JP2006269357A - Electrolyte material, electrolyte solution, catalyst paste and fuel cell - Google Patents
Electrolyte material, electrolyte solution, catalyst paste and fuel cell Download PDFInfo
- Publication number
- JP2006269357A JP2006269357A JP2005089115A JP2005089115A JP2006269357A JP 2006269357 A JP2006269357 A JP 2006269357A JP 2005089115 A JP2005089115 A JP 2005089115A JP 2005089115 A JP2005089115 A JP 2005089115A JP 2006269357 A JP2006269357 A JP 2006269357A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- electrolyte material
- polymer
- radical
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、耐久性に優れた燃料電池並びにそのような燃料電池の実現などに寄与する電解質材料、電解質溶液及び触媒ペーストに関する。 The present invention relates to a fuel cell having excellent durability, and an electrolyte material, an electrolyte solution, and a catalyst paste that contribute to the realization of such a fuel cell.
燃料電池に使用される電解質材料としては、ナフィオン(商標)に代表されるパーフルオロ系電解質材料を採用したものが数多く報告されているが、パーフルオロ系電解質材料は燃料電池に適用した場合の性能は高いものの、複雑なプロセスを経て合成される材料であること及びフッ素含有量が高いことから非常にコストが高くなっており、燃料電池普及の障害になっている(特許文献1)。 Many electrolyte materials used in fuel cells that use perfluoro-based electrolyte materials typified by Nafion (trademark) have been reported, but perfluoro-based electrolyte materials have performance when applied to fuel cells. Although it is expensive, it is a material synthesized through a complicated process and a high fluorine content, the cost is very high, which is an obstacle to the spread of fuel cells (Patent Document 1).
そこで、コスト低減を目指して、燃料電池用電極に炭化水素系電解質材料(本明細書においては、フッ素を低減することでコスト低減が可能であるとの理由で、フッ素による置換が完全にはされていない電解質材料も「炭化水素系電解質材料」に含ませる)を採用することが検討されている。 Therefore, with the aim of reducing costs, hydrocarbon-based electrolyte materials for fuel cell electrodes (in the present specification, replacement with fluorine is completely performed because the cost can be reduced by reducing fluorine. It is also being considered to include an electrolyte material that is not included in the "hydrocarbon electrolyte material").
炭化水素系電解質材料は、一般に低コスト化が可能であるが、パーフルオロ系の電解質材料と比較して充分な性能が発揮できない傾向があった。その理由の1つとして、炭化水素系電解質材料は、炭素−水素間の結合エネルギーが炭素−フッ素間の結合エネルギーより小さいので、耐酸化性がパーフルオロ系電解質材料よりも充分でなく、耐酸化性を充分に発揮することができないものと考えられる。 Hydrocarbon electrolyte materials can generally be reduced in cost, but there has been a tendency that sufficient performance cannot be exhibited as compared with perfluoro electrolyte materials. One reason for this is that the hydrocarbon-based electrolyte material has a lower carbon-hydrogen bond energy than the carbon-fluorine bond energy, so that the oxidation resistance is not as good as that of the perfluoro-electrolyte material. It is considered that the properties cannot be fully exhibited.
更に、パーフルオロ系電解質材料であっても全く酸化による劣化が進行しないわけではないことはいうまでもなく、更なる耐酸化性の向上が求められる。 Further, it is needless to say that even perfluoro-based electrolyte materials are not deteriorated by oxidation at all, and further improvement in oxidation resistance is required.
