JP2006272230A - Integrated micro fluid device and method for correcting deviation of flow rate in the same - Google Patents

Integrated micro fluid device and method for correcting deviation of flow rate in the same Download PDF

Info

Publication number
JP2006272230A
JP2006272230A JP2005097871A JP2005097871A JP2006272230A JP 2006272230 A JP2006272230 A JP 2006272230A JP 2005097871 A JP2005097871 A JP 2005097871A JP 2005097871 A JP2005097871 A JP 2005097871A JP 2006272230 A JP2006272230 A JP 2006272230A
Authority
JP
Japan
Prior art keywords
correction
pipe
microfluidic device
pressure loss
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005097871A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Shinji Kato
愼治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2005097871A priority Critical patent/JP2006272230A/en
Publication of JP2006272230A publication Critical patent/JP2006272230A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To restrain a deviation of the volume flow velocity, which is caused by the individual variation of each of a plurality of micro fluid devices connected to one another in parallel, of a fluid flowing in each of them when they are operated while distributing/supplying the fluid to them from a fluid driving mechanism such as one pump and a pressurized storage tank. <P>SOLUTION: This integrated micro fluid device is characterized in that a flow passage inlet of each of the plurality of micro fluid devices each having an individual variation in pressure loss is connected to one fluid driving mechanism by a branched connection pipeline. A correction pipeline is arranged in a portion of the branched connection pipeline from a branched part thereof to the flow passage inlet and/or at a flow passage outlet of each of them. The correction pipeline is prepared so that the value obtained by dividing the standard deviation of the sum of pressure losses of the correction pipeline and the micro fluid device connected thereto by the mean of the sum of the pressure losses is made smaller than the value obtained by dividing the standard deviation of the pressure loss of the connected micro fluid device by the mean of the pressure losses and made equal to or smaller than 5%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧力損失に個体差がある複数のマイクロ流体デバイスを複数台並列に接続した集積型マイクロ流体デバイスにおいて、該圧力損失の個体差に起因する流量の偏差を低減した集積型マイクロ流体デバイス、及び、該圧力損失の個体差に起因する流量の偏差低減方法に関する。   The present invention relates to an integrated microfluidic device in which a plurality of microfluidic devices having individual differences in pressure loss are connected in parallel, and the integrated microfluidic device in which a deviation in flow rate due to the individual differences in pressure loss is reduced Further, the present invention relates to a flow rate deviation reduction method caused by individual differences in the pressure loss.

マイクロ流体デバイスは、マイクロ流路、マイクロ流路チップ、化学アイシー(IC)、マイクロリアクター、マイクロ分析チップ、マイクロタス(μ−TAS)等とも称され、部材中に微細な毛細管状の流路を有するデバイスであり、化学的、生化学的、電気化学的などの、反応、処理、分析、検出などに用いられる。例えば、化学や生化学用の合成又は分解反応用デバイス;膜濾過、透析、脱気、吸気、抽出、分散、混合、油水分離などの化学工学的処理デバイス;DNA分析、蛋白質分析、糖鎖分析、電気泳動、液体クロマトグラフィー、ガス分析、水質分析などの分析デバイス;DNAチップなどのマイクロアレイ製造用や微粒子製造用などの微小ノズル、などとして使用される。   A microfluidic device is also called a microchannel, a microchannel chip, a chemical IC (IC), a microreactor, a microanalysis chip, a microtas (μ-TAS), and the like. This device is used for reaction, processing, analysis, detection, etc., such as chemical, biochemical, and electrochemical. For example, chemical or biochemical synthesis or degradation reaction devices; membrane filtration, dialysis, deaeration, inhalation, extraction, dispersion, mixing, oil / water separation and other chemical engineering processing devices; DNA analysis, protein analysis, sugar chain analysis , Electrophoresis, liquid chromatography, gas analysis, water analysis, and other analytical devices; and micro nozzles for producing microarrays such as DNA chips and microparticles.

マイクロ流体デバイスは、特に化学、生化学反応の分野や化学工学的処理の分野に於いて、処理の高速化、副生成物の減少、条件検討の高速化等が図れる上、最適運転条件が定まると、同じマイクロ流体デバイスを必要な生産量となる数だけ並列運転すること(パイルアップ型生産システム)により、スケールアップの検討を行うことなく生産出来るため、基礎研究の終了から生産プラントの稼働までの時間とコストを大幅に節減できると言われており、今後の化学反応装置や化学工学的処理装置として期待されている。また、(生)化学分析の分野に於いても、分析やその前処理において多数並列運転が容易であり、分析の効率の向上とコスト削減が図れると言われている。   In microfluidic devices, especially in the fields of chemistry, biochemical reactions, and chemical engineering processing, it is possible to speed up processing, reduce by-products, speed up conditions, etc., and determine optimum operating conditions. And by operating the same number of microfluidic devices in parallel for the required production volume (pile-up production system), production can be performed without consideration of scale-up, from the end of basic research to the operation of the production plant. It is said that the time and cost can be greatly reduced, and it is expected as a chemical reaction apparatus and chemical engineering processing apparatus in the future. Also, in the field of (bio) chemical analysis, it is said that a large number of parallel operations can be easily performed in analysis and preprocessing, and the efficiency of analysis can be improved and the cost can be reduced.

このようなマイクロ流体デバイスを並列に接続したものとしては、例えば、マイクロリアクターを並列接続したマイクロリアクターシステムが開示されている(特許文献1参照)。これは個々のマイクロリアクターの圧力変動を抑制することによって、これらを並列に接続したマイクロリアクターシステムにおける反応収率の低下などの不都合を低減させるものである。しかしながら、個々のマイクロリアクターの圧力変動を抑制することは、微細な構造を高精度で作製する必要があるため、実際には相当困難であり、製造誤差や経時変化により、各マイクロリアクターの圧力損失に個体差が生じがちであった。   As what connected such a microfluidic device in parallel, the microreactor system which connected the microreactor in parallel is disclosed, for example (refer patent document 1). This is to suppress inconvenience such as a decrease in reaction yield in a microreactor system in which these are connected in parallel by suppressing pressure fluctuations of individual microreactors. However, it is actually difficult to suppress the pressure fluctuation of each microreactor because it is necessary to produce a fine structure with high precision, and the pressure loss of each microreactor due to manufacturing errors and changes over time. There was a tendency for individual differences to occur.

この事情は、マイクロリアクター以外のマイクロ流体デバイスについても同様であり、1台のポンプや加圧貯留槽から、並列に設置されたマイクロ流体デバイスに流体を供給すると、各マイクロ流体デバイスの圧力損失に個体差があるために、各マイクロ流体デバイスに流れる流体の体積流速(単位時間当たりの体積流量)に差が生じ、これが製品の特性や分析結果の偏差(ばらつき)の原因となっていた。   This situation is the same for microfluidic devices other than microreactors. When a fluid is supplied from one pump or pressurized reservoir to microfluidic devices installed in parallel, the pressure loss of each microfluidic device is reduced. Due to individual differences, there is a difference in the volume flow rate (volume flow rate per unit time) of the fluid flowing through each microfluidic device, which causes deviation (variation) in product characteristics and analysis results.

特開2004−16904号公報JP 2004-16904 A

本発明が解決しようとする課題は、複数のマイクロ流体デバイスを並列に接続し、一つのポンプや加圧貯留槽などの流体駆動機構から流体を分配供給して運転するに当たり、各マイクロ流体デバイスの個体差に起因する、各マイクロ流体デバイスに流れる流体流量の偏差を改善することにより、並列接続された流体デバイスシステムによって製造される製品の特性や分析結果の均一性を高めることにある。   The problem to be solved by the present invention is to connect a plurality of microfluidic devices in parallel and distribute and supply a fluid from a fluid drive mechanism such as a single pump or a pressurized reservoir. By improving the deviation of the flow rate of the fluid flowing through each microfluidic device due to individual differences, it is to improve the uniformity of the characteristics and analysis results of the products manufactured by the fluidic device systems connected in parallel.

本発明者等は、並列に接続された、圧力損失に個体差のある複数のマイクロ流体デバイスに流れる流体流量の偏差を抑制するためには、ポンプや加圧貯留槽などの流体駆動機構からマイクロ流体デバイスの流路を経て流体が流出するまでの、配管と流路の合計の圧力損失の偏差を減少させればよいこと、また、配管の圧力損失は該配管の長さを調節することによって、正確且つ簡便に調節できることから、両者の圧力損失の和が一定となるように配管の圧力損失を調節することにより課題を解決できることを見いだし、本発明に到達した。   In order to suppress deviations in the flow rate of fluid flowing through a plurality of microfluidic devices connected in parallel and having individual differences in pressure loss, the present inventors have used microdrives from fluid drive mechanisms such as pumps and pressurized reservoirs. It is only necessary to reduce the deviation of the total pressure loss between the pipe and the flow path until the fluid flows out through the flow path of the fluid device, and the pressure loss of the pipe can be adjusted by adjusting the length of the pipe. Since it can be adjusted accurately and simply, it has been found that the problem can be solved by adjusting the pressure loss of the pipe so that the sum of the pressure losses of both is constant, and the present invention has been achieved.

すなわち、本発明は、流路入口から流路出口までの圧力損失に個体差がある複数のマイクロ流体デバイスのそれぞれの流路入口が、枝分かれした接続配管を介して、一つの流体駆動機構に接続された集積型マイクロ流体デバイスであって、(1)前記接続配管の前記分岐部から前記流路入口までの部分として各々補正配管が設けられること、及び/又は前記デバイスの流路出口に各々補正配管が設けられること、及び(2)前記補正配管とそれに接続されたマイクロ流体デバイスの圧力損失の和の標準偏差を、該圧力損失の和の平均で除した値が、前記マイクロ流体デバイスの圧力損失の標準偏差を、該圧力損失の平均で除した値より小さく、かつ、5%以下になるように、前記補正配管が各々調製されていること、を特徴とする集積型マイクロ流体デバイスを提供する。   That is, according to the present invention, each flow path inlet of a plurality of microfluidic devices having individual differences in pressure loss from the flow path inlet to the flow path outlet is connected to one fluid drive mechanism via a branched connection pipe. (1) correction pipes are provided as portions from the branching portion of the connection pipe to the flow path inlet, and / or corrections are made at the flow path outlet of the device, respectively. And (2) the value obtained by dividing the standard deviation of the sum of the pressure losses of the correction pipe and the microfluidic device connected thereto by the average of the sum of the pressure losses is the pressure of the microfluidic device. Each of the correction pipes is prepared such that the standard deviation of the loss is smaller than a value obtained by dividing the standard deviation of the pressure loss and is 5% or less. Providing b fluidic device.

