサイズは、ほぼ保たれていると考えられる。更に成形体中細孔容積は0.28cm/gであり、原料のMCM-41粉末粒子のメソ孔容積は0.59cm/gであったことから、成形体の細孔容積を含有されるMCM粒子の量で換算すると粉末試料の細孔容積の71%が保持されていると考えられる。 The produced hollow fiber membrane has an outer diameter of 1.2 mm and an inner diameter of 0.7 mm, and after being dried overnight at 60 ° C., the porosity is around 62% when measured with a mercury porosity. According to the pore size distribution curve, it is derived from MCM-41. It was a multi-dimensional porous molded body having nanopores having a diameter of 4 nm to 10 nm and macropores of 0.1 μm-1 μm. 0.0299 g of a 60 ° C. dried product of this hollow filamentous molded product was placed in 3 ml of distilled water, continuously infiltrated at 100 rpm for 36 hours or more, dried at 60 ° C. again, and weighed to be 0.0297 g. The weight change is within 1%, and it is considered that there is almost no powder loss. According to thermal analysis, the organic polymer decomposes at 200 ° C or higher when heated to 600 ° C, and the weight loss due to this decomposition is 34% by weight. Therefore, the content of MCM-41 particles in the molded product is 66% by weight. It is believed that there is. Further, according to the nitrogen adsorption isotherm, the relative pressure (P / Po) range of the hysteresis of the isotherm of the molded body and the raw material particles is the same, and it is considered that the size of the mesopores of the raw material particles is almost maintained. Further, since the pore volume in the molded body was 0.28 cm 3 / g and the mesopore volume of the raw material MCM-41 powder particles was 0.59 cm 3 / g, the pore volume of the molded body was included. When converted into the amount of MCM particles, it is considered that 71% of the pore volume of the powder sample is retained.

(実施例19)
有機高分子としてのポリエーテルサルホン(Veradel PES 3000P ソルベイアドバンストポリマー(株)、重量平均分子量(Mw)=57,000)0.54gをジメチルスルホキシド(和光特級)5.50gに50℃で完全に溶解し、これに実施例18で用いた合成メソポーラスシリカ(原料粒子I)0.55gを混合して、スラリーを調製した。この時のスラリー中の粒子の濃度は8.3重量%、ポリエーテルサルホンの添加量は8.2重量%で、成形体に対するMCM粒子の仕込量は50重量%あった。このスラリーを約32℃のお湯を入れたビーカーに滴下して2時間以上凝固させ、60℃で乾燥、更に、室温で25時間以上白濁が無くなるまで攪拌洗浄して、「MCM-41-PESペレット」を成形した。
(Example 19)
Completely 0.54 g of polyether sulfoxide (Veradel PES 3000P Solvay Advanced Polymer Co., Ltd., weight average molecular weight (Mw) = 57,000) as an organic polymer to 5.50 g of dimethyl sulfoxide (Wako special grade) at 50 ° C. It was dissolved and 0.55 g of the synthetic mesoporous silica (raw material particles I) used in Example 18 was mixed thereto to prepare a slurry. At this time, the concentration of the particles in the slurry was 8.3% by weight, the amount of the polyether salphon added was 8.2% by weight, and the amount of the MCM particles charged to the molded product was 50% by weight. This slurry is dropped into a beaker containing hot water at about 32 ° C., solidified for 2 hours or more, dried at 60 ° C., and further stirred and washed at room temperature for 25 hours or more until the white turbidity disappears. Was molded.

白濁が無くなるまで攪拌洗浄した後のペレット0.0288gを3mLの水中で室温72時間以上攪拌し、乾燥重量を測定すると殆ど重量変化は認められなかった。これを熱分析で600℃まで加温した時、有機高分子は450℃以上で分解し、分解による減量は47%であったことから、ペレット中のMCM粒子の含有量は53%程度であると考えられる。(120℃前後に原料粒子及び有機高分子にはない可逆的な吸熱ピーク及び減量が認められ、成形に由来する新たな吸着サイトが生じたと考えられる。)水銀ポロシメーターで測定すると空隙率が78%前後であり、細孔径分布曲線によるとMCM-41由来の4nm~10nm径のナノポア及び0.1μm~1μmのマクロポアを有する多元多孔体であった。また、窒素吸着等温線によると成形体の細孔容積は0.50cm/gであり、同条件で測定した粉末試料の細孔容積が0.59cm/gであったことから、成形体に含有されるMCM-41粒子の量で換算すると成形体中のMCM-41のメソ孔容積はほぼ全て保持されていると考えられる。 After stirring and washing until the white turbidity disappeared, 0.0288 g of the pellet was stirred in 3 mL of water at room temperature for 72 hours or more, and the dry weight was measured. As a result, almost no change in weight was observed. When this was heated to 600 ° C by thermal analysis, the organic polymer decomposed at 450 ° C or higher, and the weight loss due to decomposition was 47%. Therefore, the content of MCM particles in the pellet is about 53%. it is conceivable that. (Reversible endothermic peaks and weight loss not found in the raw material particles and organic polymers were observed around 120 ° C, and it is considered that new adsorption sites derived from molding were generated.) The void ratio was 78% as measured by a mercury porosimeter. According to the pore size distribution curve, it was a multidimensional porous body having nanopores with a diameter of 4 nm to 10 nm and macropores with a diameter of 0.1 μm to 1 μm derived from MCM-41. According to the nitrogen adsorption isotherm, the pore volume of the molded body was 0.50 cm 3 / g, and the pore volume of the powder sample measured under the same conditions was 0.59 cm 3 / g. When converted into the amount of MCM-41 particles contained in, it is considered that almost all the mesopore volume of MCM-41 in the molded body is retained.

(実施例20)
原料粒子として細孔径が4.5nmサイズのFSM-22タイプの合成メソポーラスシリカ(原料粒子J)を使用した他は、実施例19と同様にして「FSM-22-4.5nm-PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 20)
"FSM-22-4.5nm-PES pellets" were prepared in the same manner as in Example 19 except that FSM-22 type synthetic mesoporous silica (raw material particles J) having a pore diameter of 4.5 nm was used as the raw material particles. Molded. According to thermal analysis, the content of particles in the pellet was about 50%.

(実施例21)
原料粒子として細孔径が6nmサイズのFSM-22タイプの合成メソポーラスシリカ(原料粒子K)を使用した他は、実施例19と同様にして「FSM-22-6nm-PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は52%程度であった。
(Example 21)
"FSM-22-6nm-PES pellets" were formed in the same manner as in Example 19 except that FSM-22 type synthetic mesoporous silica (raw material particles K) having a pore diameter of 6 nm was used as the raw material particles. According to thermal analysis, the content of particles in the pellet was about 52%.

(実施例22)
原料粒子として細孔径が8nmサイズのFSM-22タイプの合成メソポーラスシリカ(原料粒子L)を使用した他は、実施例19と同様にして「FSM-22-8nm-PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は55%程度であった。
(Example 22)
"FSM-22-8nm-PES pellets" were formed in the same manner as in Example 19 except that FSM-22 type synthetic mesoporous silica (raw material particles L) having a pore diameter of 8 nm was used as the raw material particles. According to thermal analysis, the content of particles in the pellet was about 55%.

(実施例23)
原料粒子として細孔径が4nmサイズのSBA-15タイプの合成メソポーラスシリカ(原料粒子M)を使用した他は、実施例19と同様にして「SBA-15-4nm-PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。また、図7に実施例23で用いたSBA-15タイプの合成メソポーラスシリカ(原料粒子M)、得られた成形体、及び当該成形体と酵素(リパーゼ)との複合体の外観像を示す。(a)は、典型的なメソポーラスシリカ(SBA-15タイプ、原料粒子M)の粉末(10mg)であり、(b)は、成形体(20mg)であり、(c)は、当該成形体と酵素(リパーゼ)との複合体である。(a)はと(b)は白色であり、(c)は褐色である。
(Example 23)
"SBA-15-4nm-PES pellets" were formed in the same manner as in Example 19 except that SBA-15 type synthetic mesoporous silica (raw material particles M) having a pore diameter of 4 nm was used as the raw material particles. According to thermal analysis, the content of particles in the pellet was about 50%. Further, FIG. 7 shows an external image of the SBA-15 type synthetic mesoporous silica (raw material particles M) used in Example 23, the obtained molded product, and the composite of the molded product and the enzyme (lipase). (A) is a powder (10 mg) of typical mesoporous silica (SBA-15 type, raw material particles M), (b) is a molded product (20 mg), and (c) is the molded product. It is a complex with an enzyme (lipase). (A) and (b) are white, and (c) is brown.

(実施例24)
原料粒子として細孔径が6nmサイズのSBA-15タイプの合成メソポーラスシリカ(原料粒子N)を使用した他は、実施例19と同様にして「SBA-15-6nm-PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 24)
"SBA-15-6nm-PES pellets" were formed in the same manner as in Example 19 except that SBA-15 type synthetic mesoporous silica (raw material particles N) having a pore diameter of 6 nm was used as the raw material particles. According to thermal analysis, the content of particles in the pellet was about 50%.

(実施例25)
原料粒子として細孔径が8nmサイズのSBA-15タイプの合成メソポーラスシリカ(原料粒子O)を使用した他は、実施例19と同様にして「SBA-15-8nm-PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 25)
"SBA-15-8nm-PES pellets" were formed in the same manner as in Example 19 except that SBA-15 type synthetic mesoporous silica (raw material particles O) having a pore diameter of 8 nm was used as the raw material particles. According to thermal analysis, the content of particles in the pellet was about 50%.

(実施例26)
原料粒子として細孔径が5nmサイズのSBA-16タイプの合成メソポーラスシリカ(原料粒子P)を使用した他は、実施例19と同様にして「SBA-16-5nm-PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は54%程度であった。
(Example 26)
"SBA-16-5nm-PES pellets" were formed in the same manner as in Example 19 except that SBA-16 type synthetic mesoporous silica (raw material particles P) having a pore diameter of 5 nm was used as the raw material particles. According to thermal analysis, the content of particles in the pellet was about 54%.

(実施例27)
実施例18で用いた有機高分子0.53gをジメチルスルホキシド(和光特級)5.55mLに入れ、加熱攪拌して溶解し、これに平均細孔径が5.8nmサイズのMSU-Xタイプの合成メソポーラス酸化アルミ(Al、シグマアルドリッチ No.517747)(原料粒子Q)0.54gを混合して、スラリーを調製した。このスラリー室温水を入れたビーカーに滴下して凝固させ、60℃で乾燥して、「メソポーラスAl-EVOHペレット」を成形した。
(Example 27)
0.53 g of the organic polymer used in Example 18 was placed in 5.55 mL of dimethyl sulfoxide (Wako special grade), heated and stirred to dissolve it, and MSU-X type synthetic mesoporous material having an average pore diameter of 5.8 nm was added thereto. A slurry was prepared by mixing 0.54 g of aluminum oxide (Al 2 O 3 , Sigma-Aldrich No. 517747) (raw material particles Q). This slurry was dropped into a beaker containing room temperature water to solidify it, and dried at 60 ° C. to form "mesoporous Al 2 O 3 -EVOH pellets".

熱分析によると600℃まで加温した時の有機高分子の分解による減量は54%であり、ペレット中の粒子の含有量は46%程度であると考えられる。 According to thermal analysis, the weight loss due to decomposition of the organic polymer when heated to 600 ° C. is 54%, and the content of particles in the pellet is considered to be about 46%.

(実施例28)
原料粒子として平均細孔径が5.8nmサイズのMSU-Xタイプの合成メソポーラス酸化アルミ(Al、シグマアルドリッチ No.517747)(原料粒子Q)を使用した他は、実施例19と同様にして「メソポーラスAl-PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 28)
The same as in Example 19 except that MSU-X type synthetic mesoporous aluminum oxide (Al 2 O 3 , Sigma-Aldrich No. 517747) (raw material particles Q) having an average pore diameter of 5.8 nm was used as the raw material particles. "Mesoporous Al 2 O 3 -PES pellets" were formed. According to thermal analysis, the content of particles in the pellet was about 50%.

(実施例29)
実施例18で用いた有機高分子0.10gをジメチルスルホキシド(和光特級)0.7mLに入れ、加熱攪拌して溶解し、これに粒子径10~100nm、平均細孔径4.2nmのメソポーラス酸化チタン(Alfa Aesar No.43250)(原料粒子R)0.20gを混合して、スラリーを調製した。このスラリー室温水を入れたビーカーに滴下して凝固させ、60℃で乾燥して、「メソポーラスTiO-EVOHペレット」を成形した。
(Example 29)
0.10 g of the organic polymer used in Example 18 was placed in 0.7 mL of dimethyl sulfoxide (Wako special grade), heated and stirred to dissolve it, and the mesoporous titanium oxide having a particle diameter of 10 to 100 nm and an average pore diameter of 4.2 nm was dissolved therein. (Alfa Aesar No. 43250) (raw material particles R) 0.20 g was mixed to prepare a slurry. This slurry was dropped into a beaker containing room temperature water to solidify it, and dried at 60 ° C. to form "mesoporous TiO 2 -EVOH pellets".

熱分析によると600℃まで加温した時の有機高分子の分解による減量は47%であり、ペレット中の粒子の含有量は65%程度であると考えられる。また、100℃で前処理し蒸気吸着測定結果によって計算した成形体中の比表面積は、127m/gとなり、原料粉末の細孔容積は0.29cm/g、比表面積は235m/gであることから、含有されるメソポーラス酸化チタン粒子の量で換算すると成形体中のメソポーラス酸化チタンのメソ孔容積はほぼ全て保持されていたと考えられる。 According to thermal analysis, the weight loss due to decomposition of the organic polymer when heated to 600 ° C. is 47%, and the content of particles in the pellet is considered to be about 65%. Further, the specific surface area in the molded body calculated from the results of steam adsorption measurement after pretreatment at 100 ° C. was 127 m 2 / g, the pore volume of the raw material powder was 0.29 cm 3 / g, and the specific surface area was 235 m 2 / g. Therefore, it is considered that almost all the mesoporous volume of the mesoporous titanium oxide in the molded body was maintained when converted into the amount of the mesoporous titanium oxide particles contained.

(比較例8)
実施例19において原料粒子を入れず、有機高分子であるポリエーテルサルホンを倍量添加した他は、実施例19と同様にして、ポリエーテルサルホンのみのペレットである「PESペレット」を作製した。水銀ポロシメトリによるとペレットは空隙率42%の多孔体であったが、窒素吸着測定によると当該成形体の全細孔容積は0.01mL/g以下であった。
(Comparative Example 8)
In Example 19, "PES pellets", which are pellets containing only polyether sulfone, were produced in the same manner as in Example 19 except that the raw material particles were not added and a double amount of polyether sulfone, which is an organic polymer, was added. did. According to the mercury porosity, the pellet was a porous body with a void ratio of 42%, but according to the nitrogen adsorption measurement, the total pore volume of the molded body was 0.01 mL / g or less.

表6に、メソポーラス微粒子の多孔質成形体の製造に用いた各種メソポーラス微粒子の物性を示す。 Table 6 shows the physical properties of various mesoporous particles used in the production of porous molded bodies of mesoporous particles.

