JP2006266395A - Rotary supporting device - Google Patents

Rotary supporting device Download PDF

Info

Publication number
JP2006266395A
JP2006266395A JP2005085305A JP2005085305A JP2006266395A JP 2006266395 A JP2006266395 A JP 2006266395A JP 2005085305 A JP2005085305 A JP 2005085305A JP 2005085305 A JP2005085305 A JP 2005085305A JP 2006266395 A JP2006266395 A JP 2006266395A
Authority
JP
Japan
Prior art keywords
ball
inner ring
ball bearing
rotational speed
preload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085305A
Other languages
Japanese (ja)
Inventor
Yukio Oura
大浦  行雄
Hideto Yui
秀人 由井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005085305A priority Critical patent/JP2006266395A/en
Publication of JP2006266395A publication Critical patent/JP2006266395A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/42Pumps with cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • F16C25/083Ball or roller bearings self-adjusting with resilient means acting axially on a race ring to preload the bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure capable of reducing torque of each ball bearing 3, 3 sufficiently, ensuring a sufficient oil film in a contact part of rolling faces of each ball 9, 9 constituting each ball bearing 3, 3 and each raceway track 4, 6 of an outer ring and an inner ring, and ensuring durability of each contact part sufficiently. <P>SOLUTION: Pre-load load given to each ball bearing 3, 3 is reduced to such extent that gross slip occurs in a contact part of each ball 9, 9 and the raceway track 6 of the inner ring in at least a part of a scope of rotational speed of the inner ring 7 realized when using. At the same time, lubrication conditions of each ball bearing 3, 3 are regulated so as to prevent occurrence of damage and seizure on the rolling faces of each ball 9, 9 and each raceway track 4, 6 of the outer ring and the inner ring during at least desired operation time in the scope of rotational speed at which gross slip occurs. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明に係る回転支持装置は、例えば、高速ターボ機械(ターボチャージャ、ターボポンプ等)やガスタービンや歯車式変速装置等に組み込んで、高速回転する回転軸をハウジングに対し回転自在に支持する為に利用する。   The rotation support device according to the present invention is incorporated in, for example, a high-speed turbo machine (turbocharger, turbo pump, etc.), a gas turbine, a gear-type transmission, or the like so as to rotatably support a rotating shaft that rotates at high speed with respect to a housing. To use.

各種機械装置に組み込む回転支持装置として従来から、例えば図4に示す様なスピンドルが使用されている。このスピンドルは、回転軸1の中間部を軸受ハウジング2の内側に、1対の玉軸受3、3により回転自在に支持している。これら各玉軸受3、3はそれぞれ、内周面に外輪軌道4を有する外輪5と、外周面に内輪軌道6を有する内輪7と、これら外輪軌道4と内輪軌道6との間に保持器8により保持した状態で転動自在に設けられた複数個の玉9、9とから成る。尚、図示の例の場合、上記外輪5は、片側の肩をなくした、所謂カウンタボアとしている。   Conventionally, for example, a spindle as shown in FIG. 4 is used as a rotation support device incorporated in various mechanical devices. In this spindle, an intermediate portion of the rotary shaft 1 is rotatably supported by a pair of ball bearings 3 and 3 inside the bearing housing 2. Each of these ball bearings 3 and 3 includes an outer ring 5 having an outer ring raceway 4 on an inner peripheral surface, an inner ring 7 having an inner ring raceway 6 on an outer peripheral surface, and a cage 8 between the outer ring raceway 4 and the inner ring raceway 6. It consists of a plurality of balls 9, 9 provided so as to be able to roll while being held. In the case of the illustrated example, the outer ring 5 is a so-called counter bore in which the shoulder on one side is eliminated.

