JP2006273585A - Apparatus for manufacturing single crystal - Google Patents

Apparatus for manufacturing single crystal Download PDF

Info

Publication number
JP2006273585A
JP2006273585A JP2005090234A JP2005090234A JP2006273585A JP 2006273585 A JP2006273585 A JP 2006273585A JP 2005090234 A JP2005090234 A JP 2005090234A JP 2005090234 A JP2005090234 A JP 2005090234A JP 2006273585 A JP2006273585 A JP 2006273585A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
container
furnace
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005090234A
Other languages
Japanese (ja)
Other versions
JP4522898B2 (en
Inventor
Yoshimasa Kobayashi
義政 小林
Naohito Yamada
直仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005090234A priority Critical patent/JP4522898B2/en
Publication of JP2006273585A publication Critical patent/JP2006273585A/en
Application granted granted Critical
Publication of JP4522898B2 publication Critical patent/JP4522898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly grow a single crystal on a seed crystal in manufacturing the single crystal by a vapor phase deposition. <P>SOLUTION: The apparatus for manufacturing a single crystal 10 is equipped with a seed crystal 3, a container 1 which contains a raw material 5 of a single crystal 6, a main body 21 which composes a furnace 2 containing the seed crystal 3 and the container 1, a lid 22, and a holder 23, and the single crystal 6 is manufactured by a vapor phase deposition. At least a part of the opening forming part A of the container 1 is formed by a material having a crystal system different from the crystal system of the single crystal 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、気相法により単結晶を製造する単結晶製造装置に関する。   The present invention relates to a single crystal manufacturing apparatus for manufacturing a single crystal by a vapor phase method.

単結晶の製造方法には、気相法や液相法など様々なものがある。これらの製造方法は一般的に、種結晶を準備し、その種結晶上に単結晶を成長させるものである。例えば、気相法による単結晶の製造は、種結晶と、単結晶の原料を収容した容器と、これらを収容する炉とを備える単結晶製造装置において行われる(例えば、非特許文献1、非特許文献2参照)。
Cengiz M. etal, “Sublimation growth and characterization of bulk aluminum nitride single crystals”, Journal of Crystal Growth 179, 1997,p.363-370 Glen A. Slack, “Growth of Single Crystals”, Mat. Res. Soc. Symp. Proc. Vol.512, 1998, p.35-40
There are various methods for producing a single crystal, such as a gas phase method and a liquid phase method. In general, these production methods involve preparing a seed crystal and growing a single crystal on the seed crystal. For example, single crystal production by a vapor phase method is performed in a single crystal production apparatus including a seed crystal, a container containing single crystal raw materials, and a furnace containing these (for example, Non-Patent Document 1, Non-patent Document 1). Patent Document 2).
Cengiz M. etal, “Sublimation growth and characterization of bulk aluminum nitride single crystals”, Journal of Crystal Growth 179, 1997, p.363-370 Glen A. Slack, “Growth of Single Crystals”, Mat. Res. Soc. Symp. Proc. Vol. 512, 1998, p.

しかしながら、従来の一般的な気相法の単結晶製造装置では、種結晶だけでなく、単結晶の原料が収容される容器上や炉を構成する炉材上に、雑晶(結晶)が生成してしまう課題があった。これにより、単結晶の製造歩留まりの低下を招いていた。特に、容器上に生成する雑晶は、容器の開口部を塞いでしまう場合があった。その結果、容器に収容された原料が種結晶にほとんど到達できず、単結晶の収率が非常に低くなってしまうおそれがあった。   However, conventional single-phase production equipment for vapor-phase methods produces not only seed crystals but also miscellaneous crystals (crystals) on the vessel that contains the raw material of the single crystal and on the furnace material that constitutes the furnace. There was a problem to do. As a result, the production yield of the single crystal is reduced. In particular, miscellaneous crystals formed on the container may block the opening of the container. As a result, the raw material accommodated in the container could hardly reach the seed crystal, and the yield of the single crystal might be very low.

又、単結晶の原料が収容される容器や炉材は、非常に反応性の高い環境に曝されるため、それらの劣化が激しかった。そのため、容器や炉材の寿命が短く、溶解した容器や炉材の成分が不純物として単結晶に混入するおそれがあった。   Moreover, since the container and furnace material in which the raw material of a single crystal is accommodated are exposed to a very reactive environment, their deterioration was severe. Therefore, the life of the container and the furnace material is short, and there is a possibility that the dissolved components of the container and the furnace material are mixed into the single crystal as impurities.

そこで、本発明は、気相法を用いた単結晶の製造において、種結晶上に適切に単結晶を成長させることを目的とする。   Accordingly, an object of the present invention is to appropriately grow a single crystal on a seed crystal in the production of a single crystal using a vapor phase method.

本発明の単結晶製造装置は、種結晶と、単結晶の原料が収容される容器と、種結晶及び容器が収容される炉を構成する炉材とを備え、気相法により単結晶を製造するものである。そして、単結晶製造装置は、少なくとも容器の開口部を形成する一部が単結晶の晶系と異なる晶系の材料で形成されていることを特徴とする。   The single crystal manufacturing apparatus of the present invention includes a seed crystal, a container for storing the raw material of the single crystal, and a furnace material constituting a furnace for storing the seed crystal and the container, and manufactures the single crystal by a vapor phase method. To do. The single crystal manufacturing apparatus is characterized in that at least a part forming the opening of the container is formed of a crystal material different from the crystal system of the single crystal.

このような単結晶製造装置によれば、単結晶の原料が収容される容器の少なくとも開口部を形成する一部が、目的とする単結晶の晶系とは異なる晶系の材料で形成されているため、容器の開口部を形成する部分に雑晶が生成することを抑制できる。よって、容器に収容された原料が気相となり、種結晶に到達することができる。その結果、気相法を用いた単結晶の製造において、種結晶上に適切に単結晶を成長させることができる。   According to such a single crystal manufacturing apparatus, at least a part of the container for storing the raw material of the single crystal is formed of a crystal material different from the target single crystal crystal system. Therefore, it can suppress that a miscellaneous crystal produces | generates in the part which forms the opening part of a container. Therefore, the raw material accommodated in the container becomes a gas phase and can reach the seed crystal. As a result, the single crystal can be appropriately grown on the seed crystal in the production of the single crystal using the vapor phase method.

単結晶の晶系と異なる晶系の材料は、製造する単結晶の成長面と整合性が良い格子面を持たず、単結晶との濡れが悪いことが好ましい。   It is preferable that a material having a crystal system different from the crystal system of the single crystal does not have a lattice plane having good consistency with the growth surface of the single crystal to be manufactured and has poor wettability with the single crystal.

