JP2006272429A - Mold for continuous casting - Google Patents

Mold for continuous casting Download PDF

Info

Publication number
JP2006272429A
JP2006272429A JP2005098053A JP2005098053A JP2006272429A JP 2006272429 A JP2006272429 A JP 2006272429A JP 2005098053 A JP2005098053 A JP 2005098053A JP 2005098053 A JP2005098053 A JP 2005098053A JP 2006272429 A JP2006272429 A JP 2006272429A
Authority
JP
Japan
Prior art keywords
cooling
continuous casting
casting mold
cooling water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005098053A
Other languages
Japanese (ja)
Other versions
JP4713195B2 (en
Inventor
Yuichi Ogawa
勇一 小川
Osamu Tsutsue
修 筒江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2005098053A priority Critical patent/JP4713195B2/en
Publication of JP2006272429A publication Critical patent/JP2006272429A/en
Application granted granted Critical
Publication of JP4713195B2 publication Critical patent/JP4713195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold for continuous casting with which a cast slab having good quality can be produced and the stable quality can be kept for a long period of time as compared with the conventional mold by restraining and further, preventing the development of corrosion in the lower end part of a cooling plate. <P>SOLUTION: In the mold for continuous casting, which is provided with the cooling plate 12 with many water guiding grooves 11 arranged at the back surface and a supporting member 14 fixed to the back surface side of the cooling plate 11 by a fitting means 13 via O-rings 18 disposed around the water guiding grooves 11, and in which the cooling of the cooling plate 12 is performed by making cooling water flow into each water guiding groove 11 via a water supplying part 15 and a water discharging part 16 arranged at the supporting member 14, the cooling plate 12 is provided with a cooling part 19 at the lower side of the O-ring 18 positioned at the lower end part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶鋼を鋳造するための連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold for casting molten steel.

従来、連続鋳造設備に使用される連続鋳造用鋳型(以下、単に鋳型ともいう)は、一対の幅狭冷却部材である短辺部材(短片部材ともいう)と、この短辺部材を挟み込むように配置される一対の幅広冷却部材である長辺部材(長片部材ともいう)とを備え、この向かい合う長辺部材の両端部にそれぞれボルトを取付け、ばねを介してナットで短辺部材を固定した構造となっている。
長辺部材は、図7(A)、(B)に示すように、裏面に上下方向に多数の導水溝80が設けられた銅板(冷却板の一例)81と、銅板81の裏面側にボルトによって固定されたバックプレート(冷却箱ともいう)82とを有している。このバックプレート82の銅板81に接触する側の上端部及び下端部には、それぞれ排水部83及び給水部84が設けられ、給水部84から流入した冷却水を導水溝80を介して排水部83へ流すことで、銅板81の冷却を行っている。また、銅板81とバックプレート82の間には、導水溝80、排水部83、及び給水部84を囲むようにOリング85が配置されているので、長辺部材からの水漏れを防止できる。なお、短辺部材も、その幅が異なること以外は、長辺部材と略同様の構成となっており、長辺部材及び短辺部材の各銅板で鋳型本体が構成されている(例えば、特許文献1参照)。
図8(A)に示すように、このような構成の鋳型86に溶湯を供給し、鋳型86内で凝固して形成される鋳片87を連続的に引き抜きながら、複数の冷却水用スプレー89から噴出させる冷却水により冷却している。
Conventionally, a continuous casting mold (hereinafter also simply referred to as a mold) used in a continuous casting facility has a pair of narrow cooling members (also referred to as short piece members) sandwiched between the short side members. A long side member (also referred to as a long piece member) that is a pair of wide cooling members that are arranged, bolts are attached to both ends of the opposing long side member, and the short side member is fixed with a nut via a spring It has a structure.
As shown in FIGS. 7A and 7B, the long-side member includes a copper plate 81 (an example of a cooling plate) in which a large number of water guide grooves 80 are provided on the back surface in the vertical direction, and a bolt on the back surface side of the copper plate 81. And a back plate (also referred to as a cooling box) 82 fixed by the. A drainage portion 83 and a water supply portion 84 are respectively provided at the upper end portion and the lower end portion of the back plate 82 on the side in contact with the copper plate 81, and the cooling water flowing in from the water supply portion 84 is passed through the water guide groove 80 to the drainage portion 83. To cool the copper plate 81. Moreover, since the O-ring 85 is disposed between the copper plate 81 and the back plate 82 so as to surround the water guide groove 80, the drainage part 83, and the water supply part 84, water leakage from the long side member can be prevented. The short side member also has substantially the same configuration as the long side member except that its width is different, and the mold body is composed of the copper plates of the long side member and the short side member (for example, patents) Reference 1).
As shown in FIG. 8 (A), a plurality of cooling water sprays 89 are supplied while continuously supplying a molten metal to the mold 86 having such a structure and continuously drawing out a cast piece 87 formed by solidification in the mold 86. Cooling with cooling water ejected from

特開2003−136204号公報JP 2003-136204 A

しかしながら、前記した連続鋳造用鋳型86を使用して連続鋳造を行った場合、図8(B)に示すように、銅板81の表面(鋳造面)側下端部に腐食(図中斜線部)が発生していた。
従来使用してきた連続鋳造用鋳型86の冷却構造は、図7(A)、(B)に示すように、多数の導水溝80が銅板81の下端部位置まで形成されていないため、その部分の温度上昇が生じ易い。このため、図8(C)に示すように、銅板81の下端部位置の温度上昇に伴って銅板81下端部が他の部分よりも鋳片87側へ大きく膨出変形し、銅板81表面と鋳片87(凝固シェル)表面との間に隙間(空間)90が発生する。また、鋳型86から引き抜かれた鋳片87は、冷却水用スプレー89から噴出される冷却水によって冷却されるため、発生した蒸気がこの隙間90に溜まる。このことから、隙間90に溜まった蒸気が、隙間90部分で滞留し易くなるため、銅板81下端部の腐食原因になっているものと解される。
このように、銅板81に腐食が発生することで、例えば、鋳片品質及びモールド寿命を大きく低下させる恐れがあった。
However, when continuous casting is performed using the above-described continuous casting mold 86, as shown in FIG. 8B, corrosion (shaded portion in the figure) is present at the lower end of the surface (casting surface) side of the copper plate 81. It has occurred.
As shown in FIGS. 7A and 7B, the cooling structure for the continuous casting mold 86 that has been conventionally used is that a large number of water guiding grooves 80 are not formed up to the lower end portion of the copper plate 81. Temperature rises easily. For this reason, as shown in FIG. 8 (C), the lower end of the copper plate 81 bulges and deforms more toward the slab 87 than the other portion as the temperature rises at the lower end of the copper plate 81, and the surface of the copper plate 81 A gap (space) 90 is generated between the surface of the slab 87 (solidified shell). Further, since the slab 87 drawn out from the mold 86 is cooled by the cooling water ejected from the cooling water spray 89, the generated steam accumulates in the gap 90. From this, it is understood that the steam accumulated in the gap 90 is likely to stay in the gap 90 portion, causing corrosion of the lower end portion of the copper plate 81.
Thus, when corrosion occurs in the copper plate 81, for example, there is a possibility that slab quality and mold life may be greatly reduced.