この様な1対の玉軸受3、3は、上記各内輪7、7を上記回転軸1の中間部に外嵌支持すると共に、上記各外輪5、5を上記軸受ハウジング2に隙間嵌めで内嵌している。又、この状態で、上記各内輪7、7の軸方向端面同士を互いに突き合わせると共に、上記1対の外輪5、5同士の間に設けた圧縮ばね10の弾力により、それぞれ環状部材11、11を介して上記各外輪5、5を、軸方向に関して互いに離れる方向に押圧している。これにより、上記各玉軸受3、3に背面組合せ型の接触角を付与すると共に、これら各玉軸受3、3を構成する各玉9、9に、それぞれ上記圧縮ばね10の弾力に見合った予圧荷重を付与している。尚、この際の予圧荷重は、運転時に上記各玉9、9の転動面と上記外輪、内輪各軌道4、6との接触部に滑りが殆ど生じない程度の大きさに規制している。又、図示の例では、上記各玉軸受3、3の予圧付与方式として、上記圧縮ばね10の弾力を利用した定圧予圧方式を採用している。但し、スピンドルの回転軸を支持する転がり軸受の予圧付与方式としては、定位置予圧方式を採用する事もできる。   Such a pair of ball bearings 3 and 3 externally supports the inner rings 7 and 7 on the intermediate portion of the rotary shaft 1 and also fits the outer rings 5 and 5 to the bearing housing 2 with a clearance fit. It is fitted. In this state, the end faces in the axial direction of the inner rings 7 and 7 are butted against each other, and the annular members 11 and 11 are respectively brought about by the elasticity of the compression spring 10 provided between the pair of outer rings 5 and 5. The outer rings 5 and 5 are pressed in a direction away from each other with respect to the axial direction. As a result, a contact angle of a rear combination type is imparted to each of the ball bearings 3 and 3, and a preload corresponding to the elasticity of the compression spring 10 is applied to each of the balls 9 and 9 constituting each of the ball bearings 3 and 3. A load is applied. Incidentally, the preload at this time is regulated to such a magnitude that almost no slip occurs at the contact portion between the rolling surface of the balls 9 and 9 and the outer ring and inner ring raceways 4 and 6 during operation. . In the illustrated example, a constant pressure preload method using the elasticity of the compression spring 10 is employed as a preload application method for the ball bearings 3 and 3. However, a fixed position preloading system can be adopted as a preloading system for the rolling bearing that supports the rotating shaft of the spindle.

この様なスピンドルは、上記回転軸1及び上記各玉軸受3、3を、数万min-1 程度の回転速度で高速回転させて使用する場合がある。従って、この様な過酷な使用条件でも、上記各玉軸受3、3を構成する外輪、内輪各軌道4、6及び各玉9、9の転動面に早期に損傷(更には焼付き)が生じない様にすべく、上記各玉軸受3、3は、強制潤滑しながら使用するのが一般的である。この為に図示の例では、運転時に、上記各玉軸受3、3を潤滑する為の潤滑油を、上記軸受ハウジング2に設けた給油通路12を通じて、上記各環状部材11、11に設けたノズル孔13、13に送り込む。そして、これら各ノズル孔13、13から上記潤滑油を、それぞれ上記各内輪7、7の外周面に向け噴出する事により、上記各玉軸受3、3を潤滑(ジェット給油潤滑)する。尚、この様に各玉軸受3、3の潤滑に供した潤滑油は、上記軸受ハウジング2に設けた排出口14から排出した後、再度、上記給油通路12内に送り込む。 Such a spindle may be used by rotating the rotary shaft 1 and the ball bearings 3 and 3 at a high speed of about several tens of thousands min −1 . Therefore, even under such severe use conditions, the outer ring, the inner ring raceways 4 and 6 and the rolling surfaces of the balls 9 and 9 constituting the ball bearings 3 and 3 are damaged early (and further seized). The ball bearings 3 and 3 are generally used with forced lubrication so as not to occur. For this reason, in the illustrated example, during operation, the lubricating oil for lubricating the ball bearings 3, 3 is supplied to the annular members 11, 11 through the oil supply passages 12 provided in the bearing housing 2. Feed into holes 13 and 13. The ball bearings 3 and 3 are lubricated (jet lubrication lubrication) by ejecting the lubricating oil from the nozzle holes 13 and 13 toward the outer peripheral surfaces of the inner rings 7 and 7, respectively. The lubricating oil used to lubricate the ball bearings 3 and 3 in this manner is discharged from the discharge port 14 provided in the bearing housing 2 and then fed into the oil supply passage 12 again.

上述の図4に示した構造の場合には、回転軸1を支持する転がり軸受として、1対の玉軸受3、3を使用している。但し、当該転がり軸受としては、複列転がり軸受を使用する事もできる。図5は、この様に当該転がり軸受として複列転がり軸受を使用した構造を示している。回転軸1を軸受ハウジング2の内側に回転自在に支持する為の複列玉軸受15は、内周面に複列の外輪軌道4、4を有する外輪5aと、それぞれの外周面に単列の内輪軌道6を有する1対の内輪7、7と、これら各内輪軌道6、6と上記各外輪軌道4、4との間にそれぞれ複数個ずつ、それぞれ保持器8、8により保持した状態で転動自在に設けられた玉9、9とから成る。   In the case of the structure shown in FIG. 4 described above, a pair of ball bearings 3 and 3 are used as rolling bearings that support the rotating shaft 1. However, a double row rolling bearing can be used as the rolling bearing. FIG. 5 shows a structure using a double-row rolling bearing as the rolling bearing. A double-row ball bearing 15 for rotatably supporting the rotary shaft 1 inside the bearing housing 2 includes an outer ring 5a having double-row outer ring raceways 4 and 4 on the inner peripheral surface, and a single row on each outer peripheral surface. A pair of inner rings 7, 7 having an inner ring raceway 6 and a plurality of inner ring raceways 6, 6 and the outer ring raceways 4, 4 are respectively held while being held by cages 8, 8. It consists of balls 9 and 9 that are freely movable.