更に、炉材の種結晶の周辺部分の少なくとも一部が、単結晶の晶系と異なる晶系の材料で形成されていることが好ましい。これによれば、炉材上に雑晶が生成することも抑制できるため、より確実に種結晶上に単結晶を成長させることができ、製造歩留まりを向上できる。   Furthermore, it is preferable that at least a part of the peripheral portion of the seed crystal of the furnace material is formed of a crystal material different from the single crystal crystal system. According to this, since it is possible to suppress generation of miscellaneous crystals on the furnace material, it is possible to grow a single crystal on the seed crystal more reliably and to improve the manufacturing yield.

単結晶の晶系と異なる晶系の材料は、窒化物であることが好ましい。これによれば、単結晶の原料が収容される容器や炉材の劣化を抑制することができる。そのため、容器や炉材の寿命を長くでき、単結晶に不純物が混入することを防止できる。単結晶の晶系と異なる晶系の材料は、窒化チタン、又は、窒化ジルコニウムであることが好ましい。   The material having a crystal system different from the crystal system of the single crystal is preferably a nitride. According to this, it is possible to suppress deterioration of the container or furnace material in which the single crystal raw material is stored. Therefore, the life of the container and the furnace material can be extended, and impurities can be prevented from being mixed into the single crystal. The material having a crystal system different from the single crystal system is preferably titanium nitride or zirconium nitride.

製造する単結晶は、六方晶系であることが好ましい。六方晶系の単結晶は、窒化アルミニウム、又は、炭化珪素であることが好ましい。   The single crystal to be produced is preferably a hexagonal system. The hexagonal single crystal is preferably aluminum nitride or silicon carbide.

以上説明したように、本発明によれば、気相法を用いた単結晶の製造において、種結晶上に適切に単結晶を成長させることができる。   As described above, according to the present invention, a single crystal can be appropriately grown on a seed crystal in the production of a single crystal using a vapor phase method.

図1に示すように、単結晶製造装置10は、単結晶の原料が収容される容器1と、炉2と、種結晶3と、ヒーター4とを備える。単結晶製造装置10は、種結晶3上に単結晶6を成長させて、単結晶6を製造する。単結晶製造装置10は、気相法の1つである昇華法により、単結晶6を製造する。   As shown in FIG. 1, the single crystal manufacturing apparatus 10 includes a container 1 in which a single crystal raw material is stored, a furnace 2, a seed crystal 3, and a heater 4. The single crystal manufacturing apparatus 10 grows the single crystal 6 on the seed crystal 3 and manufactures the single crystal 6. The single crystal manufacturing apparatus 10 manufactures the single crystal 6 by a sublimation method that is one of gas phase methods.

容器1内には、単結晶6の原料5が収容される。容器1は、開口部を有している。容器1内に収容された原料5は気相となり、容器1の開口部から出て種結晶3に向かう。炉2は、開口部を有する本体部21と、本体部21の開口部を塞ぐ蓋体部22と、保持部23とを備える。本体部21には、容器1が収容される。保持部23は、種結晶3を保持する。保持部23は、蓋体部22に取り付けられている。蓋体部22は、保持部23により種結晶3が保持された状態で、本体部21の開口部を塞ぐように配置される。このようにして、容器1及び種結晶3は、炉2内に収容される。同時に、種結晶3は、容器1上方に容器1と対向して配置される。   In the container 1, a raw material 5 of the single crystal 6 is accommodated. The container 1 has an opening. The raw material 5 accommodated in the container 1 becomes a gas phase, and exits from the opening of the container 1 toward the seed crystal 3. The furnace 2 includes a main body portion 21 having an opening portion, a lid portion 22 that closes the opening portion of the main body portion 21, and a holding portion 23. The main body 21 accommodates the container 1. The holding unit 23 holds the seed crystal 3. The holding part 23 is attached to the lid body part 22. The lid portion 22 is disposed so as to close the opening of the main body portion 21 in a state where the seed crystal 3 is held by the holding portion 23. In this way, the container 1 and the seed crystal 3 are accommodated in the furnace 2. At the same time, the seed crystal 3 is disposed above the container 1 so as to face the container 1.

ヒーター4は、炉2の周囲に設けられ、炉2内を加熱する。ヒーター4による加熱により、容器1内に収容された原料5が昇華し、種結晶3上に単結晶6が成長する。ヒーター4は、炭素ヒーター、タングステンヒーターなどを用いることができる。このような単結晶製造装置10は、例えば、真空排気が可能な反応室(チャンバー)や、窒素ガスやアルゴンガスなどの不活性ガス、単結晶の種類に応じた化合物ガスなどが導入可能な反応室(チャンバー)に収容できる。又、炉2の周囲に断熱材を設けることもできる。   The heater 4 is provided around the furnace 2 and heats the inside of the furnace 2. By heating by the heater 4, the raw material 5 accommodated in the container 1 is sublimated, and a single crystal 6 grows on the seed crystal 3. As the heater 4, a carbon heater, a tungsten heater, or the like can be used. Such a single crystal manufacturing apparatus 10 includes, for example, a reaction chamber (chamber) that can be evacuated, an inert gas such as nitrogen gas or argon gas, and a reaction that can introduce a compound gas according to the type of single crystal. It can be accommodated in a chamber. Further, a heat insulating material can be provided around the furnace 2.

次に、容器1及び炉2について、より詳細に説明する。容器1は、その開口部を形成する部分(以下「開口部形成部」という)Aの少なくとも一部が、目的とする単結晶6の晶系と異なる晶系の材料で形成されている。更に、炉2を構成する本体部21、蓋体部22、保持部23などの炉材のうち、種結晶3の周辺部分(以下「種結晶周辺部」という)Bの少なくとも一部が、単結晶6の晶系と異なる晶系の材料で形成されている。   Next, the container 1 and the furnace 2 will be described in more detail. In the container 1, at least a part of a portion (hereinafter referred to as “opening forming portion”) A that forms the opening is formed of a material having a crystal system different from the crystal system of the target single crystal 6. Further, among the furnace materials such as the main body 21, the lid portion 22, and the holding portion 23 constituting the furnace 2, at least a part of the peripheral portion of the seed crystal 3 (hereinafter referred to as “seed crystal peripheral portion”) B is a single part. The crystal 6 is made of a material different from the crystal system.

晶系には、三斜晶系、単斜晶系、正方晶系、六方晶系、三方晶系、立方晶系がある。例えば、単結晶6が六方晶系の場合、容器1の開口部形成部Aや炉材の種結晶周辺部Bの少なくとも一部を、六方晶系以外の三斜晶系、単斜晶系、正方晶系、三方晶系、又は、立方晶系のいずれかの晶系の材料で形成できる。   The crystal system includes triclinic system, monoclinic system, tetragonal system, hexagonal system, trigonal system and cubic system. For example, when the single crystal 6 is hexagonal, at least part of the opening forming part A of the container 1 and the seed crystal peripheral part B of the furnace material is triclinic, monoclinic, other than hexagonal, A tetragonal, trigonal, or cubic crystal material can be used.