電解質材料の耐酸化性を向上する目的で開発された従来技術としては、電解質材料に対して、イオウ系の酸化防止剤(特許文献2)やフェノール系酸化防止剤(特許文献3)を混合させる方法が開示されている。
しかしながら、本発明者らの研究の結果、特許文献2、3に記載の技術でも耐酸化性が充分でない場合があった。
However, as a result of the study by the present inventors, even the techniques described in
本発明はこのような実情に鑑み為されたものであり、耐久性に優れた電解質材料を提供することを解決すべき課題とする。また、耐久性に優れた電解質材料を用いた、電解質溶液、触媒ペースト、そして燃料電池を提供することも解決すべき課題とする。 This invention is made | formed in view of such a situation, and makes it the subject which should be solved to provide the electrolyte material excellent in durability. Another object to be solved is to provide an electrolyte solution, a catalyst paste, and a fuel cell using an electrolyte material having excellent durability.
(1)上記課題を解決する目的で本発明者らは鋭意検討を行った結果、以下の発明に想到した。すなわち、本発明の電解質材料は、イオン交換容量が0.5meq/g以上、6.0meq/g以下で、ビニル単量体を重合して形成された重合体を基本骨格とする高分子電解質と、
全体の質量を基準にして、含有量が1質量%以上、50質量%以下のヒンダードアミン系光安定化剤と、
を有することを特徴とする。
(1) As a result of intensive studies aimed at solving the above problems, the present inventors have come up with the following invention. That is, the electrolyte material of the present invention has a polymer electrolyte having an ion exchange capacity of 0.5 meq / g or more and 6.0 meq / g or less and a polymer formed by polymerizing a vinyl monomer as a basic skeleton. ,
A hindered amine light stabilizer having a content of 1% by mass or more and 50% by mass or less based on the total mass;
It is characterized by having.
酸化による劣化は酸素や、光、熱などにより発生するラジカルが電解質材料を構成する高分子材料を攻撃することで引き起こされる。酸化防止剤は生成したラジカルと反応することでラジカルが高分子材料を攻撃して劣化させることを防止している。 Degradation due to oxidation is caused by radicals generated by oxygen, light, heat, etc. attacking the polymer material constituting the electrolyte material. The antioxidant prevents the radicals from attacking and deteriorating the polymer material by reacting with the generated radicals.
従来技術で開示されたイオウ系酸化防止剤及びフェノール系酸化防止剤は、酸化を引き起こす原因になるラジカルと反応する際に、自身も消費されている。従って、ある程度の酸化防止機能を発揮すると酸化防止剤の含有量が低下して、酸化防止機能を充分に発現することができなくなる。 The sulfur-based antioxidants and phenol-based antioxidants disclosed in the prior art are consumed by themselves when they react with radicals that cause oxidation. Therefore, when the antioxidant function is exhibited to some extent, the content of the antioxidant is lowered, and the antioxidant function cannot be fully exhibited.
それに対して、ヒンダードアミン系光安定化剤はラジカルと反応しても含有量があまり減少しない。これは、ヒンダードアミン系光安定化剤がラジカルと反応してラジカルを消滅させた後、自身が再生することができるからである。従って、長期間にわたり酸化防止機能を発揮することが可能である。 On the other hand, the content of the hindered amine light stabilizer does not decrease so much even if it reacts with radicals. This is because the hindered amine light stabilizer reacts with the radical to extinguish the radical and then can regenerate itself. Therefore, the antioxidant function can be exhibited over a long period of time.
燃料電池内では常に酸化還元反応が進行しており、ラジカルも相当程度、発生していることが推測される。ラジカル発生の絶対量が少ない一般的な用途に用いる場合には酸化防止剤の種類として、イオウ系、フェノール系、そしてヒンダードアミン系のいずれを採用しても大きな差は生じない場合も多いと考えられる。しかしながら、燃料電池内では酸化防止機能が長期間にわたり持続できるヒンダードアミン系光安定化剤を採用することにより、高い耐久性を実現できる。 It is presumed that the oxidation-reduction reaction always proceeds in the fuel cell, and a considerable amount of radicals are generated. When used in general applications where the absolute amount of radical generation is small, it is likely that there will be no significant difference in the use of any of sulfur, phenol, and hindered amines as the type of antioxidant. . However, high durability can be realized by employing a hindered amine light stabilizer that can maintain the antioxidant function for a long period in the fuel cell.