本発明はかかる事情に鑑みてなされたもので、冷却板下端部の腐食発生を抑制、更には防止して、品質が良好な鋳片を製造でき、しかも従来より長い期間安定した品質を維持可能な連続鋳造用鋳型を提供することを目的とする。 The present invention has been made in view of such circumstances, and can suppress and further prevent the occurrence of corrosion at the lower end of the cooling plate to produce a slab of good quality and maintain stable quality for a longer period of time than before. An object of the present invention is to provide a continuous casting mold.

前記目的に沿う本発明に係る連続鋳造用鋳型は、裏面に多数の導水溝が設けられた冷却板と、該導水溝を囲むOリングを介して前記冷却板の裏面側に取付け手段によって固定された支持部材とを有し、該支持部材に設けられた給水部及び排水部を介して前記各導水溝に冷却水を流すことで、前記冷却板の冷却を行う連続鋳造用鋳型において、
前記冷却板には、下端部に位置する前記Oリングの下側に冷却部が設けられている。
The continuous casting mold according to the present invention that meets the above object is fixed to the back surface side of the cooling plate by a mounting means through an O-ring surrounding the cooling plate with a cooling plate provided with a large number of water guiding grooves on the back surface. A continuous casting mold that cools the cooling plate by flowing cooling water through each water guide groove through a water supply unit and a drainage unit provided in the support member.
The cooling plate is provided with a cooling part below the O-ring located at the lower end.

また、本発明に係る連続鋳造用鋳型において、前記冷却部は、前記給水部と前記各導水溝の下端部に、連通部を介してそれぞれ接続される冷却水流路で構成されていることが好ましい。 Moreover, in the continuous casting mold according to the present invention, it is preferable that the cooling part is constituted by a cooling water flow path that is connected to the water supply part and a lower end part of each water guide groove through a communication part. .

本発明に係る連続鋳造用鋳型において、前記連通部には、該連通部を深さ方向に2段に分割する仕切り部材が配置され、前記給水部から流入した冷却水を、前記仕切り部材に沿って下端部に位置する前記Oリングの下側へ下降させて前記冷却水流路へ導いた後、上昇させて前記導水溝へ流すことが好ましい。 In the continuous casting mold according to the present invention, a partition member that divides the communication portion into two stages in the depth direction is disposed in the communication portion, and the cooling water that has flowed in from the water supply portion flows along the partition member. It is preferable that the O-ring located at the lower end is lowered to the lower side and led to the cooling water flow path, and then raised to flow into the water guiding groove.

本発明に係る連続鋳造用鋳型において、前記冷却部は、前記冷却板の幅方向に渡って設けられる冷却水通路であることが好ましい。 In the continuous casting mold according to the present invention, it is preferable that the cooling section is a cooling water passage provided across the width direction of the cooling plate.

本発明に係る連続鋳造用鋳型において、前記冷却水通路は、前記給水部に連通する冷却水供給路と、前記冷却板の幅方向端部に配置され、前記排水部に連通する冷却水排出路にそれぞれ連通していることが好ましい。 In the casting mold for continuous casting according to the present invention, the cooling water passage is disposed at a cooling water supply passage communicating with the water supply portion, and a width direction end portion of the cooling plate, and is connected to the drainage portion. It is preferable that they communicate with each other.

本発明に係る連続鋳造用鋳型において、前記冷却部の下端位置は、前記冷却板の下端位置から上方へ20mmの範囲内にあることが好ましい。 In the continuous casting mold according to the present invention, it is preferable that a lower end position of the cooling portion is within a range of 20 mm upward from a lower end position of the cooling plate.

請求項1〜6記載の連続鋳造用鋳型は、下端部に位置するOリングの下側の冷却板に冷却部を設けているので、冷却板下端部の温度上昇を抑制でき、その変形量を従来よりも小さくできる。これにより、冷却板の下端部が他の部分よりも鋳片側へ突出することを抑制、更には防止できるので、冷却板表面と鋳片表面との間に発生する隙間での蒸気の滞留を防止でき、冷却板下端部の腐食も抑制できる。 Since the casting mold for continuous casting according to claims 1 to 6 is provided with a cooling portion on the cooling plate on the lower side of the O-ring located at the lower end, the temperature rise at the lower end of the cooling plate can be suppressed, and the deformation amount thereof can be reduced. It can be made smaller than before. As a result, it is possible to suppress and further prevent the lower end of the cooling plate from projecting to the slab side relative to the other parts, thus preventing stagnation of steam in the gap generated between the cooling plate surface and the slab surface. It is possible to suppress corrosion at the lower end of the cooling plate.

特に、請求項2記載の発明の連続鋳造用鋳型は、冷却部を給水部と各導水溝に連通する冷却水流路で構成しているので、簡単な構成で冷却板下端部の冷却ができる。 In particular, in the continuous casting mold according to the second aspect of the present invention, since the cooling part is constituted by the cooling water flow path communicating with the water supply part and each water guide groove, the cooling plate lower end can be cooled with a simple structure.

請求項3記載の発明の連続鋳造用鋳型は、各冷却水流路と導水溝及び給水部とを接続する連通部に仕切り部材が配置されているので、例えば、冷却水を冷却水流路内で滞留させることなく、冷却水流路に連続的に流すことができ、冷却板下端部の冷却効率を高めることができる。 In the continuous casting mold according to the third aspect of the invention, since the partition member is disposed in the communication portion that connects each cooling water flow path to the water guide groove and the water supply portion, for example, the cooling water is retained in the cooling water flow path. It is possible to continuously flow through the cooling water flow path without increasing the cooling efficiency of the lower end of the cooling plate.