Figure 0006990906000006
Figure 0006990906000006

表7に、実施例18~29で得られたメソポーラス微粒子の多孔質成形体、及び、実施例19において原料粒子を入れず、有機高分子であるポリエーテルサルホンのみを用いて製造した成形体の物性を示す。 Table 7 shows the porous molded body of the mesoporous fine particles obtained in Examples 18 to 29, and the molded body produced in Example 19 using only the organic polymer polyether sulfone without the raw material particles. Shows the physical properties of.

Figure 0006990906000007
Figure 0006990906000007

(実施例30:AzoR-MCM-41-EVOH中空糸複合体の製造及び酵素反応)
本実施例では、実施例18で得られた成形体(MCM-41-EVOH中空糸)に対するアゾ還元酵素(AzoR)の固定化と酵素活性の評価を行った。図8に、MCM-41-EVOH中空糸とAzoRとの複合体の製造法、アゾ染料(メチルレッド)の還元分解反応、及び、固定化酵素の再使用までの実験手順の例を示す。
(Example 30: Production of AzoR-MCM-41-EVOH hollow fiber complex and enzymatic reaction)
In this example, the immobilization of azo reductase (AzoR) on the molded product (MCM-41-EVOH hollow yarn) obtained in Example 18 and the evaluation of the enzyme activity were performed. FIG. 8 shows an example of an experimental procedure for producing a complex of MCM-41-EVOH hollow yarn and AzoR, a reduction decomposition reaction of an azo dye (methyl red), and reuse of an immobilized enzyme.

(1-1)AzoR-MCM-41-EVOH中空糸複合体の製造方法
酵素の固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例18で得られたMCM-41-EVOH中空糸(平均細孔径:2.66nm)を使用した。また、比較のための成型前のメソポーラスシリカ微粒子として、MCM-41タイプの合成メソポーラスシリカ(原料粒子I)を使用した。また、アゾ還元酵素としては、Escherichia coli由来のAzoR(二量体、アミノ酸残基数:201、分子量(単量体):約23kD)を用いた。
(1-1) Method for Producing AzoR-MCM-41-EVOH Hollow Thread Complex The MCM-41-EVOH hollow obtained in Example 18 was used as a porous molded body of mesoporous fine particles in the enzyme-immobilized support. Threads (average pore size: 2.66 nm) were used. In addition, MCM-41 type synthetic mesoporous silica (raw material particles I) was used as the mesoporous silica fine particles before molding for comparison. As the azo reductase, AzoR (dimer, number of amino acid residues: 201, molecular weight (monomer): about 23 kD) derived from Escherichia coli was used.

まず、Escherichia coliの染色体DNAから増幅したAzoR遺伝子をpET100/D-TOPOベクターに挿入することによって、AzoR発現用の環状プラスミドDNAを作製した。次に、前記環状プラスミドDNAを組換え大腸菌に導入し、大腸菌タンパク発現系を利用してAzoRを製造した。 First, a circular plasmid DNA for AzoR expression was prepared by inserting the AzoR gene amplified from the chromosomal DNA of Escherichia coli into the pET100 / D-TOPO vector. Next, the cyclic plasmid DNA was introduced into recombinant Escherichia coli, and AzoR was produced using an Escherichia coli protein expression system.

酵素を固定化する際には、図8に記載の手順に従い、AzoR(0.387mg)を含んだ緩衝液(25mM Tris-HCl(pH 7.5))1mLと、予め5mm長に切断し、マイクロチューブに量り取り、同緩衝液を用いて平衡化しておいたMCM-41-EVOH中空糸(15又は30mg)とを、ローテーターを用いて室温で20時間穏やかに混合することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでAzoR-MCM-41-EVOH中空糸複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例及び以下の実施例31、32、及び33では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, it was cut into 1 mL of a buffer solution (25 mM Tris-HCl (pH 7.5)) containing AzoR (0.387 mg) in advance to a length of 5 mm according to the procedure shown in FIG. MCM-41-EVOH hollow yarn (15 or 30 mg) weighed into a microtube and equilibrated with the same buffer was compounded by gently mixing at room temperature for 20 hours using a rotator. AzoR-MCM-41-EVOH hollow yarn composite was obtained by performing the centrifugation operation and the washing operation using the same buffer solution twice. The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used as it is, but in this example and the following Examples 31, 32, and 33, the molded body is used. In order to evaluate the binding stability of the enzyme to, a washing step is performed together with the following centrifugation step.

具体的には、前記のAzoR-MCM-41-EVOH中空糸複合体(未洗浄)の分散液に対して遠心分離(4℃、18,000G、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、Vortex Mixerを用いて約5秒間室温で攪拌し、AzoRとメソポーラスシリカ成形体との複合体を再懸濁した後、遠心分離(4℃、18,000G、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、AzoR-MCM-41-EVOH中空糸複合体(洗浄済)を得た。以下、「AzoR-MCM-41-EVOH中空糸」という。
また、比較のためにMCM-41タイプの合成メソポーラスシリカ(原料粒子I)(10mg)を用いて、同様の手順により複合体を得た。以下、「AzoR-MCM-41-粉末」という。
Specifically, the dispersion liquid of the AzoR-MCM-41-EVOH hollow fiber complex (unwashed) was centrifuged (4 ° C., 18,000 G, 10 minutes), and all the supernatant was recovered. .. Subsequently, 1 mL of a washing buffer solution (using the buffer solution selected at the time of immobilization) was added, and the mixture was stirred with a Vortex Mixer at room temperature for about 5 seconds to resuspend the complex of AzoR and the mesoporous silica molded product. After that, centrifugation (4 ° C., 18,000 G, 10 minutes) was performed, and a washing operation was performed to collect all the supernatant. The washing operation was repeated again using 1 mL of the washing buffer solution, and finally, an AzoR-MCM-41-EVOH hollow fiber complex (washed) was obtained. Hereinafter, it is referred to as "AzoR-MCM-41-EVOH hollow fiber".
In addition, MCM-41 type synthetic mesoporous silica (raw material particles I) (10 mg) was used for comparison, and a complex was obtained by the same procedure. Hereinafter, it is referred to as "AzoR-MCM-41-powder".

成形体に対する酵素の固定化量及び固定化率は、固定化前の酵素量(1mL中、0.387mg)を基準とし、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量の引き算及び割り算によって評価した。図9に、MCM-41-粉末(典型的なメソポーラスシリカ(MCM-41タイプ、原料粒子I)、又は、実施例18のMCM-41-EVOH中空糸に対するAzoRの固定化量及び固定化率を示す。 The amount of enzyme immobilized on the molded product and the immobilization rate are based on the amount of enzyme before immobilization (0.387 mg in 1 mL), and the amount of free enzyme contained in the recovered liquid in the above-mentioned centrifugation step and washing step. Evaluated by subtraction and division of. FIG. 9 shows the amount and rate of AzoR immobilized on MCM-41-powder (typical mesoporous silica (MCM-41 type, raw material particles I) or MCM-41-EVOH hollow fiber of Example 18). show.

図9より、MCM-41-EVOH中空糸に対するAzoRの固定化量及び固定化率は、成形体の量に比例して増大する傾向が認められた。実施例18より、成形体中のMCM-41粒子の含量が66重量%であることを鑑みると、MCM-41-EVOH中空糸の15mg及び30mgに含まれるMCM-41粒子は各々10mg及び20mgに相当すると考えられる。ここで、MCM-41-粉末(10mg)とMCM-41-EVOH中空糸(15mg)とを比較すると、MCM-41粒子の量が同等であるにもかかわらず、粉末よりも中空糸成形体の方が酵素の固定化量及び固定化率が低下したが、成形体においても粉末の82.5%に相当する酵素の固定化能を保持していることが判明した。 From FIG. 9, it was observed that the immobilization amount and immobilization rate of AzoR with respect to the MCM-41-EVOH hollow fiber tended to increase in proportion to the amount of the molded product. From Example 18, considering that the content of MCM-41 particles in the molded product is 66% by weight, the MCM-41 particles contained in 15 mg and 30 mg of the MCM-41-EVOH hollow fiber are 10 mg and 20 mg, respectively. It is considered to be equivalent. Here, comparing the MCM-41-powder (10 mg) and the MCM-41-EVOH hollow yarn (15 mg), although the amount of MCM-41 particles is the same, the hollow yarn molded body is more than the powder. Although the amount of enzyme immobilization and the immobilization rate were lower in the case, it was found that the molded product also retained the enzyme immobilization ability equivalent to 82.5% of the powder.

(1-2)メチルレッドの分解活性の評価
(1-1)で得られたAzoR-MCM-41-EVOH中空糸及びAzoR-MCM-41-粉末それぞれの酵素活性を、反応基質としてのアゾ染料(メチルレッド)の分解率(脱色率)により評価した。
具体的には、図8に示したように、複合体それぞれに対して、以下の酵素反応を起こさせ、各種の反応基質(メチルレッド及び補酵素(NADH))の吸光度変化を調べることで酵素活性を評価した。
(1-2) Evaluation of Degradation Activity of Methyl Red The enzyme activity of each of the AzoR-MCM-41-EVOH hollow yarn and AzoR-MCM-41-powder obtained in (1-1) is used as a reaction substrate for an azo dye. It was evaluated by the decomposition rate (bleaching rate) of (methyl red).
Specifically, as shown in FIG. 8, each of the complexes is subjected to the following enzymatic reaction, and the change in absorbance of various reaction substrates (methyl red and coenzyme (NADH)) is examined to examine the enzyme. The activity was evaluated.

酵素反応は、(1-1)で得られた、マイクロチューブ内のAzoR-MCM-41-EVOH中空糸及びAzoR-MCM-41-粉末に対して、メチルレッド、NADH等を含んだ反応基質(1mL)を添加することによって開始した。
その際、反応基質の反応組成が、「25mM Tris-HCl(pH 7.5)、0.05mM メチルレッド、0.3mM NADH、1μM FMN、反応液量:1mL」となるように調整した。また、比較のために固定化支持体を用いない遊離のAzoRについても、同様の反応基質と混合することで反応を行った。
反応条件は、ローテーターを用いて穏やかに混合しながら37℃で30分間の加温状態を保持することとした。反応終了時に遠心分離(4℃、18,000G、5分間)によって上清を回収し、マイクロプレートリーダー(SpectraMax M2e; Molecular Devices製)を用いて、回収液の340nm、又は、430nmの吸光度を測定することによって、メチルレッド分解反応における反応30分後のNADHの消費率、又は、メチルレッドの分解率(脱色率)を評価した。図10及び表8に、AzoR-MCM-41-EVOH中空糸及びAzoR-MCM-41-粉末によるメチルレッドの還元分解におけるNADHとメチルレッドの吸光度変化、又、メチルレッドの分解率を示す。図10に、AzoR-メソポーラスシリカ複合体(粉末又は成形体)によるアゾ染料(メチルレッド)の還元分解における(a)補酵素(NADH)と(b)メチルレッドの吸光度変化を示した。図10の(c)にメチルレッドの分解率を示した。
The enzymatic reaction was carried out with respect to the AzoR-MCM-41-EVOH hollow yarn and AzoR-MCM-41-powder obtained in (1-1) in a microtube, and a reaction substrate containing methyl red, NADH, etc. It was started by adding 1 mL).
At that time, the reaction composition of the reaction substrate was adjusted to be "25 mM Tris-HCl (pH 7.5), 0.05 mM methyl red, 0.3 mM NADH, 1 μM FMN, reaction solution volume: 1 mL". For comparison, free AzoR without an immobilized support was also reacted by mixing with a similar reaction substrate.
The reaction conditions were to maintain the heated state at 37 ° C. for 30 minutes while gently mixing using a rotator. At the end of the reaction, the supernatant was collected by centrifugation (4 ° C., 18,000 G, 5 minutes), and the absorbance of the recovered solution at 340 nm or 430 nm was measured using a microplate reader (SpectraMax M2e; manufactured by Molecular Devices). By doing so, the consumption rate of NADH 30 minutes after the reaction in the methyl red decomposition reaction or the decomposition rate (bleaching rate) of methyl red was evaluated. 10 and 8 show changes in the absorbance of NADH and methyl red in the reduction decomposition of methyl red by AzoR-MCM-41-EVOH hollow yarn and AzoR-MCM-41-powder, and the decomposition rate of methyl red. FIG. 10 shows the change in absorbance of (a) coenzyme (NADH) and (b) methyl red in the reductive decomposition of the azo dye (methyl red) by the AzoR-mesoporous silica complex (powder or molded product). The decomposition rate of methyl red is shown in (c) of FIG.

Figure 0006990906000008
Figure 0006990906000008

図10(a)及び(b)より、固定化支持体を用いない遊離のAzoR、AzoR-MCM-41-粉末、又は、AzoR-MCM-41-EVOH中空糸のいずれの場合も、NADH及びメチルレッドの吸光度が著しく低下する傾向が認められた。このことは、固定化酵素においても、NADHの消費に伴ったメチルレッドの分解反応が効率良く進行していることを示している。 From FIGS. 10 (a) and 10 (b), in the case of free AzoR, AzoR-MCM-41-powder, or AzoR-MCM-41-EVOH hollow fiber without an immobilized support, NADH and methyl are used. There was a tendency for the absorbance of red to decrease significantly. This indicates that the decomposition reaction of methyl red with the consumption of NADH is efficiently proceeding even in the immobilized enzyme.

興味深いことに、図10(a)の酵素反応後の吸光度変化に着目すると、遊離の酵素の場合と比較して、固定化酵素の場合により大きい吸光度の低下が示された。これより、NADHがより効率良く消費されたか、或いは、固定化状態の酵素とNADHが複合体を形成していることが推察される。 Interestingly, focusing on the change in absorbance after the enzymatic reaction in FIG. 10 (a), a larger decrease in absorbance was shown in the case of the immobilized enzyme as compared with the case of the free enzyme. From this, it is inferred that NADH was consumed more efficiently, or that the immobilized enzyme and NADH form a complex.

更に、酵素が無い場合のNADH及びメチルレッドの吸光度は、反応溶液そのものと比較して、MCM-41-粉末とMCM-41-EVOH中空糸いずれを用いた場合も同等の値が示された。このことより、MCM-41-粉末のメソ細孔やMCM-41-EVOH中空糸のメソ細孔及び有機高分子部分には、反応基質自身、すなわち、NADH及びメチルレッド分子はほとんど吸着しないことが示唆された。 Furthermore, the absorbances of NADH and methyl red in the absence of the enzyme showed the same values when both MCM-41-powder and MCM-41-EVOH hollow yarn were used as compared with the reaction solution itself. From this, the reaction substrate itself, that is, NADH and methyl red molecules are hardly adsorbed on the mesopores of the MCM-41-powder, the mesopores of the MCM-41-EVOH hollow yarn, and the organic polymer portion. It was suggested.

