JP2006273271A - Energy absorption member for vehicle and door guard beam using it - Google Patents

Energy absorption member for vehicle and door guard beam using it Download PDF

Info

Publication number
JP2006273271A
JP2006273271A JP2005099478A JP2005099478A JP2006273271A JP 2006273271 A JP2006273271 A JP 2006273271A JP 2005099478 A JP2005099478 A JP 2005099478A JP 2005099478 A JP2005099478 A JP 2005099478A JP 2006273271 A JP2006273271 A JP 2006273271A
Authority
JP
Japan
Prior art keywords
load
fiber
vehicle
flange member
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005099478A
Other languages
Japanese (ja)
Other versions
JP4728677B2 (en
Inventor
Kyosuke Yasumi
恭介 八角
Akihiko Kitano
彰彦 北野
Masaaki Yamazaki
真明 山崎
Ichiro Takeda
一朗 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Toray Industries Inc
Original Assignee
Nissan Motor Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Toray Industries Inc filed Critical Nissan Motor Co Ltd
Priority to JP2005099478A priority Critical patent/JP4728677B2/en
Publication of JP2006273271A publication Critical patent/JP2006273271A/en
Application granted granted Critical
Publication of JP4728677B2 publication Critical patent/JP4728677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy absorption member for a vehicle excellent in energy absorption characteristics and capable of attempting weight reduction and miniaturization with less restriction in layout design. <P>SOLUTION: A door guard beam 10a is provided with a load receiving member 20a to receive a load applied on an automobile from the outside, a flange member 30a constituted of a fiber reinforcing composite material and a connecting member 50 to connect the load receiving member 20a and the flange member 30a to each other, the flange members 30a are mounted on both ends of the load receiving member 20a through a connecting member 50, and, each of the flange members is connected to a door inner panel 3 of the automobile. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外部から車輌に印加された荷重のエネルギを吸収するための車輌用エネルギ吸収部材及びそれを用いたドアガードビームに関する。   The present invention relates to a vehicle energy absorbing member for absorbing energy of a load applied to a vehicle from the outside, and a door guard beam using the same.

自動車等の車輌に用いられるエネルギ吸収部材として、ドア構造体を構成するドアアウタパネルとドアインナパネルとの間に設けられ、自動車側方から印加された荷重のエネルギを吸収するためのドアガードビームが従来から知られている(例えば、特許文献1〜6参照)。   Conventionally, as an energy absorbing member used in vehicles such as automobiles, a door guard beam provided between a door outer panel and a door inner panel constituting a door structure for absorbing energy of a load applied from the side of the automobile has been conventionally used. (See, for example, Patent Documents 1 to 6).

このようなドアガードビームは、一般的に全体として鋼材で構成されているため、エネルギ吸収特性に優れているが、重量が嵩むために軽量化に限界がある。そのため、近年では、軽量化の観点からドアガードビームを構成する材料としてアルミニウム合金が注目されている。   Since such a door guard beam is generally made of steel as a whole, it has excellent energy absorption characteristics, but its weight is limited because of its increased weight. Therefore, in recent years, aluminum alloy has attracted attention as a material constituting the door guard beam from the viewpoint of weight reduction.

しかしながら、アルミニウム合金でドアガードビームを構成した場合に、鋼材と同等のエネルギ吸収特性を付与しようとすると、板厚が増したりサイズが大きくなる等のドア構造体におけるレイアウト設計上の制限が新たに生じるという問題がある。
特開平5−38992号公報 特開平8−216684号公報 特開平10−58973号公報 実開平5−49434号公報 実開平5−54026号公報 実開平5−58428号公報
However, when the door guard beam is made of an aluminum alloy, if an energy absorption characteristic equivalent to that of a steel material is to be imparted, there will be a new layout design limitation in the door structure such as an increase in plate thickness or an increase in size. There is a problem.
JP-A-5-38992 JP-A-8-216684 JP-A-10-58973 Japanese Utility Model Publication No. 5-49434 Japanese Utility Model Publication No. 5-54026 Japanese Utility Model Publication No. 5-58428

本発明は、エネルギ吸収特性に優れ、しかもレイアウト設計上の制限を少なく軽量化及び小型化を図ることが可能な車輌用エネルギ吸収部材及びそれを用いたドアガードビームを提供することを目的とする。
上記目的を達成するために、本発明によれば、外部から車輌に印加された荷重のエネルギを吸収するための車輌用エネルギ吸収部材であって、印加された荷重を受けるための荷重受け部材と、繊維強化複合材料から構成されるフランジ部材と、を備え、前記荷重受け部材は、前記フランジ部材を介して車輌に取り付けられている車輌用エネルギ吸収部材、及び、前記車輌用エネルギ吸収部材を用いたドアガードビームが提供される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vehicle energy absorbing member that has excellent energy absorption characteristics and can be reduced in weight and size with less restrictions on layout design, and a door guard beam using the same.
To achieve the above object, according to the present invention, there is provided a vehicle energy absorbing member for absorbing energy of a load applied to the vehicle from the outside, wherein the load receiving member receives the applied load. A flange member made of a fiber reinforced composite material, and the load receiving member uses the vehicle energy absorbing member attached to the vehicle via the flange member, and the vehicle energy absorbing member. A door guard beam was provided.

本発明では、外部から車輌に印加された荷重を受けるための荷重受け部材を、繊維強化複合材料から構成されるフランジ部材を介して、車輌に取り付ける。そして、荷重印加時に、荷重受け部材からフランジ部材に荷重を伝達させ、当該荷重によりフランジ部材を破壊することにより、荷重に対する反力を付与し、荷重のエネルギを吸収する。   In the present invention, a load receiving member for receiving a load applied to the vehicle from the outside is attached to the vehicle via a flange member made of a fiber reinforced composite material. When a load is applied, the load is transmitted from the load receiving member to the flange member, and the flange member is destroyed by the load, thereby applying a reaction force against the load and absorbing the energy of the load.

このように、フランジ部材を繊維強化複合材料で構成することにより、全体が金属材料で構成された従来のものと比較して軽量化を図ることが可能となる。また、フランジ部材を繊維強化複合材料で構成することにより、車輌用エネルギ吸収部材を平面的に構成することが出来るので小型化を図ることが可能となる。   Thus, by comprising a flange member with a fiber reinforced composite material, it becomes possible to achieve weight reduction compared with the conventional thing comprised entirely with the metal material. In addition, by configuring the flange member with a fiber reinforced composite material, the vehicle energy absorbing member can be configured in a planar manner, and thus the size can be reduced.

さらに、フランジ部材を構成する繊維強化複合材料の板厚や積層構成、繊維配向角等を変更することにより、車輌用エネルギ吸収部材の反力を自由に設定することが出来るので、優れたエネルギ吸収特性を確保することが可能となる。しかも、繊維強化複合材料の構成により反力を自由に設定し得るので、レイアウト設計上の自由度が格段に向上する。   Furthermore, by changing the plate thickness, laminated structure, fiber orientation angle, etc. of the fiber reinforced composite material that constitutes the flange member, the reaction force of the vehicle energy absorbing member can be freely set, so that excellent energy absorption is achieved. It is possible to ensure the characteristics. In addition, the reaction force can be freely set depending on the configuration of the fiber-reinforced composite material, so that the degree of freedom in layout design is greatly improved.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態]
図1は本発明の第1実施形態に係るドアガードビームを示す斜視図、図2は本発明の第1実施形態に係るドアガードビームの平面図である。
[First Embodiment]
FIG. 1 is a perspective view showing a door guard beam according to the first embodiment of the present invention, and FIG. 2 is a plan view of the door guard beam according to the first embodiment of the present invention.

