JP2006266634A - Solenoid expansion valve - Google Patents

Solenoid expansion valve Download PDF

Info

Publication number
JP2006266634A
JP2006266634A JP2005088812A JP2005088812A JP2006266634A JP 2006266634 A JP2006266634 A JP 2006266634A JP 2005088812 A JP2005088812 A JP 2005088812A JP 2005088812 A JP2005088812 A JP 2005088812A JP 2006266634 A JP2006266634 A JP 2006266634A
Authority
JP
Japan
Prior art keywords
valve
opening
passage
electromagnetic
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005088812A
Other languages
Japanese (ja)
Other versions
JP4594142B2 (en
Inventor
Takeshi Kamio
猛 神尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2005088812A priority Critical patent/JP4594142B2/en
Publication of JP2006266634A publication Critical patent/JP2006266634A/en
Application granted granted Critical
Publication of JP4594142B2 publication Critical patent/JP4594142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solenoid expansion valve capable of controlling a refrigerant for use in an air-conditioning and heating cycle with high accuracy and high responsiveness. <P>SOLUTION: The solenoid expansion valve 1 comprises a valve body 10 having a first passage 11 and a second passage 12, and a sub-body 20 inserted in the valve body 10. The sub-body 20 has a valve seat part 23 having a valve opening 22, and a valve stem 50 is inserted in a guide member 40. A refrigerant in the second passage 12 acts upon both ends of the valve stem 50 having a valve part 52, through by-pass passages 18, 25. A housing 100 fitted to the valve body 10 has a can 110 to which a suction element 120 is fitted. A plunger 150 operates the valve stem 50 integrally with a push rod 130. Valve opening is controlled by changing a current applied to an electromagnetic coil 200. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍サイクルに組込まれて冷媒の流量を制御する膨張弁に関し、弁開閉の操作を電磁ソレノイド装置により行うタイプの電磁式の膨張弁に関する。   The present invention relates to an expansion valve that is incorporated in a refrigeration cycle and controls the flow rate of a refrigerant, and relates to an electromagnetic expansion valve of a type in which a valve opening / closing operation is performed by an electromagnetic solenoid device.

電磁式の膨張弁は、電磁コイルに付与する電流の大きさにより、弁を操作することにより、弁開度を制御する。
この種の電磁式の膨張弁は、例えば下記の特許文献に開示されている。
特開2003−4341号公報
The electromagnetic expansion valve controls the valve opening degree by operating the valve according to the magnitude of the current applied to the electromagnetic coil.
This type of electromagnetic expansion valve is disclosed in, for example, the following patent document.
JP 2003-4341 A

この種の電磁式膨張弁にあっては、高圧の冷媒を制御する際に、流量を微細にかつ正確に制御することが困難であったり、応答性に欠ける等の問題があった。
本発明の目的は、上述した問題を解決する電磁式の膨張弁を提供することである。
In this type of electromagnetic expansion valve, when controlling a high-pressure refrigerant, there is a problem that it is difficult to control the flow rate finely and accurately, or that the response is insufficient.
An object of the present invention is to provide an electromagnetic expansion valve that solves the above-described problems.

上記目的を達成するために、本発明の電磁式膨張弁は、弁本体には、冷媒が通過する第1通路と第2通路とが備わっており、前記弁本体には、前記第1通路と前記第2通路との間を連通する弁開口を有する弁座を備える副本体が備わっており、前記弁開口を開閉する弁部を有する弁棒を前記弁開口に対し開閉作動させる電磁ソレノイド装置が前記弁本体に装備され、前記弁開口に対する前記弁部の弁開口特性が、低開度領域で小さくかつ前記低開度領域を越える高開度領域で大きくなる2段特性を有することを特徴とする。
前記2段の弁開口特性を有するために、前記弁部は、具体的には、第1テーパー部とこの第1テーパー部の最細端部から前記弁棒中心に向かう平坦部又は前記第1テーパー部の第1テーパー角よりも大なる第2テーパー角を有する第2テーパー部を備える。
更に好ましくは、前記弁本体又は前記副本体には、前記弁棒に作用する冷媒圧力による力をキャンセルするように、前記第2通路の冷媒圧力を前記弁棒の両端に作用させるバイパス通路を備える。
更に好ましくは、前記弁棒の径は前記弁開口と同一径を有する。
かかる構成を採用することによって、冷媒の流れ方向は正逆いずれの方向にも適用可能である。
このとき、前記第2通路には、前記弁座の最大開口面積と同等又は僅かに小なる開口面積を有するオリフィス部材を備えることが好ましい。
In order to achieve the above object, in the electromagnetic expansion valve of the present invention, the valve body is provided with a first passage and a second passage through which a refrigerant passes, and the valve body includes the first passage and the first passage. An electromagnetic solenoid device comprising a sub-body having a valve seat having a valve opening communicating with the second passage, and opening and closing a valve rod having a valve portion for opening and closing the valve opening with respect to the valve opening. The valve body is equipped with a two-stage characteristic in which a valve opening characteristic of the valve portion with respect to the valve opening is small in a low opening region and large in a high opening region exceeding the low opening region. To do.
In order to have the two-stage valve opening characteristic, the valve portion specifically includes a first taper portion and a flat portion from the narrowest end portion of the first taper portion toward the center of the valve stem or the first portion. A second taper portion having a second taper angle larger than the first taper angle of the taper portion is provided.
More preferably, the valve main body or the sub-main body is provided with a bypass passage that causes the refrigerant pressure of the second passage to act on both ends of the valve stem so as to cancel the force due to the refrigerant pressure acting on the valve stem. .
More preferably, the diameter of the valve stem has the same diameter as the valve opening.
By adopting such a configuration, the flow direction of the refrigerant can be applied in either the forward or reverse direction.
At this time, it is preferable that the second passage includes an orifice member having an opening area which is equal to or slightly smaller than the maximum opening area of the valve seat.

