JP2006271026A - Leakage current suppression circuit - Google Patents

Leakage current suppression circuit Download PDF

Info

Publication number
JP2006271026A
JP2006271026A JP2005081666A JP2005081666A JP2006271026A JP 2006271026 A JP2006271026 A JP 2006271026A JP 2005081666 A JP2005081666 A JP 2005081666A JP 2005081666 A JP2005081666 A JP 2005081666A JP 2006271026 A JP2006271026 A JP 2006271026A
Authority
JP
Japan
Prior art keywords
phase
transformer
primary
leakage current
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005081666A
Other languages
Japanese (ja)
Inventor
Motoyuki Nasu
基志 那須
茂生 ▲高▼田
Shigeo Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005081666A priority Critical patent/JP2006271026A/en
Publication of JP2006271026A publication Critical patent/JP2006271026A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leakage current suppression circuit that can cope with not only the case that an S phase of a three-phase power supply is earthed but also the case that a neutral point between an R phase and the S phases is earthed. <P>SOLUTION: In a device that comprises capacitors connected between the three-phase AC power supply of the S phase and the earth, or between the neutral connecting point between the R phase and the S phases, a primary coil of a transformer T1 is connected between the S phase and the R phase of the three-phase AC power supply, a primary coil of a transformer T2 is connected between the S phase and a T phase, secondary coils of the transformers T1, T2 are V-connected to each other with polarities reverse to those of primary sides, and secondary outputs of the transformers T1, T2 are connected to the earth via the capacitors. The S phase at the primary side of the transformer T1 and an S' phase at a secondary side are connected to each other, or the S phase of the transformer T1 and an R' phase at a secondary side are connected in accordance with the earthing mode of the three-phase AC power supply, or the R phase at the primary side of the transformer T1 is connected to the S' phase at the secondary side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、漏洩電流抑制回路に関するものであり、特に、低周波の漏洩電流の抑制に関するものである。   The present invention relates to a leakage current suppression circuit, and more particularly to suppression of low frequency leakage current.

従来この種の漏洩電流抑制回路としては、例えば「いずれか一つの相が接地された商用交流電源と電子機器との間または電子機器内に設けた、各相とアースとの間を接続するコンデンサを有する装置において、前記コンデンサを通ってアースに流れる漏洩電流に対し、前記商用交流電源の接地線と非接地線間にトランスの一次コイルを接続し、前記トランスの二次コイルとコンデンサの直列体を前記商用交流電源の接地線とアースとの間に接続することにより、反対位相で前記漏洩電流に等しい電流を前記商用交流電源の接地線とアースとの間に供給することを特徴とする漏洩電流低減回路。」が提案されている(例えば特許文献1)。
特許第2895604号公報(請求項1、第4図)
Conventionally, as this type of leakage current suppression circuit, for example, “a capacitor that is connected between a commercial AC power source in which any one phase is grounded and an electronic device, or between each phase and ground, is provided in the electronic device. A transformer primary coil is connected between a ground line and a non-ground line of the commercial AC power supply with respect to a leakage current flowing to the ground through the capacitor, and a series body of the secondary coil and the capacitor of the transformer Is connected between the ground line of the commercial AC power supply and the ground, so that a current equal to the leakage current in an opposite phase is supplied between the ground line of the commercial AC power supply and the ground. Current reduction circuit "has been proposed (for example, Patent Document 1).
Japanese Patent No. 2895604 (Claim 1, FIG. 4)

日本国内の三相200V電源では、S相接地が一般的であるが、三相電源のR−S相間の中点を接地することで単相三線電源としても適用する場合もあり、上記特許文献1の回路ではそのような接地形態に対応できないという問題点があった。   In the three-phase 200V power supply in Japan, S-phase grounding is common, but it may be applied as a single-phase three-wire power supply by grounding the midpoint between the R and S phases of the three-phase power supply. The circuit of Document 1 has a problem that it cannot cope with such a grounding form.

この発明は、上述のような課題を解決するためになされたものであり、S相接地だけでなく、三相電源のR−S相間の中点を接地した場合についても対応できるようにした漏洩電流抑制回路を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can cope with not only the S-phase grounding but also the case where the midpoint between the RS phases of the three-phase power source is grounded. An object is to provide a leakage current suppressing circuit.