また、図10(c)より、MCM-41-粉末とMCM-41-EVOH中空糸に固定化した酵素によるメチルレッドの分解率は、未固定の遊離酵素の場合と同等であったことから、固定化状態においても本来の酵素活性を保持していることが判明した。 Further, from FIG. 10 (c), the decomposition rate of methyl red by the enzyme immobilized on the MCM-41-powder and the MCM-41-EVOH hollow fiber was the same as that in the case of the unfixed free enzyme. It was found that the original enzyme activity was maintained even in the immobilized state.

(実施例31:AzoRと各種多孔質成形体との複合体の製造及び酵素反応)
本実施例では、実施例18~28で得られたメソポーラス微粒子の多孔質成形体、及び、比較例8において原料粒子を入れず、有機高分子であるポリエーテルサルホンのみを用いて製造した成形体に対するアゾ還元酵素(AzoR)の固定化と酵素活性の評価を行った。
(Example 31: Production of complex of AzoR and various porous molded products and enzymatic reaction)
In this example, the porous molded body of the mesoporous fine particles obtained in Examples 18 to 28 and the molded product produced using only the organic polymer polyether sulfone in Comparative Example 8 without the raw material particles. Immobilization of azo reductase (AzoR) on the body and evaluation of enzyme activity were performed.

(1-1)AzoRと各種多孔質成形体との複合体の製造方法
AzoRの固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例18~28により得られた11種類の成形体を使用した。また、比較のための原料粒子を含まない成形体として、比較例8により得られた「PESペレット」を使用した。更に、比較のための成型前のメソポーラスシリカ微粒子として、9種類の合成メソポーラスシリカ(原料粒子I~Q)を使用した。
(1-1) Method for Producing Composites of AzoR and Various Porous Molds Eleven types of moldings obtained in Examples 18 to 28 were used as porous moldings of mesoporous fine particles on the immobilized support of AzoR. Used the body. Further, the "PES pellet" obtained in Comparative Example 8 was used as a molded product containing no raw material particles for comparison. Further, nine kinds of synthetic mesoporous silica (raw material particles I to Q) were used as the mesoporous silica fine particles before molding for comparison.

酵素を固定化する際には、AzoR(0.328mg)を含んだ緩衝液(25mM MES-NaOH(pH 6))1mLと、予め96ウェルの深底タイププレートの各ウェルに量り取り、同緩衝液を用いて平衡化しておいた11種類の成形体及び「PESペレット」(20mg相当)とを、攪拌装置(TAITEC社製、Deep Well Maximizer、BioShaker M・BR-022UP)を用いて混合(25℃、1,200rpm、24時間)することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでAzoRと各種多孔質成形体との複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, weigh 1 mL of a buffer solution (25 mM MES-NaOH (pH 6)) containing AzoR (0.328 mg) and each well of a 96-well deep-bottom type plate in advance, and use the same buffer. Eleven types of molded bodies and "PES pellets" (equivalent to 20 mg) equilibrated using the liquid were mixed (25) using a stirrer (TAITEC, Deep Well Maximizer, BioShaker M.BR-022UP). Complex was obtained by performing a centrifugation operation at ° C., 1,200 rpm, 24 hours) twice, and performing a centrifugation operation and a washing operation using the same buffer solution twice to obtain a composite of AzoR and various porous molded bodies. .. The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used as it is, but in this embodiment, in order to evaluate the binding stability of the enzyme to the molded body. In addition, a cleaning step is performed together with the following centrifugation step.

具体的には、前記のAzoRと各種多孔質成形体との複合体(未洗浄)の分散液に対して遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、前記の攪拌装置を用いて25℃で1時間、AzoRとメソポーラスシリカ成形体との複合体を攪拌した後、遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、AzoRと各種多孔質成形体との複合体(洗浄済)を得た。以下、「AzoR-メソポーラス微粒子成形体」という。 Specifically, the dispersion liquid of the complex (unwashed) of the AzoR and various porous molded products was centrifuged (25 ° C., 4,700 rpm, 10 minutes), and all the supernatant was recovered. .. Subsequently, 1 mL of a washing buffer solution (using the buffer solution selected at the time of immobilization) was added, and the composite of AzoR and the mesoporous silica molded product was stirred at 25 ° C. for 1 hour using the above-mentioned stirring device. , Centrifugation (25 ° C, 4,700 rpm, 10 minutes) was performed, and a washing operation was performed to collect all the supernatant. The cleaning operation was repeated again using 1 mL of the cleaning buffer solution, and finally, a complex (cleaned) of AzoR and various porous molded products was obtained. Hereinafter, it is referred to as "AzoR-mesoporous fine particle molded product".

また、比較のために9種類の合成メソポーラスシリカ(原料粒子I~Q)(10mg相当)を用いて、マイクロチューブ、ローテーター、及び、マイクロチューブ用の遠心分離機(25℃、20,000G、10分間)を使用した他は、前記成形体と同様の手順により複合体を得た。以下、「AzoR-メソポーラス微粒子粉末」という。 Also, for comparison, 9 types of synthetic mesoporous silica (raw material particles I to Q) (equivalent to 10 mg) were used, and a centrifuge for microtubes, rotators, and microtubes (25 ° C, 20,000 G, 10). The composite was obtained by the same procedure as that of the molded product except that the minutes were used. Hereinafter, it is referred to as "AzoR-mesoporous fine particle powder".

各種のメソポーラス微粒子の成形体及び粉末に対する酵素の固定化量は、固定化前の酵素量(1mL中、0.328mg)から、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量を差し引くことによって算出した。図11に、メソポーラス微粒子成形体、原料粒子を含まない成形体、又は、メソポーラス微粒子粉末に対するAzoRの固定化量を示す。(a)はメソポーラス微粒子の各種成形体に対するAzoRの固定化量である。(b)は、メソポーラス微粒子の各種粉末に対するAzoRの固定化量である。 The amount of the enzyme immobilized on the molded body and powder of various mesoporous fine particles is the amount of the enzyme before immobilization (0.328 mg in 1 mL), and the amount of the free enzyme contained in the recovered liquid in the above-mentioned centrifugation step and washing step. Calculated by subtracting the amount. FIG. 11 shows the amount of AzoR immobilized on the mesoporous fine particle molded product, the molded product containing no raw material particles, or the mesoporous fine particle powder. (A) is the amount of AzoR immobilized on various molded bodies of mesoporous fine particles. (B) is the amount of AzoR immobilized on various powders of mesoporous fine particles.

図11(a)及び(b)より、メソポーラスAl-EVOHペレット、SBA-16-5nm-粉末、又は、メソポーラスAl粉末以外の固定化支持体では、全体的に同等のAzoRの固定化量が示された。表7より、実施例18~28により得られた11種類の成形体中のメソポーラス微粒子の含量が平均52重量%であることを鑑みると、成形体20mgに含まれるメソポーラス微粒子は10mgに相当するため、図11(a)で示されたAzoRの固定化量と図11(b)におけるメソポーラス微粒子粉末(10mg)に対するAzoRの固定化量が同等であったことは、成形体に含まれるメソポーラス微粒子が粉末と同等の酵素固定化能を保持していることを示唆している。ここで、SBA-16-5nm-粉末、又は、メソポーラスAl粉末と、これらの粉末を含んだ、SBA-16-5nm-PESペレット、メソポーラスAl-EVOHペレット、又は、メソポーラスAl-PESペレットとを比較すると、前記の2種類の粉末にはほとんど酵素が固定しなかったにもかかわらず、前記の3種類の成形体のうち、特に、有機高分子としてポリエーテルサルホン(PES)を用いて成形した、SBA-16-5nm-PESペレット、及び、メソポーラスAl-PESペレットの場合に、原料粒子を含まないPESペレットを用いた場合と同等の酵素の固定化量が示された。これより、当該酵素(AzoR)は、成形体のPES表面部分に非特異的に吸着することが判明し、有機高分子としてポリエチレンポリビニルアルコール共重合樹脂(EVOH)を用いた成形体を用いた場合には、成形体に含まれるメソ細孔部分に特異的に固定化する可能性が示唆された。従って、実施例30及び図11の結果より、AzoRの固定化には、MCM-41-EVOH中空糸のように、EVOHを用いた成形体が好適であることが明らかになった。 From FIGS. 11 (a) and 11 (b), in the immobilized support other than the mesoporous Al 2 O 3 -EVOH pellet, the SBA-16-5 nm-powder, or the mesoporous Al 2 O 3 powder, the AzoR is generally equivalent. The amount of immobilization was shown. From Table 7, considering that the content of the mesoporous fine particles in the 11 types of molded bodies obtained in Examples 18 to 28 is 52% by weight on average, the mesoporous fine particles contained in 20 mg of the molded body correspond to 10 mg. The immobilization amount of AzoR shown in FIG. 11 (a) was equivalent to the immobilization amount of AzoR with respect to the mesoporous fine particle powder (10 mg) in FIG. 11 (b). It suggests that it retains the same enzyme immobilization ability as powder. Here, SBA-16-5nm-powder or mesoporous Al 2 O3 powder and SBA-16-5nm-PES pellets, mesoporous Al 2 O 3 -EVOH pellets or mesoporous Al containing these powders. Comparing with 2O3 - PES pellets, although almost no enzyme was immobilized on the above two types of powder, among the above three types of molded products, especially as an organic polymer, polyether monkeys were used. In the case of SBA - 16-5nm-PES pellets and mesoporous Al2O3 -PES pellets molded using a phone (PES), the same enzyme fixation as when using PES pellets containing no raw material particles The amount of chemical conversion was shown. From this, it was found that the enzyme (AzoR) was non-specifically adsorbed on the PES surface portion of the molded product, and when a molded product using polyethylene polyvinyl alcohol copolymer resin (EVOH) was used as the organic polymer. Suggested that it may be specifically immobilized on the mesopores contained in the molded product. Therefore, from the results of Example 30 and FIG. 11, it was clarified that a molded product using EVOH, such as MCM-41-EVOH hollow fiber, is suitable for immobilization of AzoR.

(1-2)メチルレッドの分解活性の評価
(1-1)で得られた11種類のAzoR-メソポーラス微粒子成形体、AzoR-PESペレット(原料粒子なし)、及び、9種類のAzoR-メソポーラス微粒子粉末それぞれの酵素活性を、反応基質としてのアゾ染料(メチルレッド)の分解率(脱色率)により評価した。またこの際、前記複合体の繰り返し使用における耐久性(反応5回)の評価も行った。
具体的には、前記複合体それぞれに対して、以下の酵素反応を起こさせ、メチルレッドの吸光度変化を調べることで脱色率を求めた。
(1-2) Evaluation of Degradation Activity of Methyl Red 11 types of AzoR-mesoporous fine particle molded product obtained in (1-1), AzoR-PES pellets (without raw material particles), and 9 types of AzoR-mesoporous fine particles. The enzymatic activity of each powder was evaluated by the decomposition rate (bleaching rate) of the azo dye (methyl red) as a reaction substrate. At this time, the durability (reaction 5 times) of the complex in repeated use was also evaluated.
Specifically, the following enzymatic reaction was caused in each of the complexes, and the decolorization rate was determined by examining the change in the absorbance of methyl red.

各種のAzoR-メソポーラス微粒子粉末は、酵素反応前に、マイクロチューブから、既にAzoR-メソポーラス微粒子成形体及びAzoR-PESペレット(原料粒子なし)が入っている96ウェルの深底タイププレートの各ウェルに移し替えた。酵素反応は、前記の96ウェルの深底タイププレートの各ウェル内のAzoR-メソポーラス微粒子成形体、AzoR-PESペレット(原料粒子なし)、及び、AzoR-メソポーラス微粒子粉末に対して、メチルレッドを含まず、NADHとFMNのみが含まれたトリス緩衝液(0.966mL)を添加し、前記の撹拌装置を用いて撹拌(30℃、1,200rpm、10分間)した後、メチルレッド溶液(0.034mL)を添加することによって開始した(反応1回目)。
その際、反応基質の反応組成が、「25mM Tris-HCl(pH 7.5)、0.05mM メチルレッド、0.2mM NADH、1μM FMN、反応液量:1mL」となるように調整した。反応2回目以降は、下記の遠心分離操作後に反応後の上清と分離されたAzoR複合体に対して、前記と同様の手順で緩衝液、基質等を添加することによって反応を開始した。
また、比較のために固定化支持体を用いない遊離のAzoRについても、同様の反応基質と混合することで反応を行った。
反応条件は、前記の撹拌装置を用いて混合(1,200rpm)しながら30℃で10分間の加温状態を保持することとした。続いて、10分経過後に加温状態での遠心分離(30℃、4,700rpm、5分間)によって上清を全て回収し、前記のマイクロプレートリーダーを用いて、回収液の430nmの吸光度を測定することによって、メチルレッドの分解率(脱色率)を評価した。図12に、各種のAzoR複合体の繰り返し使用時(反応5回)におけるメチルレッドの脱色率を示す。AzoR-メソポーラス微粒子複合体(a:成形体、b:粉末)によるメチルレッドの分解率(脱色率)及び固定化酵素の繰り返し使用における耐久性(反応5回)を示した。
Prior to the enzymatic reaction, the various AzoR-mesoporous microparticle powders were placed from microtubes into each well of a 96-well deep-bottomed plate containing AzoR-mesoporous microparticle moldings and AzoR-PES pellets (without raw material particles). Transferred. The enzymatic reaction contained methyl red for the AzoR-mesoporous fine particle compact, AzoR-PES pellets (without raw material particles), and AzoR-mesoporous fine particle powder in each well of the 96-well deep type plate. Instead, a Tris buffer solution (0.966 mL) containing only NADH and FMN was added, and the mixture was stirred using the above-mentioned stirring device (30 ° C., 1,200 rpm, 10 minutes), and then a methyl red solution (0. It was started by adding (034 mL) (first reaction).
At that time, the reaction composition of the reaction substrate was adjusted to be "25 mM Tris-HCl (pH 7.5), 0.05 mM methyl red, 0.2 mM NADH, 1 μM FMN, reaction solution volume: 1 mL". From the second reaction onward, the reaction was started by adding a buffer solution, a substrate, or the like to the AzoR complex separated from the supernatant after the reaction after the following centrifugation operation in the same procedure as described above.
For comparison, free AzoR without an immobilized support was also reacted by mixing with a similar reaction substrate.
The reaction conditions were to maintain the heated state at 30 ° C. for 10 minutes while mixing (1,200 rpm) using the above-mentioned stirring device. Subsequently, after 10 minutes have passed, the entire supernatant is recovered by centrifugation (30 ° C., 4,700 rpm, 5 minutes) in a heated state, and the absorbance of the recovered solution at 430 nm is measured using the above-mentioned microplate reader. By doing so, the decomposition rate (bleaching rate) of methyl red was evaluated. FIG. 12 shows the decolorization rate of methyl red during repeated use of various AzoR complexes (reaction 5 times). The decomposition rate (bleaching rate) of methyl red by the AzoR-mesoporous fine particle complex (a: molded body, b: powder) and the durability (reaction 5 times) in repeated use of the immobilized enzyme were shown.