以上の構成を有する本発明の電磁式膨張弁は、高圧冷媒の流量制御を微細にかつ正確に応答性よく行うことができる。また、冷媒の流れを可逆的として、冷房と暖房のいずれにも使用することができる。   The electromagnetic expansion valve of the present invention having the above-described configuration can finely and accurately control the flow rate of the high-pressure refrigerant with good responsiveness. Moreover, the flow of the refrigerant is reversible and can be used for both cooling and heating.

図1及び図2に示すように、全体を符号1で示す電磁式膨張弁は、第1通路11と第2通路12とバイパス通路18とを有する弁本体10を備える。バイパス通路18は、第2通路の冷媒圧力を後述の弁棒50が露出する室Hに導く。
この弁本体10の中心部には、更に、弁室21を有する副本体20を備える。
副本体20は、弁開口22を有する弁座部23を有し、弁座部23の上方の弁室21は弁本体10の第1通路11に連通しており、弁座部23の下方の室24は弁本体10の第2通路12に連通している。
このオリフィス部材30は、第1通路11から弁座部23の弁開口22を通って第2通路12側ヘ冷媒が流れる際に、弁座部による絞り直後の冷媒の流速を更に下げて弁周りの圧力バランスを保ち、安定した制御を得る機能を有する。
As shown in FIGS. 1 and 2, the electromagnetic expansion valve generally indicated by reference numeral 1 includes a valve body 10 having a first passage 11, a second passage 12, and a bypass passage 18. Bypass passage 18 leads to the refrigerant pressure in the second passage to the chamber H 1 exposing the valve stem 50 will be described later.
A central part 20 of this valve body 10 is further provided with a sub-main body 20 having a valve chamber 21.
The sub-main body 20 has a valve seat portion 23 having a valve opening 22, and the valve chamber 21 above the valve seat portion 23 communicates with the first passage 11 of the valve main body 10, and below the valve seat portion 23. The chamber 24 communicates with the second passage 12 of the valve body 10.
When the refrigerant flows from the first passage 11 through the valve opening 22 of the valve seat portion 23 to the second passage 12 side, the orifice member 30 further reduces the refrigerant flow rate immediately after throttling by the valve seat portion, The pressure balance is maintained and a stable control is obtained.

副本体20は、第2通路12側に開口するバイパス通路25を有し、冷媒を弁本体10と蓋部材90の間に形成される室H側へ送る。
副本体20の上部には、ガイド部材40が配設され、弁棒50を摺動自在に案内する。
The sub-main body 20 has a bypass passage 25 that opens to the second passage 12 side, and sends the refrigerant to the chamber H 2 side formed between the valve main body 10 and the lid member 90.
A guide member 40 is disposed on the upper portion of the sub-main body 20 to guide the valve stem 50 in a slidable manner.

弁棒50は、弁部52を有し、弁開口22を通過する小径部56を介して弁棒の先端案内部54に連結される。弁棒の先端案内部54は、副本体10に圧入固定されたスリーブ60により支持される。弁棒50の先端案内部54はバネ受け部材70で支持される。バネ受け部材70は、コイルばね72を介して調節用のねじ部材80により支持される。ねじ部材80は、ねじ部Nを介して副本体20の内ねじに螺合される。ねじ部材80のねじ込み量を調節することで、コイルばね72のバネ力を調節することができる。ねじ部材80には、工具を受ける横溝82と貫通穴84が形成してあり、この貫通穴84を介して室H側の冷媒を弁棒の先端案内部54に対向する室H内に導入する。 The valve stem 50 has a valve portion 52 and is connected to a tip guide portion 54 of the valve stem through a small diameter portion 56 that passes through the valve opening 22. The tip guide 54 of the valve stem is supported by a sleeve 60 that is press-fitted and fixed to the sub-main body 10. The tip guide portion 54 of the valve stem 50 is supported by a spring receiving member 70. The spring receiving member 70 is supported by a screw member 80 for adjustment via a coil spring 72. Screw member 80 is screwed through the threaded portion N 2 to an internal thread of the sub-main body 20. By adjusting the screwing amount of the screw member 80, the spring force of the coil spring 72 can be adjusted. The screw member 80 is formed with a lateral groove 82 for receiving a tool and a through hole 84, and the refrigerant on the chamber H 2 side is passed through the through hole 84 into the chamber H 3 facing the tip guide portion 54 of the valve rod. Introduce.