本発明に係る漏洩電流抑制回路は、何れか一相(S)が接地された三相交流電源又は二相(S・R)間の中点が接地された三相交流電源の各相とアースとの間にそれぞれ接続されたコンデンサを備えた装置において、前記三相交流電源の接地相(S)と他の相(R)との間に第1のトランスの一次コイルを接続し、前記接地相(S)と更に他の相(T)との間に第2のトランスの一次コイルを接続し、前記第1及び第2のトランスの二次コイルを一次側とは逆極性にV結線するとともに前記第1及び第2のトランスの二次側出力をそれぞれコンデンサを介して前記アースに接続し、前記三相交流電源の接地態様に応じて、前記第1のトランスの一次側の接地相(S)と二次側の接地相(S’)とを接続し、又は前記第1のトランスの一次側の内、前記二相(S・R)の何れか一方の相(S)と二次側の他方の相(R’)とを接続し、若しくは前記第1のトランスの一次側の他方の相(R)と二次側の一方の相(S’)とを接続するものである。   The leakage current suppression circuit according to the present invention includes a three-phase AC power source in which any one phase (S) is grounded, or a three-phase AC power source in which a midpoint between two phases (S · R) is grounded, and a ground. In which the primary coil of the first transformer is connected between the ground phase (S) and the other phase (R) of the three-phase AC power source. The primary coil of the second transformer is connected between the phase (S) and the other phase (T), and the secondary coils of the first and second transformers are V-connected in the opposite polarity to the primary side. In addition, the secondary side outputs of the first and second transformers are connected to the ground via capacitors, respectively, and the primary phase of the first transformer is grounded according to the grounding mode of the three-phase AC power source ( S) and the secondary side ground phase (S ′), or the primary side of the first transformer , One phase (S) of the two phases (S · R) and the other phase (R ′) on the secondary side are connected, or the other phase (R on the primary side of the first transformer) ) And one phase (S ′) on the secondary side.

この発明によれば、何れか一相(S)が接地された三相交流電源の場合には、第1のトランスの一次側の接地相(S)と二次側の接地相(S’)とを接続し、二相(S・R)間の中点が接地された三相交流電源の場合には、第1のトランスの一次側の一方の相(S)と二次側の他方の相(R’)とを接続し若しくは第1のトランスの一次側の他方の相(R)と二次側の一方の相(S’)とを接続するようにしており、三相交流電源の各相とアースとの間に接続されたコンデンサを経由してアースに流れ込む漏洩電流に対して、前記トランスの二次コイルにより発生させた漏洩電流が大きさが等しく、逆位相となるので、アースに流れ込む漏洩電流を抑制することができる。また、電源の接地形態が異なる場合においても、上記のように接続を変えることにより効果的に漏洩電流を相殺し、抑制することができる。   According to the present invention, in the case of a three-phase AC power source in which any one phase (S) is grounded, the primary-side ground phase (S) and the secondary-side ground phase (S ′) of the first transformer. In the case of a three-phase AC power source in which the midpoint between the two phases (S and R) is grounded, one phase (S) on the primary side of the first transformer and the other side on the secondary side Phase (R ′) or the other phase (R) on the primary side of the first transformer and one phase (S ′) on the secondary side. The leakage current generated by the secondary coil of the transformer is equal in magnitude and opposite in phase to the leakage current flowing into the ground via a capacitor connected between each phase and the ground. Leakage current flowing in can be suppressed. Even when the power supply is grounded differently, the leakage current can be effectively canceled and suppressed by changing the connection as described above.

実施の形態1.
図1はこの発明の実施の形態1に係る漏洩電流抑制回路及び負荷回路の配置例を示した回路図であり、図2は図1の漏洩電流抑制回路の詳細を示した回路図である。本実施形態1においては、S相が接地された交流電源を対象としており、漏洩電流抑制回路のトランスT1の一次側のS相と二次側のS’相とを接続した場合について説明する。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing an arrangement example of a leakage current suppressing circuit and a load circuit according to Embodiment 1 of the present invention, and FIG. 2 is a circuit diagram showing details of the leakage current suppressing circuit of FIG. In the first embodiment, an AC power source with the S phase grounded is targeted, and a case where the primary S phase and the secondary S ′ phase of the transformer T1 of the leakage current suppression circuit are connected will be described.