請求項4記載の発明の連続鋳造用鋳型は、冷却部を冷却板の幅方向に渡って設けられる冷却水通路で構成しているので、簡単な構成で冷却板下端部の冷却ができる。 In the continuous casting mold according to the fourth aspect of the present invention, since the cooling part is constituted by the cooling water passage provided across the width direction of the cooling plate, the cooling plate lower end can be cooled with a simple structure.

請求項5記載の発明の連続鋳造用鋳型は、冷却水通路を給水部に連通する冷却水供給路に連通させているので、冷却水通路への冷却水の供給が容易である。また、冷却水通路を、冷却板の幅方向端部に配置され、排水部に連通する冷却水排出路に連通させているので、冷却水通路に供給された冷却水の排水が容易である。 In the continuous casting mold according to the fifth aspect of the present invention, since the cooling water passage is communicated with the cooling water supply passage communicating with the water supply portion, the cooling water can be easily supplied to the cooling water passage. Further, since the cooling water passage is arranged at the end portion in the width direction of the cooling plate and communicated with the cooling water discharge passage communicating with the drainage portion, the drainage of the cooling water supplied to the cooling water passage is easy.

請求項6記載の発明の連続鋳造用鋳型は、冷却部の下端位置を規定しているので、冷却板下端部を的確に冷却できる。 Since the continuous casting mold of the invention according to claim 6 defines the lower end position of the cooling portion, the lower end portion of the cooling plate can be accurately cooled.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1(A)は本発明の第1の実施の形態に係る連続鋳造用鋳型の長辺部材の背面図、(B)は図1(A)のa−a矢視断面図、図2(A)は同長辺部材の下端部の部分拡大図、(B)は図2(A)のb−b矢視断面図、図3(A)は同長辺部材の表面温度解析結果の説明図、(B)は同長辺部材の変位量解析結果の説明図、図4(A)は本発明の第2の実施の形態に係る連続鋳造用鋳型の長辺部材の背面図、(B)は図4(A)のc−c矢視断面図、図5(A)は同長辺部材の下端部の部分拡大図、(B)は図5(A)のd−d矢視断面図、図6(A)は同長辺部材の表面温度解析結果の説明図、(B)は同長辺部材の変位量解析結果の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1A is a rear view of the long side member of the continuous casting mold according to the first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line aa in FIG. 2A is a partially enlarged view of the lower end portion of the long side member, FIG. 2B is a cross-sectional view taken along line bb in FIG. 2A, and FIG. 3A is a surface temperature analysis of the long side member. Explanatory drawing of a result, (B) is explanatory drawing of the displacement amount analysis result of the same long side member, FIG.4 (A) is a rear view of the long side member of the casting mold for continuous casting which concerns on the 2nd Embodiment of this invention. , (B) is a cross-sectional view taken along the line cc in FIG. 4 (A), FIG. 5 (A) is a partially enlarged view of the lower end portion of the long side member, and (B) is a line dd in FIG. FIG. 6A is an explanatory view of the surface temperature analysis result of the long side member, and FIG. 6B is an explanatory view of the displacement amount analysis result of the long side member.

図1(A)、(B)に示すように、本発明の第1の実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)は、前記したように、一対の幅狭冷却部材である短辺部材(短片部材ともいう)と、一対の幅広冷却部材である長辺部材(長片部材ともいう)10とを組合せることで製造されるものであり、長辺部材10は、熱伝導性が良好な金属の一例である銅又は銅合金からなり、裏面に多数の導水溝11(ここでは11本)が上下方向に設けられた銅板(冷却板の一例)12と、銅板12の裏面側に取付け手段13によって固定された支持部材の一例であるバックプレート14(冷却箱、水箱とも言う)とを有し、バックプレート14の銅板12の接する側の下部及び上部に設けられた給水部15及び排水部16を介して導水溝11に冷却水(例えば、工業用水)を流すことで銅板12の冷却を行うものである。なお、連続鋳造鋳型の短辺部材も、上記した長辺部材10と略同様の構成であり、長辺部材10の銅板12と短辺部材の銅板(冷却板の一例)とで鋳型本体が構成されている。このように、短辺部材は長辺部材10と幅が異なるのみであるため、その説明を省略し、以下、長辺部材10についてのみ詳しく説明する。 As shown in FIGS. 1A and 1B, the continuous casting mold (hereinafter also simply referred to as a mold) according to the first embodiment of the present invention has a pair of narrow cooling members as described above. Are manufactured by combining a short side member (also referred to as a short piece member) and a long side member (also referred to as a long piece member) 10 which are a pair of wide cooling members. A copper plate (an example of a cooling plate) 12 made of copper or a copper alloy, which is an example of a metal having good thermal conductivity, and provided with a large number of water guide grooves 11 (here, 11) on the back surface, and a copper plate 12 The back plate 14 (also referred to as a cooling box or a water box), which is an example of a support member fixed by the attachment means 13, is provided on the lower side and the upper side of the back plate 14 on the side in contact with the copper plate 12. The water guide groove 11 is cooled through the water supply section 15 and the drain section 16 Water (e.g., industrial water) is intended to cool the copper plate 12 by flowing. The short-side member of the continuous casting mold has substantially the same configuration as the long-side member 10 described above, and the mold body is composed of the copper plate 12 of the long-side member 10 and the copper plate of the short-side member (an example of a cooling plate). Has been. Thus, since the short side member is only different in width from the long side member 10, the description thereof will be omitted, and only the long side member 10 will be described in detail below.

図1(A)、(B)、図2(A)、(B)に示すように、銅板12(例えば、厚み10mm以上100mm以下程度)は、銅板12に形成されている雌ねじ部と、雌ねじ部に螺合してバックプレート14を締着する雄ねじとからなる取付け手段13(ここでは21箇所)により、例えばステンレスからなるバックプレート14(例えば、厚み50mm以上500mm以下程度)に固定されている。なお、バックプレート14の給水部15、排水部16、及び銅板12の導水溝11を囲むバックプレート14の周辺部には溝が形成され、ここにOリング18を配置している。これにより、銅板12とバックプレート14との密着性を向上させ、導水溝11からの冷却水の漏れを防止している。 As shown in FIGS. 1 (A), 1 (B), 2 (A), 2 (B), a copper plate 12 (for example, a thickness of about 10 mm or more and 100 mm or less) includes an internal thread portion formed on the copper plate 12 and an internal thread. It is fixed to a back plate 14 made of stainless steel (for example, a thickness of about 50 mm or more and 500 mm or less), for example, by mounting means 13 (21 locations in this case) comprising male screws that are screwed into the portion and fastened to the back plate 14. . A groove is formed in the periphery of the back plate 14 surrounding the water supply portion 15, the drainage portion 16 of the back plate 14, and the water guide groove 11 of the copper plate 12, and an O-ring 18 is disposed here. Thereby, the adhesiveness of the copper plate 12 and the back plate 14 is improved, and the leakage of the cooling water from the water guide groove 11 is prevented.