本発明の第1実施形態に係るドアガードビーム10aは、図1及び図2に示すように、外部から車輌に印加された荷重を受けるための荷重受け部材20aと、繊維強化複合材料から構成されるフランジ部材30aと、荷重受け部材20aとフランジ部材30aとを連結する連結部材50と、を備えており、荷重受け部材20aの両端部にフランジ部材30aが連結部材50を介してそれぞれ取り付けられており、さらに、各フランジ部材30aは、車輌のドア構造体1を構成するドアインナパネル3に接合されている。フランジ部材30aをドアインナパネル3に接合する方法としては、例えば、接着やボルト締結、リベット止め等の手法を例示することが出来るが、フランジ部材30aの貫通孔35(後述)の面圧破壊荷重よりも強い接合強度を確保できれば何れの手法を選択しても良い。   As shown in FIGS. 1 and 2, the door guard beam 10a according to the first embodiment of the present invention includes a load receiving member 20a for receiving a load applied to the vehicle from the outside, and a fiber reinforced composite material. A flange member 30a; and a connecting member 50 that connects the load receiving member 20a and the flange member 30a. The flange member 30a is attached to both ends of the load receiving member 20a via the connecting member 50, respectively. Further, each flange member 30a is joined to a door inner panel 3 constituting the door structure 1 of the vehicle. Examples of the method of joining the flange member 30a to the door inner panel 3 can include methods such as adhesion, bolt fastening, and riveting, but the surface pressure breaking load of a through hole 35 (described later) of the flange member 30a. Any method may be selected as long as stronger bonding strength can be secured.

図3は本発明の第1実施形態に係るドアガードビームに用いられるフランジ部材を示す斜視図、図4は図3のフランジ部材を構成する繊維強化複合材料の積層構成を示す斜視図、図5はフランジ部材の板厚と貫通孔の面圧破壊荷重との関係を示すグラフ、図6は図3のフランジ部材の貫通孔を示す部分拡大断面図、図7は図3のフランジ部材の貫通孔の他の例を示す部分拡大正面図である。   3 is a perspective view showing a flange member used in the door guard beam according to the first embodiment of the present invention, FIG. 4 is a perspective view showing a laminated structure of fiber reinforced composite materials constituting the flange member of FIG. 3, and FIG. FIG. 6 is a partially enlarged sectional view showing the through hole of the flange member of FIG. 3, and FIG. 7 is a view of the through hole of the flange member of FIG. It is a partial enlarged front view which shows another example.

ドアガードビーム10aのフランジ部材30aは、マトリクス(母材)としての合成樹脂材料と、強化繊維(強化材)と、から成る繊維強化複合材料(FRP:Fiber Reinforced Plastic)から構成されており、図3に示すように、板厚が3.2mm程度のプレート状の形状を有している。このフランジ部材30aには、連結部材50により荷重受け部材20aを連結するための貫通孔35が形成されている。   The flange member 30a of the door guard beam 10a is made of a fiber reinforced composite material (FRP: Fiber Reinforced Plastic) composed of a synthetic resin material as a matrix (base material) and reinforcing fibers (reinforcing material). As shown in FIG. 2, the plate thickness is about 3.2 mm. A through hole 35 for connecting the load receiving member 20a by the connecting member 50 is formed in the flange member 30a.

この繊維強化複合材料のマトリクスとしては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等の熱硬化性樹脂材料や、例えば、ナイロン、ポリプロピレン、ポリカーボネート、及び、熱可塑性ポリイミド等の熱可塑性樹脂材料等を挙げることが出来る。   Examples of the matrix of the fiber reinforced composite material include thermosetting resin materials such as epoxy resin, unsaturated polyester resin, and vinyl ester resin, and thermoplastic resins such as nylon, polypropylene, polycarbonate, and thermoplastic polyimide. Materials etc. can be mentioned.

また、この繊維強化複合材料の強化繊維としては、例えば、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維、PBO繊維、及び、ポリエステル繊維等を挙げることが出来る。これらの中でも高剛性であるという観点から炭素繊維やアラミド繊維を強化材として用いたCFRPやKFRPが特に好ましい。   Examples of the reinforcing fiber of the fiber-reinforced composite material include glass fiber, carbon fiber, aramid fiber, boron fiber, polyethylene fiber, PBO fiber, and polyester fiber. Among these, CFRP and KFRP using carbon fiber or aramid fiber as a reinforcing material are particularly preferable from the viewpoint of high rigidity.

この繊維強化複合材料は、図4に示すように、強化繊維を0度と90度の繊維配向角で織り込んだ第1の平織りクロス31と、強化繊維を±45度の繊維配向角で織り込んだ第2の平織りクロス32と、を交互に積層してフランジ部材30aを構成している。即ち、フランジ部材30aを構成する繊維強化複合材料は、繊維配向角0度の強化繊維を25%、繊維配向角90度の強化繊維を25%、及び、繊維配向角±45度の強化繊維を50%の割合で含有しており、しかも、第1の平織りクロス31と第2の平織りクロス32とは擬似等方性となるように積層されている。なお、本実施形態における第1の平織りクロス31が特許請求の範囲における第1の基材に相当し、本実施形態における第2の平織りクロス32が特許請求の範囲における第2の基材に相当する。   As shown in FIG. 4, this fiber-reinforced composite material has a first plain weave cloth 31 in which reinforcing fibers are woven at a fiber orientation angle of 0 degrees and 90 degrees, and a reinforcing fiber is woven at a fiber orientation angle of ± 45 degrees. The second plain weave cloth 32 is alternately laminated to constitute the flange member 30a. That is, the fiber reinforced composite material constituting the flange member 30a is composed of 25% reinforcing fiber having a fiber orientation angle of 0 °, 25% reinforcing fiber having a fiber orientation angle of 90 °, and reinforcing fiber having a fiber orientation angle of ± 45 °. In addition, the first plain weave cloth 31 and the second plain weave cloth 32 are laminated so as to be pseudo-isotropic. Note that the first plain weave cloth 31 in the present embodiment corresponds to the first base material in the claims, and the second plain weave cloth 32 in the present embodiment corresponds to the second base material in the claims. To do.

ここで、繊維強化複合材料は、その積層構成や繊維配向角等を変更したり、ステッチングすることにより、荷重印加時において生じ得る破壊モード(例えば、引張破壊や剪断破壊、面圧破壊等)を自由に設定することが出来るが、本実施形態では、繊維配向角0度、90度及び±45度の強化繊維を上記のような25%:25%:50%の割合でフランジ部材30aを構成することにより、フランジ部材30aに引張破壊や剪断破壊を生じさせずに、貫通孔35を長孔状に破壊させる面圧破壊(ベアリング破壊、Bearing Failure)を発生させることが可能となっている(図12参照)。   Here, the fiber reinforced composite material has a failure mode (for example, tensile failure, shear failure, surface pressure failure, etc.) that can occur when a load is applied by changing the lamination configuration, fiber orientation angle, etc., or by stitching. However, in the present embodiment, the reinforcing members having the fiber orientation angles of 0 degrees, 90 degrees, and ± 45 degrees are provided with the flange member 30a in the ratio of 25%: 25%: 50% as described above. By configuring, it is possible to generate a surface pressure failure (bearing failure, bearing failure) that causes the through hole 35 to be broken into a long hole without causing a tensile failure or a shear failure in the flange member 30a. (See FIG. 12).