図1に示されるように、三相電源のR相1、S相2及びT相3は、それぞれリアクトル4,5,6を介して負荷25に電力を供給するとともに、リアクトル4,5,6及びコンデンサ15,16,17を介してアース21に接続されている。漏洩電流抑制回路26は、リアクトル4,5,6と負荷25との間に配置されている。   As shown in FIG. 1, the R phase 1, S phase 2 and T phase 3 of the three-phase power supply supply power to the load 25 via the reactors 4, 5, 6 and the reactors 4, 5, 6 respectively. In addition, it is connected to the ground 21 through capacitors 15, 16, and 17. Leakage current suppression circuit 26 is arranged between reactors 4, 5, 6 and load 25.

図2に示されるように、漏洩電流抑制回路26は、トランスT1,T2を備えている。トランスT1の一次巻線端子7はリアクトル4を介してR相1に接続されている。トランスT1の他方の一次巻線端子8とトランスT2の一方の一次巻線端子11とは接続されており、リアクトル5を介してS相2に接続されている。トランスT2の他方の一次巻線端子12はリアクトル6を介してT相3に接続されている。   As shown in FIG. 2, the leakage current suppression circuit 26 includes transformers T1 and T2. The primary winding terminal 7 of the transformer T1 is connected to the R phase 1 through the reactor 4. The other primary winding terminal 8 of the transformer T1 and one primary winding terminal 11 of the transformer T2 are connected, and are connected to the S phase 2 via the reactor 5. The other primary winding terminal 12 of the transformer T2 is connected to the T phase 3 via the reactor 6.

また、トランスT1の二次巻線端子9にはコンデンサ18が接続され、トランスT1の二次巻線端子10及びトランスT2の二次巻線端子13にはコンデンサ19が接続され、トランスT2の二次巻線端子14にはコンデンサ20が接続されており、コンデンサ18〜20はそれぞれアース21に接続されている。トランスT1の一次巻線端子8及びトランスT2の一次巻線端子11と、トランスT1の二次巻線端子10及びトランスT2の二次巻線端子13とは、この例では、一次側の接続切替用端子(以下、端子という)aと二次側の接続切替用端子(以下、端子という)bを介して接続されている。   A capacitor 18 is connected to the secondary winding terminal 9 of the transformer T1, and a capacitor 19 is connected to the secondary winding terminal 10 of the transformer T1 and the secondary winding terminal 13 of the transformer T2. A capacitor 20 is connected to the next winding terminal 14, and the capacitors 18 to 20 are each connected to a ground 21. In this example, the primary winding terminal 8 of the transformer T1 and the primary winding terminal 11 of the transformer T2, and the secondary winding terminal 10 of the transformer T1 and the secondary winding terminal 13 of the transformer T2 are switched on the primary side. And a secondary connection switching terminal (hereinafter referred to as a terminal) b.

ここで、トランスT1,T2は一次と二次が1対1の巻数比であり、極性は図において黒点表示されており、トランスT1の巻線端子7と巻線端子10、トランスT2の巻線端子11と巻線端子14が同極性となるように構成されている。すなわち、トランスT1,T2はV結線され、且つ、その一次側と二次側とが逆極性になっている。コンデンサは一次側のコンデンサ15、16、17と二次側のコンデンサ18、19、20は全て同容量とする。   Here, the transformers T1 and T2 have a one-to-one turns ratio between the primary and the secondary, and the polarities are indicated by black dots in the figure. The winding terminals 7 and 10 of the transformer T1 and the windings of the transformer T2 The terminal 11 and the winding terminal 14 are configured to have the same polarity. That is, the transformers T1 and T2 are V-connected, and the primary side and the secondary side have opposite polarities. Capacitors have primary capacitors 15, 16 and 17 and secondary capacitors 18, 19 and 20 all having the same capacity.