(2)このような電解質材料を採用することで、高い耐久性を発揮できる電解質溶液が提供できる。また、このような電解質材料に電極触媒粉末を分散させることで高い耐久性をもつ触媒が実現できる触媒ペーストが提供できる。電極触媒粉末近傍では電池反応の進行に伴い、ラジカルが生成することが予想される部位なので高い耐久性をもつ触媒が提供できれば、燃料電池の耐久性としても大きく向上できる。 (2) By employing such an electrolyte material, an electrolyte solution that can exhibit high durability can be provided. Moreover, the catalyst paste which can implement | achieve a highly durable catalyst can be provided by disperse | distributing an electrode catalyst powder to such electrolyte material. In the vicinity of the electrode catalyst powder, as the cell reaction proceeds, a radical is expected to be generated, so if a highly durable catalyst can be provided, the durability of the fuel cell can be greatly improved.
特に、カソード電極側にヒンダードアミン系光安定化剤を含有させることで、より高い耐久性が実現できる。燃料電池では、カソード電極側でラジカルによる耐久性低下の影響が顕著なのでカソード電極側にヒンダードアミン系光安定化剤を含有させることで高い耐久性をもつ燃料電池が実現できる。 In particular, by including a hindered amine light stabilizer on the cathode electrode side, higher durability can be realized. In the fuel cell, since the influence of durability reduction due to radicals is remarkable on the cathode electrode side, a highly durable fuel cell can be realized by including a hindered amine light stabilizer on the cathode electrode side.
本発明の電解質材料はラジカルの消滅に際して自身が消費されないヒンダードアミン系光安定化剤の添加により、長期間にわたり耐酸化性を持続させることが可能になった。更に、そのような耐酸化性に優れた電解質材料を採用することで高い耐久性をもつ電解質溶液、触媒ペーストそして燃料電池を提供することが可能になった。 The electrolyte material of the present invention can maintain oxidation resistance for a long period of time by adding a hindered amine light stabilizer that is not consumed by itself when radicals disappear. Furthermore, it has become possible to provide a highly durable electrolyte solution, catalyst paste, and fuel cell by adopting such an electrolyte material having excellent oxidation resistance.
本発明の電解質材料、電解質溶液、触媒ペースト及び燃料電池について以下詳細に説明を行う。 The electrolyte material, electrolyte solution, catalyst paste, and fuel cell of the present invention will be described in detail below.
(1)本実施形態の電解質材料は高分子電解質とヒンダードアミン系光安定化剤(以下、「HALS」と称する)とを有する混合物である。高分子電解質とHALSとの混合比は電解質材料全体を基準にして、HALSが1質量%以上、50質量%以下の範囲にする。HALSの含有量をこの範囲内にすることで、充分な耐酸化性を充分なプロトン伝導性を有したままで発揮することができる。更に、電解質材料全体を基準にして、HALSが5質量%以上、30質量%以下の範囲にすることが好ましい。 (1) The electrolyte material of the present embodiment is a mixture having a polymer electrolyte and a hindered amine light stabilizer (hereinafter referred to as “HALS”). The mixing ratio of the polymer electrolyte and HALS is such that HALS is in the range of 1% by mass to 50% by mass based on the entire electrolyte material. By setting the HALS content within this range, sufficient oxidation resistance can be exhibited while maintaining sufficient proton conductivity. Furthermore, it is preferable that HALS is in the range of 5% by mass or more and 30% by mass or less based on the entire electrolyte material.
高分子電解質はイオン交換容量が0.5meq/g以上、6.0meq/g以下である。この範囲に制御することで、充分なプロトン伝導性を有することができる。更には0.6meq/g以上、3meq/g以下にすることが望ましい。 The polymer electrolyte has an ion exchange capacity of 0.5 meq / g or more and 6.0 meq / g or less. By controlling within this range, sufficient proton conductivity can be obtained. Furthermore, it is desirable to set it to 0.6 meq / g or more and 3 meq / g or less.