単結晶の晶系と異なる晶系の材料は、製造する単結晶の成長面と整合性が良い格子面を持たず、単結晶との濡れが悪いことが好ましい。   It is preferable that a material having a crystal system different from the crystal system of the single crystal does not have a lattice plane having good consistency with the growth surface of the single crystal to be manufactured and has poor wettability with the single crystal.

単結晶6の晶系と異なる晶系の材料は、窒化物であることが好ましい。これによれば、容器1や炉材の劣化を抑制することができる。そのため、容器1や炉材の寿命を長くでき、単結晶6に不純物が混入することを防止できる。より具体的には、窒化物は、高温においても安定なものが多く、単結晶の成分や容器1内に収容された原料成分と反応しにくい。そのため、昇華した原料成分が付着しやすい容器1の開口部形成部Aや炉材の種結晶周辺部Bの少なくとも一部を窒化物で形成することにより、容器1や炉材は長時間に渡る単結晶の成長に耐えることができ、容器1や炉材の成分が単結晶に混入する不純物となることを抑制できる。よって、単結晶製造装置10は、長時間に渡る単結晶の育成が可能となり、不純物の混入が少ない単結晶を製造できる。特に、窒化物として、窒化チタン(TiN)や窒化ジルコニウム(ZrN)を用いることが好ましい。   The crystal material different from the crystal system of the single crystal 6 is preferably a nitride. According to this, deterioration of the container 1 and the furnace material can be suppressed. Therefore, the lifetime of the container 1 and the furnace material can be extended, and impurities can be prevented from being mixed into the single crystal 6. More specifically, many nitrides are stable even at high temperatures, and hardly react with single crystal components or raw material components stored in the container 1. Therefore, by forming at least a part of the opening forming part A of the container 1 and the seed crystal peripheral part B of the furnace material, to which the sublimated raw material components are likely to adhere, the container 1 and the furnace material can be used for a long time. It can withstand the growth of the single crystal and can suppress the components of the vessel 1 and the furnace material from becoming impurities mixed into the single crystal. Therefore, the single crystal manufacturing apparatus 10 can grow a single crystal for a long time, and can manufacture a single crystal with less impurities. In particular, it is preferable to use titanium nitride (TiN) or zirconium nitride (ZrN) as the nitride.

単結晶製造装置10は、セラミックスの単結晶を製造できる。例えば、単結晶製造装置10は、六方晶系のセラミックスの単結晶を製造できる。単結晶製造装置10は、六方晶系のセラミックスの単結晶として、例えば、窒化アルミニウム(AlN)、炭化珪素(SiC)、窒化ガリウム(GaN)などを製造できる。   The single crystal manufacturing apparatus 10 can manufacture ceramic single crystals. For example, the single crystal manufacturing apparatus 10 can manufacture a single crystal of a hexagonal ceramic. The single crystal manufacturing apparatus 10 can manufacture, for example, aluminum nitride (AlN), silicon carbide (SiC), gallium nitride (GaN), etc. as a single crystal of hexagonal ceramics.

六方晶系の窒化アルミニウムや炭化珪素などの単結晶を製造する場合、容器1の開口部形成部Aや炉材の種結晶周辺部Bの少なくとも一部は、単結晶6の晶系と異なる晶系の材料として、立方晶系である窒化チタン(TiN)や窒化ジルコニウム(ZrN)を用いて形成されることが好ましい。   When producing a single crystal such as hexagonal aluminum nitride or silicon carbide, at least part of the opening forming portion A of the container 1 and the seed crystal peripheral portion B of the furnace material is different from the crystal system of the single crystal 6. It is preferable to use cubic system titanium nitride (TiN) or zirconium nitride (ZrN) as the system material.

又、容器1の開口部形成部Aや炉材の種結晶周辺部Bの少なくとも一部を形成する材料は、単結晶6の晶系以外に、単結晶6の製造に用いる原料5に対して最適なものを用いることが好ましい。例えば、窒化アルミニウムの単結晶を製造する場合、その原料としては、窒化アルミニウム又は窒化アルミニウムの前駆体の少なくとも1つを用いることができる。更に、窒化アルミニウム又は窒化アルミニウムの前駆体の少なくとも1つに、酸化アルミニウム(Al23)又は酸化アルミニウムの前駆体の少なくとも1つを混合した原料を用いることもできる。あるいは、酸窒化アルミニウム(AlON)又は酸窒化アルミニウムの前駆体の少なくとも1つを用いることができる。 In addition to the crystal system of the single crystal 6, the material for forming at least a part of the opening forming part A of the container 1 and the seed crystal peripheral part B of the furnace material is based on the raw material 5 used for manufacturing the single crystal 6. It is preferable to use an optimum one. For example, when a single crystal of aluminum nitride is manufactured, at least one of aluminum nitride or an aluminum nitride precursor can be used as the raw material. Furthermore, a raw material in which at least one of aluminum nitride or an aluminum nitride precursor is mixed with at least one of aluminum oxide (Al 2 O 3 ) or an aluminum oxide precursor may be used. Alternatively, at least one of aluminum oxynitride (AlON) or aluminum oxynitride precursor can be used.

酸化アルミニウムの前駆体としては、例えば、加熱により酸化アルミニウムに変化する水酸化アルミニウム(Al(OH)3)、硫酸アルミニウム(Al2(SO43)、アルミニウムアルコキシド(Al(RO)3、R:アルキル基)などを用いることができる。窒化アルミニウムの前駆体としては、例えば、加熱により酸化アルミニウムに変化するアルミニウム(Al)、炭化アルミニウム(Al43、Al26)、ベーマイト(AlO(OH)、Al23・H2O)、塩化アルミニウム(AlCl3)などを用いることができる。 Examples of the precursor of aluminum oxide include aluminum hydroxide (Al (OH) 3 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), aluminum alkoxide (Al (RO) 3 , R) that changes to aluminum oxide by heating. : Alkyl group) and the like. The precursor of aluminum nitride, for example, aluminum is changed to aluminum oxide by heating (Al), aluminum carbide (Al 4 C 3, Al 2 C 6), boehmite (AlO (OH), Al 2 O 3 · H 2 O), aluminum chloride (AlCl 3 ), or the like can be used.