図2の漏洩電流抑制回路26は、以上のように構成されており、一次側のコンデンサ15、17を経由しアースに流れ込む漏洩電流を打ち消すために、二次側に漏洩電流に対して逆位相を持つ電流を流し、最終的にアース21に流れ込む漏洩電流を相殺し、抑制するものである。この漏洩電流抑制回路26においては、S相2が接地されているため、コンデンサ16,19には電流が流れ込まない。また、図2においてはトランスT1,T2を2個用いたV結線によるものを示したが、トランスを3個用いてΔ結線としても同様の効果が得られることは言うまでもない。ここで、トランスT1,T2の二次側のコンデンサ18,20が、一次側のコンデンサ15,17に対して同等の逆位相電流を流すためには、その周波数特性に着目する必要がある。すなわち、トランスT1,T2の漏れインダクタンスが0であれば、全周波数領域で漏洩電流を相殺することになるが、それはすなわちノイズフィルタとしての一次側のコンデンサ15〜17を含めた本回路を接続していないのと同じことになり、無意味である。ポイントは、漏れインダクタンスの効果により、電源周波数に対しては二次側のコンデンサの相殺効果が働き、150kHz以上の雑音端子電圧に影響する領域では一次側のコンデンサのみが働くようにすることである。そのために漏れインダクタンスとコンデンサの共振周波数は数10kHzとする。また、所望の特性を得るためには、トランスT1,T2そのものの特性として、一次−二次間の結合係数を十分高くすることが必要であり、その境界判定値は、おおむね結合係数「0.85」以上と考えられる。   The leakage current suppression circuit 26 of FIG. 2 is configured as described above, and in order to cancel the leakage current flowing into the ground via the primary side capacitors 15 and 17, the phase opposite to the leakage current on the secondary side. The leakage current that finally flows into the earth 21 is canceled and suppressed. In the leakage current suppression circuit 26, since the S phase 2 is grounded, no current flows into the capacitors 16 and 19. Although FIG. 2 shows a V-connection using two transformers T1 and T2, it goes without saying that the same effect can be obtained by using a Δ-connection using three transformers. Here, in order for the capacitors 18 and 20 on the secondary side of the transformers T1 and T2 to pass equivalent antiphase currents to the capacitors 15 and 17 on the primary side, it is necessary to pay attention to the frequency characteristics. In other words, if the leakage inductance of the transformers T1 and T2 is 0, the leakage current is canceled out in the entire frequency range. That is, this circuit including the primary side capacitors 15 to 17 as a noise filter is connected. It's the same as not, and it's meaningless. The point is that due to the effect of the leakage inductance, the canceling effect of the secondary side capacitor works on the power supply frequency, and only the primary side capacitor works in the region affecting the noise terminal voltage of 150 kHz or higher. . For this purpose, the leakage inductance and the resonance frequency of the capacitor are set to several tens of kHz. In addition, in order to obtain a desired characteristic, it is necessary to sufficiently increase the primary-secondary coupling coefficient as a characteristic of the transformers T1 and T2 itself. 85 "or more.

なお、一次側のコンデンサ15〜17としては、電源インピーダンスに対して、150kHz以上で低インピーダンスにする必要があるので、雑音端子電圧測定に用いられるLISNの50uHを基準と考えると、コンデンサ容量は0.0225uF以上必要となる。リアクトル4〜16のL値として大きな値をとる程、コンデンサ容量を低減できる。以上のことを勘案すると、一次側及び二次側のコンデンサ15〜20を0.1uFとした時、トランスT1,T2の一次及び二次の漏れインダクタンスの和は0.1〜0.5mH程度が望ましい。   Since the primary side capacitors 15 to 17 need to have a low impedance of 150 kHz or more with respect to the power source impedance, the capacitor capacitance is 0 when considering 50 uH of LISN used for noise terminal voltage measurement as a reference. 0.025uF or more is required. The larger the L value of reactors 4-16, the smaller the capacitor capacity. Considering the above, when the primary and secondary capacitors 15 to 20 are set to 0.1 uF, the sum of the primary and secondary leakage inductances of the transformers T1 and T2 is about 0.1 to 0.5 mH. desirable.