また、本発明は、一つの流体駆動機構から、枝分かれした接続配管を介して、流路入口から流路出口までの圧力損失に個体差がある複数のマイクロ流体デバイスとのそれぞれの流路入口に接続された集積型マイクロ流体デバイスの各マイクロ流体デバイスに流れる流量偏差の補正方法であって、(1)前記接続配管の前記分岐部から前記流路入口までの部分として各々補正配管を設けること、及び/又は前記デバイスの流路出口に各々補正配管を設けること、及び(2)前記補正配管を、該補正配管とそれに接続されたマイクロ流体デバイスの圧力損失の和の標準偏差が、該補正配管と、前記マイクロ流体デバイスの圧力損失の標準偏差を、該圧力損失の平均で除した値より小さく、かつ、5%以下になるように補正配管を調整すること、を特徴とする流量偏差補正方法を提供する。   In addition, the present invention provides a single fluid drive mechanism to each flow channel inlet with a plurality of microfluidic devices having individual differences in pressure loss from the flow channel inlet to the flow channel outlet through a branched connection pipe. A method for correcting a flow rate deviation flowing in each microfluidic device of the connected integrated microfluidic device, wherein (1) a correction pipe is provided as a part from the branch portion of the connection pipe to the flow path inlet, And / or providing correction pipes at the outlets of the flow paths of the devices, respectively, and (2) the correction pipes having a standard deviation of the sum of pressure losses of the correction pipes and the microfluidic devices connected thereto. And adjusting the correction piping so that the standard deviation of the pressure loss of the microfluidic device is smaller than the value obtained by dividing the pressure loss by an average and not more than 5%. Providing flow rate difference correction method according to symptoms.

本発明は、圧力損失に個体差のある複数のマイクロ流体デバイスを並列に接続し、一つの流体駆動機構から流体を分配供給して運転する集積型マイクロ流体デバイスを構築するに当たり、各マイクロ流体デバイスの個体差に起因する流量の偏差を補正して、前記集積型マイクロ流体デバイスによって製造される製品の特性や分析結果の均一性を高めるることができる。   The present invention relates to the construction of an integrated microfluidic device in which a plurality of microfluidic devices having individual differences in pressure loss are connected in parallel and a fluid is distributed and supplied from a single fluid drive mechanism. The deviation of the flow rate caused by the individual difference between the two can be corrected to improve the uniformity of the characteristics and analysis results of the product manufactured by the integrated microfluidic device.

[マイクロ流体デバイス]
マイクロ流体デバイス(以下、単に[デバイス]と称する場合がある)内に設けられた毛細管状の流路は、単なる流体移送用の流路の他、反応や検出などの場としての働きを持つ流路も含む。流路の寸法や形状は任意であり、用途目的に応じて好適な寸法・形状にすることが出来る。例えば断面形状は円、半円、矩形、台形、スリット状などであり得る。流路の断面積は任意であるが、1〜100000μmが好ましく、100〜10000μmがさらに好ましい。この範囲である場合に、マイクロ流体デバイスの流路に一定の体積流速(単位時間当たりの体積流量)で流体を流した場合の圧力損失(以下、「(流路に)一定の体積流速で流体を流した場合の圧力損失」を、単に「(流路の)圧力損失」と称する)が、本発明の効果が発揮され易い値になる。
[Microfluidic device]
A capillary channel provided in a microfluidic device (hereinafter sometimes simply referred to as “device”) is a flow having a function as a field for reaction and detection in addition to a channel for simple fluid transfer. Including roads. The size and shape of the flow path are arbitrary, and can be set to a suitable size and shape according to the purpose of use. For example, the cross-sectional shape can be a circle, a semicircle, a rectangle, a trapezoid, a slit, or the like. Although the cross-sectional area of a flow path is arbitrary, 1-100000 micrometers 2 are preferable and 100-10000 micrometers 2 are more preferable. In this range, the pressure loss (hereinafter referred to as “(in the flow path) fluid at a constant volume flow rate) when the fluid is flowed through the flow path of the microfluidic device at a constant volume flow velocity (volume flow rate per unit time). The “pressure loss in the case of flowing the flow” is simply referred to as “pressure loss (of the flow path)”, which is a value at which the effect of the present invention is easily exhibited.

前記マイクロ流体デバイスの圧力損失は任意であるが、マイクロ流体デバイスの使用条件における圧力損失が100Pa〜1MPaであることが好ましく、1〜300kPaであることがさらに好ましい。この範囲の圧力損失のマイクロ流体デバイスを用いる場合に、本発明は容易に実施でき、また本発明の効果が十分に発揮される。なお、上記圧力損失は、マイクロ流体デバイスの流路入口から流路出口までの流路の圧力損失を言う。また、上記圧力損失の値は、並列に接続される複数のマイクロ流体デバイスの平均値とする。   The pressure loss of the microfluidic device is arbitrary, but the pressure loss under the usage conditions of the microfluidic device is preferably 100 Pa to 1 MPa, and more preferably 1 to 300 kPa. When a microfluidic device having a pressure loss in this range is used, the present invention can be easily implemented, and the effects of the present invention are sufficiently exhibited. The pressure loss refers to the pressure loss of the flow path from the flow path inlet to the flow path outlet of the microfluidic device. The pressure loss value is an average value of a plurality of microfluidic devices connected in parallel.

本発明の集積型マイクロ流体デバイス(以下、単に「集積型デバイス」と称する場合もある)は、前記マイクロ流体デバイスが並列に接続されて構成されている。本集積型デバイスを構成するデバイスの圧力損失の個体差の程度、即ち、偏差(ばらつき)は特に限定する必要はないが、偏差が大きいほど、本発明の効果が発揮される。例えば、マイクロ流体デバイスの圧力損失の偏差は、標準偏差を平均で除した値(以下、変動係数と称する。即ち、変動係数=100×標準偏差/平均、(%)]にして3%以上であることが好ましく、5%以上であることがさらに好ましい。変動係数の上限は限定する必要はなく、いくら大きくても本発明の効果が発揮されるが、100%以下が好ましく、30%以下がさらに好ましい。この範囲であると、後述の補正配管の長さを過大に長くすることや、補正配管の圧力損失をそれほど大きくすることなく、圧力損失の偏差を実用的な水準に改善できる。但し、マイクロ流体デバイスの圧力損失が例えば0.1〜1kPaのように低い場合には、デバイスの圧力損失の変動係数が、例えば1000%のように大きくても、不都合なく十分に改善できる。   An integrated microfluidic device of the present invention (hereinafter sometimes simply referred to as “integrated device”) is configured by connecting the microfluidic devices in parallel. The degree of individual difference in the pressure loss of the devices constituting the integrated device, that is, the deviation (variation) is not particularly limited, but the effect of the present invention is exhibited as the deviation is larger. For example, the pressure loss deviation of the microfluidic device is a value obtained by dividing the standard deviation by the average (hereinafter referred to as a coefficient of variation. That is, the coefficient of variation = 100 × standard deviation / average, (%)] is 3% or more. The upper limit of the coefficient of variation need not be limited, and the effect of the present invention can be exhibited no matter how large, but is preferably 100% or less, and preferably 30% or less. Within this range, the deviation of the pressure loss can be improved to a practical level without excessively increasing the length of the correction pipe, which will be described later, and without increasing the pressure loss of the correction pipe so much. When the pressure loss of the microfluidic device is as low as 0.1 to 1 kPa, for example, even if the coefficient of variation in the pressure loss of the device is as large as 1000%, it is sufficient without any inconvenience. It can be improved.

この意味で、本発明の集積型デバイスを構成するマイクロ流体デバイスは、内部にビーズや繊維などの充填材や保持物を有する流路、内面に多孔質層、凹凸、柱などの構造が設けられた流路、途中に単なる流路以外の構造、例えば濾過膜、ノズル、逆止弁、圧力弁、開閉バルブ、流路切り替えバルブ、などの構造を有するものが、単なる毛細管状の流路に比べて圧力損失の偏差が大きくなりがちであるため、本発明の効果が発揮されやすく好ましい。   In this sense, the microfluidic device constituting the integrated device of the present invention is provided with a flow path having fillers and holding materials such as beads and fibers inside, and a structure such as a porous layer, irregularities, and pillars on the inner surface. Compared to a simple capillary channel, a structure having a structure other than a simple channel, such as a filtration membrane, a nozzle, a check valve, a pressure valve, an on-off valve, a channel switching valve, etc. Therefore, the deviation of the pressure loss tends to be large, which is preferable because the effects of the present invention are easily exhibited.

なお、複数のマイクロ流体デバイスに圧力損失の偏差があると、これらのデバイスに共通の圧力で流体を流したときに、体積流速に偏差が生じる。体積流速と圧力損失とは逆比例の関係にあるから、体積流速の標準偏差は圧力損失の逆数の標準偏差に比例し、体積流速の変動係数は圧力損失の逆数の変動係数と一致する。   Note that if there is a deviation in pressure loss among a plurality of microfluidic devices, a deviation occurs in the volume flow rate when a fluid is flowed at a pressure common to these devices. Since the volume flow rate and the pressure loss are in an inversely proportional relationship, the standard deviation of the volume flow rate is proportional to the standard deviation of the reciprocal of the pressure loss, and the variation coefficient of the volume flow rate coincides with the variation coefficient of the reciprocal of the pressure loss.

本発明で並列に接続されるマイクロ流体デバイスの数は、2以上であれば任意であるが、2〜100000が好ましく、10〜100000が更に好ましく、10〜10000が最も好ましい。並列に接続される数が上記の範囲である場合に、個々のマイクロ流体デバイスの圧力損失を比較的容易に測定できる。   The number of microfluidic devices connected in parallel in the present invention is arbitrary as long as it is 2 or more, preferably 2 to 100,000, more preferably 10 to 100,000, and most preferably 10 to 10,000. When the number connected in parallel is in the above range, the pressure loss of each microfluidic device can be measured relatively easily.