蓋部材90は、ねじ部Nに螺合され、弁本体10の開口部を封止する。Oリング92を介在させて、シールを完全にする。
弁本体10の上部は、ねじ部Nを有し、電磁ソレノイド装置のハウジング100が螺合される。ハウジング100には、非磁性材製のキャン110が圧入され、キャン110の内部に吸引子120が固定される。
The lid member 90 is screwed into the screw portion N 1, seals the opening of the valve body 10. An O-ring 92 is interposed to complete the seal.
The top of the valve body 10 has a threaded portion N 3, the housing 100 of the electromagnetic solenoid device is screwed. A can 110 made of a nonmagnetic material is press-fitted into the housing 100, and the attractor 120 is fixed inside the can 110.

キャン110内には、吸引子120の上部にプランジャ150が摺動自在に挿入される。プランジャ150には、吸引子120の中心穴を貫通するプッシュロッド130が圧入され、プッシュロッド130とプランジャ150は一体化される。
プランジャ150の頂部には、コイルバネ152が装備されている。コイルバネ152は、コイルバネ72よりも弱いバネ力を有してプッシュロッド130を弁棒50に当接させる働きを有する。
In the can 110, the plunger 150 is slidably inserted on the upper part of the suction element 120. A push rod 130 penetrating through the center hole of the suction element 120 is press-fitted into the plunger 150, and the push rod 130 and the plunger 150 are integrated.
A coil spring 152 is mounted on the top of the plunger 150. The coil spring 152 has a weaker spring force than the coil spring 72 and has a function of bringing the push rod 130 into contact with the valve rod 50.

プッシュロッド130は、吸引子120に圧入されるスリーブ140,142により摺動自在に案内される。スリーブ140,142は、メッキが施され、摺動抵抗が減じられる。   The push rod 130 is slidably guided by sleeves 140 and 142 that are press-fitted into the suction element 120. The sleeves 140 and 142 are plated to reduce sliding resistance.

キャン110の外周部には、ボビン210に巻かれた電磁コイル200が装備される。電磁コイル200は、図示しないリード線から給電されることによってプランジャ150を吸引子120側(下方)に引き寄せる。
電磁コイル200の上部は、プレート160で封止される。
An electromagnetic coil 200 wound around a bobbin 210 is provided on the outer periphery of the can 110. The electromagnetic coil 200 draws the plunger 150 toward the attractor 120 side (downward) by being fed from a lead wire (not shown).
The upper part of the electromagnetic coil 200 is sealed with a plate 160.

ここで本発明の電磁式膨張弁における弁部52の特定形状について従来構成と比較しつつ説明する。
図7に示す従来の弁にあっては、弁座(弁開口)に対向する1段のテーパー部52´を有し、弁開口特性は、図5のカーブCに示すように、弁棒の移動量に伴ない弁の開口面積は実質的に直線的に変化する。しかし、本発明の電磁式膨張弁にあっては、図5のカーブCに示すような2段特性の弁開口特性を呈する。すなわち、低開度領域では小なる開口特性(緩やかな勾配)を呈し、高開度領域ではそれよりも大なる開口特性(急峻な勾配)を呈する。
Here, the specific shape of the valve portion 52 in the electromagnetic expansion valve of the present invention will be described in comparison with a conventional configuration.
In the conventional valve shown in FIG. 7, it has a tapered portion 52 'of the first stage facing the valve seat (valve aperture), the valve opening characteristics, as shown in the curve C 3 in FIG. 5, the valve stem The opening area of the valve changes substantially linearly with the amount of movement. However, in the electromagnetic expansion valve of the present invention exhibits a valve opening characteristic of the two-stage characteristics shown in curve C 2 in FIG. That is, a small opening characteristic (gradual gradient) is exhibited in the low opening region, and a larger opening characteristic (steep gradient) is exhibited in the high opening region.

このような2段特性の開口特性を呈するための弁部52の特定形状の一例について、図3を参照しつつ説明する。
本発明の弁棒50に設けられる弁部52は、弁座部23の弁開口22に進入可能な第1テーパー部52aを有する。第1テーパー部52aは、弁開口22の内周面に対して小さな傾斜角を有し、最も深く進入したときに弁開口22の縁部を全閉する。テーパー部52aの最細部からは、この実施例では、弁棒の中心線に向かう平坦部52bが形成されている。平坦部52bは、図5の2段の開口特性を奏する範囲で大きな傾斜角を有する第2テーパー部とされることもある。
第1テーパー部52aの上部には、フランジ部52cが膨出形成してあり、第1テーパー部52aの弁開口22に対する最深進入深さを規制するようになっている。
An example of the specific shape of the valve portion 52 for exhibiting such an opening characteristic of a two-stage characteristic will be described with reference to FIG.
The valve portion 52 provided in the valve stem 50 of the present invention has a first tapered portion 52 a that can enter the valve opening 22 of the valve seat portion 23. The first tapered portion 52a has a small inclination angle with respect to the inner peripheral surface of the valve opening 22, and fully closes the edge of the valve opening 22 when the first taper portion 52a enters the deepest. In this embodiment, a flat portion 52b is formed from the most detailed portion of the tapered portion 52a toward the center line of the valve stem. The flat portion 52b may be a second tapered portion having a large inclination angle in a range that exhibits the two-stage opening characteristics of FIG.
A flange portion 52c is formed to bulge at the upper portion of the first taper portion 52a, and the deepest penetration depth of the first taper portion 52a with respect to the valve opening 22 is regulated.