図13の(a)に実施例23の成形体を、(b)にメチルレッド分解反応終了後の当該成形体とAzoRとの複合体(AzoR-SBA-15-4nm-PESペレット)を、(c)に比較例8の成形体を、(d)にメチルレッド分解反応終了後の当該成形体とAzoRとの複合体(AzoR-PESペレット(原料粒子なし))の外観の写真をそれぞれ示す。 13 (a) shows the molded product of Example 23, and (b) shows the complex (AzoR-SBA-15-4nm-PES pellet) of the molded product and AzoR after the completion of the methyl red decomposition reaction. C) shows the molded product of Comparative Example 8, and (d) shows a photograph of the appearance of the composite (AzoR-PES pellets (without raw material particles)) of the molded product and AzoR after the completion of the methyl red decomposition reaction.

図12(a)及び(b)より、SBA-15-6nm-粉末以外は、図10(c)と同様に九十数%程度のメチルレッドの脱色率が示され、繰り返し利用における高い耐久性が認められた。 From FIGS. 12 (a) and 12 (b), a bleaching rate of about 90% of methyl red is shown as in FIG. 10 (c) except for SBA-15-6 nm-powder, and high durability in repeated use is shown. Was recognized.

一方、図14に遊離のAzoR(酵素量:0、1、10、100μg)の酵素活性を評価した結果を示す。図14では、メチルレッドの分解率(脱色率)に与える未固定の遊離AzoR濃度の影響が示される。図14より、90%以上のメチルレッドの脱色率を可能にする最適な酵素量は、1~10μgであり、100μgでは酵素活性が発現しないことが判明した。図11より、各種のAzoR複合体に対して100~200μg程度の酵素が固定化されていることを鑑みると、固定化状態の酵素の一部、すなわち、1~10μg相当の酵素が反応に関与していることが推察される。これより、高濃度酵素の利用時において、遊離の酵素では活性が著しく低下するが、固定化状態では本来の酵素活性を安定に発現できることが示唆された。 On the other hand, FIG. 14 shows the results of evaluating the enzymatic activity of free AzoR (enzyme amount: 0, 1, 10, 100 μg). FIG. 14 shows the effect of the unfixed free AzoR concentration on the decomposition rate (bleaching rate) of methyl red. From FIG. 14, it was found that the optimum amount of enzyme that enables the bleaching rate of methyl red of 90% or more is 1 to 10 μg, and the enzyme activity is not expressed at 100 μg. From FIG. 11, considering that about 100 to 200 μg of an enzyme is immobilized on various AzoR complexes, a part of the immobilized enzyme, that is, an enzyme corresponding to 1 to 10 μg is involved in the reaction. It is inferred that they are doing it. This suggests that the activity of the free enzyme is significantly reduced when the high-concentration enzyme is used, but the original enzyme activity can be stably expressed in the immobilized state.

興味深いことに、図12(a)での反応終了後のAzoR-メソポーラス微粒子成形体及びAzoR-PESペレット(原料粒子なし)の外観を確認したところ、前記メソポーラス微粒子成形体はピンク色を呈したが、前記PESペレット(原料粒子なし)は反応前と同じ白色を呈した(図13)。このことは、AzoR-メソポーラス微粒子成形体では、成形体中のメソ細孔においてAzoR-NADH-メチルレッドの複合体を形成していることを示唆している。一方、AzoR-PESペレット(原料粒子なし)では、図11より、相当量のAzoRが成形体のPES表面部分に非特異的に吸着していると考えられるが、吸着状態のAzoRが反応基質と複合体を形成しないことが推察される。すなわち、図12(a)で示されたAzoR-PESペレット(原料粒子なし)による高活性のメチルレッドの分解反応は、成形体から脱離した微量の遊離AzoRの寄与によるものと考えられる。従って、AzoR-メソポーラス微粒子成形体による酵素反応には、成形体中のメソ細孔に固定化されたAzoRが大きく寄与していることが示唆された。 Interestingly, when the appearances of the AzoR-mesoporous fine particle molded product and the AzoR-PES pellets (without raw material particles) after the reaction in FIG. 12A were confirmed, the mesoporous fine particle molded product exhibited a pink color. , The PES pellet (without raw material particles) exhibited the same white color as before the reaction (FIG. 13). This suggests that in the AzoR-mesoporous fine particle molded product, a complex of AzoR-NADH-methyl red is formed in the mesopores in the molded product. On the other hand, in the AzoR-PES pellets (without raw material particles), it is considered from FIG. 11 that a considerable amount of AzoR is non-specifically adsorbed on the PES surface portion of the molded product, but the adsorbed AzoR is a reaction substrate. It is inferred that they do not form a complex. That is, it is considered that the decomposition reaction of highly active methyl red by the AzoR-PES pellets (without raw material particles) shown in FIG. 12 (a) is due to the contribution of a small amount of free AzoR desorbed from the molded product. Therefore, it was suggested that AzoR immobilized on the mesopores in the molded product greatly contributed to the enzymatic reaction by the AzoR-mesoporous fine particle molded product.

(実施例32:GDHと各種多孔質成形体との複合体の製造及び酵素反応)
本実施例では、実施例18~28で得られたメソポーラス微粒子の多孔質成形体、及び、比較例8において原料粒子を入れず、有機高分子であるポリエーテルサルホンのみを用いて製造した成形体に対するグルコース脱水素酵素(GDH:Bacillus sp.由来、和光純薬工業社)の固定化と酵素活性の評価を行った。
(Example 32: Production of a complex of GDH and various porous molded products and enzymatic reaction)
In this example, the porous molded body of the mesoporous fine particles obtained in Examples 18 to 28 and the molded product produced using only the organic polymer polyether sulfone in Comparative Example 8 without the raw material particles. Immobilization of glucose dehydrogenase (GDH: derived from Bacillus sp., Wako Pure Chemical Industries, Ltd.) on the body and evaluation of enzyme activity were performed.

(1-1)GDHと各種多孔質成形体との複合体の製造方法
GDHの固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例18~28により得られた11種類の成形体を使用した。また、比較のための原料粒子を含まない成形体として、比較例8により得られた「PESペレット」を使用した。更に、比較のための成型前のメソポーラスシリカ微粒子として、9種類の合成メソポーラスシリカ(原料粒子I~Q)を使用した。
(1-1) Method for Producing Composites of GDH and Various Porous Molds Eleven types of moldings obtained in Examples 18 to 28 were used as porous moldings of mesoporous fine particles on the immobilized support of GDH. Used the body. Further, the "PES pellet" obtained in Comparative Example 8 was used as a molded product containing no raw material particles for comparison. Further, nine kinds of synthetic mesoporous silica (raw material particles I to Q) were used as the mesoporous silica fine particles before molding for comparison.

酵素を固定化する際には、GDH(0.363mg)を含んだ緩衝液(25mM MES-NaOH(pH 6))1mLと、予め96ウェルの深底タイププレートの各ウェルに量り取り、同緩衝液を用いて平衡化しておいた11種類の成形体及び「PESペレット」(20mg相当)とを、前記の攪拌装置を用いて混合(25℃、1,200rpm、24時間)することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでGDHと各種多孔質成形体との複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, weigh 1 mL of a buffer solution (25 mM MES-NaOH (pH 6)) containing GDH (0.363 mg) and each well of a 96-well deep type plate in advance, and use the same buffer. 11 kinds of molded bodies equilibrated with the liquid and "PES pellets" (equivalent to 20 mg) are combined by mixing (25 ° C., 1,200 rpm, 24 hours) using the above-mentioned stirring device. Then, the centrifugation operation and the washing operation using the same buffer were performed twice to obtain a composite of GDH and various porous molded bodies. The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used as it is, but in this embodiment, in order to evaluate the binding stability of the enzyme to the molded body. In addition, a cleaning step is performed together with the following centrifugation step.

具体的には、前記のGDHと各種多孔質成形体との複合体(未洗浄)の分散液に対して遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、前記の攪拌装置を用いて25℃で1時間、GDHとメソポーラスシリカ成形体との複合体を攪拌した後、遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、GDHと各種多孔質成形体との複合体(洗浄済)を得た。以下、「GDH-メソポーラス微粒子成形体」という。 Specifically, the dispersion liquid of the complex (unwashed) of the GDH and various porous molded products was centrifuged (25 ° C., 4,700 rpm, 10 minutes), and all the supernatant was recovered. .. Subsequently, 1 mL of a washing buffer solution (using the buffer solution selected at the time of immobilization) was added, and the composite of GDH and the mesoporous silica molded product was stirred at 25 ° C. for 1 hour using the above-mentioned stirring device. , Centrifugation (25 ° C, 4,700 rpm, 10 minutes) was performed, and a washing operation was performed to collect all the supernatant. The cleaning operation was repeated again using 1 mL of the cleaning buffer solution, and finally, a complex (cleaned) of GDH and various porous molded products was obtained. Hereinafter, it is referred to as "GDH-mesoporous fine particle molded product".

また、比較のために9種類の合成メソポーラスシリカ(原料粒子I~Q)(10mg相当)を用いて、マイクロチューブ、ローテーター、及び、マイクロチューブ用の遠心分離機(25℃、20,000G、10分間)を使用した他は、前記成形体と同様の手順により複合体を得た。以下、「GDH-メソポーラス微粒子粉末」という。 Also, for comparison, 9 types of synthetic mesoporous silica (raw material particles I to Q) (equivalent to 10 mg) were used, and a centrifuge for microtubes, rotators, and microtubes (25 ° C, 20,000 G, 10). The composite was obtained by the same procedure as that of the molded product except that the minutes were used. Hereinafter, it is referred to as "GDH-mesoporous fine particle powder".

各種のメソポーラス微粒子の成形体及び粉末に対する酵素の固定化量は、固定化前の酵素量(1mL中、0.363mg)から、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量を差し引くことによって算出した。図15に、メソポーラス微粒子成形体、原料粒子を含まない成形体、又は、メソポーラス微粒子粉末に対するGDHの固定化量を示す。図15の(a)は、各種メソポーラス微粒子の成形体に対するグルコース脱水素酵素(GDH)の固定化量を示している。(b)は、各種メソポーラス微粒子の粉末に対するグルコース脱水素酵素(GDH)の固定化量を示している。 The amount of enzyme immobilized on the molded body and powder of various mesoporous fine particles is the amount of free enzyme contained in the recovered liquid of the above-mentioned centrifugation step and washing step from the amount of enzyme before immobilization (0.363 mg in 1 mL). Calculated by subtracting the amount. FIG. 15 shows the amount of GDH immobilized on the mesoporous fine particle molded product, the molded product containing no raw material particles, or the mesoporous fine particle powder. FIG. 15A shows the amount of glucose dehydrogenase (GDH) immobilized on the molded article of various mesoporous fine particles. (B) shows the amount of glucose dehydrogenase (GDH) immobilized on the powder of various mesoporous fine particles.

図15(a)及び(b)より、全体的には、SBA-16-5nmの成形体及び粉末、メソポーラスAlの成形体及び粉末、又は、原料粒子を含まないPESペレットと比較して、MCM-41、FSM-22、又は、SBA-15タイプの合成メソポーラスシリカの成形体及び粉末を用いた場合に、より大きいGDHの固定化量が示された。MCM-41、FSM-22、又は、SBA-15タイプの合成メソポーラスシリカの成形体と粉末とを比較すると、微粒子粉末に対する固定化量の方が若干多かったものの、FSM-22、又は、SBA-15タイプの合成メソポーラスシリカに着目すれば、成形体及び粉末ともに全体的には細孔径に比例してGDHの固定化量が増大する傾向が認められた。これは、実施例31においてAzoRが飽和吸着したのと比較して、より分子サイズが大きいGDHは飽和吸着していないために、固定化量が細孔径に依存したものと考えられる。すなわち、成形体に含まれるメソポーラス微粒子が粉末と同等の酵素固定化能を保持していることを示唆している。ここで、SBA-16-5nmの成形体及び粉末、メソポーラスAlの成形体及び粉末、又は、原料粒子を含まないPESペレットに対するGDHの固定化量から考察すれば、有機高分子としてEVOHを用いた成形体よりもPESを用いた成形体のPES表面部分に対してより多くのGDHが非特異的に吸着したことが推察される。それにも係わらず、MCM-41、FSM-22、又は、SBA-15タイプの合成メソポーラスシリカの成形体では、PESペレット(原料粒子なし)を用いた場合と比較して2倍以上の固定化量が示されたことより、成形体のメソ細孔部分に対して相当量のGDHが固定化されていることが判明した。 From FIGS. 15 (a) and 15 (b), as a whole, it is compared with the molded body and powder of SBA-16-5 nm, the molded body and powder of mesoporous Al 2 O3 , or the PES pellet containing no raw material particles. A larger amount of GDH immobilization was shown when MCM-41, FSM-22, or SBA-15 type synthetic mesoporous silica moldings and powders were used. Comparing the powder with MCM-41, FSM-22, or SBA-15 type synthetic mesoporous silica molded product, the amount of immobilization on the fine particle powder was slightly higher, but FSM-22 or SBA- Focusing on 15 types of synthetic mesoporous silica, it was found that the amount of GDH immobilization tended to increase in proportion to the pore size as a whole for both the molded product and the powder. It is considered that this is because the amount of immobilization depends on the pore size because GDH having a larger molecular size is not saturated and adsorbed as compared with the saturated adsorption of AzoR in Example 31. That is, it is suggested that the mesoporous fine particles contained in the molded product have the same enzyme immobilization ability as the powder. Here, considering from the amount of GDH immobilized on the molded body and powder of SBA-16-5 nm, the molded body and powder of mesoporous Al 2 O3 , or the PES pellet containing no raw material particles, EVOH as an organic polymer is considered. It is presumed that more GDH was adsorbed non-specifically on the PES surface portion of the molded body using PES than that of the molded body using PES. Nevertheless, in the molded product of MCM-41, FSM-22, or SBA-15 type synthetic mesoporous silica, the amount of immobilization is more than twice that in the case of using PES pellets (without raw material particles). It was found that a considerable amount of GDH was immobilized on the mesoporous portion of the molded product.

(1-2)NADHの生成活性の評価
(1-1)で得られた11種類のGDH-メソポーラス微粒子成形体、GDH-PESペレット(原料粒子なし)、及び、9種類のGDH-メソポーラス微粒子粉末それぞれの酵素活性を、反応基質としての補酵素(酸化型NAD)から生成される還元型NADHのモル濃度により評価した。またこの際、前記複合体の繰り返し使用における耐久性(反応5回)の評価も行った。
具体的には、前記複合体それぞれに対して、以下の酵素反応を起こさせ、NADHの吸光度変化を調べることで生成NADH濃度を求めた。
(1-2) Evaluation of NADH production activity 11 types of GDH-mesoporous fine particle molded product obtained in (1-1), GDH-PES pellets (without raw material particles), and 9 types of GDH-mesoporous fine particle powder The activity of each enzyme was evaluated by the molar concentration of reduced NADH produced from the coenzyme (oxidized NAD + ) as a reaction substrate. At this time, the durability (reaction 5 times) of the complex in repeated use was also evaluated.
Specifically, the following enzymatic reaction was caused in each of the complexes, and the produced NADH concentration was determined by examining the change in the absorbance of NADH.