又、炭化珪素の単結晶を製造する場合、その原料としては、炭化珪素、シリカ(SiO2)及び炭素(C)、珪素(Si)及び炭素などを用いることができる。 When a silicon carbide single crystal is produced, silicon carbide, silica (SiO 2 ) and carbon (C), silicon (Si), carbon, and the like can be used as the raw material.

例えば、窒化アルミニウムの単結晶を製造する際に、原料5として窒化アルミニウム又は窒化アルミニウム前駆体の少なくとも1つを単独で用いる場合、単結晶製造中に原料からアルミニウム(Al)が揮発する。そのため、容器1の開口部形成部Aや炉材の種結晶周辺部Bの少なくとも一部は、自由エネルギー的に窒化アルミニウムよりも安定な窒化物であって、窒化アルミニウムと晶系が異なる材料により形成することが好ましい。例えば、容器1の開口部形成部Aや炉材の種結晶周辺部Bの少なくとも一部は、窒化チタンや窒化ジルコニウムにより形成されることが好ましい。   For example, when producing a single crystal of aluminum nitride, when at least one of aluminum nitride or an aluminum nitride precursor is used alone as the raw material 5, aluminum (Al) is volatilized from the raw material during the production of the single crystal. Therefore, at least a part of the opening forming portion A of the container 1 and the seed crystal peripheral portion B of the furnace material is a nitride that is more stable than aluminum nitride in terms of free energy, and is made of a material having a crystal system different from that of aluminum nitride. It is preferable to form. For example, it is preferable that at least a part of the opening forming part A of the container 1 and the seed crystal peripheral part B of the furnace material is formed of titanium nitride or zirconium nitride.

又、窒化アルミニウムの単結晶を製造する際に、原料5として窒化アルミニウム又は窒化アルミニウム前駆体の少なくとも1つに、酸化アルミニウム又は酸化アルミニウムの前駆体の少なくとも1つを混合したものを用いる場合や、酸窒化アルミニウムを用いる場合、単結晶製造中に原料からアルミニウムの低級酸化物(例えば、Al2Oなど)が揮発すると考えられている。そのため、容器1の開口部形成部Aや炉材の種結晶周辺部Bの少なくとも一部の形成材料は、自由エネルギー的に窒化アルミニウムよりも安定な窒化物であって、かつ、形成材料に含まれる金属元素から生成される酸化物が酸化アルミニウムよりも不安定なものであり、窒化アルミニウムと晶系が異なるものであることが好ましい。例えば、容器1の開口部形成部Aや炉材の種結晶周辺部Bの少なくとも一部は、窒化チタンにより形成されることが好ましい。 Further, when producing a single crystal of aluminum nitride, when using a mixture of at least one of aluminum oxide or aluminum oxide precursor and at least one of aluminum nitride or aluminum nitride precursor as raw material 5, When aluminum oxynitride is used, it is believed that lower oxides of aluminum (eg, Al 2 O) are volatilized from the raw material during single crystal production. Therefore, at least a part of the forming material of the opening forming part A of the container 1 and the seed crystal peripheral part B of the furnace material is a nitride that is more stable than aluminum nitride in terms of free energy and is included in the forming material. The oxide generated from the metal element is more unstable than aluminum oxide and preferably has a crystal system different from that of aluminum nitride. For example, it is preferable that at least a part of the opening forming part A of the container 1 and the seed crystal peripheral part B of the furnace material is formed of titanium nitride.

容器1は、図1に示したように、容器1の開口部形成部Aの少なくとも一部が、単結晶6の晶系と異なる晶系の材料で形成されればよい。例えば、図2(a)に示すように、容器の開口部形成部1a全体を単結晶6と異なる晶系の材料で形成することができる。又、図2(b)に示すように、容器の開口部形成部の一部を、単結晶6と異なる晶系の材料の被覆層1cで形成することもできる。例えば、昇華した原料が付着しやすい、容器の開口部形成部の内壁や端部を被覆層1cで形成することができる。   As shown in FIG. 1, at least a part of the opening forming portion A of the container 1 may be formed of a crystal material different from the crystal system of the single crystal 6. For example, as shown in FIG. 2A, the entire opening forming portion 1 a of the container can be formed of a material having a crystal system different from that of the single crystal 6. Further, as shown in FIG. 2B, a part of the opening forming part of the container can be formed with a coating layer 1 c made of a crystal material different from the single crystal 6. For example, the inner wall and the end of the opening forming portion of the container, to which the sublimated raw material easily adheres, can be formed with the coating layer 1c.

炉材も、図1に示したように、炉材の種結晶周辺部Bの少なくとも一部が、単結晶6の晶系と異なる晶系の材料で形成されればよい。例えば、種結晶3を中心とした、容器1の開口部の半径(内径)の1.5倍の半径を持つ円の範囲内にある炉材を、単結晶6と異なる晶系の材料で形成することができる。又、炉材の種結晶周辺部Bにおける、昇華した原料が付着しやすい部分を単結晶6と異なる晶系の材料で形成することができる。   As shown in FIG. 1, the furnace material may be formed of a material having a crystal system different from the crystal system of the single crystal 6 in at least a part of the seed crystal peripheral portion B of the furnace material. For example, a furnace material in the range of a circle having a radius 1.5 times the radius (inner diameter) of the opening of the container 1 with the seed crystal 3 as the center is formed of a material of a crystal system different from the single crystal 6. can do. In addition, the portion where the sublimated raw material easily adheres in the seed crystal peripheral portion B of the furnace material can be formed of a material of a crystal system different from that of the single crystal 6.

例えば、図2(c)に示すように、蓋体部22の中央部22a及び保持部23といった種結晶周辺部全体を、単結晶6と異なる晶系の材料で形成することができる。又、図2(d)に示すように、蓋体部22の中央部分の下部といった種結晶周辺部の一部を、単結晶6と異なる晶系の材料の被覆層22cで形成することもできる。   For example, as shown in FIG. 2C, the entire seed crystal peripheral part such as the central part 22 a and the holding part 23 of the lid part 22 can be formed of a material having a crystal system different from that of the single crystal 6. Further, as shown in FIG. 2 (d), a part of the seed crystal peripheral part such as the lower part of the central part of the lid part 22 can be formed with a coating layer 22 c made of a crystal material different from the single crystal 6. .

容器の原料を収容する原料収容部1bや、被覆層1cを支持する本体部1dの材料は限定されない。又、蓋体部22の中央部22aの外周を囲む外周部22bや、被覆層22cを支持する本体部22dの材料も限定されない。   The material of the raw material container 1b that stores the raw material of the container and the main body 1d that supports the coating layer 1c is not limited. Moreover, the material of the outer peripheral part 22b surrounding the outer periphery of the center part 22a of the lid part 22 and the main body part 22d for supporting the coating layer 22c is not limited.