このように、荷重印加時にフランジ部材30aに発生する破壊モードとして貫通孔35を基準とした面圧破壊を生じさせることにより、荷重印加時において荷重に対する反力を維持することが出来、ドアガードビーム10aに良好なエネルギ吸収特性を確保することが出来る。   In this way, by causing a surface pressure fracture based on the through hole 35 as a fracture mode generated in the flange member 30a when a load is applied, a reaction force against the load can be maintained when the load is applied, and the door guard beam 10a. In addition, good energy absorption characteristics can be secured.

なお、本発明においては、繊維配向角0、90度及び±45度の強化繊維の割合は、上記の割合に限定されず、下記の条件式を満たすようフランジ部材を構成することにより、フランジ部材30aの貫通孔35に面圧破壊を発生させることが出来る。   In the present invention, the proportions of the reinforcing fibers having the fiber orientation angles of 0, 90 degrees and ± 45 degrees are not limited to the above ratio, and the flange member is configured by satisfying the following conditional expression. Surface pressure destruction can be generated in the through hole 35 of 30a.

α+β+γ=100%
α=10〜40%
β=10〜40%
γ=30〜70%
但し、αは、フランジ部材30aを構成する繊維強化材料に含有された強化繊維のうちの繊維配向角が0度のものの割合[%]、βは、フランジ部材30aを構成する繊維強化複合材料に含有された強化繊維のうちの繊維配向角が90度のものの割合[%]、及び、γは、フランジ部材30aを構成する繊維強化複合材料に含有された強化繊維のうちの繊維配向角が±45度のものの割合[%]である。
α + β + γ = 100%
α = 10-40%
β = 10-40%
γ = 30-70%
Where α is the ratio [%] of the reinforcing fibers contained in the fiber reinforced material constituting the flange member 30a and having a fiber orientation angle of 0 degree, and β is the fiber reinforced composite material constituting the flange member 30a. Of the reinforcing fibers contained, the ratio [%] of fibers having a fiber orientation angle of 90 degrees, and γ is the fiber orientation angle of the reinforcing fibers contained in the fiber reinforced composite material constituting the flange member 30a is ±. It is the ratio [%] of 45 degrees.

フランジ部材30aに形成された貫通孔35の直径は、必要とされるエネルギ吸収量に応じて決定される。図5は、貫通孔35の直径がφ6.4mmである場合におけるフランジ部材30aの板厚と貫通孔35の面圧破壊荷重との関係を示すグラフである。貫通孔35の直径毎にこのようなグラフを作成し、貫通孔35の直径、フランジ部材30aの板厚及び貫通孔35の面圧破壊荷重の関係をデータベース化しておく。そして、要求されるエネルギ吸収量より導き出される面圧破壊荷重、及び、フランジ部材30aの板厚により当該データベースを参照して最適な貫通孔35の直径を決定される。   The diameter of the through hole 35 formed in the flange member 30a is determined according to the required energy absorption amount. FIG. 5 is a graph showing the relationship between the plate thickness of the flange member 30a and the surface pressure breaking load of the through hole 35 when the diameter of the through hole 35 is φ6.4 mm. Such a graph is created for each diameter of the through-hole 35, and the relationship among the diameter of the through-hole 35, the plate thickness of the flange member 30a, and the surface pressure breaking load of the through-hole 35 is compiled in a database. Then, the optimum diameter of the through hole 35 is determined by referring to the database based on the surface pressure fracture load derived from the required energy absorption amount and the plate thickness of the flange member 30a.

さらに、フランジ部材30aの貫通孔35は、図6に示すように、その開口周縁にテーパ36が形成されている。荷重印加時にこのテーパ36がトリガとして作用することにより、フランジ部材30aに生じる破壊モードとして、貫通孔35の面圧破壊を確実に生じさせることが出来る。なお、本発明においてはこれに限定されず、例えば、図7に示すように、貫通孔35の開口周縁に、面圧破壊が発生させたい方向、例えばドアガードビームが延在する方向にノッチ37を形成しておき、荷重印加時にこのノッチ37をトリガとして作用させても良い。   Further, as shown in FIG. 6, the through hole 35 of the flange member 30a has a taper 36 formed at the periphery of the opening. When the taper 36 acts as a trigger when a load is applied, the surface pressure failure of the through hole 35 can be reliably generated as a failure mode generated in the flange member 30a. In the present invention, the present invention is not limited to this. For example, as shown in FIG. 7, a notch 37 is formed on the periphery of the opening of the through hole 35 in the direction in which surface pressure destruction is generated, for example, in the direction in which the door guard beam extends. The notch 37 may be used as a trigger when a load is applied.

図8は本発明の第1実施形態に係るドアガードビームに用いられる荷重受け部材を示す斜視図、図9は本発明の第1実施形態に係るドアガードビームに用いられる荷重受け部材の他の例を示す斜視図である。   FIG. 8 is a perspective view showing a load receiving member used for the door guard beam according to the first embodiment of the present invention, and FIG. 9 is another example of the load receiving member used for the door guard beam according to the first embodiment of the present invention. It is a perspective view shown.

ドアガードビーム10aの荷重受け部材20aは、図8に示すようなベルト状の形状を有しており、連結部材50を介してフランジ部材30aに連結可能なように、その両端に取付孔21がそれぞれ形成されている。この荷重受け部材20aは、上述した繊維強化複合材料から構成されており、その中でも高強度及び軽量化の観点から強化材として炭素繊維を用いたCFRPで構成されていることが好ましい。この荷重受け部材20aは、フランジ部材30aに形成された貫通孔35の面圧破壊荷重より強い引張耐荷重を持ち、且つ、荷重印加時に荷重により当該印加方向に変形可能となっている。荷重印加方向に変形可能とすることにより、当該印加された荷重を、フランジ部材30aの貫通孔35に作用する張力に変換することが出来る。なお、荷重受け部材20aの取付孔21の面圧耐荷重も、フランジ部材30aの貫通孔35の面圧破壊荷重よりも強く設定されている。   The load receiving member 20a of the door guard beam 10a has a belt-like shape as shown in FIG. 8, and mounting holes 21 are provided at both ends thereof so that it can be connected to the flange member 30a via the connecting member 50. Is formed. The load receiving member 20a is made of the above-described fiber reinforced composite material, and among them, it is preferable that the load receiving member 20a is made of CFRP using carbon fiber as a reinforcing material from the viewpoint of high strength and light weight. The load receiving member 20a has a tensile load resistance stronger than the surface pressure breaking load of the through-hole 35 formed in the flange member 30a, and can be deformed in the application direction by the load when the load is applied. By making it deformable in the load application direction, the applied load can be converted into a tension acting on the through hole 35 of the flange member 30a. The surface pressure load resistance of the mounting hole 21 of the load receiving member 20a is also set to be stronger than the surface pressure breaking load of the through hole 35 of the flange member 30a.