各種のGDH-メソポーラス微粒子粉末は、酵素反応前に、マイクロチューブから、既にGDH-メソポーラス微粒子成形体及びGDH-PESペレット(原料粒子なし)が入っている96ウェルの深底タイププレートの各ウェルに移し替えた。酵素反応は、前記の96ウェルの深底タイププレートの各ウェル内のGDH-メソポーラス微粒子成形体、GDH-PESペレット(原料粒子なし)、及び、GDH-メソポーラス微粒子粉末に対して、グルコースを含まず、NADのみが含まれたトリス緩衝液(0.967mL)を添加し、前記の撹拌装置を用いて撹拌(30℃、1,200rpm、10分間)した後、グルコース溶液(0.033mL)を添加することによって開始した(反応1回目)。 The various GDH-mesoporous particulate powders are dispensed from the microtubes into each well of a 96-well deep-bottomed plate that already contains the GDH-mesoporous particulate compact and GDH-PES pellets (without raw material particles) prior to the enzymatic reaction. Transferred. The enzymatic reaction was glucose-free with respect to the GDH-mesoporous fine particle compact, GDH-PES pellets (without raw material particles), and GDH-mesoporous fine particle powder in each well of the 96-well deep-bottomed type plate. , Tris buffer (0.967 mL) containing only NAD + is added, and the mixture is stirred using the above-mentioned stirring device (30 ° C., 1,200 rpm, 10 minutes), and then a glucose solution (0.033 mL) is added. It was started by adding (first reaction).

その際、反応基質の反応組成が、「25mM Tris-HCl(pH 7.5)、0.5mM NAD、10mM グルコース、反応液量:1mL」となるように調整した。反応2回目以降は、下記の遠心分離操作後に反応後の上清と分離されたGDH複合体に対して、前記と同様の手順で緩衝液、基質等を添加することによって反応を開始した。また、比較のために固定化支持体を用いない遊離のGDHについても、同様の反応基質と混合することで反応を行った。 At that time, the reaction composition of the reaction substrate was adjusted to be "25 mM Tris-HCl (pH 7.5), 0.5 mM NAD + , 10 mM glucose, reaction solution volume: 1 mL". From the second reaction onward, the reaction was started by adding a buffer solution, a substrate, or the like to the GDH complex separated from the supernatant after the reaction after the following centrifugation operation in the same procedure as described above. For comparison, free GDH without an immobilized support was also reacted by mixing with a similar reaction substrate.

反応条件は、前記の撹拌装置を用いて混合(1,200rpm)しながら30℃で10分間の加温状態を保持することとした。続いて、10分経過後に加温状態での遠心分離(30℃、4,700rpm、5分間)によって上清を全て回収し、前記のマイクロプレートリーダーを用いて、回収液の340nmの吸光度を測定することによって、NADHの生成効率(NADH濃度)を評価した。図16に、各種のGDH複合体の繰り返し使用時(反応5回)における生成NADH濃度を示す。図16の(a)はGDH-メソポーラス微粒子複合体の成形体による生成NADH濃度及び固定化酵素の繰り返し使用における耐久性(反応5回)を示す。(b)はGDH-メソポーラス微粒子複合体の粉末による生成NADH濃度及び固定化酵素の繰り返し使用における耐久性(反応5回)を示す。 The reaction conditions were to maintain the heated state at 30 ° C. for 10 minutes while mixing (1,200 rpm) using the above-mentioned stirring device. Subsequently, after 10 minutes have passed, the entire supernatant is recovered by centrifugation (30 ° C., 4,700 rpm, 5 minutes) in a heated state, and the absorbance of the recovered solution at 340 nm is measured using the above-mentioned microplate reader. By doing so, the production efficiency of NADH (NADH concentration) was evaluated. FIG. 16 shows the generated NADH concentration during repeated use of various GDH complexes (reaction 5 times). FIG. 16 (a) shows the concentration of NADH produced by the molded body of the GDH-mesoporous fine particle complex and the durability (reaction 5 times) in repeated use of the immobilized enzyme. (B) shows the concentration of NADH produced by the powder of the GDH-mesoporous fine particle complex and the durability (reaction 5 times) in repeated use of the immobilized enzyme.

図16(a)及び(b)より、全体的には、MCM-41タイプの合成メソポーラスシリカの成形体及び粉末に固定化したGDHは低い活性に留まったものの、FSM-22、又は、SBA-15タイプの合成メソポーラスシリカの成形体及び粉末に固定化したGDHは、細孔径に比例して酵素活性が高くなる傾向を示した。また、図16(a)より、GDH-メソポーラス微粒子成形体及びGDH-PESペレット(原料粒子なし)の活性を比較すると、大半のGDH-メソポーラス微粒子成形体がGDH-PESペレット(原料粒子なし)よりも明らかに高い活性を発現しており、このことは、成形体のメソ細孔に固定化された酵素の安定性の高さを示唆している。GDH-PESペレット(原料粒子なし)では、図15より、相当量のGDHが成形体のPES表面部分に非特異的に吸着していると考えられるが、図16(a)より、吸着状態のGDHの活性が極めて低いことが判明した。以上より、GDH-メソポーラス微粒子成形体による高活性のNADHの生成反応には、成形体中のメソ細孔に固定化されたGDHが大きく寄与していることが示唆された。
また、成形体と粉末とを比較すると、成形体に固定化したGDHの場合に、反応1回目の活性が低いものの、繰り返し使用回数と共に徐々に活性が増大する傾向が認められた。このことは、反応初期においては成形体中のマクロ孔及びメソ細孔における反応基質の拡散が律速となっており、メソ細孔に固定化された酵素と反応基質との接触頻度が低い状態にあることが推察される。
From FIGS. 16 (a) and 16 (b), as a whole, GDH immobilized on the molded body and powder of MCM-41 type synthetic mesoporous silica remained low in activity, but FSM-22 or SBA- GDH immobilized on a molded body of 15 types of synthetic mesoporous silica and powder showed a tendency for the enzyme activity to increase in proportion to the pore size. Further, when the activities of the GDH-mesoporous fine particle molded product and the GDH-PES pellet (without raw material particles) are compared from FIG. 16 (a), most of the GDH-mesoporous fine particle molded products are obtained from the GDH-PES pellet (without raw material particles). Also clearly expresses high activity, which suggests the high stability of the enzyme immobilized on the mesopores of the molded product. In the GDH-PES pellets (without raw material particles), it is considered from FIG. 15 that a considerable amount of GDH is non-specifically adsorbed on the PES surface portion of the molded product, but from FIG. 16 (a), it is in an adsorbed state. It was found that the activity of GDH was extremely low. From the above, it was suggested that GDH immobilized on the mesopores in the molded product greatly contributed to the reaction of producing highly active NADH by the GDH-mesoporous fine particle molded product.
Further, when the molded product and the powder were compared, in the case of GDH immobilized on the molded product, although the activity of the first reaction was low, the activity tended to gradually increase with the number of repeated uses. This means that in the initial stage of the reaction, the diffusion of the reaction substrate in the macropores and mesopores in the molded product is rate-determining, and the contact frequency between the enzyme immobilized in the mesopores and the reaction substrate is low. It is inferred that there is.

一方、図17に遊離のGDH(酵素量:0、1、10、100μg)の酵素活性を評価した結果を示す。図17には、生成NADH濃度に与える未固定の遊離GDH濃度の影響が示される。図17より、反応収率100%(~0.5mM NADH)を与える酵素量は10~100μgであり、又、0.1~0.5mMのNADHを生成するために必要な酵素量は1~10μgの範囲であることが判明した。図16より、各種のGDH複合体による生成NADH濃度は0~0.4mM程度であり、図15より、GDH複合体に対して100~300μg程度の酵素が固定化されていることを鑑みると、固定化状態の酵素の一部、すなわち、1~10μg相当の酵素が反応に関与していることが推察される。 On the other hand, FIG. 17 shows the results of evaluating the enzyme activity of free GDH (enzyme amount: 0, 1, 10, 100 μg). FIG. 17 shows the effect of the unfixed free GDH concentration on the produced NADH concentration. From FIG. 17, the amount of enzyme that gives a reaction yield of 100% (~ 0.5 mM NADH) is 10 to 100 μg, and the amount of enzyme required to produce 0.1 to 0.5 mM NADH is 1 to ~. It was found to be in the range of 10 μg. From FIG. 16, the concentration of NADH produced by various GDH complexes is about 0 to 0.4 mM, and from FIG. 15, it is considered that about 100 to 300 μg of enzyme is immobilized on the GDH complex. It is presumed that a part of the immobilized enzyme, that is, an enzyme equivalent to 1 to 10 μg is involved in the reaction.

(実施例33:リパーゼと各種多孔質成形体との複合体の製造及び酵素反応)
本実施例では、実施例18~28で得られたメソポーラス微粒子の多孔質成形体、及び、比較例8において原料粒子を入れず、有機高分子であるポリエーテルサルホンのみを用いて製造した成形体に対するリパーゼ(Phycomyces nitens由来、和光純薬工業社)の固定化と酵素活性の評価を行った。
(Example 33: Production of complex of lipase and various porous molded products and enzymatic reaction)
In this example, the porous molded body of the mesoporous fine particles obtained in Examples 18 to 28 and the molded product produced using only the organic polymer polyether sulfone in Comparative Example 8 without the raw material particles. Immobilization of lipase (derived from Phycomyces nitens, Wako Pure Chemical Industries, Ltd.) on the body and evaluation of enzyme activity were performed.

(1-1)リパーゼと各種多孔質成形体との複合体の製造方法
リパーゼの固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例18~28により得られた11種類の成形体を使用した。また、比較のための原料粒子を含まない成形体として、比較例8により得られた「PESペレット」を使用した。更に、比較のための成型前のメソポーラスシリカ微粒子として、9種類の合成メソポーラスシリカ(原料粒子I~Q)を使用した。
(1-1) Method for Producing Composites of Lipase and Various Porous Molds Eleven types of moldings obtained in Examples 18 to 28 were used as porous moldings of mesoporous fine particles on the immobilized support of lipase. Used the body. Further, the "PES pellet" obtained in Comparative Example 8 was used as a molded product containing no raw material particles for comparison. Further, nine kinds of synthetic mesoporous silica (raw material particles I to Q) were used as the mesoporous silica fine particles before molding for comparison.

酵素を固定化する際には、リパーゼ(0.456mg)を含んだ緩衝液(25mM MES-NaOH(pH 6))1mLと、予め96ウェルの深底タイププレートの各ウェルに量り取り、同緩衝液を用いて平衡化しておいた11種類の成形体及び「PESペレット」(20mg相当)とを、前記の攪拌装置を用いて混合(25℃、1,200rpm、24時間)することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでリパーゼと各種多孔質成形体との複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, weigh 1 mL of a buffer solution (25 mM MES-NaOH (pH 6)) containing lipase (0.456 mg) and each well of a 96-well deep type plate in advance, and use the same buffer. 11 kinds of molded bodies equilibrated with the liquid and "PES pellets" (equivalent to 20 mg) are combined by mixing (25 ° C., 1,200 rpm, 24 hours) using the above-mentioned stirring device. Then, the centrifugation operation and the washing operation using the same buffer were performed twice to obtain a composite of lipase and various porous molded bodies. The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used as it is, but in this embodiment, in order to evaluate the binding stability of the enzyme to the molded body. In addition, a cleaning step is performed together with the following centrifugation step.

具体的には、前記のリパーゼと各種多孔質成形体との複合体(未洗浄)の分散液に対して遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、前記の攪拌装置を用いて25℃で1時間、リパーゼとメソポーラスシリカ成形体との複合体を攪拌した後、遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、リパーゼと各種多孔質成形体との複合体(洗浄済)を得た。以下、「リパーゼ-メソポーラス微粒子成形体」という。 Specifically, the dispersion liquid of the complex (unwashed) of the above-mentioned lipase and various porous molded products was centrifuged (25 ° C., 4,700 rpm, 10 minutes), and all the supernatant was recovered. .. Subsequently, 1 mL of a washing buffer solution (using the buffer solution selected at the time of immobilization) was added, and the complex of the lipase and the mesoporous silica molded product was stirred at 25 ° C. for 1 hour using the above-mentioned stirring device. , Centrifugation (25 ° C, 4,700 rpm, 10 minutes) was performed, and a washing operation was performed to collect all the supernatant. The cleaning operation was repeated again using 1 mL of the cleaning buffer solution, and finally, a complex (cleaned) of lipase and various porous molded products was obtained. Hereinafter, it is referred to as "lipase-mesoporous fine particle molded product".

また、比較のために9種類の合成メソポーラスシリカ(原料粒子I~Q)(10mg相当)を用いて、マイクロチューブ、ローテーター、及び、マイクロチューブ用の遠心分離機(25℃、20,000G、10分間)を使用した他は、前記成形体と同様の手順により複合体を得た。以下、「リパーゼ-メソポーラス微粒子粉末」という。 Also, for comparison, 9 types of synthetic mesoporous silica (raw material particles I to Q) (equivalent to 10 mg) were used, and a centrifuge for microtubes, rotators, and microtubes (25 ° C, 20,000 G, 10). The composite was obtained by the same procedure as that of the molded product except that the minutes were used. Hereinafter, it is referred to as "lipase-mesoporous fine particle powder".

各種のメソポーラス微粒子の成形体及び粉末に対する酵素の固定化量は、固定化前の酵素量(1mL中、0.456mg)から、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量を差し引くことによって算出した。図18に、メソポーラス微粒子成形体、原料粒子を含まない成形体、又は、メソポーラス微粒子粉末に対するリパーゼの固定化量を示す。図18の(a)は、各種メソポーラス微粒子の成形体に対するリパーゼの固定化量を示す。(b)は、各種メソポーラス微粒子の粉末に対するリパーゼの固定化量を示す。 The amount of the enzyme immobilized on the molded body and powder of various mesoporous fine particles is the amount of the enzyme before immobilization (0.456 mg in 1 mL), and the amount of the free enzyme contained in the recovered liquid in the above-mentioned centrifugation step and washing step. Calculated by subtracting the amount. FIG. 18 shows the amount of lipase immobilized on the mesoporous fine particle molded product, the molded product containing no raw material particles, or the mesoporous fine particle powder. FIG. 18A shows the amount of lipase immobilized on the molded product of various mesoporous fine particles. (B) shows the amount of lipase immobilized on the powder of various mesoporous fine particles.

図18(a)及び(b)より、メソポーラスAl-EVOHペレットを除いた、MCM-41、FSM-22、SBA-15タイプ、SBA-16タイプ、又は、メソポーラス酸化アルミタイプの合成メソポーラスシリカの成形体と粉末とを比較すると、成形体と粉末に対するリパーゼの固定化量は同等であり、FSM-22、又は、SBA-15タイプの合成メソポーラスシリカに着目すれば、成形体及び粉末ともに全体的には細孔径に比例してリパーゼの固定化量が増大する傾向が認められた。これは、実施例32におけるGDHの固定化の傾向と類似しており、メソ細孔に対してリパーゼが飽和吸着していないために、固定化量が細孔径に依存したものと考えられる。すなわち、成形体に含まれるメソポーラス微粒子が粉末と同等の酵素固定化能を保持していることを示唆している。 Synthetic mesoporous of MCM-41, FSM-22, SBA-15 type, SBA-16 type, or mesoporous aluminum oxide type, excluding mesoporous Al2O3 - EVOH pellets from FIGS. 18 (a) and 18 (b). Comparing the silica molded body and the powder, the amount of lipase immobilized on the molded body and the powder is the same. Focusing on FSM-22 or SBA-15 type synthetic mesoporous silica, both the molded body and the powder Overall, the amount of lipase immobilized tended to increase in proportion to the pore size. This is similar to the tendency of GDH immobilization in Example 32, and it is considered that the amount of immobilization depends on the pore diameter because lipase is not saturated and adsorbed to the mesopores. That is, it is suggested that the mesoporous fine particles contained in the molded product have the same enzyme immobilization ability as the powder.