[流体駆動機構]
上記の複数のマイクロ流体デバイスは、流体を流すための流体駆動機構に接続されている。該流体駆動機構は任意であり、ポンプ、加圧貯留槽、減圧貯留槽、超音波駆動部などが挙げられる。ポンプの種類は任意であり、例えば、シリンジポンプ、プランジャーポンプ、電気浸透流式ポンプなどの、吐出量に吐出圧依存性があるポンプ、が挙げられる。また、加圧貯留槽は、気体で加圧された加圧貯留槽や、液体の高低差により液体を流す液体貯留槽が挙げられる。流体駆動機構が吸引により駆動するものである場合には、上記と同様のポンプ、減圧貯留槽、液体の高低差により減圧された液体貯留槽が挙げられる。
[Fluid drive mechanism]
The plurality of microfluidic devices described above are connected to a fluid drive mechanism for flowing fluid. The fluid driving mechanism is arbitrary, and examples thereof include a pump, a pressurized storage tank, a decompression storage tank, and an ultrasonic drive unit. The type of the pump is arbitrary, and examples thereof include a pump whose discharge amount is dependent on discharge pressure, such as a syringe pump, a plunger pump, and an electroosmotic pump. Examples of the pressurized storage tank include a pressurized storage tank pressurized with a gas and a liquid storage tank in which a liquid is allowed to flow due to a difference in height of the liquid. In the case where the fluid drive mechanism is driven by suction, the same pump, reduced pressure storage tank, and liquid storage tank reduced in pressure due to the height difference of the liquid can be used.

[接続配管]
本発明に於いては、前記複数のマイクロ流体デバイスは、1つの流体駆動機構から、前記複数のマイクロ流体デバイスの数に対応して枝分かれした接続配管によって接続されている。前記接続配管は、前記流体駆動機構から直接マイクロ流体デバイスの数だけ枝分かれして接続されていても良いし、流体駆動機構から1本の共通配管部分を経た後に枝分かれして各個別配管部がマイクロ流体デバイスに接続されていても良いし、流体駆動機構から複数の共通配管部分を経た後にそれぞれ枝分かれして各個別配管部がマイクロ流体デバイスに接続されていても良いし、樹枝状に、複数段の枝分かれを繰り返して、各個別配管部がマイクロ流体デバイスに接続されていても良い。ここで、個別配管部とは、流体駆動機構とマイクロ流体デバイス間に接続された配管における、枝分かれ部分からマイクロ流体デバイスまでの配管部分をいい、共通配管部分や枝分かれ部分と連続した配管の一部であってもよいし、枝分かれ部分に接続された別個の配管であってもよい。該個別配管部を後述のように、補正配管とすることが出来る。
[Connection piping]
In the present invention, the plurality of microfluidic devices are connected from one fluid drive mechanism by connection piping branched according to the number of the plurality of microfluidic devices. The connection pipes may be branched and connected directly from the fluid drive mechanism by the number of microfluidic devices, or after branching from the fluid drive mechanism through one common pipe part, each individual pipe part is micro-connected. It may be connected to a fluid device, or may be branched after passing through a plurality of common piping parts from the fluid driving mechanism, and each individual piping part may be connected to the microfluidic device, or a plurality of stages in a dendritic shape. Each branch may be connected to the microfluidic device by repeating this branching. Here, the individual piping portion refers to a piping portion from the branching portion to the microfluidic device in the piping connected between the fluid drive mechanism and the microfluidic device, and a part of the piping continuous with the common piping portion or the branching portion. It may be a separate pipe connected to the branching portion. The individual pipe portion can be a correction pipe as will be described later.

[出口側配管]
各マイクロ流体デバイスの流路出口には、排出される流体を回収する目的などのために、出口側配管を接続しても良い。該出口側配管は、入口側配管を補正配管とした場合には、マイクロ流体デバイスの流路出口から排出された流体を回収するための配管や、他の装置等に供給するための配管等の任意の配管であってよい。また、後述のように、該出口側配管を補正配管とすることも出来る。
[Outlet piping]
An outlet side pipe may be connected to the outlet of the flow path of each microfluidic device for the purpose of collecting the discharged fluid. The outlet side pipe, when the inlet side pipe is a correction pipe, is a pipe for collecting fluid discharged from the flow path outlet of the microfluidic device, a pipe for supplying to other devices, etc. Any pipe may be used. Further, as will be described later, the outlet side pipe may be a correction pipe.

[補正配管]
本発明に於いては、前記接続配管の個別配管部と前記出口側配管の少なくとも一方を各々補正配管とする。前記接続配管の個別配管部と前記出口側配管の一方を補正配管とする場合には、そのどちらを補正配管とするかについては、並列に接続した各マイクロ流体デバイス毎に異なっても良いが、統一されていることが好ましい。統一することにより、各マイクロ流体デバイスに掛かる圧力差が減少し、補正配管の圧力損失の偏差を小さくすることが容易になる。
[Correction piping]
In the present invention, at least one of the individual pipe portion of the connection pipe and the outlet side pipe is a correction pipe. When one of the individual piping part of the connection pipe and the outlet side pipe is used as a correction pipe, which one of the correction pipes is used may be different for each microfluidic device connected in parallel. It is preferable that they are unified. By unifying, the pressure difference applied to each microfluidic device is reduced, and it becomes easy to reduce the pressure loss deviation of the correction pipe.

前記接続配管の個別配管部を補正配管とする場合(これを第一態様とする)には、前記出口側配管の有無や、その圧力損失の特性は任意である。   When the individual pipe portion of the connection pipe is a correction pipe (this is the first aspect), the presence / absence of the outlet side pipe and the pressure loss characteristics are arbitrary.

前記出口側配管が補正配管とする場合(これを第二態様とする)には、前記接続配管の圧力損失は任意である。   When the outlet side pipe is a correction pipe (this is the second mode), the pressure loss of the connection pipe is arbitrary.

前記接続配管と前記出口側配管の両者が補正配管であっても良い。即ち、上記第一態様と第二態様を併用しても良い。この場合には、補正配管の長さや圧力損失は、前記接続配管の個別配管部と前記出口側の補正配管の和となる。本態様は、マイクロ流体デバイスの圧力損失が大きい場合や、マイクロ流体デバイスの圧力損失の偏差が大きい場合に好ましい。   Both the connection pipe and the outlet side pipe may be correction pipes. That is, the first aspect and the second aspect may be used in combination. In this case, the length of the correction pipe and the pressure loss are the sum of the individual pipe portion of the connection pipe and the correction pipe on the outlet side. This embodiment is preferable when the pressure loss of the microfluidic device is large or when the deviation of the pressure loss of the microfluidic device is large.

本発明に於いては、前記補正配管とそれに接続されたマイクロ流体デバイスの圧力損失の和の標準偏差を、該圧力損失の和の平均で除した値(即ち、変動係数)が、本集積型マイクロ流体デバイスを構成するマイクロ流体デバイスの圧力損失の変動係数より小さく、かつ、該変動係数が5%以下、好ましくは3%以下、更に好ましくは2%以下、最も好ましくは1%以下になるように、前記補正配管が各々調整されている。   In the present invention, the value obtained by dividing the standard deviation of the sum of the pressure losses of the correction pipe and the microfluidic device connected thereto by the average of the sum of the pressure losses (that is, the coefficient of variation) is the integrated type. It is smaller than the variation coefficient of pressure loss of the microfluidic device constituting the microfluidic device, and the variation coefficient is 5% or less, preferably 3% or less, more preferably 2% or less, and most preferably 1% or less. Further, each of the correction pipes is adjusted.

[第一態様]
本発明の第一態様においては、前記接続配管の分岐部から各マイクロ流体デバイスの流路入口に至る接続配管の個別配管部を補正配管とする。各補正配管は、該補正配管の圧力損失とそれに接続されるデバイスの圧力損失の和が一定になるように圧力損失を定める。上記のように補正配管の圧力損失を定める方法は任意であり、例えば、(1)各マイクロ流体デバイスに一定の体積流速で流体を流して、各マイクロ流体デバイスの圧力損失を測定し、それに応じて接続する補正配管の圧力損失を定める方法、(2)各マイクロ流体デバイスに一定圧力損失の補正配管を接続した状態で、上記(1)と同様にして合計の圧力損失を測定し、その結果から、合計の圧力損失が一定値になるように補正配管を切断して長さを調節する方法、(3)上記(1)において一定の体積流速でなく、一定の圧力差で流体を流して体積流速を測定し、これを圧力損失に換算して補正する方法、(4)上記(2)において一定の体積流速の代わりに一定の圧力差で流体を流し、各体積流速が一定となるように補正配管の長さを調節して補正する方法、等を採用しうる。
[First aspect]
In the first aspect of the present invention, the individual piping portion of the connecting piping from the branch portion of the connecting piping to the flow channel inlet of each microfluidic device is used as the correction piping. Each correction pipe determines the pressure loss so that the sum of the pressure loss of the correction pipe and the pressure loss of the device connected thereto is constant. The method for determining the pressure loss of the correction piping as described above is arbitrary.For example, (1) a fluid is flowed to each microfluidic device at a constant volume flow rate, the pressure loss of each microfluidic device is measured, and accordingly (2) Measure the total pressure loss in the same way as in (1) above, with the fixed pressure loss correction pipe connected to each microfluidic device. Then, adjust the length by cutting the correction piping so that the total pressure loss becomes a constant value. (3) In (1) above, let the fluid flow with a constant pressure difference instead of a constant volume flow rate. A method of measuring the volume flow rate and correcting it by converting it to pressure loss. (4) In the above (2), instead of a constant volume flow rate, a fluid is flowed with a constant pressure difference so that each volume flow rate becomes constant. Adjust the length of the correction pipe to correct it. It can be.

また、補正配管の圧力損失を定める方法も任意であり、(1)管の一定長さ当たりの圧力損失を測定し、補正すべき圧力損失に相当する長さを計算して調製する方法、(2)圧力損失の実測により、目的の圧力損失を持つ補正配管を得る方法、等を例示できる。   In addition, the method of determining the pressure loss of the correction pipe is also arbitrary, (1) a method of measuring the pressure loss per fixed length of the pipe, calculating the length corresponding to the pressure loss to be corrected, and preparing ( 2) A method of obtaining a correction pipe having a target pressure loss can be exemplified by measuring the pressure loss.