高分子電解質はビニル単量体を重合して形成された基本骨格を有し、その基本骨格にイオン伝導性基が導入されている。この基本骨格は他の高分子材料に結合しているような形態のものでも良い。例えば、この基本骨格をもつ高分子電解質が複数集合してグラフト鎖として他の高分子材料に結合することもできる。また、適正な架橋剤にて架橋することが可能である。プロトン伝導性基としては特に限定されない。例えば、スルホ基、リン酸基、カルボキシ基などの一般的なものが挙げられる。 The polymer electrolyte has a basic skeleton formed by polymerizing a vinyl monomer, and an ion conductive group is introduced into the basic skeleton. This basic skeleton may be in a form bonded to another polymer material. For example, a plurality of polymer electrolytes having this basic skeleton can be assembled and bonded to other polymer materials as graft chains. Moreover, it is possible to crosslink with an appropriate crosslinking agent. The proton conductive group is not particularly limited. For example, general things, such as a sulfo group, a phosphoric acid group, and a carboxy group, are mentioned.
ビニル重合体としては耐酸化性が高い化合物が望ましい。例えば、スチレン、エチレン、プロピレン、テトラフルオロエチレンなどを単独の重合体又は共重合体として採用することができる。 As the vinyl polymer, a compound having high oxidation resistance is desirable. For example, styrene, ethylene, propylene, tetrafluoroethylene and the like can be employed as a single polymer or copolymer.
高分子電解質の分子量は特に限定しない。分子量はある程度高い方が安定性に優れるが、あまりに高いと取り扱い性が低くなる。分子量としては10万以上、30万以下程度の範囲を採用することが望ましい。 The molecular weight of the polymer electrolyte is not particularly limited. The higher the molecular weight, the better the stability. However, if the molecular weight is too high, the handleability will be low. The molecular weight is desirably in the range of about 100,000 or more and 300,000 or less.
HALSとしては特に限定しない。例えば、2,2,6,6−テトラメチルピペリジル;OH基が導入された2,2,6,6−テトラメチルピペリジルと(不飽和)脂肪酸とのエステル(CAS NO167078−06−0など);高分子化された状態のポリ[(6−モルフォリノ−S−トリアジン−2,4−ジイル)〔2,2,6,6−テトラメチル−4−ピペリジル〕イミノ]−ヘキサメチレン[(2,2,6,6−テトラメチル−4−ピペリジル)イミノ](CAS NO82451−48−7);1,6−ヘキサンジアミン,N,N’−ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−,ポリマーズモルホリン−2,4,6−トリクロロ−1,3,5−トリアジン(CAS NO193098−40−7)。 HALS is not particularly limited. For example, 2,2,6,6-tetramethylpiperidyl; ester of 2,2,6,6-tetramethylpiperidyl introduced with OH group and (unsaturated) fatty acid (for example, CAS NO167078-06-0); Poly [(6-morpholino-S-triazine-2,4-diyl) [2,2,6,6-tetramethyl-4-piperidyl] imino] -hexamethylene [(2,2 , 6,6-tetramethyl-4-piperidyl) imino] (CAS NO82451-48-7); 1,6-hexanediamine, N, N′-bis (1,2,2,6,6-pentamethyl-4 -Piperidyl)-, polymers morpholine-2,4,6-trichloro-1,3,5-triazine (CAS NO 193098-40-7).
また、これらHALSはフェノール系安定化剤(例えば、3,5−ジ−t−ブチル−4−ヒドロキシ安息香酸の脂肪酸エステル(CAS No67845−93−6など))と共に使用することで相乗効果を発揮するものがある。 In addition, these HALS exhibit a synergistic effect when used together with a phenol-based stabilizer (for example, fatty acid ester of 3,5-di-t-butyl-4-hydroxybenzoic acid (CAS No67845-93-6 etc.)). There is something to do.