例えば、容器の原料収容部1bや本体部1d、蓋体部22の外周部22bや本体部22dは、容器の開口部形成部1aや被覆層1c、蓋体部22の中央部22aや被覆層22cと同種の材料で形成することができる。この場合、単結晶の原料が収容される容器全体や、炉材(蓋体部22)全体が、単結晶6の晶系と異なる晶系の材料で形成されることになる。例えば、単結晶と異なる晶系の材料として、窒化チタンや窒化ジルコニウムなどの窒化物を用いている場合には、容器全体や炉材全体の劣化を抑制できるため、容器や炉材の寿命をより長くでき、単結晶に不純物が混入することをより一層防止できる。容器の内壁全体を被覆層で形成することや、炉材の容器と対向する部分全体(蓋体部22の下部全体)を被覆層で形成することによっても、同様の効果が得られる。   For example, the container raw material storage portion 1b and the main body portion 1d, the outer peripheral portion 22b and the main body portion 22d of the lid body portion 22, the container opening forming portion 1a and the covering layer 1c, the central portion 22a of the lid portion 22 and the covering layer. It can be formed of the same material as 22c. In this case, the entire container in which the single crystal raw material is accommodated and the entire furnace material (cover body portion 22) are formed of a crystal material different from the crystal system of the single crystal 6. For example, when a nitride such as titanium nitride or zirconium nitride is used as a material having a crystal system different from that of a single crystal, deterioration of the entire container and the entire furnace material can be suppressed. The length can be increased, and impurities can be further prevented from being mixed into the single crystal. The same effect can be obtained by forming the entire inner wall of the container with the covering layer, or forming the entire portion facing the container of the furnace material (the entire lower portion of the lid portion 22) with the covering layer.

あるいは、容器の原料収容部1bや本体部1d、蓋体部22の外周部22bや本体部22dは、窒化硼素(BN)、窒化アルミニウム、カーボン(C)などで形成してもよい。これによれば、単結晶6と異なる晶系の材料が、熱衝撃などに弱い場合や、単結晶6の熱膨張係数との差が大きい場合などに、容器の原料収容部1bや本体部1d、蓋体部22の外周部22bや本体部22dが、容器の開口部形成部1aや被覆層1c、蓋体部22の中央部22aや被覆層22cを補強することができる。よって、容器や炉材をより一層高寿命化できる。例えば、容器の原料収容部1bや本体部1d、蓋体部22の外周部22bや本体部22を、窒化アルミニウムで形成し、容器の開口部形成部1aや被覆層1c、蓋体部22の中央部22aや被覆層22cを窒化チタンで形成することができる。   Alternatively, the raw material container 1b and the main body 1d of the container and the outer peripheral portion 22b and the main body 22d of the lid 22 may be formed of boron nitride (BN), aluminum nitride, carbon (C), or the like. According to this, when the material of the crystal system different from the single crystal 6 is weak against thermal shock or when the difference from the thermal expansion coefficient of the single crystal 6 is large, the raw material container 1b and the main body 1d of the container are used. The outer peripheral portion 22b and the main body portion 22d of the lid portion 22 can reinforce the opening forming portion 1a and the covering layer 1c of the container, and the central portion 22a and the covering layer 22c of the lid portion 22. Therefore, the life of the container and the furnace material can be further increased. For example, the raw material container 1b and the main body 1d of the container, the outer peripheral part 22b and the main body 22 of the lid 22 are made of aluminum nitride, and the opening forming part 1a, the covering layer 1c, and the lid 22 of the container are formed. The central portion 22a and the covering layer 22c can be formed of titanium nitride.

容器1全体や蓋体部22全体を、単結晶6と異なる晶系の材料で形成する場合、原料粉末を調整して成形し、焼成することにより、容器1や蓋体部22を作製できる。又、容器1や蓋体部22の一部を単結晶6と異なる晶系の材料で形成し、残部を他の材料で形成する場合には、まず、それぞれの原料粉末を調整して成形し、複数の成形体を作成する。その後、各成形体を焼成し、得られた複数の焼結体を、例えば、接合剤を用いて液相接合法や固相接合法により接合することにより、容器1や蓋体部22を作製できる。あるいは、複数の成形体を、ホットプレス法などにより一体に焼成することにより、一体焼結体の容器1や蓋体部22を作製できる。   In the case where the entire container 1 and the entire lid part 22 are formed of a material having a crystal system different from the single crystal 6, the container 1 and the lid part 22 can be produced by adjusting and shaping the raw material powder and firing it. In addition, when a part of the container 1 or the lid part 22 is formed of a crystal material different from the single crystal 6 and the remaining part is formed of another material, first, the respective raw material powders are adjusted and molded. Create a plurality of molded bodies. Thereafter, each molded body is fired, and the plurality of obtained sintered bodies are bonded by, for example, a liquid phase bonding method or a solid phase bonding method using a bonding agent, thereby producing the container 1 and the lid portion 22. it can. Alternatively, by integrally firing a plurality of molded bodies by a hot press method or the like, the integrally sintered container 1 and the lid portion 22 can be produced.

又、本体部1d,22dに被覆層1c,22cを形成する場合には、まず、本体部1d,22dの原料粉末を調整して成形し、焼成することにより、本体部1d,22dを作製する。次に、本体部1d,22dに、例えば、CVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)などにより被覆層1c,22cを形成できる。被覆層1c,22cの厚さは、1〜20μmであることが好ましい。   When the coating layers 1c and 22c are formed on the main body portions 1d and 22d, the main body portions 1d and 22d are first prepared by adjusting and forming the raw material powders of the main body portions 1d and 22d and firing them. . Next, the coating layers 1c and 22c can be formed on the main body portions 1d and 22d by, for example, CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), or the like. The thickness of the coating layers 1c and 22c is preferably 1 to 20 μm.

更に、容器1の開口部形成部Aや炉材の種結晶周辺部Bの単結晶6と異なる晶系の材料で形成されている部分の平均粒子径は、0.5〜10μmであることが好ましい。又、容器1の開口部形成部Aや炉材の種結晶周辺部Bの単結晶6と異なる晶系の材料で形成されている部分の表面粗さ(Ra)は、20μm以下であることが好ましい。これらによれば、雑晶の生成をより抑制でき、容器1や炉材の劣化をより抑制できる。   Furthermore, the average particle diameter of the portion formed of a crystal material different from the single crystal 6 of the opening forming portion A of the container 1 and the seed crystal peripheral portion B of the furnace material is 0.5 to 10 μm. preferable. Further, the surface roughness (Ra) of the portion formed of a crystal system material different from the single crystal 6 of the opening forming portion A of the container 1 and the seed crystal peripheral portion B of the furnace material may be 20 μm or less. preferable. According to these, generation of miscellaneous crystals can be further suppressed, and deterioration of the container 1 and the furnace material can be further suppressed.