最小の圧力損失(即ち、圧力損失の最小の補正量)を持つ補正配管の圧力損失は任意であるが、好ましくはそれが接続されるマイクロ流体デバイスの圧力損失の10倍以下、更に好ましくは3倍以下、最も好ましくは1倍以下である。他の補正配管の圧力損失は、マイクロ流体デバイスの圧力損失の偏差に応じて決められる。この範囲とすることにより、圧力損失の補正を補正配管の長さで行う場合に、補正配管として用いる管の圧力損失の変動係数が大きくても、圧力損失の標準偏差としての誤差が少なくなり、簡単に高精度の補正が可能になる。さらに、補正配管の耐圧性や、接続配管と流体駆動機構との接続部の耐圧性を高くする必要が無くなり、流体駆動機構として、吐出圧の低いものが使用できる。補正配管の圧力損失の下限は、本発明の集積型デバイスを構成するマイクロ流体デバイスの内で最も高い圧力損失を示すデバイスに接続する補正配管についてはゼロであっても良く、この時、本発明の集積型デバイスを構成するデバイスの内で最も低い圧力損失を示すマイクロ流体デバイスに接続する補正配管の圧力損失の下限は、本集積型デバイスを構成するデバイス中の最大の圧力損失と最低の圧力損失の差となる。   The pressure loss of the correction piping having the minimum pressure loss (ie, the minimum correction amount of pressure loss) is arbitrary, but is preferably not more than 10 times the pressure loss of the microfluidic device to which it is connected, more preferably 3 No more than twice, most preferably no more than 1 time. The pressure loss of other correction piping is determined according to the pressure loss deviation of the microfluidic device. By making this range, when correcting the pressure loss with the length of the correction pipe, even if the coefficient of variation of the pressure loss of the pipe used as the correction pipe is large, the error as the standard deviation of the pressure loss is reduced. High-precision correction can be easily performed. Furthermore, it is not necessary to increase the pressure resistance of the correction pipe and the pressure resistance of the connection portion between the connection pipe and the fluid drive mechanism, and a low discharge pressure can be used as the fluid drive mechanism. The lower limit of the pressure loss of the correction pipe may be zero for the correction pipe connected to the device exhibiting the highest pressure loss among the microfluidic devices constituting the integrated device of the present invention. The lower limit of the pressure loss of the correction piping connected to the microfluidic device exhibiting the lowest pressure loss among the devices constituting the integrated device is the maximum pressure loss and the lowest pressure in the device constituting the integrated device. The difference in loss.

ところで、本第一態様に於いて、前記接続配管の共通配管部の圧力損失は、該共通配管部が1本である場合は任意であり、複数本である場合はそれらの圧力損失が同じであればその値は任意で得ある。しかしながら、補正配管である個別配管部の圧力損失に比べて十分小さいことが好ましく、例えば、10%以下が好ましく、5%以下が更に好ましく、2%以下が最も好ましい。下限は、限りなくゼロに近いことが好ましい。この範囲とすることで、補正配管を共通配管部に接続する位置の誤差による影響が小さくなり、本発明の変動改善効果が十分に発揮される。   By the way, in this 1st aspect, the pressure loss of the common piping part of the said connection piping is arbitrary when this common piping part is one, and those pressure losses are the same when there are two or more. If present, the value can be arbitrarily obtained. However, the pressure loss is preferably sufficiently smaller than the pressure loss of the individual piping part that is the correction piping, for example, preferably 10% or less, more preferably 5% or less, and most preferably 2% or less. The lower limit is preferably as close to zero as possible. By setting it as this range, the influence by the error of the position which connects correction | amendment piping to a common piping part becomes small, and the fluctuation improvement effect of this invention is fully exhibited.

補正配管の圧力損失は、内径(又は断面積)の選択と長さでもって調節することが出来る。本発明に於いては、補正配管の内径は10〜200μmの範囲にあることが好ましく、20〜100μmがさらに好ましい。前記補正配管の内径は、用いるマイクロ流体デバイスに流す流体の体積流速やマイクロ流体デバイスの圧力損失に応じて選択でき、マイクロ流体デバイスを使用するときの体積流速が小さいほど、また、マイクロ流体デバイスの圧力損失が高いほど小径のものを用いることが好ましい。勿論、該内径は一定である必要はなく、例えば途中から変わっていて良い。接続配管の流路断面形状は円が好ましいが、円以外の場合には、上記内径に相当する断面積のものとする。   The pressure loss of the correction pipe can be adjusted by selecting the inner diameter (or cross-sectional area) and the length. In the present invention, the inner diameter of the correction pipe is preferably in the range of 10 to 200 μm, more preferably 20 to 100 μm. The inner diameter of the correction pipe can be selected according to the volume flow rate of the fluid flowing through the microfluidic device used and the pressure loss of the microfluidic device. The smaller the volume flow rate when using the microfluidic device, It is preferable to use a smaller diameter as the pressure loss is higher. Of course, the inner diameter does not need to be constant, and may change, for example, from the middle. The cross-sectional shape of the flow path of the connecting pipe is preferably a circle, but if it is other than a circle, it has a cross-sectional area corresponding to the inner diameter.

前記補正配管の長さは任意であり、圧力損失を前記のように調節すれば、本集積型マイクロ流体デバイスの寸法や並列接続数によって、好適な値に出来る。例えば、最短の補正配管の長さは他の補正配管の長さは、マイクロ流体デバイスの圧力損失の偏差に応じて決められる。また、0.01m以上とすることも好ましく、配管の切断と接続が容易になる。さらに、0.5m以上とすることも好ましく、補正配管が接続配管や出口側配管の機能を兼用することが出来る。最短の補正配管の長さの上限は5m以下が好ましく、3m以下がさらに好ましい。この範囲以下とすることにより、コンパクトに補正できる。長さが好ましい範囲に入るよう、上記内径を選択することができる。   The length of the correction pipe is arbitrary, and if the pressure loss is adjusted as described above, a suitable value can be obtained depending on the size of the integrated microfluidic device and the number of parallel connections. For example, the length of the shortest correction pipe is determined according to the pressure loss deviation of the microfluidic device. Moreover, it is also preferable to set it as 0.01 m or more, and cutting and connection of piping become easy. Furthermore, it is also preferable to set it as 0.5 m or more, and correction | amendment piping can combine the function of connection piping or outlet side piping. The upper limit of the length of the shortest correction pipe is preferably 5 m or less, and more preferably 3 m or less. By making it below this range, it can correct | amend compactly. The inner diameter can be selected so that the length falls within a preferred range.

また、本発明に於いては、前記補正配管として用いる管の、一定長さの圧力損失の変動係数は任意であるが、マイクロ流体デバイスの圧力損失の変動係数に比べて小さいもの、例えば、好ましくは1倍未満、さらに好ましくは1/2未満、最も好ましくは1/4未満のものが好ましい。これにより、補正配管の長さからその圧力損失を十分な精度で推定出来るため、補正配管を、圧力損失の測定を行うことなく、計算された長さに切断するだけで形成出来るため、補正が極めて容易になる。なお、補正配管として用いることのできる管の市販工業製品の変動係数は通常2%未満である。   In the present invention, the coefficient of variation in pressure loss of a certain length of the pipe used as the correction pipe is arbitrary, but is smaller than the coefficient of variation in pressure loss of the microfluidic device, for example, preferably Is preferably less than 1 time, more preferably less than 1/2, and most preferably less than 1/4. As a result, the pressure loss can be estimated with sufficient accuracy from the length of the correction pipe, so the correction pipe can be formed by simply cutting to the calculated length without measuring the pressure loss. It becomes extremely easy. In addition, the coefficient of variation of commercially available industrial products of pipes that can be used as correction pipes is usually less than 2%.

また、補正配管の材質は任意であるが、硬度の高いものが、補正配管の寸法精度を高める上で好ましい。特に、補正配管とマイクロ流体デバイスの圧力損失の和が大きな時、例えば100kPa以上である場合には、運転時の補正配管の内径の変動を小さくする上で好ましい。補正配管の材質は、例えば、ヤング率が好ましくは1MPa以上、さらに好ましくは2MPa以上、最も好ましくは3MPa以上である。ヤング率の上限は、配管がもろくならなければ高い方が好ましく、特に上限を設ける必要はないが、製造の容易さなどの点から、好ましくは500MPa、さらに好ましくは200MPa以下である。補正配管は、金属、ガラス、水晶などの結晶、有機重合体などであり得るが、有機重合体が、柔軟性と高い破壊強度を兼ね備えているため好ましい。勿論、これらの複合体であっても良い。   Moreover, although the material of correction | amendment piping is arbitrary, what has high hardness is preferable when raising the dimensional accuracy of correction | amendment piping. In particular, when the sum of the pressure loss of the correction pipe and the microfluidic device is large, for example, 100 kPa or more, it is preferable to reduce the fluctuation of the inner diameter of the correction pipe during operation. The material of the correction pipe has, for example, a Young's modulus of preferably 1 MPa or more, more preferably 2 MPa or more, and most preferably 3 MPa or more. The upper limit of the Young's modulus is preferably higher if the piping is not fragile, and it is not particularly necessary to provide an upper limit, but it is preferably 500 MPa, more preferably 200 MPa or less from the viewpoint of ease of production. The correction pipe may be a metal, glass, crystal such as quartz, an organic polymer, or the like, but the organic polymer is preferable because it has both flexibility and high breaking strength. Of course, these composites may also be used.

有機重合体としては、ポリイミド、(芳香族)ポリアミド、ポリ四フッ化エチレンなどの熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、PFA(四フッ化エチレンとアルコキシフッ化エチレンの共重合体)などの熱可塑性樹脂が好適に用いられる。有機重合体は、勿論、共重合体やブレンドであっても良い。   Organic polymers include thermosetting resins such as polyimide, (aromatic) polyamide, polytetrafluoroethylene, polyethylene, polypropylene, polysulfone, polyetheretherketone, polyphenylene sulfide, polyvinyl chloride, polyvinylidene chloride, polyfluoride. Thermoplastic resins such as vinylidene fluoride and PFA (copolymer of tetrafluoroethylene and alkoxyfluoroethylene) are preferably used. Of course, the organic polymer may be a copolymer or a blend.

本第一態様において、マイクロ流体デバイスの流路出口側に出口側配管を接続する場合には、該出口側配管の圧力損失については任意であるが、該出口側配管の圧力損失の標準偏差は、前記補正配管とマイクロ流体デバイスの合計の圧力損失の標準偏差より小さいことが好ましい。該圧力損失の標準偏差が小さいと、用いる配管の圧力損失が大きくても、本発明の効果を損なうことがない。   In this first aspect, when an outlet side pipe is connected to the channel outlet side of the microfluidic device, the pressure loss of the outlet side pipe is arbitrary, but the standard deviation of the pressure loss of the outlet side pipe is The standard deviation of the total pressure loss of the correction pipe and the microfluidic device is preferably smaller than the standard deviation. When the standard deviation of the pressure loss is small, the effect of the present invention is not impaired even if the pressure loss of the piping used is large.

また、該出口側配管の圧力損失は、好ましくは前記補正配管とデバイスの圧力損失の和未満であり、更に好ましくは前記和の50%未満、最も好ましくは20%未満である。該圧力損失を小さくすることにより、圧力損失の変動係数が大きな配管を用いても、圧力損失の標準偏差が前記和に比べて小さくなり、本発明の効果を損なうことがない。   Further, the pressure loss of the outlet side pipe is preferably less than the sum of the pressure loss of the correction pipe and the device, more preferably less than 50%, and most preferably less than 20% of the sum. By reducing the pressure loss, the standard deviation of the pressure loss becomes smaller than the above sum even when a pipe having a large variation coefficient of the pressure loss is used, and the effect of the present invention is not impaired.