図4の(a)〜(e)は、図3における弁棒50のリフトLの変化に対応する弁の開口面積Fの変化特性を示す。
図3及び図4の(a)は、閉弁状態を示し、開口面積はゼロである。(b)乃至(c)の領域では2段弁の第1テーパー部52aが弁開口22に対する開口面積を微小に変化させる。この領域(低開度領域)にあっては、図4に示すように、弁リフトLに対する開口面積は、小さな変化率で緩やかに増大する。
図の(c)に示す、2段弁のテーパー部52aから平坦部52bの境界が弁開口22の水平位置(弁座部23の上面)と並ぶ位置(c)から図の(d)に示す位置に向けて更に弁棒50がリフトすると、弁の開口面積は大きな変化率で増大する。図の(e)は、弁の全開状態を示す。(e)の状態以上に弁棒50がリフトしても弁開度は最大値の状態を維持する。
4A to 4E show the change characteristics of the valve opening area F 1 corresponding to the change of the lift L 1 of the valve stem 50 in FIG.
FIG. 3 and FIG. 4 (a) show the closed state, and the opening area is zero. In the regions (b) to (c), the first tapered portion 52a of the two-stage valve slightly changes the opening area with respect to the valve opening 22. In the this area (small opening area), as shown in FIG. 4, the opening area to the valve lift L 1 is gradually increased in the small rate of change.
The boundary between the tapered portion 52a and the flat portion 52b of the two-stage valve shown in (c) of the figure is shown in (d) of the figure from the position (c) aligned with the horizontal position of the valve opening 22 (the upper surface of the valve seat 23). When the valve stem 50 is further lifted toward the position, the opening area of the valve increases with a large rate of change. (E) of a figure shows the valve fully open state. Even if the valve rod 50 is lifted more than the state (e), the valve opening degree is maintained at the maximum value.

本発明の特徴とする2段開口特性を備える電磁式膨張弁にあっては、図5に示すように、制御電流Eに対して、カーブCで示すように弁の開口面積を変化させることができる。
すなわち、弁部52のテーパー部52aと弁座部23の弁開口22との間で弁開口面積を制御する定常制御域Kにおける制御電流Eの幅を従来のカーブCのときの制御電流Eに比べて大きくとることができる。そのため、より分解能が高い制御を達成することができるのである。
弁の開口面積が急増して大量の冷媒が流すクールダウン域K(急速冷房)においては、より小さな制御電流の幅で高速応答制御をすることができる。
In the electromagnetic expansion valve comprising a two-stage opening characteristic which is a feature of the present invention, as shown in FIG. 5, the control current E, varying the opening area of the valve as indicated by the curve C 2 Can do.
That is, the control when the conventional curve C 3 the width of the control current E 2 in the stationary control zone K 2 for controlling the valve opening area between the valve opening 22 of the tapered portion 52a and the valve seat portion 23 of the valve portion 52 it can be increased as compared with the current E 3. Therefore, control with higher resolution can be achieved.
In the cool-down region K 1 (rapid cooling) in which the valve opening area rapidly increases and a large amount of refrigerant flows, high-speed response control can be performed with a smaller control current width.

以上のような弁開口制御を正確に応答性よく行うために、本発明では、弁棒50に作用する冷媒圧力差による影響を無くす又は軽減するための工夫が為されている。
すなわち、図2に示す通り、弁口径D、案内部材60にガイドされる弁棒50の外径D2、弁棒先端案内部54の外径Dは、
=D=D
の関係に設定してある。
第1通路11側へ供給される高圧冷媒(PH)は、弁部52と弁座部23の弁開口22で絞り減圧(PL)された後、弁棒50の小径部56と弁開口22の間に作用するとともにバイパス通路18を通って弁棒50の上部の室Hに送られ、また副本体20のバイパス通路25、室Hを通って弁棒の先端案内部54が位置する室Hにも送られる。
In order to perform the valve opening control as described above accurately and with good responsiveness, the present invention is devised to eliminate or reduce the influence of the refrigerant pressure difference acting on the valve stem 50.
That is, as shown in FIG. 2, the valve diameter D 1 , the outer diameter D 2 of the valve stem 50 guided by the guide member 60, and the outer diameter D 3 of the valve stem tip guide portion 54 are:
D 1 = D 2 = D 3
It is set to the relationship.
The high-pressure refrigerant (PH) supplied to the first passage 11 side is throttled and depressurized (PL) by the valve opening 52 of the valve portion 52 and the valve seat portion 23, and then the small-diameter portion 56 of the valve stem 50 and the valve opening 22. sent to the top of the chamber H 1 of the valve stem 50 through the bypass passage 18 with acting between and chamber bypass passage 25 of the sub-main body 20, the tip guide portion 54 of the valve stem through the chamber H 2 is located also sent to H 3.