なお、本発明における荷重受け部材は、フランジ部材に形成された貫通孔の面圧破壊荷重より強い引張耐荷重を持ち、且つ、荷重印加時に荷重により当該印加方向に変形可能であれば、上記のようなCFRP製のベルトに限定されず、例えば、図9に示すようなスチールワイヤ等で構成された荷重受け部材20bであっても良い。   Note that the load receiving member in the present invention has a tensile load that is stronger than the surface pressure breaking load of the through hole formed in the flange member, and can be deformed in the application direction by the load when the load is applied. The load receiving member 20b is not limited to such a CFRP belt, and may be, for example, a steel wire as shown in FIG.

図10は本発明の第1実施形態に係るドアガードビームに用いられる連結部材を示す拡大断面図である。   FIG. 10 is an enlarged sectional view showing a connecting member used for the door guard beam according to the first embodiment of the present invention.

本実施形態に係るドアガードビーム10aの連結部材50は、図10に示すように、カラー51、ボルト52及びナット53から構成されている。そして、荷重受け部材20aの取付孔21、及び、フランジ部材30aの貫通孔35にカラー51を挿入し、さらに当該カラー51の内孔にボルト52を挿入し、当該ボルト52にナット53を締結することにより、荷重受け部材20aとフランジ部材30aとが連結部材50により連結されている。   As shown in FIG. 10, the connecting member 50 of the door guard beam 10 a according to this embodiment includes a collar 51, a bolt 52, and a nut 53. Then, the collar 51 is inserted into the mounting hole 21 of the load receiving member 20a and the through hole 35 of the flange member 30a, the bolt 52 is inserted into the inner hole of the collar 51, and the nut 53 is fastened to the bolt 52. Thus, the load receiving member 20 a and the flange member 30 a are connected by the connecting member 50.

以上のようなドアガードビーム10aを用いて自動車のドア構造体1を構成する場合には、図1に示すように、先ず、ドアガードビーム10aの両端のフランジ部材30aをドアインナパネル3に接合して、ドアガードビーム10aをドアインナパネル3に固定する。次いで、このドアインナパネル3をドアアウタパネル2に重ね合わせた後に、ドアアウタパネル2の外周をヘミング加工すると共にスポット溶接して、ドアアウタパネル2とドアインナパネル3とを固定することによりドア構造体が構成される。   When the automobile door structure 1 is configured using the door guard beam 10a as described above, first, the flange members 30a at both ends of the door guard beam 10a are joined to the door inner panel 3 as shown in FIG. The door guard beam 10a is fixed to the door inner panel 3. Next, after the door inner panel 3 is overlaid on the door outer panel 2, the outer periphery of the door outer panel 2 is hemmed and spot welded to fix the door outer panel 2 and the door inner panel 3. Composed.

次に作用について説明する。   Next, the operation will be described.

図11は本発明の第1実施形態に係るドアガードビームに荷重が印加された状態を示す平面図、図12は本発明の第1実施形態に係るドアガードビームに荷重が印加されてフランジ部材に面圧破壊が発生した状態を示す斜視図、図13は荷重受け部材の変形角度と荷重印加方向に発生した反力との関係を示すグラフである。   FIG. 11 is a plan view showing a state in which a load is applied to the door guard beam according to the first embodiment of the present invention. FIG. 12 is a plan view of the flange member with a load applied to the door guard beam according to the first embodiment of the present invention. FIG. 13 is a graph showing the relationship between the deformation angle of the load receiving member and the reaction force generated in the load application direction.

自動車のドア構造体1に対して車外側から荷重が印加されると、当該荷重がドアアウタパネル2を介して、内部に設けられた荷重受け部材20aに作用する。荷重を受けた荷重受け部材20aは、図11中の矢印A方向(荷重印加方向)に変形し、フランジ部材30a自体が車内側に折れ曲がりながら、当該荷重が、荷重受け部材20a及び連結部材50を介して、フランジ部材30aに張力(図中の矢印B)としてそれぞれ伝達される。   When a load is applied to the door structure 1 of the automobile from the outside of the vehicle, the load acts on the load receiving member 20 a provided inside via the door outer panel 2. The load receiving member 20a that has received the load is deformed in the direction of arrow A (load application direction) in FIG. 11 and the flange member 30a itself is bent inward of the vehicle while the load causes the load receiving member 20a and the connecting member 50 to be bent. And transmitted as tension (arrow B in the figure) to the flange member 30a.

この張力が貫通孔35の面圧破壊荷重に達すると、フランジ部材30aを構成する繊維強化複合材料が擬似等方性となっているために、図12に示すように、フランジ部材30aに貫通孔35を基準とした面圧破壊が矢印C(図11及び図12参照)方向に発生すると同時に荷重印加点に反力(図11中の矢印D)が付与され、印加された荷重のエネルギが吸収される。この際、荷重受け部材20aの内側への変形により、荷重印加点がドア構造体1の内側方向へ変位するため、図13に示すように、荷重受け部材20aの変形角度θ(図12参照)が大きくなり、これに従って、荷重印加点に付与される反力も徐々に増加する。因みに、全体が金属材料で構成された従来のものでは、荷重印加初期に最大反力を発生した後は、急激に反力が低下するため、エネルギ吸収量を向上するのに板厚の増加や断面形状の拡大等を必要とし、これには重量の大幅な増加を伴う。   When this tension reaches the surface pressure breaking load of the through-hole 35, the fiber reinforced composite material constituting the flange member 30a becomes quasi-isotropic, so that the through-hole is formed in the flange member 30a as shown in FIG. At the same time as the surface pressure fracture with reference to 35 occurs in the direction of arrow C (see FIGS. 11 and 12), a reaction force (arrow D in FIG. 11) is applied to the load application point, and the energy of the applied load is absorbed. Is done. At this time, since the load application point is displaced inward of the door structure 1 due to the inward deformation of the load receiving member 20a, as shown in FIG. 13, the deformation angle θ of the load receiving member 20a (see FIG. 12). Accordingly, the reaction force applied to the load application point gradually increases. By the way, in the conventional one that is entirely composed of a metal material, the maximum reaction force is generated at the initial stage of applying the load, and then the reaction force rapidly decreases. The cross-sectional shape needs to be enlarged, which is accompanied by a significant increase in weight.

図14は本実施形態に係るドアガードビームに用いられるフランジ部材の他の例を示す断面図である。本実施形態では、フランジ部材30aは、図14に示すように、ドアインナパネル3との接合部から荷重受け部材20a側に向かってtからtに漸次減少する板厚を有しても良い(t>t)。板厚tは例えば6.4mm程度であり、板厚tは例えば3.2mm程度である。 FIG. 14 is a cross-sectional view showing another example of a flange member used in the door guard beam according to the present embodiment. In this embodiment, the flange member 30a, as shown in FIG. 14, may have a thickness which gradually decreases to t 2 from t 1 toward the load receiving member 20a side from the junction of the door inner panel 3 Good (t 1 > t 2 ). Thickness t 1 is, for example, about 6.4 mm, the thickness t 2 is, for example, about 3.2 mm.