或いはまた、本発明に於いて、該出口側配管の圧力損失とマイクロ流体デバイスの圧力損失の和をマイクロ流体デバイスの圧力損失と見なし、その圧力損失の偏差を補正配管により補正することも好ましい。本法は、出口側配管の圧力損失の偏差がマイクロ流体デバイスの圧力損失の偏差に比して無視できない程度に大きな場合に好ましく、該出口側配管の圧力損失の偏差も同時に補正することができる。   Alternatively, in the present invention, it is also preferable that the sum of the pressure loss of the outlet side pipe and the pressure loss of the microfluidic device is regarded as the pressure loss of the microfluidic device, and the deviation of the pressure loss is corrected by the correction pipe. This method is preferable when the deviation of the pressure loss of the outlet side pipe is not so large as to be negligible compared to the deviation of the pressure loss of the microfluidic device, and the deviation of the pressure loss of the outlet side pipe can be corrected at the same time. .

本第一態様は、補正配管の圧力損失が大きくても、マイクロ流体デバイスに掛かる圧力は増加しないため、マイクロ流体デバイス自体の耐圧性や、補正配管とデバイスとの接続部の耐圧性を増す必要はない。   In this first aspect, even if the pressure loss of the correction piping is large, the pressure applied to the microfluidic device does not increase. Therefore, it is necessary to increase the pressure resistance of the microfluidic device itself and the pressure resistance of the connecting portion between the correction piping and the device. There is no.

[第二態様]
本発明の第二態様は、前記各マイクロ流体デバイスの流路出口にそれぞれ接続された出口側配管を補正配管とする。該補正配管の他端の処理は任意であり、例えば、それぞれが大気中に開放されていても良いし、前記接続配管と丁度逆に、一度に又は段階的に合流していても良い。しかしながら、合流している場合には、前記各マイクロ流体デバイスの流路出口から前記合流部までの出口側配管を補正配管とする。この場合、合流部までの出口側配管の圧力損失やその変動係数については、前記第一態様に於ける接続配管の個別配管部と同様であり、合流部以後の共通配管部分の圧力損失については、前記第一態様に於ける接続配管の共通配管部分と同様である。
[Second embodiment]
In the second aspect of the present invention, the outlet side pipe connected to the flow path outlet of each microfluidic device is a correction pipe. The processing of the other end of the correction pipe is arbitrary. For example, each of the correction pipes may be open to the atmosphere, or may be merged at once or stepwise, just opposite to the connection pipe. However, in the case of merging, the outlet side piping from the channel outlet of each microfluidic device to the merging portion is used as the correction piping. In this case, the pressure loss of the outlet side pipe to the junction and the coefficient of variation thereof are the same as those of the individual pipe of the connection pipe in the first aspect, and the pressure loss of the common pipe after the junction is The same as the common pipe portion of the connection pipe in the first aspect.

本態様に於ける補正配管の圧力損失の大きさ、圧力損失の変動係数、配管の長さ、配管の断面積、素材などについては、前記第一態様に於ける補正配管と同様である。   The magnitude of the pressure loss, the coefficient of variation of the pressure loss, the length of the pipe, the cross-sectional area of the pipe, the material, etc. in this embodiment are the same as those of the correction pipe in the first embodiment.

本態様においては、流体駆動装置とマイクロ流体デバイスとを結ぶ接続配管の圧力損失やその変動係数については任意であるが、前記第一態様に於ける出口側配管と同様である。   In this embodiment, the pressure loss of the connecting pipe connecting the fluid drive device and the microfluidic device and the coefficient of variation thereof are arbitrary, but are the same as the outlet side pipe in the first embodiment.

また、本発明に於いて、流体駆動装置とマイクロ流体デバイスとを結ぶ接続配管の圧力損失とマイクロ流体デバイスの圧力損失の和をマイクロ流体デバイスの圧力損失と見なし、その圧力損失の偏差を補正配管により補正することも好ましい。本法は、接続配管の圧力損失の偏差がマイクロ流体デバイスの圧力損失の偏差に比して無視できない程度に大きな場合に好ましく、該接続配管の圧力損失の偏差も同時に補正することができる。   In the present invention, the sum of the pressure loss of the connecting pipe connecting the fluid drive device and the microfluidic device and the pressure loss of the microfluidic device is regarded as the pressure loss of the microfluidic device, and the deviation of the pressure loss is corrected. It is also preferable to correct by. This method is preferable when the deviation of the pressure loss of the connecting pipe is so large that it cannot be ignored as compared with the deviation of the pressure loss of the microfluidic device, and the deviation of the pressure loss of the connecting pipe can be corrected at the same time.

本第二態様は、出口側配管を1本に纏める必要がないため、配管の接続と補正が容易である。   In the second aspect, since it is not necessary to combine the outlet side pipes into one, connection and correction of the pipes are easy.

以下、実施例を用いて本発明を更に詳しく説明するが、本発明は以下の実施例の範囲に
限定されるものではない。なお、本実施例で言う「部」は「質量部」、「%」は「質量%」を示す。
EXAMPLES Hereinafter, although this invention is demonstrated in more detail using an Example, this invention is not limited to the range of a following example. In this example, “part” means “part by mass”, and “%” means “% by mass”.

[紫外線硬化性の組成物(X1)の調製]
重合性化合物としてジシクロペンタニルジアクリレート「DCA−200」(大日本インキ化学工業株式会社製)50部および平均分子量約2000の3官能ウレタンアクリレートオリゴマー「ユニディックV−4263」(大日本インキ化学工業株式会社製)50部、光重合開始剤としてチバガイギー社製1−ヒドロキシシクロヘキシルフェニルケトン「イルガキュア184」5部、及び、重合遅延剤として関東化学株式会社製2,4−ジフェニル−4−メチル−1−ペンテン0.1部を均一に混合して紫外線硬化性の組成物(X1)を調製した。
[Preparation of UV-curable composition (X1)]
As a polymerizable compound, 50 parts of dicyclopentanyl diacrylate “DCA-200” (manufactured by Dainippon Ink Chemical Co., Ltd.) and a trifunctional urethane acrylate oligomer “Unidic V-4263” having an average molecular weight of about 2000 (Dainippon Ink Chemical Co., Ltd.) 50 parts by Kogyo Co., Ltd., 5 parts 1-hydroxycyclohexyl phenyl ketone “Irgacure 184” by Ciba Geigy as photopolymerization initiator, and 2,4-diphenyl-4-methyl- by Kanto Chemical Co., Ltd. as a polymerization retarder An ultraviolet curable composition (X1) was prepared by uniformly mixing 0.1 part of 1-pentene.

[紫外線硬化性の組成物(X2)の調製]
2,4−ジフェニル−4−メチル−1−ペンテンを添加しなかったこと以外は紫外線硬化性組成物(X1)と同様にして紫外線硬化性の組成物(X2)を調製した。
[Preparation of UV-curable composition (X2)]
An ultraviolet curable composition (X2) was prepared in the same manner as the ultraviolet curable composition (X1) except that 2,4-diphenyl-4-methyl-1-pentene was not added.

[製膜液(Y1)の調製]
重合性化合物として、前記「DCA−200」を40部、および前記「ユニディックV−4263」50部、グリシジルメタクリレート(和光純薬工業株式会社製)10部、貧溶剤としてデカン酸メチル(和光純薬工業株式会社製)を240部、紫外線重合開始剤として前記「イルガキュア184」を5部、均一に混合して、製膜液(Y1)を調製した。
[Preparation of film-forming solution (Y1)]
As a polymerizable compound, 40 parts of “DCA-200”, 50 parts of “Unidic V-4263”, 10 parts of glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), methyl decanoate (Wako Pure) 240 parts of Yakuhin Kogyo Co., Ltd. and 5 parts of “Irgacure 184” as an ultraviolet polymerization initiator were uniformly mixed to prepare a film-forming solution (Y1).

[紫外線の照射]
250W高圧水銀ランプを光源とするウシオ電機株式会社製のマルチライト251Wシリーズ露光装置用光源ユニットを用い、365nmにおける紫外線強度が50mW/cm2の紫外線を、特に指定が無い限り室温、大気中で照射した。
[UV irradiation]
Using a light source unit for multi-light 251W series exposure apparatus manufactured by USHIO INC. Using a 250 W high-pressure mercury lamp as a light source, UV light with an ultraviolet intensity at 365 nm of 50 mW / cm 2 was irradiated in the atmosphere at room temperature unless otherwise specified. .

[参考例]
本参考例に於いては、実施例において使用するマイクロ流体デバイスの圧力損失及び変動係数を測定した。
[Reference example]
In this reference example, the pressure loss and coefficient of variation of the microfluidic device used in the examples were measured.

〔マイクロ流体デバイスの作製〕
厚さ1mmのアクリル板製の基材1上に、スピンコーターにて組成物(X2)を塗工し、該塗膜に紫外線を2秒間照射して、重合性官能基がまだ残存する程度に前記組成物(X2)が半硬化した第一樹脂層2を形成した。
[Production of microfluidic devices]
A composition (X2) is applied on a substrate 1 made of an acrylic plate having a thickness of 1 mm by a spin coater, and the coating film is irradiated with ultraviolet rays for 2 seconds so that the polymerizable functional group still remains. A first resin layer 2 in which the composition (X2) was semi-cured was formed.

その上に、スピンコーターにて製膜液(Y1)を塗工し、該塗膜に紫外線を60秒間照射して、製膜液(Y1)中の重合性化合物が重合すると同時に貧溶剤と相分離し、多孔質体を形成した。その後、エタノールにて該多孔質体の細孔中の貧溶剤を洗浄除去し、室温で乾燥して、第一樹脂層2の上に固着した多孔質層3を形成した。   On top of that, a film-forming solution (Y1) is applied with a spin coater, and the coating film is irradiated with ultraviolet rays for 60 seconds, so that the polymerizable compound in the film-forming solution (Y1) is polymerized and simultaneously with the poor solvent. Separated to form a porous body. Thereafter, the poor solvent in the pores of the porous body was washed away with ethanol and dried at room temperature to form the porous layer 3 fixed on the first resin layer 2.