また、雄ねじを取付けるため、バックプレート14に形成された孔(図示しない)には、防水可能なシール座金が予め配置されており、雄ねじを取付けた部分からの冷却水の漏れを防止している。
これにより、バックプレート14の下側の給水部15に設けられた給水口(図示しない)から各導水溝11に均一に冷却水を供給し、しかも銅板12の下側から上側にかけて流れた冷却水を、バックプレート14の上側の排水部16に設けられた排水口17から排出して、銅板12の冷却を行っている。
Further, in order to attach a male screw, a seal washer that can be waterproofed is disposed in advance in a hole (not shown) formed in the back plate 14 to prevent leakage of cooling water from a portion to which the male screw is attached. .
As a result, the cooling water is supplied uniformly from the water supply port (not shown) provided in the lower water supply section 15 of the back plate 14 to each water guide groove 11 and flows from the lower side to the upper side of the copper plate 12. Is discharged from the drain port 17 provided in the drain part 16 on the upper side of the back plate 14 to cool the copper plate 12.

図1(B)、図2に示すように、各導水溝11の深さD1は、例えば、銅板12の厚みの1/3以上2/3以下程度である。また、導水溝11は、直線状となっており、所定ピッチ(例えば、10mm以上40mm以下程度)で設けられている。
この導水溝11の下端位置より更に下側、即ち下端部に位置するOリング18の下側(Oリング18の下方も含む)には、冷却部19が設けられている。なお、冷却部19は、給水部15と各導水溝11の下端部に、連通部20を介してそれぞれ接続される冷却水流路21で構成され、その下端位置D2は、銅板12の下端位置から上方へ20mm以下の範囲内(好ましくは銅板12の下端位置を基準として上方へ、3mm以上15mm以下の範囲内、更に好ましくは3mm以上10mm以下の範囲内)にある。
As shown in FIGS. 1B and 2, the depth D <b> 1 of each water guide groove 11 is, for example, about 1/3 or more and 2/3 or less of the thickness of the copper plate 12. Moreover, the water guide groove 11 is linear, and is provided with a predetermined pitch (for example, about 10 mm or more and 40 mm or less).
A cooling unit 19 is provided further below the lower end position of the water guide groove 11, that is, below the O ring 18 located at the lower end part (including the lower part of the O ring 18). The cooling unit 19 includes cooling water passages 21 respectively connected to the water supply unit 15 and the lower end portions of the water guide grooves 11 via the communication unit 20, and the lower end position D <b> 2 is from the lower end position of the copper plate 12. It is in the range of 20 mm or less upward (preferably within the range of 3 mm or more and 15 mm or less, and more preferably in the range of 3 mm or more and 10 mm or less based on the lower end position of the copper plate 12).

各冷却水流路21は、Oリング18の下側から下方へ向けて設けられており、各冷却水流路21と導水溝11とを接続する連通溝22と共に、銅板12の下端から導水溝11まで銅板12を穿孔し、その下端部に蓋(栓ともいう)23を取付けることで形成されている。この冷却水流路21の形状は、略断面円形となっており、その最大内幅は導水溝11と同等以上2倍以下程度で、その深さ方向底位置は導水溝11と略同等(ここでは導水溝11より僅かに深い)である。
また、冷却水の給水部15の位置に相当する銅板12の部分は、例えば、導水溝11の深さの1/2以上3/4以下程度で、導水溝11より浅い位置(例えば、連通溝22を断面半円状にする程度)まで彫り込まれている。このため、連通溝22の下端部、即ち、冷却水の給水部15の位置より下側は、その形状が冷却水流路21と同様である。
なお、彫り込まれた部分は、給水部15と冷却水流路21とを連通する冷却水流入部24になり、この冷却水流入部24と前記した連通溝22とで、連通部20が構成されている。
Each cooling water channel 21 is provided downward from the lower side of the O-ring 18, and together with the communication groove 22 that connects each cooling water channel 21 and the water guide groove 11, from the lower end of the copper plate 12 to the water guide groove 11. It is formed by perforating the copper plate 12 and attaching a lid (also referred to as a stopper) 23 to the lower end thereof. The shape of the cooling water passage 21 is substantially circular in cross section, and its maximum inner width is equal to or more than about twice that of the water guide groove 11, and its bottom position in the depth direction is substantially equivalent to that of the water guide groove 11 (here, Slightly deeper than the water guide groove 11).
Further, the portion of the copper plate 12 corresponding to the position of the cooling water supply unit 15 is, for example, about 1/2 to 3/4 of the depth of the water guide groove 11 and is shallower than the water guide groove 11 (for example, the communication groove). Engraved up to 22). For this reason, the shape of the lower end portion of the communication groove 22, that is, the position below the coolant supply portion 15 is the same as that of the coolant flow channel 21.
The engraved portion becomes a cooling water inflow portion 24 that allows the water supply portion 15 and the cooling water passage 21 to communicate with each other, and the communication portion 20 is configured by the cooling water inflow portion 24 and the communication groove 22 described above. Yes.

冷却水流入部24の深さ方向底位置には、冷却水調整板(仕切り部材の一例)25が配置され、銅板12の彫り込みによって生じた段差部分に、ねじ26によって固定されている。
この冷却水調整板25は、例えば、耐食性のあるステンレス、銅、又は銅合金で構成され、図2に示すように、その下端部に複数(ここでは3つ)の爪部27を有しており、この爪部27の先部が連通溝22の下端部内部に配置されている。また、冷却水調整板25は、略垂直状態で配置され、その上部が給水部15の上端部位置へ向かって屈曲し、しかもその下端位置がOリング18の上端位置に配置されている。
なお、冷却水調整板としては、1つの爪部を有するものを使用することも可能である。
A cooling water adjusting plate (an example of a partition member) 25 is disposed at the bottom position in the depth direction of the cooling water inflow portion 24, and is fixed to a step portion generated by the engraving of the copper plate 12 with a screw 26.
The cooling water adjusting plate 25 is made of, for example, corrosion-resistant stainless steel, copper, or copper alloy, and has a plurality of (here, three) claw portions 27 at the lower end thereof as shown in FIG. The tip portion of the claw portion 27 is disposed inside the lower end portion of the communication groove 22. Further, the cooling water adjusting plate 25 is disposed in a substantially vertical state, and an upper portion thereof is bent toward an upper end portion position of the water supply unit 15, and a lower end position thereof is disposed at an upper end position of the O-ring 18.
In addition, as a cooling water adjustment board, what has one nail | claw part can also be used.