フランジ部材30aの板厚を一定にした場合には、図13中の実線で示すように、荷重に対する反力が荷重受け部材20aの変形角度θに比例しているため、荷重印加初期には小さな反力しか得られない。これに対し、上記のようにフランジ部材30aの板厚を部分的に増加させておくことにより、図13中に点線で示すように、荷重印加初期においても比較的大きな反力を得ることが可能となり、エネルギ吸収量の向上を図ることが出来る。   When the plate thickness of the flange member 30a is constant, the reaction force against the load is proportional to the deformation angle θ of the load receiving member 20a as shown by the solid line in FIG. Only reaction force can be obtained. On the other hand, by partially increasing the plate thickness of the flange member 30a as described above, it is possible to obtain a relatively large reaction force even at the initial stage of load application, as indicated by a dotted line in FIG. Thus, the amount of energy absorption can be improved.

なお、荷重印加初期における反力を大きくする手法としては、フランジ部材30aの板厚を部分的に増加させる手法の他に、フランジ部材30aを構成する繊維強化複合材料の繊維配向を部分的に変える手法、ステッチを施す手法を挙げることも出来る。   In addition, as a method of increasing the reaction force at the initial stage of load application, in addition to a method of partially increasing the plate thickness of the flange member 30a, the fiber orientation of the fiber-reinforced composite material constituting the flange member 30a is partially changed. It is also possible to list techniques and stitching techniques.

以上のように本実施形態では、フランジ部材30aを繊維強化複合材料で構成することにより、全体が金属材料で構成された従来のものと比較して軽量化を図ることが出来る。また、フランジ部材を繊維強化複合材料で構成することにより、ドアガードビームを平面的に構成することが出来るので小型化を図ることが可能となる。   As described above, in the present embodiment, the flange member 30a is made of a fiber-reinforced composite material, so that the weight can be reduced as compared with the conventional one made entirely of a metal material. In addition, by configuring the flange member with a fiber reinforced composite material, the door guard beam can be configured in a planar manner, so that it is possible to reduce the size.

さらに、繊維強化複合材料は、板厚や積層構成、繊維配向角等を変更することにより、その強度や破壊モードを自由に設定することが出来るが、本実施形態ではこのような特徴を持つ繊維強化複合材料によりフランジ部材30aを構成することにより、ドアガードビーム10aの反力を自由に設定することを出来、優れたエネルギ吸収特性を確保することが可能となっている。しかも、繊維強化複合材料の構成により反力を自由に設定し得るので、レイアウト設計上の自由度が格段に向上する。   Furthermore, the fiber reinforced composite material can be freely set in its strength and fracture mode by changing the plate thickness, laminated structure, fiber orientation angle, etc. In this embodiment, the fiber having such characteristics By configuring the flange member 30a with the reinforced composite material, the reaction force of the door guard beam 10a can be freely set, and excellent energy absorption characteristics can be secured. In addition, the reaction force can be freely set depending on the configuration of the fiber-reinforced composite material, so that the degree of freedom in layout design is greatly improved.

[第2実施形態]
図15は本発明の第2実施形態に係るドアガードビームを示す平面図、図16は本発明の第2実施形態に係るドアガードビームに用いられるヒンジ部材を示す斜視図、図17は図16に示すヒンジ部材の分解斜視図、図18は図16のXVIII-XVIII線に沿った断面図、図19は本発明の第3実施形態に係るドアガードビームに用いられるヒンジ部材を示す斜視図、図20は本発明の第2実施形態に係るドアガードビームに荷重が印加された状態を示す平面図である。
[Second Embodiment]
15 is a plan view showing a door guard beam according to the second embodiment of the present invention, FIG. 16 is a perspective view showing a hinge member used for the door guard beam according to the second embodiment of the present invention, and FIG. 17 is shown in FIG. FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG. 16, FIG. 19 is a perspective view showing a hinge member used for a door guard beam according to the third embodiment of the present invention, and FIG. It is a top view which shows the state by which the load was applied to the door guard beam which concerns on 2nd Embodiment of this invention.

本発明の第2実施形態に係るドアガードビーム10bは、図15に示すように、ヒンジ部材40aを備えている点で上述の第1実施形態に係るドアガードビーム10bと相違するが、その他の構成は第1実施形態に係るドアガードビーム10aと同一である。以下に、第2実施形態に係るドアガードビーム10bについて、第1実施形態に係るドアガードビーム10aの相違点のみを説明する。   The door guard beam 10b according to the second embodiment of the present invention is different from the door guard beam 10b according to the first embodiment described above in that it includes a hinge member 40a as shown in FIG. This is the same as the door guard beam 10a according to the first embodiment. Below, only the difference of the door guard beam 10a which concerns on 1st Embodiment is demonstrated about the door guard beam 10b which concerns on 2nd Embodiment.

本実施形態に係るドアガードビーム10bのヒンジ部材40aは、図16〜図18に示すように、金属製の第1及び第2のプレート41、42が金属製のシャフト41を中心としてヒンジ動作可能に構成されている。第1のプレート41の両主面には、貫通孔35が形成された繊維強化複合材料製のフランジ部材30bが接着剤により貼り付けられている。また、この第1のプレート41には、貫通孔35に対応する部分からシャフト43とは反対側に伸び、当該第1のプレート41の端面で開口している切欠部44が形成されている。第1のプレート41にこのような切欠部44を形成することにより、各フランジ部材30bに貫通孔35を基準とした面圧破壊を発生させることが出来る。フランジ部材30bの貫通孔35及びヒンジ部材40aの切欠部44には、荷重受け部材20aの取付孔が合わせられて連結部材50が挿入され、荷重受け部材20aとヒンジ部材40aとが連結されている。   As shown in FIGS. 16 to 18, the hinge member 40 a of the door guard beam 10 b according to the present embodiment allows the first and second plates 41 and 42 made of metal to be hinged around the metal shaft 41. It is configured. A flange member 30b made of a fiber reinforced composite material in which through holes 35 are formed is attached to both main surfaces of the first plate 41 with an adhesive. The first plate 41 is formed with a notch 44 that extends from the portion corresponding to the through hole 35 to the opposite side of the shaft 43 and opens at the end surface of the first plate 41. By forming such a cut-out portion 44 in the first plate 41, it is possible to cause a surface pressure failure with respect to the through-hole 35 in each flange member 30b. The mounting hole of the load receiving member 20a is aligned with the through hole 35 of the flange member 30b and the cutout portion 44 of the hinge member 40a, and the connecting member 50 is inserted to connect the load receiving member 20a and the hinge member 40a. .

第2のプレート42には、ヒンジ部材40aをドアインナパネル3にリベットにより取り付けるための取付孔45が2箇所形成されており、ヒンジ部材40aは、この第2のプレート42で接着剤及びリベット止めによりドアインナパネル3に固定されるようになっている。   The second plate 42 has two mounting holes 45 for attaching the hinge member 40a to the door inner panel 3 by rivets. The hinge member 40a is bonded to the adhesive and rivets by the second plate 42. By this, it is fixed to the door inner panel 3.

なお、図19に示すヒンジ部材40bのように、シャフト43を除いて第1のプレート41及び第2のプレート42自体を繊維強化複合材料で構成しても良い。なお、この場合には、第1のプレート41に切欠部44を形成せずに貫通孔35のみを形成する。   In addition, like the hinge member 40b shown in FIG. 19, you may comprise the 1st plate 41 and 2nd plate 42 itself with a fiber reinforced composite material except the shaft 43. FIG. In this case, only the through hole 35 is formed in the first plate 41 without forming the notch 44.