これらの冷媒圧力の弁棒50各部に対する作用について、模式的に示す図6を参照しつつ説明する。図6(a)は正流れ(冷房運転)の状態、図6(b)は逆流れ(暖房運転)の状態である。
図6(a)の正流れにおいて、弁棒50には第1通路11内の高圧冷媒PHが作用するフランジ部52cが形成してあるので、通路14に圧力PHの冷媒が導入されると弁棒50のフランジ部52cの丸で囲んだ1で示す部分の上下に圧力PHが作用し、弁棒50に作用する力は相殺される。
(πD /4−πD /4)×PH=(πD /4―πD /4)×PH
ここに、Dはフランジ部52cの外径寸法である。
また、弁部52と弁開口22による絞り部を通過し減圧した圧力PLは、丸で囲んだ2で示す部分に作用する。丸で囲んだ2で示す部分において、上方向に作用する力は
(πD /4―πD /4)×PL
である。
下方向に作用する力は
(πD /4―πD /4)×PL
である。ここに、D=Dであるから、丸で囲んだ2で示す部分に作用する力も相殺される。
さらに、第2通路12側ではバイパス通路18とバイパス通路25(図1参照)を介して弁棒50の上部の室Hと弁棒案内部54の室Hに連通している。そのため、室Hと室Hにも第2通路12側の低圧PLの冷媒が作用する。したがって、弁棒50の上下端の丸で囲んだ3で示す部分においては、弁上部には下方向に、
(πD /4)×PH
の力が作用し、
弁下部には上方向に、
(πD /4)×PH
の力が作用する。ここにD=Dであるから、丸で囲んだ3で示す部分に作用する力も相殺される。
すなわち、弁棒50の周りに作用する冷媒圧力による荷重が全て相殺されるのである。したがって、弁棒50は、冷媒圧力の影響を受けることなく電磁コイル200により発生される吸引力とバネ72のバランスによって制御されるので、電磁コイル200への印加電流を可変することによって正確な流量制御を行うことができる。
The effect | action with respect to each part of the valve stem 50 of these refrigerant | coolant pressures is demonstrated referring FIG. 6 which shows typically. FIG. 6A shows a normal flow (cooling operation) state, and FIG. 6B shows a reverse flow (heating operation) state.
In the positive flow of FIG. 6A, the valve rod 50 is formed with a flange portion 52c on which the high-pressure refrigerant PH in the first passage 11 acts, so that when the refrigerant having the pressure PH is introduced into the passage 14, the valve Pressure PH acts on the upper and lower portions of the flange portion 52c of the rod 50, which is indicated by 1 and surrounded by a circle, and the force acting on the valve rod 50 is canceled out.
(ΠD 4 2/4-πD 1 2/4) × PH = (πD 4 2/4-πD 1 2/4) × PH
Here, D 4 is the outer diameter of the flange portion 52c.
Further, the pressure PL that has been reduced in pressure after passing through the throttle portion by the valve portion 52 and the valve opening 22 acts on a portion indicated by 2 surrounded by a circle. In the portion indicated by circled 2, the force acting in the upward direction (πD 1 2/4-πD 5 2/4) × PL
It is.
Force acting downwards (πD 3 2/4-πD 5 2/4) × PL
It is. Here, since D 1 = D 3 , the force acting on the portion indicated by 2 surrounded by a circle is also canceled out.
Further, on the second passage 12 side, it communicates with the chamber H 1 above the valve stem 50 and the chamber H 3 of the valve stem guide 54 via the bypass passage 18 and the bypass passage 25 (see FIG. 1). Therefore, even the chamber H 1 and the chamber H 3 refrigerant of the low pressure PL of the second passage 12 side acts. Therefore, in the portion indicated by 3 at the upper and lower ends of the valve stem 50, the upper part of the valve is directed downward.
(ΠD 2 2/4) × PH
The force of
On the bottom of the valve,
(ΠD 3 2/4) × PH
The force of acts. Since D 2 = D 3 here, the force acting on the circled portion 3 is also canceled out.
That is, all the loads due to the refrigerant pressure acting around the valve stem 50 are offset. Therefore, since the valve stem 50 is controlled by the balance between the attractive force generated by the electromagnetic coil 200 and the spring 72 without being affected by the refrigerant pressure, an accurate flow rate can be obtained by varying the applied current to the electromagnetic coil 200. Control can be performed.

この正流れの冷凍サイクルにおいては、前述したように、弁棒50に作用する冷媒圧力による荷重はキャンセルされるので、弁開度は、電磁コイル200に与える電流値を適切に制御することにより、正確に制御することができる。   In this positive flow refrigeration cycle, as described above, since the load due to the refrigerant pressure acting on the valve stem 50 is canceled, the valve opening is controlled by appropriately controlling the current value applied to the electromagnetic coil 200. It can be controlled accurately.