また、図18(a)より、メソポーラスAl-EVOHペレットのみ、リパーゼの固定化量が低い値に留まったものの、それ以外の、MCM-41、FSM-22、SBA-15タイプ、SBA-16タイプ、又は、メソポーラス酸化アルミタイプの合成メソポーラス微粒子の成形体を用いた場合には、原料粒子を含まないPESペレットと比較して、2~3倍程度のリパーゼの固定化量が示された。これより、成形体のメソ細孔部分に対して相当量のリパーゼが固定化されていることが判明した。 Further, from FIG. 18A, only the mesoporous Al2O3 - EVOH pellets had a low lipase immobilization amount, but other than that, MCM-41, FSM-22, SBA-15 type, and SBA. When a molded body of synthetic mesoporous fine particles of -16 type or mesoporous aluminum oxide type was used, the amount of lipase immobilized was about 2 to 3 times that of PES pellets containing no raw material particles. rice field. From this, it was found that a considerable amount of lipase was immobilized on the mesopore portion of the molded product.

(1-2)トリグリセリドの加水分解活性の評価
(1-1)で得られた11種類のリパーゼ-メソポーラス微粒子成形体、リパーゼ-PESペレット(原料粒子なし)、及び、9種類のリパーゼ-メソポーラス微粒子粉末それぞれの酵素活性を、反応基質としての蛍光性トリグリセリドの加水分解によって生成される脂肪酸に結合した蛍光物質(ピレン)のモル濃度により評価した。またこの際、前記複合体の繰り返し使用における耐久性(反応5回)の評価も行った。
具体的には、前記複合体それぞれに対して、以下の酵素反応を起こさせ、ピレンの蛍光強度を調べることで遊離ピレン濃度を求めた。
(1-2) Evaluation of Hydrolytic Activity of Triglyceride 11 types of lipase-mesoporous fine particle molded product, lipase-PES pellets (without raw material particles), and 9 types of lipase-mesoporous fine particles obtained in (1-1). The enzymatic activity of each of the powders was evaluated by the molar concentration of the fluorescent substance (pyrene) bound to the fatty acid produced by the hydrolysis of the fluorescent triglyceride as a reaction substrate. At this time, the durability (reaction 5 times) of the complex in repeated use was also evaluated.
Specifically, the following enzymatic reaction was caused in each of the complexes, and the fluorescence intensity of pyrene was examined to determine the free pyrene concentration.

各種のリパーゼ-メソポーラス微粒子粉末は、酵素反応前に、マイクロチューブから、既にリパーゼ-メソポーラス微粒子成形体及びリパーゼ-PESペレット(原料粒子なし)が入っている96ウェルの深底タイププレートの各ウェルに移し替えた。酵素反応は、前記の96ウェルの深底タイププレートの各ウェル内のリパーゼ-メソポーラス微粒子成形体、リパーゼ-PESペレット(原料粒子なし)、及び、リパーゼ-メソポーラス微粒子粉末に対して、リン酸緩衝液(0.9mL)を添加し、前記の撹拌装置を用いて撹拌(30℃、1,200rpm、10分間)した後、蛍光性トリグリセリド溶液(0.1mL)を添加することによって開始した(反応1回目)。 Prior to the enzymatic reaction, the various lipase-mesoporous particulate powders were dispensed from the microtubes into each well of a 96-well deep-bottomed plate already containing the lipase-mesoporous particulate molding and lipase-PES pellets (without raw material particles). Transferred. The enzymatic reaction was carried out against the lipase-mesoporous fine particle compact, lipase-PES pellets (without raw material particles), and lipase-mesoporous fine particle powder in each well of the 96-well deep type plate. (0.9 mL) was added, and the mixture was stirred using the above-mentioned stirring device (30 ° C., 1,200 rpm, 10 minutes), and then started by adding a fluorescent triglyceride solution (0.1 mL) (Reaction 1). The second time).

その際、反応基質の反応組成が、「150mM PBS(pH 8.2)、1μM 蛍光性トリグリセリド、反応液量:1mL」となるように調整した。反応2回目以降は、下記の遠心分離操作後に反応後の上清と分離されたリパーゼ複合体に対して、前記と同様の手順で緩衝液、基質等を添加することによって反応を開始した。また、比較のために固定化支持体を用いない遊離のリパーゼについても、同様の反応基質と混合することで反応を行った。 At that time, the reaction composition of the reaction substrate was adjusted to be "150 mM PBS (pH 8.2), 1 μM fluorescent triglyceride, reaction solution volume: 1 mL". From the second reaction onward, the reaction was started by adding a buffer solution, a substrate, or the like to the lipase complex separated from the supernatant after the reaction after the following centrifugation operation in the same procedure as described above. For comparison, free lipase without an immobilized support was also reacted by mixing with a similar reaction substrate.

反応条件は、前記の撹拌装置を用いて混合(1,200rpm)しながら30℃で10分間の加温状態を保持することとした。続いて、10分経過後に加温状態での遠心分離(30℃、4,700rpm、5分間)によって上清を全て回収し、前記のマイクロプレートリーダーを用いて、回収液の蛍光強度を測定(測定波長:励起342nm/蛍光400nm)することによって、脂肪酸の生成効率(ピレン濃度)を評価した。図19に、各種のリパーゼ複合体の繰り返し使用時(反応5回)における遊離ピレン濃度を示す。図19の(a)は、リパーゼ-メソポーラス微粒子複合体の成形体によるトリグリセリド分解における遊離ピレン濃度及び固定化酵素の繰り返し使用における耐久性(反応5回)を示す。図19の(b)は、リパーゼ-メソポーラス微粒子複合体の粉末によるトリグリセリド分解における遊離ピレン濃度及び固定化酵素の繰り返し使用における耐久性(反応5回)を示す。 The reaction conditions were to maintain the heated state at 30 ° C. for 10 minutes while mixing (1,200 rpm) using the above-mentioned stirring device. Subsequently, after 10 minutes have passed, all the supernatant is recovered by centrifugation (30 ° C., 4,700 rpm, 5 minutes) in a heated state, and the fluorescence intensity of the recovered liquid is measured using the above-mentioned microplate reader (). Measurement wavelength: Excitation 342 nm / Fluorescence 400 nm) was used to evaluate the fatty acid production efficiency (pyrene concentration). FIG. 19 shows the free pyrene concentration at the time of repeated use of various lipase complexes (reaction 5 times). FIG. 19 (a) shows the concentration of free pyrene in the decomposition of triglyceride by the molded product of the lipase-mesoporous fine particle complex and the durability (reaction 5 times) in repeated use of the immobilized enzyme. FIG. 19 (b) shows the concentration of free pyrene in the decomposition of triglyceride by the powder of the lipase-mesoporous fine particle complex and the durability (reaction 5 times) in the repeated use of the immobilized enzyme.

図19(a)及び(b)より、全体的には、リパーゼ-メソポーラス微粒子粉末と比較して、リパーゼ-メソポーラス微粒子成形体を用いた場合に遊離のピレン濃度が低くなる傾向が認められたものの、メソポーラス微粒子粉末を用いた場合のようなピレン濃度の幅広い増減は示されなかった。具体的には、MCM-41-EVOH中空糸を除いたリパーゼ-メソポーラス微粒子成形体では、5回の繰り返し反応においても、一定したピレン濃度(20~40nM)を示した。また、図19(a)より、リパーゼ-PESペレット(原料粒子なし)は、繰り返し使用回数と共に徐々に活性が低下し、反応5回目ではほとんど活性を発現しなかった。リパーゼ-PESペレット(原料粒子なし)では、図18より、相当量のリパーゼが成形体のPES表面部分に非特異的に吸着していると考えられるが、吸着状態のリパーゼの安定性が極めて低いことが判明した。一方、大半のリパーゼ-メソポーラス微粒子成形体では、反応1~5回において持続した酵素活性を発現しており、このことは、成形体のメソ細孔に固定化された酵素の安定性の高さを示唆している。以上より、リパーゼ-メソポーラス微粒子成形体による高活性のトリグリセリドの加水分解反応には、成形体中のメソ細孔に固定化されたリパーゼが大きく寄与していることが示唆された。
また、図20に遊離のリパーゼ(酵素量:0、1、10、100μg)の酵素活性を評価した結果を示す。図20により、トリグリセリド分解により遊離する蛍光物質(ピレン)濃度に与える未固定の遊離リパーゼ濃度の影響が示される。図20より、酵素濃度に比例してピレン濃度が増大する傾向が示された。図19(a)において示された、リパーゼ-メソポーラス微粒子成形体による生成ピレン濃度(20~40nM)を与える酵素量は、図20より、50~100μgの範囲であると考えられる。図18より、リパーゼ複合体に対して100~250μg程度の酵素が固定化されていることを鑑みると、固定化状態の酵素のうちの半分程度の酵素が反応に関与していることが推察される。
From FIGS. 19 (a) and 19 (b), it was observed that, as a whole, the concentration of free pyrene tended to be lower when the lipase-mesoporous fine particle compact was used as compared with the lipase-mesoporous fine particle powder. , No widespread increase or decrease in pyrene concentration was shown as in the case of using mesoporous fine particle powder. Specifically, the lipase-mesoporous fine particle molded product excluding the MCM-41-EVOH hollow fiber showed a constant pyrene concentration (20 to 40 nM) even after 5 repeated reactions. Further, from FIG. 19 (a), the lipase-PES pellet (without raw material particles) gradually decreased in activity with the number of repeated uses, and hardly exhibited the activity in the fifth reaction. In the lipase-PES pellets (without raw material particles), it is considered from FIG. 18 that a considerable amount of lipase is non-specifically adsorbed on the PES surface portion of the molded body, but the stability of the lipase in the adsorbed state is extremely low. It has been found. On the other hand, most lipase-mesoporous fine particle compacts express sustained enzyme activity in 1 to 5 reactions, which means that the enzyme immobilized in the mesopores of the compact has high stability. It suggests. From the above, it was suggested that the lipase immobilized on the mesopores in the molded body greatly contributed to the hydrolysis reaction of the highly active triglyceride by the lipase-mesoporous fine particle molded body.
In addition, FIG. 20 shows the results of evaluating the enzyme activity of free lipase (enzyme amount: 0, 1, 10, 100 μg). FIG. 20 shows the effect of unfixed free lipase concentration on the concentration of fluorescent substance (pyrene) released by triglyceride decomposition. FIG. 20 shows that the pyrene concentration tends to increase in proportion to the enzyme concentration. From FIG. 20, the amount of the enzyme that gives the produced pyrene concentration (20 to 40 nM) by the lipase-mesoporous fine particle molded product shown in FIG. 19 (a) is considered to be in the range of 50 to 100 μg. From FIG. 18, considering that about 100 to 250 μg of the enzyme is immobilized on the lipase complex, it is inferred that about half of the immobilized enzymes are involved in the reaction. To.

(実施例34:プロテアーゼと各種多孔質成形体との複合体の製造及び酵素反応)
本実施例では、実施例22及び25で得られたメソポーラス微粒子の多孔質成形体、及び、比較のための活性炭ペレット(籾殻由来、デクセリアルズ株式会社)に対するプロテアーゼN(PN:Streptomyces属由来、ナガセケムテックス株式会社)の固定化と酵素活性の評価を行った。
(Example 34: Production of complex of protease and various porous molded products and enzymatic reaction)
In this example, the porous molded body of the mesoporous fine particles obtained in Examples 22 and 25, and the protease N (PN: Streptomyces genus, Nagasechem) for the activated carbon pellets (derived from rice husks, Dexerials Co., Ltd.) for comparison. Tex Co., Ltd.) was immobilized and the enzyme activity was evaluated.

(1-1)プロテアーゼと各種多孔質成形体との複合体の製造方法
プロテアーゼの固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例22及び25により得られた2種類の成形体を使用した。また、比較のための表面親和性の異なる多孔体として、従来の活性炭よりメソ孔容積の大きい「活性炭ペレット」を使用した。更に、比較のための成型前のメソポーラスシリカ微粒子として、2種類の合成メソポーラスシリカ(原料粒子L及びO)、及び「活性炭粉末」を使用した。
(1-1) Method for Producing Complexes of Proteases and Various Porous Molds Two types of moldings obtained in Examples 22 and 25 were used as porous moldings of mesoporous fine particles on the immobilized support of protease. Used the body. In addition, as a porous body having a different surface affinity for comparison, "activated carbon pellets" having a larger mesopore volume than conventional activated carbon were used. Further, two kinds of synthetic mesoporous silica (raw material particles L and O) and "activated carbon powder" were used as the mesoporous silica fine particles before molding for comparison.

酵素を固定化する際には、プロテアーゼ(0.271mg)を含んだ緩衝液(100mM Tris-HCl(pH 7))1mLと、予めマイクロチューブに量り取った2種類の成形体及び「活性炭ペレット」(20mg相当)とを、ローテーターを用いて混合(4℃、15時間)することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでプロテアーゼと各種多孔質成形体との複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, 1 mL of buffer solution (100 mM Tris-HCl (pH 7)) containing protease (0.271 mg), two types of compacts pre-weighed in microtubes, and "activated carbon pellets" (Equivalent to 20 mg) is compounded by mixing (4 ° C., 15 hours) using a rotator, and the protease and various porosities are performed by performing the centrifugation operation and the washing operation using the same buffer solution twice. A composite with the quality molded product was obtained. The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used as it is, but in this embodiment, in order to evaluate the binding stability of the enzyme to the molded body. In addition, a cleaning step is performed together with the following centrifugation step.

具体的には、前記のプロテアーゼと各種多孔質成形体(又は、活性炭ペレット)との複合体(未洗浄)の分散液に対して遠心分離(4℃、20,000G、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、Vortex Mixerを用いて室温で約5秒間、プロテアーゼとメソポーラスシリカ成形体(又は、活性炭ペレット)との複合体を攪拌した後、遠心分離(4℃、20,000G、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、プロテアーゼと各種多孔質成形体(又は、活性炭ペレット)との複合体(洗浄済)を得た。以下、「プロテアーゼ-メソポーラス微粒子成形体」、又は、「プロテアーゼ-活性炭ペレット」という。 Specifically, the dispersion liquid of the complex (unwashed) of the above-mentioned protease and various porous molded bodies (or activated carbon pellets) is centrifuged (4 ° C., 20,000 G, 10 minutes). All supernatants were collected. Subsequently, 1 mL of a washing buffer solution (using the buffer solution selected at the time of immobilization) was added, and a complex of the protease and the mesoporous silica molded product (or activated carbon pellet) was added using a Vortex Mixer at room temperature for about 5 seconds. After stirring, centrifugation (4 ° C., 20,000 G, 10 minutes) was performed, and a washing operation was performed to collect all the supernatant. The washing operation was repeated again using 1 mL of the washing buffer solution, and finally, a complex (washed) of the protease and various porous molded bodies (or activated carbon pellets) was obtained. Hereinafter, it is referred to as "protease-mesoporous fine particle molded product" or "protease-activated carbon pellet".