次に作用を説明する。   Next, the operation will be described.

ドア構造体1に対して車外側から荷重が印加されると、第1実施形態と同様に、当該荷重が、ドアアウタパネル2を介して荷重受け部材20aに作用し、図20中の矢印A方向(荷重印加方向)に変形する。この際、ヒンジ部材40aの第1のプレート41が第2のプレート42に対してシャフト43を中心軸として荷重印加方向に回転動作する。   When a load is applied to the door structure 1 from the outside of the vehicle, the load acts on the load receiving member 20a via the door outer panel 2 as in the first embodiment, and the direction of arrow A in FIG. Deforms in the direction of load application. At this time, the first plate 41 of the hinge member 40a rotates with respect to the second plate 42 in the load application direction with the shaft 43 as the central axis.

荷重受け部材20aに印加された荷重は、当該荷重受け部材20a及び連結部材50を介してフランジ部材30bに張力としてそれぞれ伝達され、貫通孔35の面圧破壊荷重に達すると、当該貫通孔35を基準とした面圧破壊が矢印C方向に発生すると同時に荷重印加点に反力(矢印D)が付与され、印加された荷重のエネルギが吸収される。この際、荷重受け部材20aの内側への変形により、荷重印加点がドア構造体1の内側方向へ変位するため、荷重受け部材の変形角度θ(図20参照)が大きくなり、これに従って、荷重印加点に付与される反力も徐々に増加する。   The load applied to the load receiving member 20a is transmitted as a tension to the flange member 30b via the load receiving member 20a and the connecting member 50, and when the surface pressure breaking load of the through hole 35 is reached, the through hole 35 is passed through the through hole 35. At the same time as the reference surface pressure failure occurs in the direction of arrow C, a reaction force (arrow D) is applied to the load application point, and the energy of the applied load is absorbed. At this time, since the load application point is displaced inward of the door structure 1 due to the inward deformation of the load receiving member 20a, the deformation angle θ (see FIG. 20) of the load receiving member increases, The reaction force applied to the application point also gradually increases.

以上のように本実施形態では、フランジ部材30bを繊維強化複合材料で構成することにより、全体が金属材料で構成された従来のものと比較して軽量化を図ることが出来る。また、フランジ部材30bを繊維強化複合材料で構成することにより、ドアガードビーム10bを平面的に構成することが出来るので小型化を図ることが可能となる。   As described above, in the present embodiment, the flange member 30b is made of a fiber-reinforced composite material, so that the weight can be reduced as compared with the conventional one made entirely of a metal material. In addition, by configuring the flange member 30b with a fiber reinforced composite material, the door guard beam 10b can be configured in a planar manner, so that the size can be reduced.

さらに、繊維強化複合材料は、板厚や積層構成、繊維配向角等を変更することにより、その強度や破壊モードを自由に設定することが出来るが、本実施形態では、このような特徴を持つ繊維強化複合材料によりフランジ部材30bを構成することにより、ドアガードビーム10bの反力を自由に設定することが出来、優れたエネルギ吸収特性を確保することが可能となっている。しかも、繊維強化複合材料の構成により反力を自由に設定し得るので、レイアウト設計上の自由度が格段に向上する。   Furthermore, the fiber-reinforced composite material can be freely set in strength and fracture mode by changing the plate thickness, laminated configuration, fiber orientation angle, etc., but this embodiment has such characteristics. By configuring the flange member 30b with a fiber reinforced composite material, the reaction force of the door guard beam 10b can be freely set, and excellent energy absorption characteristics can be secured. In addition, the reaction force can be freely set depending on the configuration of the fiber-reinforced composite material, so that the degree of freedom in layout design is greatly improved.

また、本実施形態では、ヒンジ部材40aを介してフランジ部材30aをドアインナパネル3に取り付けられているので、荷重印加時に荷重受け部材20aの変形角度θが大きくなってもフランジ部材自体が曲げ荷重を受けることがなく、フランジ部材の変形による破損が防止され、フランジ部材30bに意図した破壊モード(面圧破壊)のみを発生させることが出来る。   In the present embodiment, since the flange member 30a is attached to the door inner panel 3 via the hinge member 40a, the flange member itself is subjected to a bending load even when the deformation angle θ of the load receiving member 20a is increased when a load is applied. It is possible to prevent damage due to deformation of the flange member, and to generate only the intended failure mode (surface pressure failure) in the flange member 30b.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

例えば、上述の実施形態では、連結部材により荷重受け部材とフランジ部材とを連結したが、本発明では特にこれに限定されず、連結部材を設けずに、荷重受け部材の両端部をフランジ部材の貫通孔に挿入する等して、荷重受け部材とフランジ部材とを直接連結しても良い。   For example, in the above-described embodiment, the load receiving member and the flange member are connected by the connecting member. However, the present invention is not particularly limited to this, and both ends of the load receiving member are connected to the flange member without providing the connecting member. The load receiving member and the flange member may be directly connected, for example, by being inserted into the through hole.

また、本発明の車輌用エネルギ吸収部材は、外部から車輌に印加された荷重のエネルギを吸収するドアガードビーム以外の部材にも使用することが出来る。   The vehicle energy absorbing member of the present invention can also be used for members other than the door guard beam that absorbs the energy of a load applied to the vehicle from the outside.