図6(b)は、通路12側へ蒸発器を通った高圧冷媒PHが流入する、いわゆる逆流れのサイクルを示す。このサイクルにあっては高温高圧の冷媒が蒸発器(熱交換器)を通る暖房運転が行われる。
丸で囲んだ2で示す部分においては上方向に
(πD /4―πD /4)×PH
の力が作用し、
下方向には
(πD /4―πD /4)×PH
の力が作用する。
ここでD=Dであるから、丸で囲んだ2で示す部分に作用する力は相殺される。
さらに、通路12側ではバイパス通路を介して弁棒50の上部の室Hと弁棒案内部54の下部の室Hに連通している。そのため室H1と室H2には通路12側の高圧PHの冷媒が作用する。
弁棒50の上下端である丸で囲んだ3で示す部分においては、弁上部には下方向に、
(πD /4)×PH
の力が作用し、
弁下部には上方向に、
(πD /4)×PH
の力が作用する。ここでD=Dであるから、丸で囲んだ3で示す部分に作用する力も相殺される。
弁部52と弁座42で形成される絞り部を通過し減圧した圧力PLは、弁棒50のフランジ部52cの丸で囲んだ1で示す部分の上下に作用し、この力は相殺される。
(πD /4―πD /4)×PL=(πD /4―πD /4)×PL
この逆流れにおいても弁棒50に作用する圧力による荷重は全てバランスするので、電磁コイル200に流す電流値を制御することで圧力の影響を受けることなく、正確な流量制御を行うことができる。
本発明の電磁式膨張弁は、このように正逆流れどちらでも正確な制御が可能なヒートポンプ式空調システムを提供することができる。
FIG. 6B shows a so-called reverse flow cycle in which the high-pressure refrigerant PH that has passed through the evaporator flows into the passage 12 side. In this cycle, a heating operation is performed in which high-temperature and high-pressure refrigerant passes through an evaporator (heat exchanger).
Upward in the portion indicated by circled 2 (πD 1 2/4- πD 5 2/4) × PH
The force of
The downward (πD 3 2/4-πD 5 2/4) × PH
The force of acts.
Since D 1 = D 3 here, the force acting on the portion indicated by 2 surrounded by a circle is canceled out.
Furthermore, communicates with the lower portion of the chamber of H 2 the upper part of the chamber H 1 and the valve rod guide portion 54 of the valve stem 50 through the bypass passage in the passage 12 side. Therefore, the high-pressure PH refrigerant on the passage 12 side acts on the chambers H1 and H2.
In the part indicated by circles 3 that are the upper and lower ends of the valve stem 50, the valve upper part is directed downward,
(ΠD 2 2/4) × PH
The force of
On the bottom of the valve,
(ΠD 3 2/4) × PH
The force of acts. Since D 2 = D 3 here, the force acting on the portion indicated by 3 surrounded by a circle is also canceled out.
The pressure PL that has passed through the throttle portion formed by the valve portion 52 and the valve seat 42 and reduced in pressure acts above and below the circled portion 1 of the flange portion 52c of the valve stem 50, and this force is canceled out. .
(ΠD 4 2/4-πD 1 2/4) × PL = (πD 4 2/4-πD 1 2/4) × PL
Even in this reverse flow, all the loads due to the pressure acting on the valve stem 50 are balanced, so that the flow rate can be accurately controlled without being influenced by the pressure by controlling the current value flowing through the electromagnetic coil 200.
Thus, the electromagnetic expansion valve of the present invention can provide a heat pump type air conditioning system capable of accurate control in either forward or reverse flow.

なお、上記実施例では、弁棒50に作用する流体圧力による荷重をほぼ完全にキャンセルするようにした例について説明したが、D、D、Dの各寸法を適宣に選択することによって、意図的に弁棒50に開方向または閉方向の力を付与するようにすることもでき、弁の働きを使用目的または制御目的に応じて適宜にチューニングすることが可能である。 In the above-described embodiment, the example in which the load due to the fluid pressure acting on the valve stem 50 is almost completely canceled has been described. However, the dimensions D 1 , D 2 , and D 3 should be appropriately selected. Therefore, it is possible to intentionally apply a force in the opening direction or the closing direction to the valve stem 50, and it is possible to appropriately tune the operation of the valve according to the purpose of use or the purpose of control.

本発明の電磁式膨張弁の中央縦断面図。The center longitudinal cross-sectional view of the electromagnetic expansion valve of this invention. 本発明の電磁式膨張弁の要部拡大図。The principal part enlarged view of the electromagnetic expansion valve of this invention. 本発明の電磁式膨張弁における弁部の構造と作用を示す説明図。Explanatory drawing which shows the structure and effect | action of a valve part in the electromagnetic expansion valve of this invention. 本発明の電磁式膨張弁の弁リフトと開口面積の関係を示す説明図。Explanatory drawing which shows the relationship between the valve lift and opening area of the electromagnetic expansion valve of this invention. 本発明の電磁式膨張弁の制御電流と開口面積の関係を示す説明図。Explanatory drawing which shows the relationship between the control current and opening area of the electromagnetic expansion valve of this invention. 本発明の電磁式膨張弁における圧力バランスの作用を模式的に示す説明図。Explanatory drawing which shows typically the effect | action of the pressure balance in the electromagnetic expansion valve of this invention. 従来の弁部の説明図。Explanatory drawing of the conventional valve part.