(2)このような電解質材料を採用することで、高い耐久性を発揮できる電解質溶液が提供できる。また、このような電解質材料に電極触媒粉末を分散させることで高い耐久性をもつ触媒が実現できる触媒ペーストが提供できる。電極触媒粉末近傍では電池反応の進行に伴い、ラジカルが生成することが予想される部位なので高い耐久性をもつ触媒が提供できれば、燃料電池の耐久性としても大きく向上できる。 (2) By employing such an electrolyte material, an electrolyte solution that can exhibit high durability can be provided. Moreover, the catalyst paste which can implement | achieve a highly durable catalyst can be provided by disperse | distributing an electrode catalyst powder to such electrolyte material. In the vicinity of the electrode catalyst powder, as the cell reaction proceeds, a radical is expected to be generated, so if a highly durable catalyst can be provided, the durability of the fuel cell can be greatly improved.
電極触媒粉末は、一般的に担持粉末に触媒を担持させた触媒担持粉末として使用される。触媒としては白金や白金に他の元素(ルテニウム、パラジウムなどの貴金属や、銅などの卑金属など)を合金化又は混合させた貴金属触媒などが使用される。担持粉末としてはカーボン粉末などが使用される。担持粉末としてカーボン粉末、触媒として白金を使用した白金担持カーボンが汎用される。白金担持カーボンに担持されている白金は他の元素と合金化されていても良く、また、他の元素と混合して用いることもできる。触媒は、担持粉末を使用せずに、触媒自身を粉末として使用しても良い。 The electrode catalyst powder is generally used as a catalyst-supported powder in which a catalyst is supported on a supported powder. As the catalyst, platinum or a noble metal catalyst obtained by alloying or mixing other elements (such as a noble metal such as ruthenium or palladium or a base metal such as copper) with platinum is used. Carbon powder or the like is used as the support powder. Platinum-supported carbon using carbon powder as the support powder and platinum as the catalyst is widely used. Platinum supported on platinum-supporting carbon may be alloyed with other elements, or may be used by mixing with other elements. The catalyst itself may be used as a powder without using the supported powder.
そして本発明の燃料電池は、HALSを含有させたアノード電極及びカソード電極のどちらか一方の電極にHALSを含有させた電極を採用する。両方の電極にHALSを含有させた電極を採用することもできる。特に、カソード電極に採用することが好ましい。燃料電池の他の構成は特に限定されず一般的な構成が採用できる。当然に他の電解質材料についてもHALSを含有させることができる。 The fuel cell of the present invention employs an electrode containing HALS in one of the anode electrode and cathode electrode containing HALS. It is also possible to employ an electrode containing HALS in both electrodes. In particular, it is preferably employed for the cathode electrode. Other configurations of the fuel cell are not particularly limited, and a general configuration can be adopted. Of course, HALS can be contained in other electrolyte materials.
(高分子電解質の合成:イオン伝導性炭化水素系電解質溶液の調製)
窒素雰囲気下、キシレン200mL中に、過酸化ベンゾイル0.2gを溶解させたスチレン200mLを3時間かけて滴下した。滴下終了後、90℃で1時間保持した。その後、室温まで冷却した反応溶液を大量のメタノール中に滴下して生成したビニル単量体重合体を沈殿させた。沈殿物をろ取後、80℃で30分間乾燥させることで乾燥した粉末状のスチレン重合体を得た。分子量をGPCにて測定したところ、Mw270000であった。
(Polymer electrolyte synthesis: Preparation of ion-conducting hydrocarbon electrolyte solution)
Under a nitrogen atmosphere, 200 mL of styrene in which 0.2 g of benzoyl peroxide was dissolved in 200 mL of xylene was added dropwise over 3 hours. After completion of dropping, the mixture was kept at 90 ° C. for 1 hour. Thereafter, the reaction solution cooled to room temperature was dropped into a large amount of methanol to precipitate a produced vinyl monomer polymer. The precipitate was collected by filtration and dried at 80 ° C. for 30 minutes to obtain a dry powdery styrene polymer. The molecular weight measured by GPC was Mw 270000.