図1は、本発明の第1実施形態に係るドアガードビームを示す斜視図である。FIG. 1 is a perspective view showing a door guard beam according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係るドアガードビームの平面図である。FIG. 2 is a plan view of the door guard beam according to the first embodiment of the present invention. 図3は、本発明の第1実施形態に係るドアガードビームに用いられるフランジ部材を示す斜視図である。FIG. 3 is a perspective view showing a flange member used in the door guard beam according to the first embodiment of the present invention. 図4は、図3のフランジ部材を構成する繊維強化複合材料の積層構成を示す斜視図である。4 is a perspective view showing a laminated configuration of fiber reinforced composite materials constituting the flange member of FIG. 図5は、フランジ部材の板厚と貫通孔の面圧破壊荷重との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the plate thickness of the flange member and the surface pressure breaking load of the through hole. 図6は、図3のフランジ部材の貫通孔を示す部分拡大断面図である。6 is a partially enlarged cross-sectional view showing a through hole of the flange member of FIG. 図7は、図3のフランジ部材の貫通孔の他の例を示す部分拡大正面図である。7 is a partially enlarged front view showing another example of the through hole of the flange member of FIG. 図8は、本発明の第1実施形態に係るドアガードビームに用いられる荷重受け部材を示す斜視図である。FIG. 8 is a perspective view showing a load receiving member used in the door guard beam according to the first embodiment of the present invention. 図9は、本発明の第1実施形態に係るドアガードビームに用いられる荷重受け部材の他の例を示す斜視図である。FIG. 9 is a perspective view showing another example of a load receiving member used in the door guard beam according to the first embodiment of the present invention. 図10は、本発明の第1実施形態に係るドアガードビームに用いられる連結部材を示す拡大断面図である。FIG. 10 is an enlarged cross-sectional view showing a connecting member used in the door guard beam according to the first embodiment of the present invention. 図11は、本発明の第1実施形態に係るドアガードビームに荷重が印加された状態を示す平面図である。FIG. 11 is a plan view showing a state in which a load is applied to the door guard beam according to the first embodiment of the present invention. 図12は、本発明の第1実施形態に係るドアガードビームに荷重が印加されてフランジ部材に面圧破壊が発生した状態を示す斜視図である。FIG. 12 is a perspective view showing a state in which a load is applied to the door guard beam according to the first embodiment of the present invention and a surface pressure fracture occurs in the flange member. 図13は、荷重受け部材の変形角度と荷重印加方向に発生した反力との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the deformation angle of the load receiving member and the reaction force generated in the load application direction. 図14は、本発明の第1実施形態に係るドアガードビームに用いられるフランジ部材の他の例を示す部分拡大断面図である。FIG. 14 is a partially enlarged sectional view showing another example of a flange member used in the door guard beam according to the first embodiment of the present invention. 図15は、本発明の第2実施形態に係るドアガードビームを示す平面図である。FIG. 15 is a plan view showing a door guard beam according to the second embodiment of the present invention. 図16は、本発明の第2実施形態に係るドアガードビームに用いられるヒンジ部材を示す斜視図である。FIG. 16 is a perspective view showing a hinge member used for the door guard beam according to the second embodiment of the present invention. 図17は、図16に示すヒンジ部材の分解斜視図である。FIG. 17 is an exploded perspective view of the hinge member shown in FIG. 図18は、図16のXVIII-XVIII線に沿った断面図である。18 is a cross-sectional view taken along line XVIII-XVIII in FIG. 図19は、本発明の第3実施形態に係るドアガードビームに用いられるヒンジ部材の他の例を示す斜視図である。FIG. 19 is a perspective view showing another example of the hinge member used for the door guard beam according to the third embodiment of the present invention. 図20は、本発明の第2実施形態に係るドアガードビームに荷重が印加された状態を示す平面図である。FIG. 20 is a plan view showing a state in which a load is applied to the door guard beam according to the second embodiment of the present invention.

符号の説明Explanation of symbols

1…ドア構造体
2…ドアアウタパネル
3…ドアインナパネル
10a、10b…ドアガードビーム
20a、20b…荷重受け部材
21…取付穴
30a、30b…フランジ部材
31…第1の平織りクロス
32…第2の平織りクロス
35…貫通孔
36…テーパ
37…ノッチ
40a、40b…ヒンジ部材
41…第1のプレート
42…第2のプレート
43…シャフト
44…切欠部
45…取付孔
50…連結部材
51…カラー
52…ボルト
53…ナット

DESCRIPTION OF SYMBOLS 1 ... Door structure 2 ... Door outer panel 3 ... Door inner panel 10a, 10b ... Door guard beam 20a, 20b ... Load receiving member 21 ... Mounting hole 30a, 30b ... Flange member 31 ... First plain weave cloth 32 ... Second plain weave Cross 35 ... Through hole 36 ... Taper 37 ... Notch 40a, 40b ... Hinge member 41 ... First plate 42 ... Second plate 43 ... Shaft 44 ... Notch 45 ... Mounting hole 50 ... Connecting member 51 ... Collar 52 ... Bolt 53 ... Nut

Claims (14)

外部から車輌に印加された荷重のエネルギを吸収するための車輌用エネルギ吸収部材であって、
印加された荷重を受けるための荷重受け部材と、
繊維強化複合材料から構成されるフランジ部材と、を備え、
前記荷重受け部材は、前記フランジ部材を介して車輌に取り付けられている車輌用エネルギ吸収部材。
An energy absorbing member for a vehicle for absorbing energy of a load applied to the vehicle from the outside,
A load receiving member for receiving an applied load;
A flange member made of a fiber-reinforced composite material,
The load receiving member is a vehicle energy absorbing member attached to the vehicle via the flange member.
前記フランジ部材には、前記荷重受け部材を当該フランジ部材に固定するための貫通孔が形成されている請求項1記載の車輌用エネルギ吸収部材。   The energy absorbing member for a vehicle according to claim 1, wherein a through hole for fixing the load receiving member to the flange member is formed in the flange member. 前記荷重受け部材は、連結部材を介して前記フランジ部材の前記貫通孔に固定されている請求項2記載の車輌用エネルギ吸収部材。   The vehicle energy absorbing member according to claim 2, wherein the load receiving member is fixed to the through hole of the flange member via a connecting member. 前記フランジ部材は、
強化繊維が所定方向に配向された第1の基材と、
前記第1の基材とは異なる方向に強化繊維が配向された第2の基材と、を積層して構成されている請求項1〜3の何れかに記載の車輌用エネルギ吸収部材。
The flange member is
A first base material in which reinforcing fibers are oriented in a predetermined direction;
The vehicle energy absorbing member according to any one of claims 1 to 3, wherein the vehicle energy absorbing member is configured by laminating a second base material in which reinforcing fibers are oriented in a direction different from the first base material.
前記フランジ部材は、前記貫通孔に面圧破壊が発生するように構成されている請求項4記載の車輌用エネルギ吸収部材。   The vehicle energy absorbing member according to claim 4, wherein the flange member is configured such that surface pressure breakage occurs in the through hole. 前記第1の基材は、
繊維配向角が0度の強化繊維と、
繊維配向角が90度の強化繊維と、を有し、
前記第2の基材は、
繊維配向角が−45度の強化繊維と、
繊維配向角が+45度の強化繊維と、を有し、下記条件式を満たす請求項4又は5記載の車輌用エネルギ吸収部材。
α+β+γ=100%
α=10〜40%
β=10〜40%
γ=30〜70%
但し、αは、前記フランジ部材を構成する繊維強化複合材料に含有された強化繊維のうちの繊維配向角が0度のものの割合[%]、βは、前記フランジ部材を構成する繊維強化複合材料に含有された強化繊維のうちの繊維配向角が90度のものの割合[%]、及び、γは、前記フランジ部材を構成する繊維強化複合材料に含有された強化繊維のうちの繊維配向角が±45度のものの割合[%]である。
The first substrate is
A reinforcing fiber having a fiber orientation angle of 0 degrees;
Reinforcing fibers having a fiber orientation angle of 90 degrees,
The second substrate is
A reinforcing fiber having a fiber orientation angle of -45 degrees;
The vehicle energy absorbing member according to claim 4, comprising a reinforcing fiber having a fiber orientation angle of +45 degrees and satisfying the following conditional expression.
α + β + γ = 100%
α = 10-40%
β = 10-40%
γ = 30-70%
Where α is the ratio [%] of the fiber orientation angle of the reinforcing fibers contained in the fiber reinforced composite material constituting the flange member [%], and β is the fiber reinforced composite material constituting the flange member. Of the reinforcing fibers contained in the fiber, the ratio [%] of the fiber orientation angle of 90 degrees and γ is the fiber orientation angle of the reinforcing fibers contained in the fiber reinforced composite material constituting the flange member. It is the ratio [%] of ± 45 degrees.
前記フランジ部材を構成する前記第1の基材及び前記第2の基材は擬似等方性に積層されている請求項4〜6の何れかに記載の車輌用エネルギ吸収部材。   The vehicle energy absorbing member according to any one of claims 4 to 6, wherein the first base material and the second base material constituting the flange member are laminated in a pseudo-isotropic manner. 前記荷重受け部材は、荷重印加時に荷重により当該印加方向に変形可能である請求項1〜7の何れかに記載の車輌用エネルギ吸収部材。   The vehicle energy absorbing member according to claim 1, wherein the load receiving member is deformable in a direction in which the load is applied when a load is applied. 前記荷重受け部材は、金属材料又は繊維強化複合材料から構成されている請求項8記載の車輌用エネルギ吸収部材。   The vehicle energy absorbing member according to claim 8, wherein the load receiving member is made of a metal material or a fiber reinforced composite material. 前記フランジ部材の前記貫通孔の開口周縁はテーパ状に形成され、又は、前記貫通孔の開口周縁にノッチが形成されている請求項1〜9の何れかに記載の車輌用エネルギ吸収部材。   The energy absorbing member for a vehicle according to any one of claims 1 to 9, wherein an opening periphery of the through hole of the flange member is formed in a tapered shape, or a notch is formed in the opening periphery of the through hole. 前記フランジ部材は、その一部の肉厚が他の部分より厚く形成されている請求項1〜10の何れかに記載の車輌用エネルギ吸収部材。   The vehicle energy absorbing member according to any one of claims 1 to 10, wherein a part of the flange member is thicker than another part. 前記フランジ部を構成する繊維強化複合材料は、炭素繊維を強化材料として含有している請求項1〜11の何れかに記載の車輌用エネルギ吸収部材。   The energy absorbing member for a vehicle according to any one of claims 1 to 11, wherein the fiber reinforced composite material constituting the flange portion contains carbon fiber as a reinforcing material. 荷重の印加方向に回転動作可能なヒンジ部材をさらに備え、
前記フランジ部材は、前記ヒンジ部材を介して前記車輌に取り付けられている請求項1〜12の何れかに記載の車輌用エネルギ吸収部材。
A hinge member capable of rotating in the load application direction;
The vehicle energy absorbing member according to claim 1, wherein the flange member is attached to the vehicle via the hinge member.
請求項1〜13の何れかに記載の車輌用エネルギ吸収部材を用いたドアガードビーム。