図3はトランスT1,T2の一次・二次の入出力電圧をベクトル図に表記した図である。接地相であるS相=S'相を中心に、R相とR'相、T相とT'相が逆位相となり、そこからアース21に対して接続されたコンデンサに流れる電流も互いに逆位相で同じ大きさとなるので相殺される。このようにすることで、図1の点線で示されように、負荷25から漏れるコンデンサ27経由の高周波のノイズ電流は、一次側のコンデンサ15乃至17で還流し、一次側のコンデンサ15,17を流れる電源周波数の漏洩電流は、上記の漏洩電流抑制回路26内のコンデンサ18,20からの電流により相殺され、合体して漏洩電流は抑制される。   FIG. 3 is a vector diagram showing primary and secondary input / output voltages of the transformers T1 and T2. The R phase and R 'phase, and the T phase and T' phase are in opposite phases, centering on the S phase = S 'phase, which is the ground phase, and the currents flowing from there to the capacitor connected to the ground 21 are also opposite in phase. Since they are the same size, they are offset. In this way, as shown by the dotted line in FIG. 1, high-frequency noise current leaking from the load 25 via the capacitor 27 is circulated by the primary-side capacitors 15 to 17, and the primary-side capacitors 15 and 17 are connected. The leakage current of the flowing power supply frequency is offset by the currents from the capacitors 18 and 20 in the leakage current suppression circuit 26, and combined to suppress the leakage current.

実施の形態2.
図4は上記の漏洩電流抑制回路26をR−S相間中点接地の交流電源に適用した場合の構成を示した回路図である。この例では、三相交流電源の内、R相22とS相23の相間の中点がアース21に接続されている。また、トランスT1の一次巻線端子8とトランスT1の二次巻線端子9とが、この例では、端子aと二次側の接続切替用端子(以下、端子という)cを介して接続されている。図4の回路構成はこれらの点を除くと図2と同じであるから、その説明は省略する。
Embodiment 2. FIG.
FIG. 4 is a circuit diagram showing a configuration in the case where the above leakage current suppression circuit 26 is applied to an AC power source having an R-S phase midpoint grounding. In this example, the midpoint between the R phase 22 and the S phase 23 of the three-phase AC power supply is connected to the ground 21. In this example, the primary winding terminal 8 of the transformer T1 and the secondary winding terminal 9 of the transformer T1 are connected to each other via a terminal a and a secondary-side connection switching terminal (hereinafter referred to as a terminal) c. ing. Except for these points, the circuit configuration of FIG. 4 is the same as that of FIG.

図2の構成においてはS相2が接地相のため、コンデンサ16及び19は機能しなかったが、図4に示される中点を接地相とする場合には、全てのコンデンサに電圧がかかり、電流が流れる。図4においては、トランスT1の一次巻線端子8とトランスT1の二次巻線端子9とが端子a及びcを介して接続されているが、トランスT1の一次巻線端子7をトランスT1の二次巻線端子10に接続変更しても同様の回路が構成される(図5参照)。   In the configuration of FIG. 2, since the S phase 2 is the ground phase, the capacitors 16 and 19 did not function. However, when the midpoint shown in FIG. 4 is the ground phase, a voltage is applied to all the capacitors, Current flows. In FIG. 4, the primary winding terminal 8 of the transformer T1 and the secondary winding terminal 9 of the transformer T1 are connected via the terminals a and c, but the primary winding terminal 7 of the transformer T1 is connected to the transformer T1. Even if the connection is changed to the secondary winding terminal 10, a similar circuit is formed (see FIG. 5).

図5は図4の変形例を示した回路図である。トランスT1の一次巻線端子7に接続された一次側の接続切替用端子(以下、端子という)dを設け、図4に示される中点を接地相とする場合には、その端子dと端子bとを接続する。このように接続することにより、後述の図6のベクトル図からも明らかなように、R相−S相間の中間の接地は、R相(一次巻線端子7)とS’相(トランスT1の二次巻線端子10)とを接続して同電位にすると、S相(トランスT1の一次巻線端子8)とR’相(トランスT1の二次巻線端子9)も同電位になる。   FIG. 5 is a circuit diagram showing a modification of FIG. When a primary connection switching terminal (hereinafter referred to as a terminal) d connected to the primary winding terminal 7 of the transformer T1 is provided and the midpoint shown in FIG. b. By connecting in this way, as is clear from the vector diagram of FIG. 6 described later, the ground between the R phase and the S phase is connected to the R phase (primary winding terminal 7) and the S ′ phase (of the transformer T1). When the secondary winding terminal 10) is connected to the same potential, the S phase (primary winding terminal 8 of the transformer T1) and the R ′ phase (secondary winding terminal 9 of the transformer T1) also have the same potential.