更に、容器1の開口部形成部Aや炉材の種結晶周辺部Bの単結晶6と異なる晶系の材料で形成されている部分の気孔径は、20μm以下であることが好ましい。又、容器1の開口部形成部Aや炉材の種結晶周辺部Bの単結晶6と異なる晶系の材料で形成されている部分の気孔率は、10%以下であることが好ましい。これらによれば、容器1や炉材の劣化をより抑制できる。   Furthermore, the pore diameter of the portion formed of a crystal material different from the single crystal 6 of the opening forming portion A of the container 1 and the seed crystal peripheral portion B of the furnace material is preferably 20 μm or less. Moreover, it is preferable that the porosity of the part formed with the crystal system material different from the single crystal 6 of the opening part formation part A of the container 1 and the seed crystal peripheral part B of the furnace material is 10% or less. According to these, deterioration of the container 1 and the furnace material can be further suppressed.

このような単結晶製造装置10によれば、単結晶の原料が収容される容器1の開口部形成部Aの少なくとも一部が目的とする単結晶6の晶系とは異なる晶系の材料で形成されているため、容器1の開口部形成部Aに雑晶が生成することを抑制できる。よって、雑晶が容器1の開口部を塞いでしまうことがなく、容器1に収容された原料5が気相となり、種結晶3に到達することができる。その結果、気相法を用いた単結晶6の製造において、種結晶3上に適切に単結晶6を成長させることができる。よって、単結晶6の収率を向上でき、製造歩留まりを向上できる。   According to such a single crystal manufacturing apparatus 10, at least a part of the opening forming part A of the container 1 in which the single crystal raw material is accommodated is made of a crystal material different from the target crystal system of the single crystal 6. Since it is formed, generation of miscellaneous crystals in the opening forming portion A of the container 1 can be suppressed. Therefore, the miscellaneous crystal does not block the opening of the container 1, and the raw material 5 accommodated in the container 1 becomes a vapor phase and can reach the seed crystal 3. As a result, the single crystal 6 can be appropriately grown on the seed crystal 3 in the production of the single crystal 6 using the vapor phase method. Therefore, the yield of the single crystal 6 can be improved and the manufacturing yield can be improved.

更に、炉2を構成する本体部21、蓋体部22、保持部23などの炉材のうち、種結晶周辺部Bの少なくとも一部が、単結晶6の晶系と異なる晶系の材料で形成されているため、炉材上に雑晶が生成することも抑制できる。よって、より確実に種結晶3上に単結晶6を成長させることができ、製造歩留まりをより向上できる。   Further, among the furnace materials such as the main body portion 21, the lid body portion 22, and the holding portion 23 constituting the furnace 2, at least a part of the seed crystal peripheral portion B is made of a crystal material different from the crystal system of the single crystal 6. Since it is formed, generation of miscellaneous crystals on the furnace material can also be suppressed. Therefore, the single crystal 6 can be more reliably grown on the seed crystal 3, and the manufacturing yield can be further improved.

尚、本発明は、上記実施形態に限定されず、種々の変更が可能である。例えば、炉2を構成する炉材としては、他にも、容器1を支持する支持台や、単結晶6が生成する空間と雑晶が付着する空間を効率的に分離するためのテーパーなどがある。又、炉材の種結晶周辺部B以外の材料、例えば、本体部21の材料は限定されず、例えば、図2に示した蓋体部22の外周部22bや本体部22dと同様にできる。又、本体部21のうち、容器1よりも上方部分を、単結晶6と異なる晶系の材料で形成することにより、昇華した原料が炉材に到達することをより確実に防止できる。   In addition, this invention is not limited to the said embodiment, A various change is possible. For example, as the furnace material constituting the furnace 2, there are a support base for supporting the container 1, a taper for efficiently separating the space where the single crystal 6 is generated and the space where the miscellaneous crystals are attached. is there. Further, materials other than the seed crystal peripheral portion B of the furnace material, for example, the material of the main body portion 21 are not limited, and can be the same as, for example, the outer peripheral portion 22b and the main body portion 22d of the lid portion 22 shown in FIG. Moreover, by forming the upper part of the main body 21 above the container 1 with a crystal material different from the single crystal 6, it is possible to more reliably prevent the sublimated raw material from reaching the furnace material.

又、上記実施形態では、気相法の1つである昇華法により単結晶を製造する場合について説明したが、本発明の単結晶製造装置は、あらゆる気相法に使用することができる。例えば、昇華法以外の化学輸送法、化学気相合成法などの気相法により、単結晶を製造する場合にも適用できる。   Moreover, although the said embodiment demonstrated the case where a single crystal was manufactured by the sublimation method which is one of the gas phase methods, the single crystal manufacturing apparatus of this invention can be used for all the gas phase methods. For example, the present invention can be applied to the case of producing a single crystal by a vapor phase method such as a chemical transport method other than the sublimation method or a chemical vapor phase synthesis method.

次に、本発明を実施例により更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

(実施例1、比較例1〜3)
実施例1として、開口部形成部を含め、全体を窒化チタンで形成した単結晶の原料が収容される容器を作製した。具体的には、粒度分布が0.5〜2μmの窒化チタン粉末を金型成形法により、20MPaの圧力で成形した。成形体を窒素ガス中でホットプレス法により、1800℃で焼成した。得られた焼結体に研削加工を施し、容器を得た。
(Example 1, Comparative Examples 1-3)
As Example 1, a container containing a single crystal raw material formed entirely of titanium nitride including an opening forming portion was prepared. Specifically, titanium nitride powder having a particle size distribution of 0.5 to 2 μm was molded at a pressure of 20 MPa by a mold molding method. The molded body was fired at 1800 ° C. by hot pressing in nitrogen gas. The obtained sintered body was ground to obtain a container.

又、比較例1〜3として、開口部形成部を含め、全体を黒鉛で形成した容器(比較例1)、窒化硼素で形成した容器(比較例2)、窒化アルミニウムで形成した容器(比較例3)を準備した。   Further, as Comparative Examples 1 to 3, a container formed entirely of graphite including the opening forming part (Comparative Example 1), a container formed of boron nitride (Comparative Example 2), a container formed of aluminum nitride (Comparative Example) 3) was prepared.