次いで、1000mLのフラスコ中で、1,2−ジクロロエタン500mLに、先のスチレン重合体100gを溶解させた。60℃に加熱しながら、クロロスルホン酸60mLを滴下し、1時間60℃で保持することでスチレン重合体にスルホ基を導入した。ここで得られたスルホン化スチレン重合体を1,2−ジクロロエタンにて洗浄し、更にイオン交換水で洗浄し、室温で1時間イオン交換水に浸漬することで導入したスルホ基を水素化した。その後、真空乾燥によって粉末状のスルホン化スチレン重合体を得た。イオン交換容量は1.8meq/gであった。 Next, 100 g of the above styrene polymer was dissolved in 500 mL of 1,2-dichloroethane in a 1000 mL flask. While heating at 60 ° C., 60 mL of chlorosulfonic acid was added dropwise, and the sulfo group was introduced into the styrene polymer by maintaining at 60 ° C. for 1 hour. The sulfonated styrene polymer obtained here was washed with 1,2-dichloroethane, further washed with ion-exchanged water, and the sulfo group introduced by immersing in ion-exchanged water for 1 hour at room temperature was hydrogenated. Thereafter, a powdered sulfonated styrene polymer was obtained by vacuum drying. The ion exchange capacity was 1.8 meq / g.
得られたスルホン化スチレン重合体10gをイオン交換水/エタノール(1/1容積比)190gに溶解させてイオン伝導性炭化水素系電解質溶液(5質量%)を調製した。 10 g of the obtained sulfonated styrene polymer was dissolved in 190 g of ion exchange water / ethanol (1/1 volume ratio) to prepare an ion conductive hydrocarbon electrolyte solution (5% by mass).
(HALS溶液の調製)
市販されているHALS(sanduvor3058、sanduvor3051、クライアントJAPAN社製)10gをエタノール90g中に溶解させてHALS溶液A(sanduvor3058)及びHALS溶液B(sanduvor3051)を調製した。調製したHALS溶液を前述の高分子電解質と混合することで、本発明の電解質材料に相当する材料が得られ、前述のイオン伝導性炭化水素系電解質溶液にHALS溶液を混合することで本発明の電解質溶液に相当する材料が得られる。
(Preparation of HALS solution)
HALS solution A (sanduvor 3058) and HALS solution B (sanduvor 3051) were prepared by dissolving 10 g of commercially available HALS (sanduvor 3058, sanduvor 3051, manufactured by Client JAPAN) in 90 g of ethanol. By mixing the prepared HALS solution with the above-described polymer electrolyte, a material corresponding to the electrolyte material of the present invention is obtained, and by mixing the HALS solution with the above-mentioned ion-conducting hydrocarbon-based electrolyte solution, A material corresponding to the electrolyte solution is obtained.
(耐酸化性の評価)
前述の高分子電解質溶液8gとHALS溶液A0.04gとを混合し撹拌して電解質溶液を得た(実施例1)。また、前述の高分子電解質溶液8gとHALS溶液B0.04gとを混合し撹拌して電解質溶液を得た(実施例2)。また、HALS溶液を加えず、高分子電解質溶液そのままについても評価を行った(比較例)。
(Evaluation of oxidation resistance)
8 g of the polymer electrolyte solution and 0.04 g of HALS solution A were mixed and stirred to obtain an electrolyte solution (Example 1). Also, 8 g of the polymer electrolyte solution and 0.04 g of HALS solution B were mixed and stirred to obtain an electrolyte solution (Example 2). Further, the polymer electrolyte solution as it was was evaluated without adding the HALS solution (Comparative Example).