このように、連通部20には、連通部20を深さ方向に2段に分割する冷却水調整板25が配置されているので、給水部15から冷却水流入部24へ流入した冷却水を、直接導水溝11へ流すことなく、冷却水調整板25の一面側に沿ってOリング18の下側へ下降させて冷却水流路21へ導いた後、反転させて冷却水調整板25の他面側に沿って上昇させ導水溝11へ流すことができる。
なお、冷却水流路での冷却水の滞留を抑制、更には防止するため、冷却水調整板の下端位置を、Oリングと同等位置、更にはOリングの下側位置(冷却水流路の位置)まで延長させることも可能である。また、冷却水調整板のねじ26で固定される部分の下端位置は、給水部の高さ方向中間位置に相当する位置としているが、冷却水調整板の爪部の剛性を高めるため、給水部の下端位置に相当する位置まで延長することも可能である。
Thus, since the cooling water adjustment plate 25 which divides | segments the communication part 20 into two steps in the depth direction is arrange | positioned at the communication part 20, the cooling water which flowed into the cooling water inflow part 24 from the water supply part 15 is received. Without flowing directly into the water guide groove 11, it is lowered to the lower side of the O-ring 18 along one surface side of the cooling water adjusting plate 25, guided to the cooling water flow path 21, and then reversed so that the cooling water adjusting plate 25 It can be raised along the surface side and allowed to flow to the water guide groove 11.
In order to suppress and further prevent the cooling water from staying in the cooling water flow path, the lower end position of the cooling water adjusting plate is the same position as the O-ring, and further the lower position of the O-ring (the position of the cooling water flow path) It is also possible to extend up to. Moreover, although the lower end position of the part fixed with the screw 26 of the cooling water adjustment plate is a position corresponding to the intermediate position in the height direction of the water supply unit, in order to increase the rigidity of the claw portion of the cooling water adjustment plate, the water supply unit It is also possible to extend to a position corresponding to the lower end position.

続いて、この連続鋳造用鋳型の長辺部材10を使用して、銅板12の表面温度及び変位(膨張)量を数値解析した結果について説明する。なお、数値解析に際しては、比較する従来品として図7に示す構成の銅板81を使用した。また、冷却水の設定流速は、冷却水流路21を4m/秒、導水溝11を8.5m/秒にしてある。
従来品の銅板81の表面温度は、図3(A)に示すように、銅板81の下端位置から100mm、即ちモールドTOPからの距離が800mmの位置から下端へかけて急激に上昇(430℃程度)している。これは、Oリング85の下側位置の銅板81の冷却が、適切に行われていないことに起因する。
一方、本実施の形態の銅板12の表面温度は、銅板12に冷却水流路21を設けることで、銅板12の冷却が適切に行われているため、銅板12下端部での温度上昇がなく、銅板12の下端へかけてなめらかに温度を低下させている。
Next, the results of numerical analysis of the surface temperature and displacement (expansion) amount of the copper plate 12 using the long side member 10 of the continuous casting mold will be described. In the numerical analysis, a copper plate 81 having the configuration shown in FIG. 7 was used as a conventional product to be compared. The set flow rate of the cooling water is 4 m / second for the cooling water passage 21 and 8.5 m / second for the water guide groove 11.
As shown in FIG. 3A, the surface temperature of the conventional copper plate 81 increases rapidly from the lower end position of the copper plate 81, that is, the distance from the mold TOP is 800 mm to the lower end (about 430 ° C.). )is doing. This is because the copper plate 81 at the lower position of the O-ring 85 is not properly cooled.
On the other hand, the surface temperature of the copper plate 12 of the present embodiment is such that the cooling of the copper plate 12 is appropriately performed by providing the cooling water channel 21 in the copper plate 12, so that there is no temperature rise at the lower end of the copper plate 12, The temperature is smoothly lowered toward the lower end of the copper plate 12.

このため、図3(B)に示すように、従来品の場合、銅板81下端部での鋳片方向の変位量が急激に増加し、銅板81下端部が膨張しているのに対して、本実施の形態の場合、そのような膨張が確認されない。
以上のことから、従来のような、銅板表面と鋳片表面との間の隙間(空間)の発生を抑制、更には防止できるので、銅板下端部の腐食発生を抑制できる。従って、品質が良好な鋳片を製造でき、しかも従来より長い期間安定した品質を維持可能な連続鋳造用鋳型を提供できる。
For this reason, as shown in FIG. 3 (B), in the case of the conventional product, the amount of displacement in the slab direction at the lower end of the copper plate 81 suddenly increases, whereas the lower end of the copper plate 81 is expanded, In this embodiment, such expansion is not confirmed.
From the above, since it is possible to suppress and further prevent the occurrence of a gap (space) between the copper plate surface and the slab surface as in the prior art, the occurrence of corrosion at the lower end of the copper plate can be suppressed. Accordingly, it is possible to provide a continuous casting mold that can produce a cast piece with good quality and can maintain stable quality for a longer period of time than before.