図6はトランスT1,T2の一次・二次の入出力電圧をベクトル図に表記した図である。接地相であるR相−S相の中点を中心に、R相とR'相、S相とS'相、T相とT'相がそれぞれ逆位相となり、そこからアース21に対して接続されたコンデンサに流れる電流も互いに逆位相で同じ大きさとなるので相殺される。このようにすることで、図1のコンデンサ27経由の高周波のノイズ電流は、一次側のコンデンサ15乃至17で還流し、一次側のコンデンサ15乃至17を流れる電源周波数の漏洩電流は、上記の漏洩電流抑制回路26内のコンデンサ18乃至20からの電流により相殺され、合体して漏洩電流は抑制される。   FIG. 6 is a vector diagram showing primary and secondary input / output voltages of the transformers T1 and T2. The R phase and R 'phase, the S phase and the S' phase, and the T phase and the T 'phase are reversed from each other about the midpoint of the R phase-S phase, which is the ground phase, and connected to the ground 21 from there. Since the currents flowing in the capacitors are the same in opposite phases, they are canceled out. By doing so, the high-frequency noise current via the capacitor 27 in FIG. 1 is recirculated by the primary-side capacitors 15 to 17, and the leakage current of the power supply frequency flowing through the primary-side capacitors 15 to 17 is the above leakage. The currents from the capacitors 18 to 20 in the current suppression circuit 26 cancel each other and merge to suppress the leakage current.

実施の形態3.
この発明においては、上述の実施の形態1及び2の説明から明らかなように、三相交流電源の接地態様に応じてV結線されたトランスT1の一次側と二次側との接続を変更することとしているが、その決定過程を実施の形態3として説明する。
Embodiment 3 FIG.
In the present invention, as is apparent from the description of the first and second embodiments described above, the connection between the primary side and the secondary side of the transformer T1 that is V-connected is changed according to the grounding mode of the three-phase AC power supply. The determination process will be described as a third embodiment.

図7は三相交流電源の接地態様に応じてトランスT1の一次―二次間の接続を決定する過程を示したフローチャートである。機器設置直後の電源投入時には、トランス一次−二次間を接続せずに、三相電源の接地相を確認の上、トランスT1の一次−二次間を接続する。これは、接地条件とトランスT1の一次−二次間の接続がアンマッチの場合には、逆に漏洩電流が増加するためである。具体的には、ステップS1の出荷時では、トランスT1の一次−二次間を接続しない状態とし、ステップS2に進む。ステップ2では接続電源がS相接地の三相三線電源であるかどうかを判断し、S相接地の三相三線電源である場合にはステップ4に進む。それ以外の場合はステップ3に進む。ステップ3では接続電源がR−S相中点接地の三相三線電源であるかどうかを判断し、R−S相中点接地の三相三線電源である場合にはステップ5に進む。それ以外の場合にはステップ6に進む。ステップ4では、トランスT1の一次側のS相と二次側のS’相とを接続し(端子aとbを接続)、ステップ7に進む。ステップ5では、トランスT1の一次側S相とS相以外の二次側相を接続し(端子aとbとを接続、又は端子dとbとを接続接続)、ステップ7に進む。ステップ6では、トランスT1の一次−二次間を接続しない状態で、ステップ7に進む。ステップ7では、電源を投入し、機器の運転を開始可能とする。   FIG. 7 is a flowchart showing a process of determining the primary-secondary connection of the transformer T1 according to the grounding mode of the three-phase AC power supply. When the power is turned on immediately after the installation of the device, the primary and secondary of the transformer T1 are connected after confirming the ground phase of the three-phase power supply without connecting the primary and secondary of the transformer. This is because the leakage current increases conversely when the grounding condition and the primary-secondary connection of the transformer T1 are unmatched. Specifically, at the time of shipment in step S1, the primary-secondary state of the transformer T1 is not connected, and the process proceeds to step S2. In step 2, it is determined whether or not the connection power source is a three-phase three-wire power source with S-phase grounding. Otherwise, go to step 3. In step 3, it is determined whether or not the connected power source is a three-phase three-wire power source with RS phase midpoint grounding. Otherwise, go to Step 6. In Step 4, the primary S phase and the secondary S 'phase of the transformer T1 are connected (terminals a and b are connected), and the process proceeds to Step 7. In step 5, the primary side S phase of the transformer T1 and the secondary side phase other than the S phase are connected (terminals a and b are connected or terminals d and b are connected), and the process proceeds to step 7. In Step 6, the process proceeds to Step 7 in a state where the primary and secondary sides of the transformer T1 are not connected. In step 7, the power is turned on so that the operation of the device can be started.