それぞれの電解質溶液について耐酸化性を評価した。耐酸化性の評価は100mLのスクリュー管中に純水56mLを入れ、60℃に保持した後、電解質材料の含有量が0.4g相当になる量の各電解質溶液を添加した。 Each electrolyte solution was evaluated for oxidation resistance. Evaluation of oxidation resistance was performed by adding 56 mL of pure water into a 100 mL screw tube and maintaining the temperature at 60 ° C., and then adding each electrolyte solution in an amount corresponding to 0.4 g of the electrolyte material.
その後、Fe2+10ppm溶液16mLとH2O230質量%水溶液8mLとを加えて攪拌した。この溶液はFe2+2ppm、H2O23質量%に調製した試験液80g中に電解質材料0.4gが投入された状態であった。浸漬時間1時間、2時間及び4時間経過毎に、サンプリングを行い、ろ過後の残渣を分離して質量、分子量(Mw)、EWを測定した。また、溶解物の質量も測定した。電解質材料が酸化によって分解されると、残分が減少することが予測される。結果を表1に示す。また、特に非溶解物質量(残存物の質量)の浸漬時間依存性について、図1に示す。
Thereafter, 16 mL of a Fe 2+ 10 ppm solution and 8 mL of a 30% by mass H 2 O 2 aqueous solution were added and stirred. This solution was in a state where 0.4 g of the electrolyte material was put into 80 g of a test solution prepared to 2 ppm of
表1及び図1より明らかなように、HALSとしてsanduvor3058を添加した実施例1の電解質材料が一番残存する量が多かった。次いでHALSとしてsanduvor3051を添加した実施例2の電解質材料、HALSを添加しなかった比較例の電解質材料(本発明における高分子電解質に相当)の順で、電解質材料が残存する量が多かった。従って、HALSを添加することで高い耐酸化性が実現できることが明らかになった。特に、sanduvor3058を用いると高い耐酸化性が実現できることが判った。 As is clear from Table 1 and FIG. 1, the amount of the electrolyte material of Example 1 to which sanduvor 3058 was added as HALS most remained. Next, the amount of the electrolyte material remaining was large in the order of the electrolyte material of Example 2 to which sanduvor 3051 was added as HALS and the electrolyte material of the comparative example to which HALS was not added (corresponding to the polymer electrolyte in the present invention). Therefore, it became clear that high oxidation resistance can be realized by adding HALS. In particular, it was found that high oxidation resistance can be realized by using sanduvor 3058.
Claims (4)
全体の質量を基準にして、含有量が1質量%以上、50質量%以下のヒンダードアミン系光安定化剤と、
を有することを特徴とする電解質材料。 A polymer electrolyte having an ion exchange capacity of 0.5 meq / g or more and 6.0 meq / g or less and a polymer formed by polymerizing a vinyl monomer as a basic skeleton;
A hindered amine light stabilizer having a content of 1% by mass or more and 50% by mass or less based on the total mass;
An electrolyte material characterized by comprising:
該電極触媒粉末を分散する請求項1に記載の電解質材料とを有することを特徴とする触媒ペースト。 An electrode catalyst powder;
A catalyst paste comprising the electrolyte material according to claim 1 in which the electrode catalyst powder is dispersed.