次に、本発明の第2の実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)について説明するが、前記した本発明の第1の実施の形態に係る連続鋳造用鋳型とは、長辺部材30の銅板(冷却板の一例)31に設ける冷却水通路(冷却部の一例)32の構成が異なること以外は、略同様の構成であるため、同一部材には同一番号を付す。
図4(A)、(B)、図5(A)、(B)に示すように、銅板31の裏面には、導水溝11と略同様の構成の導水溝33が、複数上下方向に形成されている。
この導水溝11の下端位置より更に下側、即ち下端部に位置するOリング18の下側(Oリング18の下方も含む)には、銅板31の幅方向に渡って冷却水通路32が設けられている。なお、冷却水通路32の下端位置D3は、銅板31の下端位置から上方へ20mm以下の範囲内(好ましくは銅板31の下端位置を基準として上方へ、3mm以上15mm以下の範囲内、更に好ましくは3mm以上10mm以下の範囲内)にある。
Next, a continuous casting mold according to the second embodiment of the present invention (hereinafter also simply referred to as a mold) will be described. What is the above-described continuous casting mold according to the first embodiment of the present invention? Since the configuration of the cooling water passage (an example of the cooling part) 32 provided in the copper plate (an example of the cooling plate) 31 of the long side member 30 is substantially the same, the same members are denoted by the same numbers. .
As shown in FIGS. 4A, 4B, 5A, and 5B, a plurality of water guide grooves 33 having substantially the same configuration as the water guide grooves 11 are formed on the back surface of the copper plate 31 in the vertical direction. Has been.
A cooling water passage 32 is provided across the width direction of the copper plate 31 further below the lower end position of the water guide groove 11, that is, below the O ring 18 located at the lower end portion (including the lower part of the O ring 18). It has been. The lower end position D3 of the cooling water passage 32 is within a range of 20 mm or less from the lower end position of the copper plate 31 (preferably upward with respect to the lower end position of the copper plate 31 and within a range of 3 mm to 15 mm, more preferably 3 mm or more and 10 mm or less).

冷却水通路32は、銅板31を一端部(図4(A)、図5(A)において右側)から水平方向にへかけて穿穴した後、一端部に蓋34を取付けることで、銅板31に設けられている。なお、冷却水通路32の形状は、略断面円形であり、その内径は例えば導水溝33の内幅の2倍以上5倍以下程度である。なお、冷却水通路の形状を断面矩形(正方形又は長方形)にすることも可能である。
冷却水通路32の長手方向中央位置には、導水溝33を介して給水部15に連通する冷却水供給路35が設けられているので、冷却水通路32への冷却水の供給を容易にしている。なお、冷却水供給路35は、銅板31の下端部から上側へ向かって導水溝33まで穿孔し、下端部に蓋36を取付けることで形成している。また、冷却水通路の形状を断面角形とする場合は、銅板裏面より角形のスリット加工を施し、冷却水通路に相当する部分以外の部分を埋め栓で蓋をして、冷却水通路を形成することができる。
The cooling water passage 32 is formed by drilling the copper plate 31 from one end portion (right side in FIGS. 4A and 5A) in the horizontal direction, and then attaching a lid 34 to the one end portion. Is provided. The shape of the cooling water passage 32 is substantially circular in cross section, and the inner diameter thereof is, for example, about 2 to 5 times the inner width of the water guide groove 33. In addition, it is also possible to make the shape of the cooling water passage into a rectangular cross section (square or rectangular).
Since a cooling water supply path 35 communicating with the water supply unit 15 through the water guide groove 33 is provided at the central position in the longitudinal direction of the cooling water path 32, it is possible to facilitate the supply of the cooling water to the cooling water path 32. Yes. The cooling water supply passage 35 is formed by drilling from the lower end portion of the copper plate 31 upward to the water guide groove 33 and attaching a lid 36 to the lower end portion. In addition, when the shape of the cooling water passage is a square cross section, a rectangular slit is formed from the back surface of the copper plate, and a portion other than the portion corresponding to the cooling water passage is covered with a plug to form a cooling water passage. be able to.

また、冷却水通路32の一方側、即ち銅板31の幅方向端部に配置される取付け手段13の右側には、冷却水排出路37が設けられている。この冷却水排出路37の上端部は、銅板31の裏面側へ向かって貫通して排出口38を形成しており、この排出口38が排水部16に連通する構成となっている。なお、冷却水通路32の他方側も、同様の構成となっている。
この冷却水排出路37は、銅板31の下端部から上側へ向かって穿孔し、その下端部に蓋39を取付けることで形成している。
In addition, a cooling water discharge passage 37 is provided on one side of the cooling water passage 32, that is, on the right side of the attachment means 13 disposed at the end in the width direction of the copper plate 31. An upper end portion of the cooling water discharge path 37 penetrates toward the back surface side of the copper plate 31 to form a discharge port 38, and the discharge port 38 communicates with the drainage unit 16. The other side of the cooling water passage 32 has the same configuration.
The cooling water discharge passage 37 is formed by drilling upward from the lower end portion of the copper plate 31 and attaching a lid 39 to the lower end portion.

このように、銅板が幅広であれば、冷却水供給路を銅板の幅方向中心付近に、冷却水排出路を銅板の幅方向両側端部(例えば、銅板の幅方向の中心線に対して対称)にそれぞれ設けるが、銅板が幅広でなければ、冷却水供給路と冷却水排出路を銅板の幅方向両端部にそれぞれ設けることもできる。 Thus, if the copper plate is wide, the cooling water supply path is near the center in the width direction of the copper plate, and the cooling water discharge path is symmetrical with respect to both ends of the copper plate in the width direction (for example, the center line in the width direction of the copper plate). However, if the copper plate is not wide, a cooling water supply passage and a cooling water discharge passage can be provided at both ends in the width direction of the copper plate.

続いて、この連続鋳造用鋳型の長辺部材30を使用して、銅板31の表面温度及び変位(膨張)量を数値解析した結果について説明する。なお、数値解析に際しては、比較する従来品として図7に示す構成の銅板81を使用した。また、冷却水の設定流速は、冷却水通路32を5m/秒、導水溝33を8.5m/秒にしてある。
従来品の銅板81の表面温度は、図6(A)に示すように、銅板81の下端位置から100mm、即ちモールドTOPからの距離が800mmの位置から下端へかけて急激に上昇(430℃程度)している。これは、Oリング85の下側位置の銅板81の冷却が、適切に行われていないことに起因する。
一方、本実施の形態の銅板31の表面温度は、銅板31に冷却水通路32を設けることで、銅板31の冷却を適切に行っているため、従来品と比較して銅板31の下端の温度上昇を大幅に抑制できている。
Next, the results of numerical analysis of the surface temperature and displacement (expansion) amount of the copper plate 31 using the long side member 30 of the continuous casting mold will be described. In the numerical analysis, a copper plate 81 having the configuration shown in FIG. 7 was used as a conventional product to be compared. The set flow rate of the cooling water is 5 m / second for the cooling water passage 32 and 8.5 m / second for the water guide groove 33.
As shown in FIG. 6A, the surface temperature of the conventional copper plate 81 rapidly increases from the lower end position of the copper plate 81, that is, the distance from the mold TOP from the position of 800 mm to the lower end (about 430 ° C.). )is doing. This is because the copper plate 81 at the lower position of the O-ring 85 is not properly cooled.
On the other hand, the surface temperature of the copper plate 31 of the present embodiment is that the cooling of the copper plate 31 is appropriately performed by providing the cooling water passage 32 in the copper plate 31, and therefore the temperature at the lower end of the copper plate 31 compared to the conventional product. The rise is greatly suppressed.