容器内に35mol%の窒化アルミニウムと65mol%の酸化アルミニウムを混合した原料5を収容し、図1に示した炉2の本体部21内に配置した。窒化アルミニウムの種結晶3を保持部23で保持し、蓋体部22を本体部21の開口部を塞ぐように配置した。更に、単結晶製造装置10を、反応室内に収容し、反応室内を5×10-4Paまで減圧した後、窒素ガスを導入した。そして、昇温速度20℃/分で2200℃まで昇温して、2200℃で2時間保持し、六方晶系の窒化アルミニウム単結晶を製造した。 The raw material 5 which mixed 35 mol% aluminum nitride and 65 mol% aluminum oxide was accommodated in the container, and it arrange | positioned in the main-body part 21 of the furnace 2 shown in FIG. The seed crystal 3 of aluminum nitride was held by the holding part 23, and the lid part 22 was arranged so as to close the opening part of the main body part 21. Furthermore, the single crystal manufacturing apparatus 10 was accommodated in a reaction chamber, and after reducing the pressure in the reaction chamber to 5 × 10 −4 Pa, nitrogen gas was introduced. And it heated up to 2200 degreeC with the temperature increase rate of 20 degree-C / min, and hold | maintained at 2200 degreeC for 2 hours, and manufactured the hexagonal-type aluminum nitride single crystal.

実施例1、比較例1〜3の容器について、雑晶の生成状況、単結晶の原料との反応状況、劣化状況を観察した。劣化状況は、観察だけでなく、単結晶製造前の容器の重量と、単結晶製造後の容器の重量を測定し、劣化による減少量も評価した。更に、得られた単結晶における不純物混入状況を観察した。評価結果を表1に示す。又、単結晶製造後の実施例1、比較例1〜3の容器の開口部の状態(容器を上方から観察した状態)を、それぞれ図3〜図6に示す。

Figure 2006273585
About the container of Example 1 and Comparative Examples 1-3, the production | generation condition of the miscellaneous crystal, the reaction condition with the raw material of a single crystal, and the degradation condition were observed. In addition to observation, the deterioration state was measured by measuring the weight of the container before manufacturing the single crystal and the weight of the container after manufacturing the single crystal, and evaluating the decrease due to deterioration. Furthermore, the state of impurity contamination in the obtained single crystal was observed. The evaluation results are shown in Table 1. Moreover, the state (state which observed the container from the upper direction) of the container of Example 1 after Comparative Example 1-3 after manufacture of a single crystal and the state is shown in FIGS. 3-6, respectively.
Figure 2006273585

窒化アルミニウム単結晶と異なる立方晶の窒化チタンで形成した容器(実施例1)は、図3に示すように容器の開口部形成部に雑晶は全く生成されていなかった。又、原料との反応もなく、重量減少もなく、劣化はほとんど観察されなかった。更に、得られた単結晶に不純物は混入しておらず、高純度の窒化アルミニウムの単結晶を歩留まりよく製造できた。   In the container (Example 1) formed of cubic titanium nitride different from the aluminum nitride single crystal, no miscellaneous crystals were generated in the opening forming part of the container as shown in FIG. Moreover, there was no reaction with the raw material, no weight loss, and almost no deterioration was observed. Furthermore, no impurities were mixed in the obtained single crystal, and a high-purity aluminum nitride single crystal could be produced with high yield.

これに対して、窒化アルミニウム単結晶と同一の六方晶系の黒鉛で形成した容器(比較例1)は、図4に示すように容器の開口部形成部に雑晶が多量に生成していた。又、原料の酸化アルミニウムとも反応しており、重量減少が大きく、劣化が激しかった。更に、得られた単結晶は全体的に青色に着色しており、不純物が多量に混入していた。又、単結晶の収率が低く、歩留まりが低かった。   On the other hand, in the container (Comparative Example 1) formed of the same hexagonal graphite as the aluminum nitride single crystal, a large amount of miscellaneous crystals were generated in the opening forming part of the container as shown in FIG. . Moreover, it reacted with the raw material aluminum oxide, and the weight loss was large and the deterioration was severe. Further, the obtained single crystal was colored blue as a whole, and a large amount of impurities were mixed therein. Moreover, the yield of the single crystal was low and the yield was low.

又、窒化アルミニウム単結晶と同一の六方晶系の窒化硼素で形成した容器(比較例2)は、図5に示すように、容器の開口部形成部の内壁に沿って雑晶が生成していた。又、原料の酸化アルミニウムとも反応しており、重量減少があり、劣化が生じていた。更に、得られた単結晶の表面が黄色に着色しており、不純物が混入していた。   Further, in the container formed of the same hexagonal boron nitride as the aluminum nitride single crystal (Comparative Example 2), as shown in FIG. 5, miscellaneous crystals are generated along the inner wall of the opening forming portion of the container. It was. Also, it reacted with the raw material aluminum oxide, resulting in a decrease in weight and deterioration. Furthermore, the surface of the obtained single crystal was colored yellow, and impurities were mixed.

更に、窒化アルミニウムで形成した容器(比較例3)は、図6に示すように、多量に雑晶が生成しており、容器の開口部が完全に塞がれていた。又、原料の酸化アルミニウムとも反応しており、重量減少があり、劣化が生じていた。不純物の混入はないものの、単結晶の収率が非常に低く、歩留まりが極めて低かった。   Furthermore, in the container formed of aluminum nitride (Comparative Example 3), as shown in FIG. 6, a large amount of miscellaneous crystals were generated, and the opening of the container was completely closed. Also, it reacted with the raw material aluminum oxide, resulting in a decrease in weight and deterioration. Although no impurities were mixed, the yield of the single crystal was very low and the yield was extremely low.

本発明の実施の形態に係る単結晶製造装置を示す断面図である。It is sectional drawing which shows the single crystal manufacturing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る容器及び炉材を示す図である。It is a figure which shows the container and furnace material which concern on embodiment of this invention. 実施例1の容器の開口部の状態を示す上面図である。FIG. 3 is a top view showing a state of the opening of the container of Example 1. 比較例1の容器の開口部の状態を示す上面図である。6 is a top view showing a state of an opening of a container of Comparative Example 1. FIG. 比較例2の容器の開口分の状態を示す上面図である。6 is a top view showing a state of an opening of a container of Comparative Example 2. FIG. 比較例3の容器の開口部の状態を示す上面図である。It is a top view which shows the state of the opening part of the container of the comparative example 3.