符号の説明Explanation of symbols

1 電磁式膨張弁
10 弁本体
11 第1通路
12 第2通路
18 バイパス通路
20 副本体
21 弁室
22 弁開口
23 弁座部
24 室
25 バイパス通路
30 オリフィス部材
40 ガイド部材
50 弁棒
52 弁部
52a 第1テーパー部
52b 平坦部
52c フランジ部
60 スリーブ
70 バネ受け部材
80 ねじ部材
90 蓋部材
100 ハウジング
110 キャン
120 吸引子
130 プッシュロッド
140,142 スリーブ
150 プランジャ
200 電磁コイル
DESCRIPTION OF SYMBOLS 1 Electromagnetic expansion valve 10 Valve main body 11 1st channel | path 12 2nd channel | path 18 Bypass channel | path 20 Sub-main body 21 Valve chamber 22 Valve opening 23 Valve seat part 24 Chamber 25 Bypass channel | path 30 Orifice member 40 Guide member 50 Valve rod 52 Valve part 52a First taper portion 52b Flat portion 52c Flange portion 60 Sleeve 70 Spring receiving member 80 Screw member 90 Lid member 100 Housing 110 Can 120 Aspirator 130 Push rod 140, 142 Sleeve 150 Plunger 200 Electromagnetic coil

Claims (8)

弁本体には、冷媒が通過する第1通路と第2通路とが備わっており、
前記弁本体には、前記第1通路と前記第2通路との間を連通する弁開口を有する弁座を備える副本体が備わっており、
前記弁開口を開閉する弁部を有する弁棒を前記弁開口に対し開閉作動させる電磁ソレノイド装置が前記弁本体に装備され、
前記弁開口に対する前記弁部の弁開口特性が、低開度領域で小さくかつ前記低開度領域を越える高開度領域で大きくなる2段特性を有する
ことを特徴とする電磁式膨張弁。
The valve body is provided with a first passage and a second passage through which the refrigerant passes,
The valve main body includes a sub main body including a valve seat having a valve opening communicating between the first passage and the second passage;
An electromagnetic solenoid device that opens and closes a valve stem having a valve portion for opening and closing the valve opening with respect to the valve opening is equipped in the valve body,
The electromagnetic expansion valve according to claim 1, wherein the valve opening characteristic of the valve portion with respect to the valve opening has a two-stage characteristic that is small in a low opening region and large in a high opening region that exceeds the low opening region.
請求項1において、前記2段の弁開口特性を有するように、前記弁部は、第1テーパー部とこの第1テーパー部の最細端部から前記弁棒中心に向かう平坦部又は前記第1テーパー部の第1テーパー角よりも大なる第2テーパー角を有する第2テーパー部を備えることを特徴とする電磁式膨張弁。   2. The valve portion according to claim 1, wherein the valve portion has a first taper portion and a flat portion from the thinnest end portion of the first taper portion toward the center of the valve stem, or the first portion so as to have the two-stage valve opening characteristic. An electromagnetic expansion valve comprising a second taper portion having a second taper angle larger than the first taper angle of the taper portion. 請求項1又は2において、前記弁本体又は前記副本体には、前記弁棒に作用する冷媒圧力による力をキャンセルするように、前記第2通路の冷媒圧力を前記弁棒の両端に作用させるバイパス通路が備わっていることを特徴とする電磁式膨張弁。   3. The bypass according to claim 1, wherein the valve body or the sub-body has a refrigerant pressure in the second passage acting on both ends of the valve rod so as to cancel a force caused by a refrigerant pressure acting on the valve rod. An electromagnetic expansion valve comprising a passage. 請求項3において、前記弁棒の径は前記弁開口と同一径を有することを特徴とする電磁式膨張弁。   4. The electromagnetic expansion valve according to claim 3, wherein the diameter of the valve stem has the same diameter as the valve opening. 請求項1乃至4のいずれかおいて、冷媒の流れ方向は正逆いずれの方向にも適用可能であることを特徴とする電磁式膨張弁。   The electromagnetic expansion valve according to any one of claims 1 to 4, wherein the flow direction of the refrigerant can be applied in both forward and reverse directions. 請求項5において、前記第2通路には、前記弁座の最大開口面積と同等又は僅かに小なる開口面積を有するオリフィス部材を備えることを特徴とする電磁式膨張弁。   6. The electromagnetic expansion valve according to claim 5, wherein the second passage includes an orifice member having an opening area that is equal to or slightly smaller than a maximum opening area of the valve seat. 請求項1において、前記電磁ソレノイド装置は、前記弁棒を操作するプッシュロッドを固着した可動のプランジャと、このプランジャと対向する固定の吸引子と、前記プランジャと前記吸引子とを内装する非磁性のキャンと、このキャンの外周部に配置される電磁コイルとを備えることを特徴とする電磁式膨張弁。   2. The electromagnetic solenoid device according to claim 1, wherein the electromagnetic solenoid device includes a movable plunger to which a push rod for operating the valve rod is fixed, a fixed suction element facing the plunger, and the plunger and the suction element. And an electromagnetic coil disposed on the outer periphery of the can. 請求項7において、前記吸引子が前記弁本体側に、前記プランジャが前記吸引子の外方に位置し、前記プッシュロッドは前記吸引子を摺動自在に貫通していることを特徴とする電磁式膨張弁。   8. The electromagnetic wave according to claim 7, wherein the suction element is positioned on the valve body side, the plunger is positioned outward of the suction element, and the push rod penetrates the suction element slidably. Expansion valve.
JP2005088812A 2005-03-25 2005-03-25 Solenoid expansion valve Active JP4594142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088812A JP4594142B2 (en) 2005-03-25 2005-03-25 Solenoid expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088812A JP4594142B2 (en) 2005-03-25 2005-03-25 Solenoid expansion valve