このため、図6(B)に示すように、従来品の場合、銅板81の下端部での鋳片方向の変位量が急激に増加し、銅板81下端部が膨張しているのに対して、本実施の形態の場合、その膨張量を大幅に抑制できている。
以上のことから、銅板表面と鋳片表面との間の隙間の発生を抑制、更には防止できるので、銅板下端部の腐食発生を抑制できる。従って、品質が良好な鋳片を製造でき、しかも従来より長い期間安定した品質を維持可能な連続鋳造用鋳型を提供できる。
For this reason, as shown in FIG. 6B, in the case of the conventional product, the amount of displacement in the slab direction at the lower end portion of the copper plate 81 increases rapidly and the lower end portion of the copper plate 81 expands. In the case of the present embodiment, the amount of expansion can be greatly suppressed.
From the above, since the generation of a gap between the copper plate surface and the slab surface can be suppressed and further prevented, the occurrence of corrosion at the lower end of the copper plate can be suppressed. Accordingly, it is possible to provide a continuous casting mold that can produce a cast piece with good quality and can maintain stable quality for a longer period of time than before.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、長辺部材及び短辺部材の銅板下端部にそれぞれ冷却部を設けた場合について説明したが、必要に応じて、長辺部材及び短辺部材のいずれか一方の銅板下端部に冷却部を設けることも可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the case where the cooling part was each provided in the copper plate lower end part of the long side member and the short side member was demonstrated, as needed, either one of a long side member and a short side member It is also possible to provide a cooling part at the lower end of the copper plate.

(A)は本発明の第1の実施の形態に係る連続鋳造用鋳型の長辺部材の背面図、(B)は図1(A)のa−a矢視断面図である。(A) is a rear view of the long side member of the casting mold for continuous casting according to the first embodiment of the present invention, and (B) is a cross-sectional view taken along the line aa in FIG. (A)は同長辺部材の下端部の部分拡大図、(B)は図2(A)のb−b矢視断面図である。(A) is the elements on larger scale of the lower end part of the long side member, (B) is bb arrow sectional drawing of FIG. 2 (A). (A)は同長辺部材の表面温度解析結果の説明図、(B)は同長辺部材の変位量解析結果の説明図である。(A) is explanatory drawing of the surface temperature analysis result of the same long side member, (B) is explanatory drawing of the displacement amount analysis result of the same long side member. (A)は本発明の第2の実施の形態に係る連続鋳造用鋳型の長辺部材の背面図、(B)は図4(A)のc−c矢視断面図である。(A) is a rear view of the long side member of the casting mold for continuous casting according to the second embodiment of the present invention, and (B) is a sectional view taken along the line cc of FIG. 4 (A). (A)は同長辺部材の下端部の部分拡大図、(B)は図5(A)のd−d矢視断面図である。(A) is the elements on larger scale of the lower end part of the same long side member, (B) is dd arrow sectional drawing of FIG. 5 (A). (A)は同長辺部材の表面温度解析結果の説明図、(B)は同長辺部材の変位量解析結果の説明図である。(A) is explanatory drawing of the surface temperature analysis result of the same long side member, (B) is explanatory drawing of the displacement amount analysis result of the same long side member. (A)は従来例に係る連続鋳造用鋳型の長辺部材の背面図、(B)は図7(A)のe−e矢視断面図である。(A) is a rear view of the long side member of the casting mold for continuous casting according to the conventional example, and (B) is a cross-sectional view taken along the line ee of FIG. 7 (A). (A)は連続鋳造方法の説明図、(B)は鋳片製造後の連続鋳造用鋳型の銅板表面の説明図、(C)は連続鋳造の際の連続鋳造用鋳型の銅板の形状変化を示す説明図である。(A) is an explanatory view of the continuous casting method, (B) is an explanatory view of the copper plate surface of the continuous casting mold after the slab manufacturing, (C) is a shape change of the copper plate of the continuous casting mold during continuous casting. It is explanatory drawing shown.

符号の説明Explanation of symbols

10:長辺部材、11:導水溝、12:銅板(冷却板)、13:取付け手段、14:バックプレート(支持部材)、15:給水部、16:排水部、17:排水口、18:Oリング、19:冷却部、20:連通部、21:冷却水流路、22:連通溝、23:蓋、24:冷却水流入部、25:冷却水調整板(仕切り部材)、26:ねじ、27:爪部、30:長辺部材、31:銅板(冷却板)、32:冷却水通路(冷却部)、33:導水溝、34:蓋、35:冷却水供給路、36:蓋、37:冷却水排出路、38:排出口、39:蓋 10: Long side member, 11: Water guide groove, 12: Copper plate (cooling plate), 13: Mounting means, 14: Back plate (support member), 15: Water supply unit, 16: Drainage unit, 17: Drainage port, 18: O-ring, 19: cooling section, 20: communication section, 21: cooling water flow path, 22: communication groove, 23: lid, 24: cooling water inflow section, 25: cooling water adjusting plate (partition member), 26: screw, 27: Claw part, 30: Long side member, 31: Copper plate (cooling plate), 32: Cooling water passage (cooling part), 33: Water guide groove, 34: Lid, 35: Cooling water supply path, 36: Lid, 37 : Cooling water discharge path, 38: Discharge port, 39: Cover

Claims (6)