また、比較のために2種類の合成メソポーラスシリカ(原料粒子L及びO)、及び「活性炭粉末」(10mg相当)を用いて、前記成形体と同様の手順により複合体を得た。以下、「プロテアーゼ-メソポーラス微粒子粉末」、又は、「プロテアーゼ-活性炭粉末」という。 Further, for comparison, two kinds of synthetic mesoporous silica (raw material particles L and O) and "activated carbon powder" (equivalent to 10 mg) were used to obtain a complex by the same procedure as the molded product. Hereinafter, it is referred to as "protease-mesoporous fine particle powder" or "protease-activated carbon powder".

各種のメソポーラス微粒子の成形体及び粉末に対する酵素の固定化量は、固定化前の酵素量(1mL中、0.271mg)から、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量を差し引くことによって算出した。図21に、メソポーラス微粒子成形体、又は、メソポーラス微粒子粉末に対するプロテアーゼの固定化量を示す。図21(a)は、各種メソポーラス微粒子の成形体に対するプロテアーゼの固定化量を示す。図21(b)は、各種メソポーラス微粒子の粉末に対するプロテアーゼの固定化量を示す。 The amount of the enzyme immobilized on the molded body and powder of various mesoporous fine particles is the amount of the enzyme before immobilization (0.271 mg in 1 mL), and the amount of the free enzyme contained in the recovered liquid in the above-mentioned centrifugation step and washing step. Calculated by subtracting the amount. FIG. 21 shows the amount of protease immobilized on the mesoporous fine particle molded product or the mesoporous fine particle powder. FIG. 21 (a) shows the amount of protease immobilized on the molded product of various mesoporous fine particles. FIG. 21 (b) shows the amount of protease immobilized on the powder of various mesoporous fine particles.

図21(a)及び(b)より、FSM-22(原料粒子L)、SBA-15(原料粒子O)タイプの合成メソポーラスシリカ及び活性炭を比較すると、成形体及び粉末ともに、「活性炭 > FSM-22 > SBA-15」の順にプロテアーゼの固定化量が増大する傾向が認められた。成形体と粉末を比較すると、全体的には、成形体を用いた場合にプロテアーゼの固定化量が低い値に留まったものの、固定化支持体の違いによるプロテアーゼの固定化挙動は粉末を用いた場合の傾向と類似しており、これは、成形体に含まれるメソポーラス微粒子が粉末とおおよそ同等の酵素固定化能を保持していることを示唆している。 Comparing FSM-22 (raw material particles L), SBA-15 (raw material particles O) type synthetic mesoporous silica and activated carbon from FIGS. 21 (a) and 21 (b), both the molded product and the powder have "activated carbon> FSM-". A tendency was observed that the amount of protease immobilized increased in the order of "22> SBA-15". Comparing the molded product and the powder, the amount of protease immobilization remained low when the molded product was used, but the powder was used for the protease immobilization behavior due to the difference in the immobilization support. Similar to the case, this suggests that the mesoporous fine particles contained in the compact retain approximately the same enzyme immobilization ability as the powder.

(1-2)ゼラチンの加水分解活性の評価
(1-1)で得られたプロテアーゼ複合体(2種類のプロテアーゼ-メソポーラス微粒子成形体、プロテアーゼ-活性炭ペレット、2種類のプロテアーゼ-メソポーラス微粒子粉末、及び、プロテアーゼ-活性炭粉末)の酵素活性を評価した。評価は、反応基質としての蛍光性ゼラチンの加水分解にともなって増大する蛍光強度を指標として、未固定の遊離酵素における蛍光強度を基準とした相対活性により行った。またこの際、前記複合体の繰り返し使用における耐久性(反応10回)の評価も行った。
具体的には、前記複合体それぞれに対して、以下の酵素反応を起こさせ、ゼラチンの分解活性を求めた。
(1-2) Evaluation of Hydrolytic Activity of Gelatin The protease complex obtained in (1-1) (two types of protease-mesoporous fine particle molded product, protease-activated carbon pellet, two types of protease-mesoporous fine particle powder, and , Protease-activated carbon powder) was evaluated for enzymatic activity. The evaluation was performed by relative activity based on the fluorescence intensity of the unfixed free enzyme, using the fluorescence intensity that increases with the hydrolysis of fluorescent gelatin as a reaction substrate as an index. At this time, the durability (reaction 10 times) of the complex in repeated use was also evaluated.
Specifically, the following enzymatic reactions were caused in each of the complexes to determine the degrading activity of gelatin.

酵素反応は、(1-1)で得られた各マイクロチューブ内のプロテアーゼ複合体(プロテアーゼ-メソポーラス微粒子成形体、プロテアーゼ-活性炭ペレット、プロテアーゼ-メソポーラス微粒子粉末、及び、プロテアーゼ-活性炭粉末)に対して、蛍光性ゼラチン、塩化ナトリウム、又、塩化カルシウムを含んだトリス緩衝液(0.4mL)を添加することによって開始した(反応1回目)。 The enzymatic reaction was carried out against the protease complex (protease-mesoporous fine particle molded product, protease-activated carbon pellet, protease-mesoporous fine particle powder, and protease-activated carbon powder) in each microtube obtained in (1-1). , Fluorescent gelatin, sodium chloride, or Tris buffer containing calcium chloride (0.4 mL) was added (first reaction).

その際、反応基質の反応組成が、「45mM Tris-HCl(pH 7.6)、0.1mg/mL 蛍光性ゼラチン、135mM 塩化ナトリウム、4.5mM 塩化カルシウム」となるように調整した。反応2回目以降は、下記の遠心分離操作後に反応後の上清と分離されたプロテアーゼ複合体に対して、前記と同様の手順で反応基質を添加することによって反応を開始した。また、比較のために固定化支持体を用いない遊離のプロテアーゼについても、同様の反応基質と混合することで反応を行った。 At that time, the reaction composition of the reaction substrate was adjusted to be "45 mM Tris-HCl (pH 7.6), 0.1 mg / mL fluorescent gelatin, 135 mM sodium chloride, 4.5 mM calcium chloride". From the second reaction onward, the reaction was started by adding a reaction substrate to the protease complex separated from the supernatant after the reaction after the following centrifugation operation in the same procedure as described above. In addition, for comparison, a free protease that did not use an immobilized support was also reacted by mixing with a similar reaction substrate.

反応条件は、ローテーターを用いて混合しながら37℃で30分間の加温状態を保持することとした。続いて、遠心分離(4℃、20,000G、5分間)によって上清を全て回収し、前記のマイクロプレートリーダーを用いて、回収液の蛍光強度を測定(測定波長:励起495nm/蛍光520nm)することによって、ゼラチンの分解効率を評価した。図22に、各種のプロテアーゼ複合体の繰り返し使用時(反応10回)における、遊離のプロテアーゼによるゼラチンの分解効率を基準とした場合の相対活性を示す。図22の(a)は、プロテアーゼ-メソポーラス微粒子複合体の成形体によるゼラチンの分解活性及び固定化酵素の繰り返し使用における耐久性(反応10回)を示す。図22の(b)は、プロテアーゼ-メソポーラス微粒子複合体の粉末によるゼラチンの分解活性及び固定化酵素の繰り返し使用における耐久性(反応10回)を示す。 The reaction conditions were to maintain the heated state at 37 ° C. for 30 minutes while mixing using a rotator. Subsequently, the supernatant was completely recovered by centrifugation (4 ° C., 20,000 G, 5 minutes), and the fluorescence intensity of the recovered solution was measured using the above-mentioned microplate reader (measurement wavelength: excitation 495 nm / fluorescence 520 nm). By doing so, the decomposition efficiency of gelatin was evaluated. FIG. 22 shows the relative activity of various protease complexes during repeated use (reaction 10 times) based on the efficiency of gelatin decomposition by free protease. FIG. 22 (a) shows the degrading activity of gelatin by the molded product of the protease-mesoporous fine particle complex and the durability (reaction 10 times) in repeated use of the immobilized enzyme. FIG. 22 (b) shows the degrading activity of gelatin by the powder of the protease-mesoporous fine particle complex and the durability (reaction 10 times) in repeated use of the immobilized enzyme.

図22(a)及び(b)より、全体的には、プロテアーゼ-メソポーラス微粒子粉末と比較して、プロテアーゼ-メソポーラス微粒子成形体を用いた場合にゼラチンの分解活性が低くなる傾向が認められたものの、成形体及び粉末ともに、活性炭(ペレット及び粉末)と比較すると、格段に優れた酵素活性の発現率と繰り返し耐久性を示した。
具体的には、反応10回目におけるゼラチンの分解活性が、プロテアーゼ-活性炭粉末を用いた場合に3.9%であったのに対して、プロテアーゼ-メソポーラス微粒子粉末を用いた場合には100%程度(FSM型:100%,SBA型:98.3%)であり、極めて高い繰り返し耐久性が示された(図22(b))。
一方、プロテアーゼ-活性炭ペレットを用いた場合では、反応10回目におけるゼラチンの分解活性が41.1%と活性炭粉末の場合よりも高い活性が示されたが、プロテアーゼ-メソポーラス微粒子成形体を用いた場合にはより高い活性(FSM型:92.4%,SBA型:84.6%)が認められた(図22(a))。
From FIGS. 22 (a) and 22 (b), it was observed that, as a whole, the gelatin decomposition activity tended to be lower when the protease-mesoporous fine particle molded product was used as compared with the protease-mesopaphoric fine particle powder. Both the molded product and the powder showed remarkably excellent expression rate of enzyme activity and repeated durability as compared with activated carbon (pellets and powder).
Specifically, the gelatin decomposition activity at the 10th reaction was 3.9% when the protease-activated carbon powder was used, whereas it was about 100% when the protease-mesoporous fine particle powder was used. (FSM type: 100%, SBA type: 98.3%), showing extremely high repeatability (FIG. 22 (b)).
On the other hand, when the protease-activated carbon pellets were used, the gelatin decomposition activity at the 10th reaction was 41.1%, which was higher than that of the activated carbon powder, but when the protease-mesoporous fine particle molded product was used. Was found to have higher activity (FSM type: 92.4%, SBA type: 84.6%) (FIG. 22 (a)).

図21及び図22の結果から、表面疎水性の高い活性炭(ペレット及び粉末)では、メソポーラスシリカ(成形体及び粉末)と比較して、プロテアーゼの固定化率が高いにもかかわらず、酵素活性が極めて低い値に留まったことより、本反応系におけるメソポーラスシリカ粉末およびその成形体の優位性が示された。
FSM型及びSBA型のメソポーラスシリカを比較すると、成形体及び粉末ともに、全体的には、「FSM-22 > SBA-15」の順にゼラチンの分解活性が増大する傾向が認められたが、これは、図21で示されたプロテアーゼの固定化量(FSM-22 > SBA-15)に依存した結果と考えられる。
また、図21の結果より、全体的には、粉末よりも成形体を用いた場合にプロテアーゼの固定化量が低い値(粉末の場合の70~80%)に留まったことを鑑みると、成形体に含まれるメソポーラス微粒子が粉末と同等の酵素の活性発現能を保持していることが推察される。
From the results shown in FIGS. 21 and 22, activated carbon (pellets and powders) having high surface hydrophobicity has higher enzyme activity than mesoporous silica (molds and powders) even though the protease immobilization rate is higher. The extremely low values showed the superiority of the mesoporous silica powder and its molded product in this reaction system.
Comparing FSM-type and SBA-type mesoporous silica, it was found that the decomposition activity of gelatin tended to increase in the order of "FSM-22>SBA-15" in both the molded product and the powder. , It is considered that the result depends on the amount of the protease immobilized (FSM-22> SBA-15) shown in FIG. 21.
Further, from the results of FIG. 21, in view of the fact that the amount of protease immobilization remained at a lower value (70 to 80% in the case of powder) when the molded product was used than in the case of powder, molding was performed. It is inferred that the mesoporous fine particles contained in the body retain the activity-expressing ability of the enzyme equivalent to that of the powder.

以上詳述したように、本発明のミクロないしメソポーラス微粒子の多孔質成形体は、吸着性等を有する多孔質な微粒子粉末を有機高分子樹脂との混合スラリーを相分離法でハンドリングの良い多孔体へと成形することで得られる。また、本発明によれば、上記のミクロないしメソポーラス微粒子の多孔質成形体で構成される精密濾過膜を提供できる。本発明の多孔質成形体は、例えば工業用排水などの処理剤として好適に使用できる。 As described in detail above, the porous molded body of micro or mesoporous fine particles of the present invention is a porous body having good handling by a phase separation method of a mixed slurry of porous fine particle powder having adsorptivity and the like with an organic polymer resin. It is obtained by molding into. Further, according to the present invention, it is possible to provide a microfiltration membrane composed of the above-mentioned porous molded body of micro or mesoporous fine particles. The porous molded article of the present invention can be suitably used as a treatment agent for, for example, industrial wastewater.