多孔質層3の上に、スピンコーターにて組成物(X1)を塗工すると、組成物(X1)の一部は多孔質層3の細孔を充填し、更に多孔質層3の上に未硬化の塗膜を形成した。次いで、フォトマスクを通して流路5となるべき部分以外の部分に紫外線照射を40秒行い、重合性官能基がまだ残存する程度に前記組成物(X1)が半硬化した第二樹枝層4を形成し、非照射部分の未硬化の組成物(X1)を50%エタノール水溶液で洗浄除去して、第二樹脂層4の流路5となるべき溝を形成し、該溝の底面は、再び多孔質層3を露出させた。そして、多孔質層3の該溝以外の部分は、組成物(X1)が細孔に充填された状態で硬化し、非多孔質とした。   When the composition (X1) is applied onto the porous layer 3 with a spin coater, a part of the composition (X1) fills the pores of the porous layer 3, and further on the porous layer 3. An uncured coating was formed. Next, the portion other than the portion to be the flow path 5 is irradiated for 40 seconds through a photomask to form the second dendritic layer 4 in which the composition (X1) is semi-cured to such an extent that the polymerizable functional group still remains. Then, the uncured composition (X1) in the non-irradiated portion is washed and removed with a 50% aqueous ethanol solution to form a groove to be the flow path 5 of the second resin layer 4, and the bottom surface of the groove is porous again. The quality layer 3 was exposed. And the part other than this groove | channel of the porous layer 3 hardened | cured in the state with which the composition (X1) was filled with the pore, and was made nonporous.

厚さ60μmの二軸延伸ポリプロピレンシート(OPPシート)(二村化学社製)を一時的な支持体(図示略)とし、その上にスピンコーターにて組成物(X2)を塗工し、紫外線ランプにより紫外線を2秒間照射して半硬化させて第三樹脂層6とし、これを、先に作製した積層部材の第二樹脂層4の上に積層し、紫外線を120秒間照射することにより固着させた後、前記一時的な支持体(図示略)を剥離除去した。
以上のようにして、断面が矩形で、底面に多孔質層が形成された、平面視ジグザグ状の毛細管状の流路5を有するマイクロ流体デバイス前駆体が得られた。
A biaxially stretched polypropylene sheet (OPP sheet) (manufactured by Nimura Chemical Co., Ltd.) having a thickness of 60 μm was used as a temporary support (not shown), and the composition (X2) was coated thereon with a spin coater, and an ultraviolet lamp Is irradiated with ultraviolet rays for 2 seconds to be semi-cured to form a third resin layer 6, which is laminated on the second resin layer 4 of the previously produced laminated member and fixed by irradiation with ultraviolet rays for 120 seconds. Then, the temporary support (not shown) was peeled off.
As described above, a microfluidic device precursor having a capillary flow path 5 having a zigzag shape in plan view and having a rectangular cross section and a porous layer formed on the bottom surface was obtained.

前記マイクロ流体デバイス前駆体の基材1側から第二樹脂層4まで、流路5の両端部において、各直径0.3mmの孔をドリルで開け、流入口7および流出口8を形成し、マイクロ流体デバイスを得た。   From the substrate 1 side of the microfluidic device precursor to the second resin layer 4, holes at diameters of 0.3 mm are drilled at both ends of the flow path 5 to form an inlet 7 and an outlet 8, A microfluidic device was obtained.

〔マイクロ流体デバイスの寸法測定〕
下記のマイクロ流体デバイスの圧力損失の測定及び集積型マイクロ流体デバイスの圧力損失の測定を行った後、該マイクロ流体デバイスから10個をランダムに取り出して切断し、ノギス、光学顕微鏡、及び走査型電子顕微鏡を用いてデバイス各部の寸法を測定した。その結果、マイクロ流体デバイスの外寸は、75×50×1.19mmであり、基材1の平均厚みは1.00mm、第一樹脂層2の平均厚みは31μm、多孔質層の平均厚みは8μm、多孔質層3に含浸した部分を除く第二樹脂層4の平均厚みは51μm、第三樹脂層6の平均厚みは98μmであり、また、流路5の平均幅は106μm、流路6の平均長さは50cmであった。
[Dimension measurement of microfluidic device]
After measuring the pressure loss of the following microfluidic device and the pressure loss of the integrated microfluidic device, 10 pieces are randomly taken out from the microfluidic device, cut, and caliper, optical microscope, and scanning electron The dimensions of each part of the device were measured using a microscope. As a result, the outer dimensions of the microfluidic device are 75 × 50 × 1.19 mm, the average thickness of the substrate 1 is 1.00 mm, the average thickness of the first resin layer 2 is 31 μm, and the average thickness of the porous layer is The average thickness of the second resin layer 4 excluding the portion impregnated in the porous layer 3 is 8 μm, the average thickness of the third resin layer 6 is 98 μm, the average width of the flow path 5 is 106 μm, and the flow path 6 The average length of was 50 cm.

〔マイクロ流体デバイスの圧力損失の測定〕
上記工程により作製した10個のマイクロ流体デバイスの圧力損失とその変動係数を測定した。
[Measurement of pressure loss of microfluidic devices]
The pressure loss and the coefficient of variation of the 10 microfluidic devices produced by the above process were measured.

吐出圧を測定できる圧力計(図示略)が付属したマイクロシリンジポンプ(図示略)に、端部をプラズマ処理により親水化した、外径1.6mm、内径500μm、長さ1.0m±0.5mmのテフロン(登録商標)チューブ(図示略)(APCHURCH SCIENTIHIC社製)を接続し、前記テフロン(登録商標)チューブ(図示略)の他端を、図1に示したような、孔を空けた7×7×3mmのアクリル樹脂製の接続部材9にシリコーン系接着剤で接着し、厚さ1mmのシリコーン製のパッキン18を介して、クランプ(図示略)によりマイクロ流体デバイス10の各流入口7に接続した。   A microsyringe pump (not shown) with a pressure gauge (not shown) that can measure the discharge pressure is hydrophilized at the end by plasma treatment. The outer diameter is 1.6 mm, the inner diameter is 500 μm, and the length is 1.0 m ± 0. A 5 mm Teflon (registered trademark) tube (not shown) (APCHURCH SCIENTIHIC) was connected, and the other end of the Teflon (registered trademark) tube (not shown) was perforated as shown in FIG. Each inflow port 7 of the microfluidic device 10 is bonded to a 7 × 7 × 3 mm acrylic resin connecting member 9 with a silicone adhesive and clamped (not shown) via a silicone packing 18 having a thickness of 1 mm. Connected to.

マイクロシリンジポンプから、0.1%ドデシルベンゼンスルホン酸ナトリウム水溶液を3.0mm/分の体積流速で送液し、マイクロシリンジポンプ(図示略)の吐出圧力(即ち、配管とマイクロ流体デバイスの圧力損失)を測定した。結果を表1に示した。圧力損失の変動係数が9.4%であることから、これらのマイクロ流体デバイスを並列に接続し、全マイクロ流体デバイスに掛かる圧力が同じ条件で前記水溶液を流した場合には、各マイクロ流体デバイスに流れる前記水溶液の体積流速の変動係数は9.8%であると計算される。 A 0.1% sodium dodecylbenzenesulfonate aqueous solution is fed from the microsyringe pump at a volume flow rate of 3.0 mm 3 / min, and the discharge pressure of the microsyringe pump (not shown) (that is, the pressure of the piping and the microfluidic device) Loss). The results are shown in Table 1. Since the variation coefficient of pressure loss is 9.4%, when these microfluidic devices are connected in parallel and the aqueous solution is flowed under the same pressure applied to all the microfluidic devices, each microfluidic device The coefficient of variation of the volumetric flow rate of the aqueous solution flowing through is calculated to be 9.8%.

なお、前記接続部材9をマイクロ流体デバイス10に接続せずに測定したときの圧力損失、即ち前記テフロン(登録商標)チューブの圧力損失は、0.1kPa未満と小さな値であったため、表1に示した圧力損失はマイクロ流体デバイスの圧力損失であることが分かる。   Note that the pressure loss when the connection member 9 was measured without being connected to the microfluidic device 10, that is, the pressure loss of the Teflon (registered trademark) tube was a small value of less than 0.1 kPa. It can be seen that the pressure loss shown is that of a microfluidic device.

Figure 2006272230
Figure 2006272230

[実施例1]
本実施例に於いては、本発明の第一態様の例を示す。
〔補正配管用管の作製〕
外径1.6mm、内径50μmの、ポリエーテルエーテルケトン(PEEK)製のチューブ(APCHURCH SCIENTIHIC社製)を長さ1000mmに切断し、端部をプラズマ処理により親水化して前記マイクロシリンジポンプ(図示略)に接続し、前記マイクロ流体デバイスの圧力損失の測定と同様にして該PEEKチューブの圧力損失を測定したところ、335.0kPaであった。即ち、このチューブは上記流量において、1mm当たりの圧力損失が0.335kPaであることが分かる。上記で測定した長さ1mのPEEKチューブをマイクロ流体デバイスNo.1用の補正配管(補正配管No.1)とすると、マイクロ流体デバイスNo.1と補正配管No.1の圧力損失の合計は372.9kPaと計算されるから、No.2〜No.10の各マイクロ流体デバイスについても、合計の圧力損失が372.9kPaとなるように長さを計算してPEEKチューブを切断し、端部をプラズマ処理により親水化して、補正配管No.2〜No.10を作製した。各補正配管の長さを表2に示す。
[Example 1]
In this example, an example of the first aspect of the present invention is shown.
[Production of pipes for correction piping]
A tube made of polyetheretherketone (PEEK) (APCHURCH SCIENTIHIC) having an outer diameter of 1.6 mm and an inner diameter of 50 μm is cut into a length of 1000 mm, and the ends are hydrophilized by plasma treatment, and the micro syringe pump (not shown) ) And the pressure loss of the PEEK tube was measured in the same manner as the pressure loss measurement of the microfluidic device, and was found to be 335.0 kPa. That is, it can be seen that this tube has a pressure loss of 0.335 kPa per mm at the above flow rate. The PEEK tube having a length of 1 m measured above was connected to a microfluidic device No. 1 correction pipe (correction pipe No. 1), the microfluidic device No. 1 and correction piping No. 1 No. 1 is calculated as 372.9 kPa. 2-No. For each of the 10 microfluidic devices, the length was calculated so that the total pressure loss was 372.9 kPa, the PEEK tube was cut, the ends were hydrophilized by plasma treatment, and the corrected piping No. 2-No. 10 was produced. Table 2 shows the length of each correction pipe.