The door guard beam using the energy absorption member for vehicles in any one of Claims 1-13.

JP2005099478A 2005-03-30 2005-03-30 Vehicle energy absorbing member and door guard beam using the same Active JP4728677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099478A JP4728677B2 (en) 2005-03-30 2005-03-30 Vehicle energy absorbing member and door guard beam using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099478A JP4728677B2 (en) 2005-03-30 2005-03-30 Vehicle energy absorbing member and door guard beam using the same

Publications (2)

Publication Number Publication Date
JP2006273271A true JP2006273271A (en) 2006-10-12
JP4728677B2 JP4728677B2 (en) 2011-07-20

Family

ID=37208410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099478A Active JP4728677B2 (en) 2005-03-30 2005-03-30 Vehicle energy absorbing member and door guard beam using the same

Country Status (1)

Country Link
JP (1) JP4728677B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131584A (en) * 2014-01-14 2015-07-23 トヨタ自動車株式会社 Vehicle body member fastening structure
FR3029851A1 (en) * 2014-12-11 2016-06-17 Peugeot Citroen Automobiles Sa LIFT DOOR TRAVERSE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449722A (en) * 1987-08-05 1989-02-27 Loehr & Bromkamp Gmbh Shaft coupling element
JPS6452927A (en) * 1987-08-25 1989-03-01 Nippon Denso Co Kitchen furniture with sink
JPH01253427A (en) * 1988-04-01 1989-10-09 Sumitomo Chem Co Ltd Fiber reinforced plastic supporting material
JPH09329152A (en) * 1996-06-11 1997-12-22 Sumitomo Metal Ind Ltd Flexible plate for shaft coupling
JP2002154327A (en) * 2000-11-08 2002-05-28 Korea Advanced Inst Of Science & Technology Impact beam for automobile door
JP2004331047A (en) * 2003-05-09 2004-11-25 Dr Ing H C F Porsche Ag Side collision protection device and automobile door provided with side collision protection device
JP2005035395A (en) * 2003-07-15 2005-02-10 Nissan Motor Co Ltd Vehicular door structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632415Y2 (en) * 1987-09-30 1994-08-24 日産車体株式会社 Composite type reinforcing member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449722A (en) * 1987-08-05 1989-02-27 Loehr & Bromkamp Gmbh Shaft coupling element
JPS6452927A (en) * 1987-08-25 1989-03-01 Nippon Denso Co Kitchen furniture with sink
JPH01253427A (en) * 1988-04-01 1989-10-09 Sumitomo Chem Co Ltd Fiber reinforced plastic supporting material
JPH09329152A (en) * 1996-06-11 1997-12-22 Sumitomo Metal Ind Ltd Flexible plate for shaft coupling
JP2002154327A (en) * 2000-11-08 2002-05-28 Korea Advanced Inst Of Science & Technology Impact beam for automobile door
JP2004331047A (en) * 2003-05-09 2004-11-25 Dr Ing H C F Porsche Ag Side collision protection device and automobile door provided with side collision protection device
JP2005035395A (en) * 2003-07-15 2005-02-10 Nissan Motor Co Ltd Vehicular door structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131584A (en) * 2014-01-14 2015-07-23 トヨタ自動車株式会社 Vehicle body member fastening structure
FR3029851A1 (en) * 2014-12-11 2016-06-17 Peugeot Citroen Automobiles Sa LIFT DOOR TRAVERSE

Also Published As

Publication number Publication date
JP4728677B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5106775B2 (en) Vehicle energy absorbing member and door guard beam using the same
RU2709644C1 (en) External panel and method for production of external panel
JP2007176328A (en) Frp structure
RU2568543C1 (en) Retaining boss and blower case
US20030175455A1 (en) Structural element made from fibre-reinforced plastic
JP3997047B2 (en) Bonding structure of skin and pressure bulkhead
JP2009166408A (en) Structural member
WO2006106734A1 (en) Windmill
EP0719635A3 (en) Laminated structure of fiber reinforced plastics and shock-absorbing structure
JP2005273872A (en) Mounting structure of energy absorbing member made of fiber-reinforced plastic
WO2020017662A1 (en) Vehicle structural member
JP4728677B2 (en) Vehicle energy absorbing member and door guard beam using the same
JP2944967B2 (en) High-speed vehicle outer wall structure and high-speed vehicle outer wall manufacturing method
JP6358280B2 (en) Body panel mounting structure
JP2008007012A (en) Automotive hood panel made of fiber-reinforced plastic
JP4910873B2 (en) Shock absorbing member
JP2920370B2 (en) Bird-resistant structure at the head of high-speed vehicles
KR20180126763A (en) Bumper back beam and manufacturing method thereof
JP2018122780A (en) Automobile hood
JP5001783B2 (en) Shock absorber mounting structure
US10399608B2 (en) Integral component of a motor vehicle frame
JP3903134B2 (en) Impact resistant, shatterproof composite
JP2012510396A (en) Aircraft or spacecraft shell structure
JP4625710B2 (en) Automotive door
JP2006046481A (en) Shock absorbing member manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3