Publications (2)

Publication Number Publication Date
JP2006266634A true JP2006266634A (en) 2006-10-05
JP4594142B2 JP4594142B2 (en) 2010-12-08

Family

ID=37202806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088812A Active JP4594142B2 (en) 2005-03-25 2005-03-25 Solenoid expansion valve

Country Status (1)

Country Link
JP (1) JP4594142B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042303A1 (en) * 2011-09-24 2013-03-28 株式会社デンソー Expansion valve device
JP2013234842A (en) * 2013-06-28 2013-11-21 Mitsubishi Electric Corp Electronic expansion valve and air conditioner with the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589205B (en) * 2011-01-11 2015-09-02 浙江三花股份有限公司 A kind of electric expansion valve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243275U (en) * 1985-08-31 1987-03-16
JPH03168484A (en) * 1989-11-24 1991-07-22 Toyota Autom Loom Works Ltd Flow control valve
JPH04302784A (en) * 1991-03-30 1992-10-26 Fuji Koki Seisakusho:Kk Flow control valve
JPH10148420A (en) * 1996-11-18 1998-06-02 Toshiba Corp Air-conditioning equipment
JP2001289538A (en) * 2000-04-03 2001-10-19 Fuji Koki Corp Motor driven valve
JP2002122367A (en) * 2000-10-17 2002-04-26 Denso Corp Control valve
JP2002195698A (en) * 2000-10-17 2002-07-10 Denso Corp Control valve for heat pump
JP2003207067A (en) * 2002-01-11 2003-07-25 Denso Corp Solenoid valve device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243275U (en) * 1985-08-31 1987-03-16
JPH03168484A (en) * 1989-11-24 1991-07-22 Toyota Autom Loom Works Ltd Flow control valve
JPH04302784A (en) * 1991-03-30 1992-10-26 Fuji Koki Seisakusho:Kk Flow control valve
JPH10148420A (en) * 1996-11-18 1998-06-02 Toshiba Corp Air-conditioning equipment
JP2001289538A (en) * 2000-04-03 2001-10-19 Fuji Koki Corp Motor driven valve
JP2002122367A (en) * 2000-10-17 2002-04-26 Denso Corp Control valve
JP2002195698A (en) * 2000-10-17 2002-07-10 Denso Corp Control valve for heat pump
JP2003207067A (en) * 2002-01-11 2003-07-25 Denso Corp Solenoid valve device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042303A1 (en) * 2011-09-24 2013-03-28 株式会社デンソー Expansion valve device
JP2013068294A (en) * 2011-09-24 2013-04-18 Denso Corp Expansion valve device
US9816639B2 (en) 2011-09-24 2017-11-14 Denso Corporation Expansion valve device
JP2013234842A (en) * 2013-06-28 2013-11-21 Mitsubishi Electric Corp Electronic expansion valve and air conditioner with the same

Also Published As

Publication number Publication date
JP4594142B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
US7980482B2 (en) Thermostatic expansion valve having a restricted flow passage for noise attenuation
US10197314B2 (en) Electronic expansion valve and methods for calibrating an electronic expansion valve
US20060086396A1 (en) Electromagnetic hydraulic control valve
JP4331667B2 (en) Control valve for variable capacity compressor
JP4550651B2 (en) Control valve for variable displacement compressor
KR20060096895A (en) Constant flow rate expansion valve
US20070056644A1 (en) Damper spool
JP2004100722A (en) Proportional valve
US6386218B1 (en) Solenoid operated valve assembly for variable bleed pressure proportional control
US20070039655A1 (en) Relief valve
JP4594142B2 (en) Solenoid expansion valve
JP2008138812A (en) Differential pressure valve
JP6216681B2 (en) Aperture device
KR20060082414A (en) Control valve for variable displacement compressor
KR101644940B1 (en) On-off valve
WO2013057983A1 (en) Flow regulator
JP2005055034A (en) Electric expansion valve
JP2004053192A (en) Expansion valve of constant flow rate
KR20060076696A (en) Control valve for variable capacity compressor
JP4262036B2 (en) Constant flow expansion valve
JP4053846B2 (en) Electric expansion valve
KR20070021949A (en) Relief valve
JP4368508B2 (en) Pump discharge pressure control device
CN111615605B (en) Electromagnetic valve
JPH1172176A (en) Flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4594142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250