符号の説明Explanation of symbols

1 容器
2 炉
3 種結晶
4 ヒーター
5 原料
6 単結晶
10 単結晶製造装置
21 本体部
22 蓋体部
23 保持部
DESCRIPTION OF SYMBOLS 1 Container 2 Furnace 3 Seed crystal 4 Heater 5 Raw material 6 Single crystal 10 Single crystal manufacturing apparatus 21 Main part 22 Lid part 23 Holding part

Claims (7)

種結晶と、単結晶の原料が収容される容器と、前記種結晶及び前記容器が収容される炉を構成する炉材とを備え、気相法により前記単結晶を製造する単結晶製造装置であって、
少なくとも前記容器の開口部を形成する一部が前記単結晶の晶系と異なる晶系の材料で形成されていることを特徴とする単結晶製造装置。
A single crystal manufacturing apparatus comprising a seed crystal, a container for storing a raw material of the single crystal, and a furnace material constituting a furnace for storing the seed crystal and the container, and manufacturing the single crystal by a vapor phase method. There,
An apparatus for producing a single crystal, characterized in that at least a part forming the opening of the container is made of a crystal material different from the crystal system of the single crystal.
前記単結晶の晶系と異なる晶系の材料が、前記単結晶の成長面と整合性が良い格子面を持たず、前記単結晶との濡れが悪いことを特徴とする請求項1に記載の単結晶製造装置。   2. The material according to claim 1, wherein a material having a crystal system different from the crystal system of the single crystal does not have a lattice plane having good consistency with a growth surface of the single crystal, and has poor wettability with the single crystal. Single crystal manufacturing equipment. 前記炉材の前記種結晶の周辺部分の少なくとも一部が、前記単結晶の晶系と異なる晶系の材料で形成されていることを特徴とする請求項1又は2に記載の単結晶製造装置。   3. The single crystal manufacturing apparatus according to claim 1, wherein at least a part of a peripheral portion of the seed crystal of the furnace material is formed of a material having a crystal system different from the crystal system of the single crystal. . 前記単結晶の晶系と異なる晶系の材料が、窒化物であることを特徴とする請求項1乃至3のいずれか1項に記載の単結晶製造装置。   The single crystal manufacturing apparatus according to any one of claims 1 to 3, wherein the material having a crystal system different from the crystal system of the single crystal is a nitride. 前記単結晶の晶系と異なる晶系の材料が、窒化チタン、又は、窒化ジルコニウムであることを特徴とする請求項4に記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 4, wherein the material having a crystal system different from the crystal system of the single crystal is titanium nitride or zirconium nitride. 前記単結晶が六方晶系であることを特徴とする請求項1乃至5のいずれか1項に記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 1, wherein the single crystal is a hexagonal system. 前記単結晶が窒化アルミニウム、又は、炭化珪素であることを特徴とする請求項6に記載の単結晶製造装置。

The single crystal manufacturing apparatus according to claim 6, wherein the single crystal is aluminum nitride or silicon carbide.

JP2005090234A 2005-03-25 2005-03-25 Single crystal manufacturing equipment Active JP4522898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090234A JP4522898B2 (en) 2005-03-25 2005-03-25 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090234A JP4522898B2 (en) 2005-03-25 2005-03-25 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2006273585A true JP2006273585A (en) 2006-10-12
JP4522898B2 JP4522898B2 (en) 2010-08-11

Family

ID=37208689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090234A Active JP4522898B2 (en) 2005-03-25 2005-03-25 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4522898B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063853A1 (en) * 2010-11-10 2012-05-18 株式会社フジクラ Apparatus and method for production of aluminum nitride single crystal
JP2017028303A (en) * 2011-10-04 2017-02-02 信越化学工業株式会社 Coating agent for boron diffusion, and method of manufacturing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116399A (en) * 1997-10-16 1999-04-27 Denso Corp Coating of tantalum carbide and single crystal production apparatus produced by the coating
JPH11116398A (en) * 1997-10-15 1999-04-27 Showa Denko Kk Production of silicon carbide single crystal
JP2003511337A (en) * 1999-10-08 2003-03-25 クリー インコーポレイテッド Method and apparatus for growing silicon carbide crystal
WO2004061896A2 (en) * 2002-12-20 2004-07-22 Crystal Is, Inc. Method and apparatus for producing monocrystalline ain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116398A (en) * 1997-10-15 1999-04-27 Showa Denko Kk Production of silicon carbide single crystal
JPH11116399A (en) * 1997-10-16 1999-04-27 Denso Corp Coating of tantalum carbide and single crystal production apparatus produced by the coating
JP2003511337A (en) * 1999-10-08 2003-03-25 クリー インコーポレイテッド Method and apparatus for growing silicon carbide crystal
WO2004061896A2 (en) * 2002-12-20 2004-07-22 Crystal Is, Inc. Method and apparatus for producing monocrystalline ain

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063853A1 (en) * 2010-11-10 2012-05-18 株式会社フジクラ Apparatus and method for production of aluminum nitride single crystal
CN103249877A (en) * 2010-11-10 2013-08-14 株式会社藤仓 Apparatus and method for production of aluminum nitride single crystal
EP2639345A1 (en) * 2010-11-10 2013-09-18 Fujikura Co., Ltd. Apparatus and method for production of aluminum nitride single crystal
EP2639345A4 (en) * 2010-11-10 2014-04-16 Fujikura Ltd Apparatus and method for production of aluminum nitride single crystal
JP5744052B2 (en) * 2010-11-10 2015-07-01 株式会社フジクラ Manufacturing apparatus and manufacturing method of aluminum nitride single crystal
JP2017028303A (en) * 2011-10-04 2017-02-02 信越化学工業株式会社 Coating agent for boron diffusion, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4522898B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
US11761117B2 (en) SiC single crystal sublimation growth apparatus
TWI770769B (en) Vapor deposition apparatus and techniques using high purity polymer derived silicon carbide
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
EP1803840A2 (en) Method for growing single crystal of silicon carbide
KR101809642B1 (en) Method for growing silicon carbide single crystal ingot with large diameter
US9856577B2 (en) Bulk diffusion crystal growth of nitride crystal
TW202117100A (en) Preperation method for sic ingot, preperation method for sic wafer and a system thereof
JP4522898B2 (en) Single crystal manufacturing equipment
KR101633183B1 (en) Ingot manufacturing equipment
US20240035200A1 (en) Method for growing single crystals
CN101466878B (en) III-th family nitride single crystal and growth method thereof
JP4678212B2 (en) Group III nitride single crystal growth method
JP2023529341A (en) Silicon carbide ingot manufacturing method, silicon carbide ingot and its growth system
JP2016113338A (en) Thermal decomposition boron nitride member and method for manufacturing the same
TWI837924B (en) Method of manufacturing silicon carbide wafer and method of manufacturing silicon carbide ingot
JP2014084240A (en) Apparatus for producing single crystal of aluminum nitride
TW202217094A (en) Apparatus for growing single crystals, in particular single crystals of silicon carbide
JP2003071555A (en) MANUFACTURING METHOD FOR Si-SiC COMPOSITE MATERIAL
US20180127890A1 (en) Bulk diffusion crystal growth of nitride crystal
JP2014201515A (en) Method of manufacturing single crystal
JP2013014519A (en) Crystal production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Ref document number: 4522898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4