〔集積型マイクロ流体デバイスの作製〕
吐出圧を測定できる圧力計(図示略)が付属したギヤポンプ12に、接続配管の共通配管部13として、内径5mm、長さ10cmの、一方の端が塞がれた黄銅管を接続し、該黄銅管に、接続配管の個別配管部14として、前記補正配管No.1〜No.10を接続した。
[Fabrication of integrated microfluidic devices]
Connected to the gear pump 12 attached with a pressure gauge (not shown) capable of measuring the discharge pressure, as a common pipe part 13 of the connecting pipe, is a brass pipe having an inner diameter of 5 mm and a length of 10 cm, which is closed at one end, As the individual piping part 14 of the connecting piping, the correction piping No. 1-No. 10 connected.

前記各補正配管の他端に接続部材9を接着し、厚さ1mmのシリコーン製のパッキン18を介して、クランプ(図示略)により各マイクロ流体デバイス10の流入口7に接続した。   A connecting member 9 was bonded to the other end of each correction pipe, and connected to the inlet 7 of each microfluidic device 10 by a clamp (not shown) through a silicone packing 18 having a thickness of 1 mm.

また、各マイクロ流体デバイスの流出口8に、端部をプラズマ処理により親水化した、外形1.6mm、内径500μm、長さ1.0m±0.5mmのテフロン(登録商標)チューブを、接続部材9、パッキン18、及びクランプ(図示略)を用いて接続して出口側配管15とし、該テフロン(登録商標)チューブの他端を試験管16に挿入した。各試験管16に蒸発防止用の流動パラフィンを1滴注入し、その状態で各試験管16の質量を秤量した。   In addition, a Teflon (registered trademark) tube having an outer diameter of 1.6 mm, an inner diameter of 500 μm, and a length of 1.0 m ± 0.5 mm, which has been hydrophilized by plasma treatment, is connected to the outlet 8 of each microfluidic device. 9, a packing 18 and a clamp (not shown) were connected to form an outlet side pipe 15, and the other end of the Teflon (registered trademark) tube was inserted into the test tube 16. One drop of liquid paraffin for preventing evaporation was injected into each test tube 16, and the mass of each test tube 16 was weighed in this state.

マイクロ流体デバイス10は台の上に水平に並べて置き、試験管16に挿入した出口側配管15の端の高さは、全て同じ高さとした。ポンプ12の吸入口は、内径5mmのテフロン(登録商標)チューブ17でもって貯液層11に接続した。   The microfluidic devices 10 were placed horizontally on a table, and the heights of the ends of the outlet side pipes 15 inserted into the test tubes 16 were all the same. The suction port of the pump 12 was connected to the liquid storage layer 11 with a Teflon (registered trademark) tube 17 having an inner diameter of 5 mm.

〔集積型マイクロ流体デバイスの体積流速の測定〕
試験溶液として0.1%ドデシルベンゼンスルホン酸ナトリウム水溶液を用い、あらかじめポンプ12を運転して、全ての接続配管13、14、マイクロ流体デバイス10の流路、及び出口側配管15中に該水溶液を充満させた後、前記のように接続配管14の端を試験管16に挿入し、ポンプ12から300mm/分の体積流速で送液したところ、ポンプ12の吐出圧力(配管とマイクロ流体デバイスの合計の圧力損失)は373kPaを示した。
[Measurement of volumetric flow velocity of integrated microfluidic devices]
Using a 0.1% sodium dodecylbenzenesulfonate aqueous solution as a test solution, the pump 12 was operated in advance, and the aqueous solution was put into all the connection pipes 13 and 14, the flow paths of the microfluidic device 10, and the outlet side pipe 15. After filling, the end of the connection pipe 14 was inserted into the test tube 16 as described above, and the pump 12 was fed at a volume flow rate of 300 mm 3 / min. As a result, the discharge pressure of the pump 12 (pipe and microfluidic device The total pressure loss) was 373 kPa.

ポンプ12から1時間送液した後ポンプ12を停止し、各試験管16に溜まった水溶液の量を秤量して、各マイクロ流体デバイスに流れる体積流速の値を得た。結果を表2に示した。これから体積流速の変動係数を計算すると0.18%であり、著しい改善効果を示した。   After pumping from the pump 12 for 1 hour, the pump 12 was stopped, the amount of the aqueous solution accumulated in each test tube 16 was weighed, and the value of the volume flow rate flowing through each microfluidic device was obtained. The results are shown in Table 2. From this, the coefficient of variation of the volume flow rate was calculated to be 0.18%, indicating a significant improvement effect.

その後、各マイクロ流体デバイスから出口側配管15を取り外して、同じ体積流速でポンプを駆動したが、ポンプの吐出圧に変化はなかった。このことから、出口側配管15の圧力損失は、マイクロ流体デバイスに比べて無視できる程小さく、出口側配管15は 上記の体積流速の測定に影響しないことがわかる。   Thereafter, the outlet side piping 15 was removed from each microfluidic device, and the pump was driven at the same volume flow rate, but there was no change in the pump discharge pressure. From this, it can be seen that the pressure loss of the outlet side pipe 15 is negligibly small as compared with the microfluidic device, and the outlet side pipe 15 does not affect the measurement of the volume flow velocity.

Figure 2006272230
Figure 2006272230

[実施例2]
本実施例に於いては、本発明の第二の態様の例を示す。
実施例1で作製した集積型マイクロ流体デバイスに於いて、流入口7に接続する個別配管14として、端部をプラズマ処理により親水化した、内径500μm、長さ1000±0.5mmのテフロン(登録商標)チューブを用い、出口側配管15として、前記補正配管No.1〜No.10を用いた。それ以外は、実施例1と同様の測定を行った結果、体積流速の変動係数は0.17%と、実施例1とほぼ同じであった。
[Example 2]
In this embodiment, an example of the second aspect of the present invention will be shown.
In the integrated microfluidic device manufactured in Example 1, as an individual pipe 14 connected to the inlet 7, a Teflon (inner diameter 500 μm, length 1000 ± 0.5 mm) whose end is hydrophilized by plasma treatment (registered) Trademark) tube, and the outlet piping 15 is the correction piping No. 1-No. 10 was used. Otherwise, the same measurement as in Example 1 was performed. As a result, the coefficient of variation in volume flow rate was 0.17%, which was almost the same as in Example 1.

即ち、補正配管をマイクロ流体デバイスより下流側に接続しても、上流側に接続した婆愛と同様の、体積流速の偏差の改善効果が得られた。   That is, even when the correction pipe is connected to the downstream side of the microfluidic device, the effect of improving the deviation of the volume flow velocity is obtained, similar to the doting connected to the upstream side.

[実施例3]
表3に示したように、実施例2に於ける補正配管No.1〜No.10の代わりに、最も補正量の小さい補正配管(No.11)の長さを100mmとした補正配管No.11〜No.20を使用したこと、および、各補正配管の下流端に、端部をプラズマ処理により親水化した、外形1.6mm、内径500μm、長さ500±0.5mmのテフロン(登録商標)チューブを接続し、前記補正配管と該テフロン(登録商標)チューブの合計を出口側配管15としたこと、以外は、実施例2と同様の試験を行った。得られた各体積流速の値を表3に示した。体積流速の変動係数は0.24%であり、著しい改善効果が認められた。
[Example 3]
As shown in Table 3, the correction piping No. 1-No. Instead of the correction pipe No. 10, the length of the correction pipe (No. 11) having the smallest correction amount is set to 100 mm. 11-No. 20 and a Teflon (registered trademark) tube with an outer diameter of 1.6 mm, an inner diameter of 500 μm, and a length of 500 ± 0.5 mm connected to the downstream end of each correction pipe by plasma treatment Then, the same test as in Example 2 was performed except that the total of the correction pipe and the Teflon (registered trademark) tube was set as the outlet side pipe 15. The obtained volume flow rate values are shown in Table 3. The coefficient of variation of the volume flow rate was 0.24%, and a remarkable improvement effect was recognized.

Figure 2006272230
Figure 2006272230

実施例で作製するマイクロ流体デバイスの斜視分解図である。It is a perspective exploded view of the microfluidic device produced in an example. 実施例で作製する集積型マイクロ流体デバイスの見取り図である。It is a sketch of the integrated type microfluidic device produced in the Example.

符号の説明Explanation of symbols

1 基材
2 第一樹脂層
3 多孔質層
4 第二樹脂層
5 流路
6 第三樹脂層
7 流入口
8 流出口
9 接続部材
10 マイクロ流体デバイス
11 貯留槽
12 ポンプ(ギヤポンプ)
13 接続配管の共通配管部
14 接続配管の個別配管部
15 出口側配管
16 試験管
17 ポンプ吸入側配管
18 パッキン
DESCRIPTION OF SYMBOLS 1 Base material 2 1st resin layer 3 Porous layer 4 2nd resin layer 5 Flow path 6 3rd resin layer 7 Inlet 8 Outlet 9 Connection member 10 Microfluidic device 11 Storage tank 12 Pump (gear pump)
13 Common Piping Port for Connection Piping 14 Individual Piping Port for Connection Piping 15 Outlet Side Piping 16 Test Tube 17 Pump Suction Side Piping 18 Packing

Claims (9)