該電解質膜の一面側に設けられたアノード電極と、
該電解質膜の他面側に設けられたカソード電極と、
を有する燃料電池であって、
前記カソード電極及び前記カソード電極との少なくとも一方はヒンダードアミン系光安定剤を含有することを特徴とする燃料電池。
An electrolyte membrane;
An anode electrode provided on one side of the electrolyte membrane;
A cathode electrode provided on the other side of the electrolyte membrane;
A fuel cell comprising:
At least one of the cathode electrode and the cathode electrode contains a hindered amine light stabilizer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005089115A JP2006269357A (en) | 2005-03-25 | 2005-03-25 | Electrolyte material, electrolyte solution, catalyst paste and fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005089115A JP2006269357A (en) | 2005-03-25 | 2005-03-25 | Electrolyte material, electrolyte solution, catalyst paste and fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006269357A true JP2006269357A (en) | 2006-10-05 |
Family
ID=37205073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005089115A Pending JP2006269357A (en) | 2005-03-25 | 2005-03-25 | Electrolyte material, electrolyte solution, catalyst paste and fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006269357A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7989115B2 (en) | 2007-12-14 | 2011-08-02 | Gore Enterprise Holdings, Inc. | Highly stable fuel cell membranes and methods of making them |
US8110317B2 (en) | 2008-03-24 | 2012-02-07 | Toppan Printing Co., Ltd. | Polyelectrolyte, membrane electrode assembly, fuel cell, and method for producing polyelectrolyte |
-
2005
- 2005-03-25 JP JP2005089115A patent/JP2006269357A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7989115B2 (en) | 2007-12-14 | 2011-08-02 | Gore Enterprise Holdings, Inc. | Highly stable fuel cell membranes and methods of making them |
US8241814B2 (en) | 2007-12-14 | 2012-08-14 | W. L. Gore & Associates, Inc. | Highly stable fuel cell membranes and methods of making them |
US8110317B2 (en) | 2008-03-24 | 2012-02-07 | Toppan Printing Co., Ltd. | Polyelectrolyte, membrane electrode assembly, fuel cell, and method for producing polyelectrolyte |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3179545B1 (en) | Catalyst for proton exchange membrane fuel cell and production method for catalyst | |
CN105142778B (en) | Catalyst and electrode catalyst layer, membrane-electrode assembly and the fuel cell using the catalyst | |
US20100209813A1 (en) | Block copolymer, and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly and fuel cell using same | |
CN1300878C (en) | Cathode catalyst for fuel cell | |
KR101963921B1 (en) | Low platinum load electrode | |
KR20160120078A (en) | Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same | |
JP2004146279A (en) | Electrolyte membrane and fuel cell using the electrolyte membrane | |
JP2006147165A (en) | Solid polymer electrolyte membrane, its manufacturing method, and fuel cell using it | |
JP2009140783A (en) | Hydroxide ion conductivity imparting agent for gas diffusion electrode | |
Peng et al. | Synergy effects of hindered phenol and diphosphite antioxidants on promoting alkali resistance of quaternary ammonium functionalized poly (4-vinylbenzyl chloride-styrene) anion exchange membranes | |
JPWO2017029967A1 (en) | Polyphenylsulfone-based proton conductive polymer electrolyte, proton conductive solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cell, method for producing the same, and fuel cell | |
CN1969417A (en) | Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell | |
EP2169751A1 (en) | Membrane-electrode assembly, method for producing the same and solid polymer fuel cell | |
EP2169748A1 (en) | Membrane-electrode assembly, method for producing the same and solid polymer fuel cell | |
JP2009191123A (en) | Block copolymer, electrolyte membrane for fuel cell, membrane-electrode assembly, and solid polymer type fuel cell | |
JP2020047429A (en) | Anode catalyst layer for fuel cell and fuel cell arranged by use thereof | |
JP2006269357A (en) | Electrolyte material, electrolyte solution, catalyst paste and fuel cell | |
KR20160094819A (en) | Catalyst for fuel cell, method of preparing the same, and membrane-electrode assembly for fuel cell including the same | |
JP6727264B2 (en) | Anode catalyst layer for fuel cell and fuel cell using the same | |
JP4929787B2 (en) | Proton conducting polymer-containing composition | |
JP4561214B2 (en) | Electrolyte membrane | |
WO2014009334A2 (en) | Mixed metallic oxides as scavengers for fluorinated ion exchange polymers | |
CN101080835A (en) | Electrolyte membrane for fuel cell, process for producing the same, membrane/electrode union, and fuel cell | |
JP2007234247A (en) | Proton conductive material and its manufacturing method | |
JP2020047431A (en) | Anode catalyst layer for fuel cell and fuel cell arranged by use thereof |