裏面に多数の導水溝が設けられた冷却板と、該導水溝を囲むOリングを介して前記冷却板の裏面側に取付け手段によって固定された支持部材とを有し、該支持部材に設けられた給水部及び排水部を介して前記各導水溝に冷却水を流すことで、前記冷却板の冷却を行う連続鋳造用鋳型において、
前記冷却板には、下端部に位置する前記Oリングの下側に冷却部が設けられていることを特徴とする連続鋳造用鋳型。
A cooling plate provided with a number of water guide grooves on the back surface, and a support member fixed to the back surface side of the cooling plate by an attaching means via an O-ring surrounding the water guide groove, provided on the support member In a continuous casting mold that cools the cooling plate by flowing cooling water to the water guide grooves through the water supply unit and the drainage unit,
A continuous casting mold, wherein the cooling plate is provided with a cooling part below the O-ring located at the lower end.
請求項1記載の連続鋳造用鋳型において、前記冷却部は、前記給水部と前記各導水溝の下端部に、連通部を介してそれぞれ接続される冷却水流路で構成されていることを特徴とする連続鋳造用鋳型。 2. The continuous casting mold according to claim 1, wherein the cooling part is configured by a cooling water flow path connected to the water supply part and a lower end part of each water guide groove through a communication part. Continuous casting mold. 請求項2記載の連続鋳造用鋳型において、前記連通部には、該連通部を深さ方向に2段に分割する仕切り部材が配置され、前記給水部から流入した冷却水を、前記仕切り部材に沿って下端部に位置する前記Oリングの下側へ下降させて前記冷却水流路へ導いた後、上昇させて前記導水溝へ流すことを特徴とする連続鋳造用鋳型。 The continuous casting mold according to claim 2, wherein a partition member that divides the communication portion into two stages in the depth direction is disposed in the communication portion, and cooling water that has flowed in from the water supply portion is supplied to the partition member. A continuous casting mold characterized in that the casting mold is lowered to the lower side of the O-ring located at the lower end along the cooling water flow path and then raised to flow into the water guiding groove. 請求項1記載の連続鋳造用鋳型において、前記冷却部は、前記冷却板の幅方向に渡って設けられる冷却水通路であることを特徴とする連続鋳造用鋳型。 2. The continuous casting mold according to claim 1, wherein the cooling portion is a cooling water passage provided across the width direction of the cooling plate. 請求項4記載の連続鋳造用鋳型において、前記冷却水通路は、前記給水部に連通する冷却水供給路と、前記冷却板の幅方向端部に配置され、前記排水部に連通する冷却水排出路にそれぞれ連通していることを特徴とする連続鋳造用鋳型。 5. The continuous casting mold according to claim 4, wherein the cooling water passage is disposed at a cooling water supply passage communicating with the water supply portion and a width direction end portion of the cooling plate, and discharging the cooling water communicating with the drainage portion. A casting mold for continuous casting, characterized in that it is in communication with a path. 請求項1〜5のいずれか1項に記載の連続鋳造用鋳型において、前記冷却部の下端位置は、前記冷却板の下端位置から上方へ20mmの範囲内にあることを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 5, wherein a lower end position of the cooling portion is within a range of 20 mm upward from a lower end position of the cooling plate. template.
JP2005098053A 2005-03-30 2005-03-30 Continuous casting mold Active JP4713195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098053A JP4713195B2 (en) 2005-03-30 2005-03-30 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098053A JP4713195B2 (en) 2005-03-30 2005-03-30 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2006272429A true JP2006272429A (en) 2006-10-12
JP4713195B2 JP4713195B2 (en) 2011-06-29

Family

ID=37207663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098053A Active JP4713195B2 (en) 2005-03-30 2005-03-30 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4713195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175406B1 (en) * 2009-10-29 2012-08-20 현대제철 주식회사 Cooling Panel for Continuous Casting Mold and Apparatus of Continuous Casting Mold Therewith

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324324U (en) * 1976-08-10 1978-03-01
JPS6225037U (en) * 1985-07-26 1987-02-16
JPH067894A (en) * 1992-05-26 1994-01-18 Kubota Corp Cooling mold for pulling-up continuous casting
JP2002361373A (en) * 2001-05-31 2002-12-17 Japan Engineering Network Kk Built up mold for continuous casting
JP2003136204A (en) * 2001-10-30 2003-05-14 Mishima Kosan Co Ltd Continuous casting mold dealing with high heat flux
JP2004034067A (en) * 2002-07-02 2004-02-05 Mishima Kosan Co Ltd Continuous casting mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324324U (en) * 1976-08-10 1978-03-01
JPS6225037U (en) * 1985-07-26 1987-02-16
JPH067894A (en) * 1992-05-26 1994-01-18 Kubota Corp Cooling mold for pulling-up continuous casting
JP2002361373A (en) * 2001-05-31 2002-12-17 Japan Engineering Network Kk Built up mold for continuous casting
JP2003136204A (en) * 2001-10-30 2003-05-14 Mishima Kosan Co Ltd Continuous casting mold dealing with high heat flux
JP2004034067A (en) * 2002-07-02 2004-02-05 Mishima Kosan Co Ltd Continuous casting mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175406B1 (en) * 2009-10-29 2012-08-20 현대제철 주식회사 Cooling Panel for Continuous Casting Mold and Apparatus of Continuous Casting Mold Therewith

Also Published As

Publication number Publication date
JP4713195B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JPWO2010001459A1 (en) Gas pressure controlled casting mold
CA2549685C (en) Liquid-cooled permanent mold for the continuous casting of metals
WO2020230902A1 (en) Casting device
JP4713195B2 (en) Continuous casting mold
JP2009056490A (en) Casting mold for continuous casting
US20220105559A1 (en) Crystallizer copper plate and continuous casting crystallizer
SK7172001A3 (en) Device in connection with a water-cooling system
CN210996360U (en) Porous horizontal continuous casting crystallizer
CN101227991B (en) Twin roll caster, and equipment and method for operating the same
SK286872B6 (en) Equipment for continuous casting of metal
JP4611350B2 (en) Continuous casting mold
JP4611349B2 (en) Continuous casting mold
JP4219123B2 (en) Continuous casting mold
JP4681516B2 (en) Stave cooler
CN103894565A (en) Crystallizer with improved cooling channels
JP2011031258A (en) Die cooling apparatus
JP2005028406A (en) Mold for continuous casting
CN218798969U (en) Novel honeycomb type crystallizer assembly and continuous casting machine
JP2004025248A (en) Bore pin for casting cylinder block
CN215657733U (en) Crystallizer clamping plate flange cooled by water
CN212822562U (en) High-precision square billet crystallizer inner water jacket
CN218798964U (en) Crystallizer assembly and continuous casting machine
JP4813511B2 (en) Casting mold
KR100334281B1 (en) Lower mold for manufacturing a cylinder head
JP4645291B2 (en) Twin roll casting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

R150 Certificate of patent or registration of utility model

Ref document number: 4713195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250