Claims (21)

細孔直径がnm~50nmのメソ孔を有する、シリケート、アルミノシリケート、アルミナ又はチタニアを主成分とし、粒径が0.01μm~200μmである機能性微粒子と、有機高分子とを含む多孔質成形体であって、
前記有機高分子がポリエーテルサルホン又はポリエチレンモル比44%以上のEVOH樹脂であり、
細孔直径が50nm~100μmのマクロ孔を有し、
空隙率が34%以上の多孔体であり、
前記成形体中の前記機能性微粒子の含有率が46質量%以上であり、
前記機能性微粒子の表面の少なくとも一部が前記成形体から表出しており、
前記機能性微粒子の前記メソ孔の細孔容積が、原料機能性微粒子の40%以上保持されている、
ことを特徴とするメソポーラス微粒子の多孔質成形体。
Porous containing functional fine particles having a pore diameter of 2 nm to 50 nm, which are mainly composed of silicate, aluminosilicate, alumina or titania and having a particle size of 0.01 μm to 200 μm, and an organic polymer. It is a quality molded product
The organic polymer is a polyether salphon or an EVOH resin having a polyethylene molar ratio of 44% or more.
It has macropores with a pore diameter of 50 nm to 100 μm.
It is a porous body with a porosity of 34% or more.
The content of the functional fine particles in the molded product is 46% by mass or more, and the content is 46% by mass or more.
At least a part of the surface of the functional fine particles is exposed from the molded product.
The pore volume of the mesopores of the functional fine particles is maintained at 40% or more of the raw material functional fine particles.
A porous molded body of mesoporous fine particles.
水中で24時間以上連続攪拌した時の前記多孔質成形体の攪拌前後での重量変化が1%以下であることを特徴とする、請求項1に記載のメソポーラス微粒子の多孔質成形体。 The porous molded body of mesoporous fine particles according to claim 1, wherein the weight change of the porous molded body before and after stirring in water for 24 hours or more is 1% or less. 前記多孔質成形体の形状が、粒状、中空粒子状又は中空糸状であることを特徴とする、請求項1又は2に記載のメソポーラス微粒子の多孔質成形体。 The porous molded body of mesoporous fine particles according to claim 1 or 2, wherein the shape of the porous molded body is granular, hollow particle-like or hollow thread-like. 前記機能性微粒子及び/又は前記有機高分子が複数種による混合体であることを特徴とする、請求項1~3のいずれか1項に記載のメソポーラス微粒子の多孔質成形体。 The porous molded body of mesoporous fine particles according to any one of claims 1 to 3, wherein the functional fine particles and / or the organic polymer are a mixture of a plurality of types. 前記機能性微粒子の原料機能性微粒子の機能が、吸着性能であり、多孔質成形体の成形後に前記機能の特性発現が保持されていることを特徴とする、請求項1~4のいずれか1項に記載のメソポーラス微粒子の多孔質成形体。 Raw material of the functional fine particles Any one of claims 1 to 4, wherein the function of the functional fine particles is adsorption performance, and the characteristic expression of the function is maintained after molding of the porous molded body. The porous molded body of the mesoporous fine particles according to the section. 数ミクロンサイズの粒子を分散液中から加圧濾過できることを特徴とする、請求項1~5のいずれか1項に記載のメソポーラス微粒子の多孔質成形体。 The porous molded body of mesoporous fine particles according to any one of claims 1 to 5, wherein particles having a size of several microns can be pressure-filtered from the dispersion liquid. 前記有機高分子を予め溶解させた有機溶媒中に、撹拌した状態で、乾燥した状態の前記機能性微粒子を分散させることによって、前記機能性微粒子の含む気体を意図的に混入させてナノバブルを含む原料スラリーを得る工程と、
非溶媒中に前記原料スラリーを射出することによって成形する工程と、を含むことを特徴とする請求項1~のいずれか1項に記載のメソポーラス微粒子の多孔質成形体の製造方法。
By dispersing the functional fine particles in a dried state in an organic solvent in which the organic polymer is previously dissolved , the gas contained in the functional fine particles is intentionally mixed to form nanobubbles. The process of obtaining the raw material slurry containing
The method for producing a porous molded body of mesoporous fine particles according to any one of claims 1 to 6 , further comprising a step of molding by injecting the raw material slurry into a non-solvent.
前記有機高分子が親水基を有する、請求項に記載のメソポーラス微粒子の多孔質成形体の製造方法。 The method for producing a porous molded body of mesoporous fine particles according to claim 7 , wherein the organic polymer has a hydrophilic group. 記メソポーラス微粒子の多孔質成形体を、減圧下のエタノール中又は良溶媒の低濃度水溶液中において低温加熱処理する工程、を更に含むことを特徴とする請求項7又は8に記載のメソポーラス微粒子の多孔質成形体の製造方法。 The mesoporous according to claim 7 or 8 , further comprising a step of subjecting the porous molded body of the mesoporous fine particles to a low-temperature heat treatment in ethanol under reduced pressure or in a low-concentration aqueous solution of a good solvent. A method for producing a porous molded body of fine particles. 前記機能性微粒子原料機能性微粒子の機能が、1種類又は2種類以上の酵素及び/又はタンパク質の固定化能を含み、前記成形体中の前記機能性微粒子の含有率が46質量%以上である、請求項1~のいずれか1項に記載の多孔質成形体である酵素担持用担体。 Raw material for the functional fine particles The function of the functional fine particles includes the ability to immobilize one or more types of enzymes and / or proteins, and the content of the functional fine particles in the molded product is 46% by mass or more. The enzyme-supporting carrier which is the porous molded body according to any one of claims 1 to 6 . 請求項10に記載の酵素担持用担体と酵素との複合体。 The complex of the enzyme-supporting carrier according to claim 10 and the enzyme. 前記酵素は、酸化還元酵素、加水分解酵素、転移酵素、脱離酵素、異性化酵素、及び/又は合成酵素である、請求項11に記載の複合体。 The complex according to claim 11 , wherein the enzyme is an oxidoreductase, a hydrolase, a transferase, a desorption enzyme, an isomerase, and / or a synthase. 前記酵素の酵素反応は、酸化還元反応、加水分解反応、転移反応、脱離反応、異性化反応、及び/又は合成反応である、請求項11又は12に記載の複合体。 The complex according to claim 11 or 12 , wherein the enzymatic reaction of the enzyme is an oxidation-reduction reaction, a hydrolysis reaction, a transfer reaction, an elimination reaction, an isomerization reaction, and / or a synthetic reaction. 前記酵素の酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質のそれぞれが細孔直径2nm~50nmのメソ孔に固定化された請求項1113のいずれか1項に記載の複合体を製造する方法であって、
前記酵素及び/又はタンパク質を、pH3~11に調整した緩衝液中でメソポーラス微粒子の多孔質成形体に固定化させる固定化工程を含む、製造方法。
The complex according to any one of claims 11 to 13 , wherein each of one or more kinds of enzymes and / or proteins involved in the enzymatic reaction of the enzyme is immobilized in a mesopore having a pore diameter of 2 nm to 50 nm. It ’s a way to make a body,
A production method comprising an immobilization step of immobilizing the enzyme and / or protein on a porous molded body of mesoporous fine particles in a buffer solution adjusted to pH 3-11.
さらに、固定化終了後のメソポーラス微粒子の多孔質成形体をpH3~11に調整した緩衝液で複数回洗浄する洗浄工程を含む、請求項14に記載の製造方法。 The production method according to claim 14 , further comprising a washing step of washing the porous molded body of mesoporous fine particles after immobilization with a buffer solution adjusted to pH 3 to 11 multiple times. 前記酵素の酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質のそれぞれがメソポーラス微粒子の多孔質成形体に固定化された、請求項1113のいずれか1項に記載の複合体を用いた酵素反応方法であって、
前記酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3~11に調整した緩衝液中で固定化する固定化工程、
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を含むpH3~11の緩衝液中に、反応基質を添加するか、又は
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含むpH3~11の緩衝液中に添加して前記酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む酵素反応方法。
The complex according to any one of claims 11 to 13 , wherein each of one or more kinds of enzymes and / or proteins involved in the enzymatic reaction of the enzyme is immobilized on a porous molded body of mesoporous fine particles. It is an enzymatic reaction method using
Immobilization step of immobilizing the enzyme and / or protein in a porous molded body of mesoporous fine particles in a buffer solution adjusted to pH 3 to 11.
A reaction substrate is added to a buffer solution having a pH of 3 to 11 containing a complex of a porous molded body of mesoporous fine particles obtained in the immobilization step and an enzyme, or the mesoporous fine particles obtained in the immobilization step. An enzymatic reaction step in which a complex of the porous molded product of No. 1 and an enzyme is added to a buffer solution having a pH of 3 to 11 containing a reaction substrate to carry out an enzymatic reaction involving the enzyme and / or a protein, and an enzymatic reaction method including the above. ..
前記酵素の酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質のそれぞれがメソポーラス微粒子の多孔質成形体に固定化された、請求項1113のいずれか1項に記載の複合体を用いた酵素反応方法であって、
前記酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3~11に調整した緩衝液中で固定化する固定化工程、
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体をpH3~11の緩衝液で洗浄する洗浄工程、
前記洗浄工程で得られた洗浄後のメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含む反応液中で、前記酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む酵素反応方法。
The complex according to any one of claims 11 to 13 , wherein each of one or more kinds of enzymes and / or proteins involved in the enzymatic reaction of the enzyme is immobilized on a porous molded body of mesoporous fine particles. It is an enzymatic reaction method using
Immobilization step of immobilizing the enzyme and / or protein in a porous molded body of mesoporous fine particles in a buffer solution adjusted to pH 3 to 11.
A washing step of washing a composite of a porous molded body of mesoporous fine particles obtained in the immobilization step and an enzyme with a buffer solution having a pH of 3 to 11.
An enzymatic reaction step in which a complex of a porous molded body of mesoporous fine particles after washing obtained in the washing step and an enzyme is subjected to an enzymatic reaction involving the enzyme and / or a protein in a reaction solution containing a reaction substrate. Enzyme reaction method including.
前記酵素反応が、反応基質から機能性の有用物質を製造する方法である、請求項16又は17に記載の酵素反応方法。 The enzymatic reaction method according to claim 16 or 17 , wherein the enzymatic reaction is a method for producing a functional useful substance from a reaction substrate. 前記酵素反応が、環境中に存在する反応基質となる環境汚染物質を分解する方法である、請求項16又は17に記載の酵素反応方法。 The enzymatic reaction method according to claim 16 or 17 , wherein the enzymatic reaction is a method for decomposing an environmental pollutant which is a reaction substrate existing in the environment. 前記酵素反応方法が、被検試料中に存在するか又は存在する可能性のある反応基質を検出又は定量する方法である、請求項16又は17に記載の酵素反応方法。 The enzyme reaction method according to claim 16 or 17 , wherein the enzyme reaction method is a method for detecting or quantifying a reaction substrate that is or may be present in a test sample. 請求項1113のいずれか1項に記載の複合体を含む、前記酵素及び/又はタンパク質が関わる酵素反応用キット、センサー又は装置。 A kit, sensor or apparatus for an enzyme reaction involving the enzyme and / or protein, which comprises the complex according to any one of claims 11 to 13 .
JP2017152336A 2016-10-20 2017-08-07 Porous molded body of mesoporous fine particles, carrier for supporting enzymes, enzyme complexes thereof, and methods for producing them. Active JP6990906B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016205624 2016-10-20
JP2016205624 2016-10-20
JP2016230602 2016-11-28
JP2016230602 2016-11-28

Publications (2)

Publication Number Publication Date
JP2018090767A JP2018090767A (en) 2018-06-14
JP6990906B2 true JP6990906B2 (en) 2022-02-03

Family

ID=62565201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152336A Active JP6990906B2 (en) 2016-10-20 2017-08-07 Porous molded body of mesoporous fine particles, carrier for supporting enzymes, enzyme complexes thereof, and methods for producing them.

Country Status (1)

Country Link
JP (1) JP6990906B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671515B (en) * 2022-04-26 2023-09-26 国网河北省电力有限公司电力科学研究院 Floating filler for aerobic tank and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001829A (en) 2000-06-16 2002-01-08 Shinei Techno Kk Method for preparing composite foam
JP2007291186A (en) 2006-04-21 2007-11-08 Inoac Corp Method for producing polyolefin resin foam
JP2007320988A (en) 2006-05-30 2007-12-13 Futamura Chemical Co Ltd Interconnected porous structure member containing sealed material and method for producing the same
WO2011155536A1 (en) 2010-06-09 2011-12-15 日揮触媒化成株式会社 Support for protein immobilization, immobilized protein and method for producing same
JP2012072534A (en) 2009-11-30 2012-04-12 National Institute Of Advanced Industrial & Technology Hollow fiber porous body of natural zeolite, zeolite membrane composite porous body and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001829A (en) 2000-06-16 2002-01-08 Shinei Techno Kk Method for preparing composite foam
JP2007291186A (en) 2006-04-21 2007-11-08 Inoac Corp Method for producing polyolefin resin foam
JP2007320988A (en) 2006-05-30 2007-12-13 Futamura Chemical Co Ltd Interconnected porous structure member containing sealed material and method for producing the same
JP2012072534A (en) 2009-11-30 2012-04-12 National Institute Of Advanced Industrial & Technology Hollow fiber porous body of natural zeolite, zeolite membrane composite porous body and method for manufacturing the same
WO2011155536A1 (en) 2010-06-09 2011-12-15 日揮触媒化成株式会社 Support for protein immobilization, immobilized protein and method for producing same

Also Published As

Publication number Publication date
JP2018090767A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Ngah et al. Adsorption of dyes and heavy metal ions by chitosan composites: A review
Wu et al. Hierarchically porous carbon membranes derived from PAN and their selective adsorption of organic dyes
US10105680B2 (en) Activated carbon with excellent adsorption performance and process for producing same
Tian et al. Monodisperse raspberry-like multihollow polymer/Ag nanocomposite microspheres for rapid catalytic degradation of methylene blue
Kueasook et al. Green and facile synthesis of hierarchically porous carbon monoliths via surface self-assembly on sugarcane bagasse scaffold: influence of mesoporosity on efficiency of dye adsorption
Luo et al. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment
TWI689463B (en) Metal composite carbon material, fuel cell catalyst, fuel cell, hydrogen storage material, hydrogen tank, and method of manufacturing metal composite carbon material
Han et al. Preparation of a hydroxyethyl–titanium dioxide–carboxymethyl cellulose hydrogel cage and its effect on the removal of methylene blue
Berenjian et al. Mesoporous carboxylated Mn2O3 nanofibers: Synthesis, characterization and dye removal property
Yu et al. Batch and continuous fixed-bed column adsorption of tetracycline by biochar/MOFs derivative covered with κ-carrageenan/calcium alginate hydrogels
Liu et al. Recent advances in the direct fabrication of millimeter-sized hierarchical porous materials
Chen et al. Influence of mixed alkali on the preparation of edible fungus substrate porous carbon material and its application for the removal of dye
Huang et al. Fabrication of highly-stable Ag/CA@ GTA hydrogel beads and their catalytic application
Uddin Ahmad et al. Adsorptive removal of resorcinol onto surface modified ordered mesoporous carbon: kinetics and equilibrium study
Gao et al. Synthesis of MnSiO3 decorated hollow mesoporous silica spheres and its promising application in environmental remediation
Mengesha et al. Azo-dye derived oxidized-nitrogen rich carbon sheets with high adsorption capability for dye effluent under both batch and continuous conditions
JP6990906B2 (en) Porous molded body of mesoporous fine particles, carrier for supporting enzymes, enzyme complexes thereof, and methods for producing them.
Gomes et al. Facile sol–gel synthesis of silica sorbents for the removal of organic pollutants from aqueous media
Novais et al. Highly efficient lead extraction from aqueous solutions using inorganic polymer foams derived from biomass fly ash and metakaolin
Yang et al. Preparation of a spherical biochar colloidal probe and its application in deciphering the mechanism of biochar mitigating membrane fouling
Zamel et al. New trends in nanofibers functionalization and recent applications in wastewater treatment
Chen et al. Facile preparation of ultrathin-wall graphitic mesoporous carbon containing graphene sheets with desirable adsorption performance for organic dyes
Tian et al. Cellulose acetate-based electrospun nanofiber aerogel with excellent resilience and hydrophobicity for efficient removal of drug residues and oil contaminations from wastewater
Saeidi et al. Effects of powder activated carbon particle size on adsorption capacity and mechanical properties of the semi activated carbon fiber
Alkas et al. Immobilization of UiO-66/Brown-rot fungi (BRF) in PVA-SA matrix and its performance for methylene blue decolorization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211130

R150 Certificate of patent or registration of utility model

Ref document number: 6990906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150