この発明の実施の形態1に係る漏洩電流抑制回路及び負荷回路の配置例を示した回路図である。It is the circuit diagram which showed the example of arrangement | positioning of the leakage current suppression circuit and load circuit which concern on Embodiment 1 of this invention. 図1の漏洩電流抑制回路の詳細を示した回路図である。FIG. 2 is a circuit diagram illustrating details of a leakage current suppressing circuit of FIG. 1. この発明の実施の形態1における電圧ベクトル図である。It is a voltage vector diagram in Embodiment 1 of this invention. この発明の実施の形態2に係る漏洩電流抑制回路の詳細を示した回路図である。It is the circuit diagram which showed the detail of the leakage current suppression circuit which concerns on Embodiment 2 of this invention. 図4の漏洩電流抑制回路の変形例を示した回路図である。FIG. 5 is a circuit diagram showing a modification of the leakage current suppression circuit of FIG. 4. この発明の実施の形態2における電圧ベクトル図である。It is a voltage vector figure in Embodiment 2 of this invention. 三相交流電源の接地態様に応じてトランスの一次―二次間の接続を決定する過程を示したフローチャートである。It is the flowchart which showed the process of determining the connection between the primary and secondary of a transformer according to the grounding aspect of a three-phase alternating current power supply.

符号の説明Explanation of symbols

1〜3,22〜24・・・交流電源、4〜6・・・リアクトル、15〜20,27・・・コンデンサ、7〜14・・・トランス入出力線、28・・・R相電源ライン、29・・・S相電源ライン、30・・・T相電源ライン、25・・・負荷、21・・・アース、26・・・漏洩電流抑制回路、a,b,c,d・・・トランス一次・二次側接続切替用端子、S1,S4,S5,S6,S7・・・処理ブロック、S2,S3・・・判定ブロック、T1,T2・・・トランス
1-3, 22-24 ... AC power supply, 4-6 ... Reactor, 15-20, 27 ... Capacitor, 7-14 ... Transformer input / output line, 28 ... R-phase power supply line 29 ... S phase power supply line, 30 ... T phase power supply line, 25 ... load, 21 ... earth, 26 ... leakage current suppression circuit, a, b, c, d ... Transformer primary / secondary side connection switching terminal, S1, S4, S5, S6, S7 ... processing block, S2, S3 ... determination block, T1, T2 ... transformer

Claims (3)