流路入口から流路出口までの圧力損失に個体差がある複数のマイクロ流体デバイスのそれぞれの流路入口が、枝分かれした接続配管を介して、一つの流体駆動機構に接続された集積型マイクロ流体デバイスであって、
(1)前記接続配管の前記分岐部から前記流路入口までの部分として各々補正配管が設けられること、及び/又は前記マイクロ流体デバイスの流路出口に各々補正配管が設けられること、
及び、
(2)前記補正配管とそれに接続されたマイクロ流体デバイスの圧力損失の和の標準偏差を、該圧力損失の和の平均で除した値が、前記マイクロ流体デバイスの圧力損失の標準偏差を、該圧力損失の平均で除した値より小さく、かつ、5%以下になるように、前記補正配管が各々調製されていること、
を特徴とする集積型マイクロ流体デバイス。
An integrated microfluidic device in which each channel inlet of a plurality of microfluidic devices having individual differences in pressure loss from the channel inlet to the channel outlet is connected to one fluid drive mechanism via a branched connection pipe A device,
(1) Correction pipes are provided as portions from the branch portion of the connection pipe to the flow path inlet, and / or correction pipes are provided at the flow path outlet of the microfluidic device,
as well as,
(2) The value obtained by dividing the standard deviation of the sum of the pressure losses of the correction pipe and the microfluidic device connected thereto by the average of the sum of the pressure losses is the standard deviation of the pressure loss of the microfluidic device. Each of the correction pipes is prepared to be smaller than the value divided by the average pressure loss and not more than 5%,
An integrated microfluidic device.
流路入口から流路出口までの圧力損失に個体差がある複数のマイクロ流体デバイスのそれぞれの流路入口が、枝分かれした接続配管を介して、一つの流体駆動機構に接続された集積型マイクロ流体デバイスであって、
(1)前記接続配管の前記分岐部から前記流路入口までの部分として各々補正配管が設けられ、前記マイクロ流体デバイスの流路出口に補正配管以外の配管が設けられること、
又は、前記接続配管が前記マイクロ流体デバイスの各々の流路入口に接続され、前記マイクロ流体デバイスの流路出口に各々補正配管が設けられること、及び
(2)前記補正配管と、それに接続されたマイクロ流体デバイスと、前記マイクロ流体デバイスに接続された補正配管以外の配管部との圧力損失の和の標準偏差を、該圧力損失の和の平均で除した値が、前記マイクロ流体デバイスと、前記マイクロ流体デバイスに接続された補正配管以外の配管部との圧力損失の和の標準偏差を、該圧力損失の和の平均で除した値より小さく、かつ、5%以下になるように、前記補正配管が各々調製されていること、
を特徴とする集積型マイクロ流体デバイス。
An integrated microfluidic device in which each channel inlet of a plurality of microfluidic devices having individual differences in pressure loss from the channel inlet to the channel outlet is connected to one fluid drive mechanism via a branched connection pipe A device,
(1) Correction pipes are provided as portions from the branch portion of the connection pipe to the flow path inlet, and pipes other than the correction pipe are provided at the flow path outlet of the microfluidic device,
Alternatively, the connection pipe is connected to each flow path inlet of the microfluidic device, and a correction pipe is provided at each flow path outlet of the microfluidic device, and (2) the correction pipe and connected thereto. A value obtained by dividing the standard deviation of the sum of the pressure loss between the microfluidic device and the piping part other than the correction pipe connected to the microfluidic device by the average of the sum of the pressure loss is the microfluidic device, The correction is made so that the standard deviation of the sum of the pressure losses with the pipes other than the correction pipe connected to the microfluidic device is smaller than the value obtained by dividing the average of the sum of the pressure losses by 5% or less. That each pipe is prepared,
An integrated microfluidic device.
前記補正配管の調製が、補正配管の長さを調製することによる補正である請求項1又は2に記載の集積型マイクロ流体デバイス。 The integrated microfluidic device according to claim 1, wherein the correction pipe is corrected by adjusting a length of the correction pipe. 前記マイクロ流体デバイスの接続数が2〜100000の範囲にある請求項1〜3のいずれかに記載の集積型マイクロ流体デバイス。 The integrated microfluidic device according to claim 1, wherein the number of connected microfluidic devices is in the range of 2 to 100,000. 前記補正配管の内径が10〜200μmの範囲にある請求項1〜4のいずれかに記載の集積型マイクロ流体デバイス。 The integrated microfluidic device according to claim 1, wherein an inner diameter of the correction pipe is in a range of 10 to 200 μm. 前記マイクロ流体デバイスの流路断面積が1〜100000μmの範囲にある請求項1〜5のいずれかに記載の集積型マイクロ流体デバイス。 Integrated microfluidic device according to claim 1, the flow path cross-sectional area of the microfluidic device is in the range of 1~100000μm 2. 一つの流体駆動機構から、枝分かれした接続配管を介して、流路入口から流路出口までの圧力損失に個体差がある複数のマイクロ流体デバイスとのそれぞれの流路入口に接続された集積型マイクロ流体デバイスの各マイクロ流体デバイスに流れる流量偏差の補正方法であって、
(1)前記接続配管の前記分岐部から前記流路入口までの部分として各々補正配管を設けること、及び/又は前記デバイスの流路出口に各々補正配管を設けること、及び
(2)前記補正配管を、該補正配管とそれに接続されたマイクロ流体デバイスの圧力損失の和の標準偏差が、該補正配管と、前記マイクロ流体デバイスの圧力損失の標準偏差を、該圧力損失の平均で除した値より小さく、かつ、5%以下になるように補正配管を調整すること、
を特徴とする流量偏差補正方法。
An integrated micro that is connected to each channel inlet with a plurality of microfluidic devices that have individual differences in pressure loss from the channel inlet to the channel outlet from one fluid drive mechanism via a branched connection pipe A method of correcting a flow rate deviation flowing in each microfluidic device of a fluidic device, comprising:
(1) Providing a correction pipe as a portion from the branch portion of the connection pipe to the flow path inlet, and / or providing a correction pipe at a flow path outlet of the device, and (2) the correction pipe. The standard deviation of the sum of the pressure loss of the correction pipe and the microfluidic device connected thereto is a value obtained by dividing the standard deviation of the pressure loss of the correction pipe and the microfluidic device by the average of the pressure loss. Adjusting the correction piping to be small and less than 5%,
A flow deviation correction method characterized by the above.
一つの流体駆動機構から、枝分かれした接続配管を介して、流路入口から流路出口までの圧力損失に個体差がある複数のマイクロ流体デバイスとのそれぞれの流路入口に接続された集積型マイクロ流体デバイスの各マイクロ流体デバイスに流れる流量偏差の補正方法であって、
(1)前記接続配管の前記分岐部から前記流路入口までの部分として各々補正配管を設け、前記マイクロ流体デバイスの流路出口に任意の配管を設けること、
又は、前記接続配管が前記マイクロ流体デバイスの各々の流路入口に接続し、前記マイクロ流体デバイスの流路出口に各々補正配管を設けること、
(2)前記補正配管と、それに接続されたマイクロ流体デバイスと、前記マイクロ流体デバイスに接続された補正配管以外の配管部との圧力損失の和の標準偏差が、該補正配管と、前記マイクロ流体デバイスと、前記マイクロ流体デバイスに接続された補正配管以外の配管部との圧力損失の和の標準偏差を、該圧力損失の和の平均で除した値より小さく、かつ、5%以下になるように補正配管を調整すること、
を特徴とする流量偏差補正方法。
An integrated micro that is connected to each channel inlet with a plurality of microfluidic devices that have individual differences in pressure loss from the channel inlet to the channel outlet from one fluid drive mechanism via a branched connection pipe A method of correcting a flow rate deviation flowing in each microfluidic device of a fluidic device, comprising:
(1) Providing a correction pipe as a part from the branch portion of the connection pipe to the flow path inlet, and providing an arbitrary pipe at the flow path outlet of the microfluidic device,
Alternatively, the connection pipe is connected to each flow path inlet of the microfluidic device, and a correction pipe is provided at each flow path outlet of the microfluidic device,
(2) The standard deviation of the sum of the pressure loss between the correction pipe, the microfluidic device connected to the correction pipe, and the pipe portion other than the correction pipe connected to the microfluidic device is calculated by the correction pipe and the microfluidic The standard deviation of the sum of the pressure loss between the device and the pipe portion other than the correction pipe connected to the microfluidic device is smaller than the value obtained by dividing the average of the sum of the pressure loss by 5% or less. Adjusting the correction piping to
A flow deviation correction method characterized by the above.
前記補正配管の調製を、該補正配管の長さの調製により行う請求項6に記載の流量偏差補正方法。
The flow rate deviation correction method according to claim 6, wherein the correction pipe is prepared by adjusting the length of the correction pipe.
JP2005097871A 2005-03-30 2005-03-30 Integrated micro fluid device and method for correcting deviation of flow rate in the same Withdrawn JP2006272230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097871A JP2006272230A (en) 2005-03-30 2005-03-30 Integrated micro fluid device and method for correcting deviation of flow rate in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097871A JP2006272230A (en) 2005-03-30 2005-03-30 Integrated micro fluid device and method for correcting deviation of flow rate in the same

Publications (1)

Publication Number Publication Date
JP2006272230A true JP2006272230A (en) 2006-10-12

Family

ID=37207481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097871A Withdrawn JP2006272230A (en) 2005-03-30 2005-03-30 Integrated micro fluid device and method for correcting deviation of flow rate in the same

Country Status (1)

Country Link
JP (1) JP2006272230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136253A (en) * 2005-11-14 2007-06-07 Hitachi Plant Technologies Ltd Micro-reactor system
JP2015200503A (en) * 2014-04-04 2015-11-12 日本電信電話株式会社 Liquid feed method and liquid feed system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136253A (en) * 2005-11-14 2007-06-07 Hitachi Plant Technologies Ltd Micro-reactor system
JP4556849B2 (en) * 2005-11-14 2010-10-06 株式会社日立プラントテクノロジー Microreactor system
JP2015200503A (en) * 2014-04-04 2015-11-12 日本電信電話株式会社 Liquid feed method and liquid feed system

Similar Documents

Publication Publication Date Title
US7220334B2 (en) Method of manufacturing microdevice having laminated structure
JP5684985B2 (en) Fabrication of microfluidic polymer devices by light-assisted and / or heat-assisted printing
KR101348655B1 (en) Microfluid control device and method for manufacturing the same
JP4877710B2 (en) Liquid processing apparatus and liquid supply method
Zhu et al. Capillary flow in microchannels
US8343425B1 (en) Multi-layer micro/nanofluid devices with bio-nanovalves
JP2007136280A (en) Microfractionating device and fractionating process
US20140311910A1 (en) Microchip and method of manufacturing microchip
JP3777112B2 (en) Microfluidic device and manufacturing method thereof
JP2004061320A (en) Liquid sending method of micro fluid device
JP2007218838A (en) Micro sample inlet method and microfluidic device
JP2006272230A (en) Integrated micro fluid device and method for correcting deviation of flow rate in the same
US9636674B2 (en) Microfluidic chips with optically transparent glue coating and a method of manufacturing microfluidic chips with optically transparent glue coating for a microfluidic device
JP2001137613A (en) Fine chemical device having extraction structure
JP2006263546A (en) Integrated micro fluid device and method for reducing deviation of flow rate
JP2002370200A (en) Method of manufacturing miniature valve mechanism
JP2006043696A (en) Material separation device and material separation method
JP2002086399A (en) Micro-device having lamination structure and manufacturing method for it
JP2006198542A (en) Microrectification apparatus and rectification method
JP2005274405A (en) Micro fluid device, and method of introducing micro sample
JP2008043883A (en) Material separation device and material separation method
JP2008100149A (en) Continuous multistage extraction device and continuous extraction method
US10632688B2 (en) One-step strategy for ultra-fast and low cost mass production of plastic membrane microfluidic chips
KR20110102654A (en) The method of manufacturing a structure with micro-channels and the structure using the same
JP4307771B2 (en) Manufacturing method of microfluidic device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20071220

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A621 Written request for application examination

Effective date: 20080307

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20090424

Free format text: JAPANESE INTERMEDIATE CODE: A761

A977 Report on retrieval

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A971007