何れか一相(S)が接地された三相交流電源又は二相(R・S)間の中点が接地された三相交流電源の各相とアースとの間にそれぞれ接続されたコンデンサを備えた装置において、
前記三相交流電源の接地相(S)と他の相(R)との間に第1のトランスの一次コイルを接続し、前記接地相(S)と更に他の相(T)との間に第2のトランスの一次コイルを接続し、前記第1及び第2のトランスの二次コイルを一次側とは逆極性にV結線するとともに前記第1及び第2のトランスの二次側出力をそれぞれコンデンサを介して前記アースに接続し、
前記三相交流電源の接地態様に応じて、前記第1のトランスの一次側の接地相(S)と二次側の接地相(S’)とを接続し、又は前記第1のトランスの一次側の内、前記二相(R・S)の何れか一方の相(S)と二次側の他方の相(R’)とを接続し、若しくは前記第1のトランスの一次側の他方の相(R)と二次側の一方の相(S’)とを接続することを特徴とする漏洩電流抑制回路。
Capacitors connected between each phase of the three-phase AC power source with one phase (S) grounded or the three-phase AC power source with the middle point between the two phases (RS) grounded In the equipment provided,
A primary coil of the first transformer is connected between the ground phase (S) and the other phase (R) of the three-phase AC power supply, and between the ground phase (S) and the other phase (T). The primary coil of the second transformer is connected to the secondary coil, and the secondary coils of the first and second transformers are V-connected in the opposite polarity to the primary side, and the secondary side outputs of the first and second transformers are connected. Each is connected to the ground via a capacitor,
Depending on the grounding mode of the three-phase AC power source, the primary-side ground phase (S) and the secondary-side ground phase (S ′) of the first transformer are connected, or the primary primary of the first transformer Of any one of the two phases (R · S) and the other secondary phase (R ′), or the other primary side of the first transformer. A leakage current suppressing circuit comprising: connecting a phase (R) and one phase (S ′) on the secondary side.
前記第1及び第2のトランスの結合係数をそれぞれ0.85以上にすることを特徴とする請求項1記載の漏洩電流抑制回路。   2. The leakage current suppression circuit according to claim 1, wherein the coupling coefficient of each of the first and second transformers is 0.85 or more. 前記第1及び第2のトランスの漏れリアクタンスと一次・二次側コンデンサの容量による共振周波数が、数10kHz帯になるようにしたことを特徴とする請求項1又は2記載の漏洩電流抑制回路。
3. The leakage current suppression circuit according to claim 1, wherein a resonance frequency due to a leakage reactance of the first and second transformers and a capacitance of the primary and secondary capacitors is in a range of several tens of kHz.
JP2005081666A 2005-03-22 2005-03-22 Leakage current suppression circuit Withdrawn JP2006271026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081666A JP2006271026A (en) 2005-03-22 2005-03-22 Leakage current suppression circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081666A JP2006271026A (en) 2005-03-22 2005-03-22 Leakage current suppression circuit

Publications (1)

Publication Number Publication Date
JP2006271026A true JP2006271026A (en) 2006-10-05

Family

ID=37206400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081666A Withdrawn JP2006271026A (en) 2005-03-22 2005-03-22 Leakage current suppression circuit

Country Status (1)

Country Link
JP (1) JP2006271026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172087A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Leakage current reduction device
JP2014520504A (en) * 2011-06-22 2014-08-21 ルノー エス.ア.エス. System and method for compensating an in-vehicle battery charger
FR3139249A1 (en) * 2022-08-29 2024-03-01 Electricite De France Method and device for compensating a capacitive imbalance of an electrical connection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172087A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Leakage current reduction device
JP2014520504A (en) * 2011-06-22 2014-08-21 ルノー エス.ア.エス. System and method for compensating an in-vehicle battery charger
FR3139249A1 (en) * 2022-08-29 2024-03-01 Electricite De France Method and device for compensating a capacitive imbalance of an electrical connection

Similar Documents

Publication Publication Date Title
US9281738B2 (en) Power conversion apparatus with low common mode noise and application systems thereof
US8228019B2 (en) Output filter and motor drive system including the same
US7724549B2 (en) Integrated power conditioning system and housing for delivering operational power to a motor
US7459995B2 (en) Noise suppression circuit
US9887641B2 (en) Power converter
US20070290670A1 (en) Device for Reducing Harmonics in Three-Phase Poly-Wire Power Lines
JP2019080469A (en) Noise reduction device
JP2017038500A (en) Conductive noise suppression circuit and inverter device
WO2016027374A1 (en) Power conversion device
US8379415B2 (en) Systems and methods for reducing EMI in switch mode converter systems
JP6600607B2 (en) Inductor unit, wireless power transmission device, electric vehicle, and charging facility
US5206539A (en) Transformer with cancellation of harmonic currents by phase shited secondary windings
JP2006271026A (en) Leakage current suppression circuit
JP2010154435A (en) Noise filter
US7027279B2 (en) Combined harmonic filter and phase converter or phase shifting device
Wang et al. Integrated CM Inductor for Both DC and AC Noise Attenuation in DC-Fed Motor Drive Systems
JP2010161900A (en) Switching power supply and motor system using same
JP2011176973A (en) Resonance type switching power supply device
CN213519516U (en) Three-phase magnetic assembly and integrated core
US11437970B2 (en) Method and apparatus for common-mode voltage cancellation
JP4592479B2 (en) Transformer
JP2009148045A (en) Leak current reducing device
WO2019102937A1 (en) Noise filter circuit and power supply circuit
US11114932B1 (en) Method and apparatus for reduction of ripple current
JP3159459B2 (en) Line filter to prevent electric shock in electrical equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603