この様な複列玉軸受15は、上記外輪5aを上記軸受ハウジング2に内嵌すると共に、上記各内輪7、7を上記回転軸1の中間部に外嵌し、更にこの状態で、これら両内輪7、7の端面同士を互いに突き合わせている。そして、この様に両内輪7、7の端面同士を互いに突き合わせた状態で、上記各玉9、9に所定の(上記各玉9、9の転動面と上記外輪、内輪各軌道4、6との接触部に滑りが殆ど生じない程度の)予圧(定位置予圧)荷重が付与される様に、各部の寸法を規制している。又、運転時には、上記複列玉軸受15を潤滑する為の潤滑油を、上記軸受ハウジング2に設けた給油通路12、及び上記外輪5aに設けた各ノズル孔13、13を通じて、上記各内輪7、7の外周面のうち、上記各内輪軌道6、6の近傍部分に向け噴出する。これにより、上記複列玉軸受15を潤滑(ジェット給油潤滑)する。この様に潤滑に供した潤滑油は、排出口14から排出した後、再度、上記給油通路12内に送り込む。   In such a double row ball bearing 15, the outer ring 5a is fitted in the bearing housing 2 and the inner rings 7, 7 are fitted in the intermediate portion of the rotary shaft 1. In this state, The end faces of the inner rings 7, 7 are butted against each other. Then, in a state where the end faces of the inner rings 7 and 7 are in contact with each other in this manner, the balls 9 and 9 are provided with predetermined (rolling surfaces of the balls 9 and 9 and the outer rings and the inner ring tracks 4 and 6. The size of each part is regulated so that a preload (fixed position preload) load is applied so that almost no slip occurs at the contact part. Further, during operation, lubricating oil for lubricating the double-row ball bearing 15 is supplied through the oil supply passage 12 provided in the bearing housing 2 and the nozzle holes 13 and 13 provided in the outer ring 5a. , 7 are ejected toward the vicinity of the inner ring raceways 6, 6. Thus, the double row ball bearing 15 is lubricated (jet oil lubrication). The lubricating oil used for lubrication in this way is discharged from the discharge port 14 and then fed into the oil supply passage 12 again.

ところで、上述した様な各スピンドルの場合、回転軸1を効率良く回転させる事ができれば、その分だけ装置の運転効率を高める事ができる。そこで、上記回転軸1を効率良く回転させる事ができる様にすべく、この回転軸1を支持する玉軸受3(15)の低トルク化(回転抵抗の低減)を実現する事が望まれる。この場合、この玉軸受3(15)の様に強制潤滑下で使用される転がり軸受の低トルク化を図る方法として従来から、ドラッグ(当該転がり軸受の運転時に各転動体が周囲の潤滑油から受ける抵抗)を小さくする方法が知られている。この様にドラッグを小さくする具体的な方法としては、上記潤滑油として低粘度のものを使用する方法や、この潤滑油の転動体設置部への供給量を少なくする方法がある。ところが、この様にしてドラッグを小さくすると、その分だけ上記玉軸受3(15)を構成する各玉9、9の転動面と外輪、内輪各軌道4、6との接触部に形成される油膜が薄くなる。この結果、これら各接触部で油膜切れが生じ易くなると、上記各玉9、9の転動面及び上記外輪、内輪各軌道4、6に早期に損傷が生じ易くなる。この為、この様なドラッグを小さくする方法では、上記各接触部の油膜を最低限確保する必要上、上記玉軸受3(15)の低トルク化を十分に図る事が難しい。   By the way, in the case of each spindle as described above, if the rotary shaft 1 can be efficiently rotated, the operation efficiency of the apparatus can be increased accordingly. Therefore, it is desired to realize a reduction in torque (reduction in rotational resistance) of the ball bearing 3 (15) that supports the rotary shaft 1 so that the rotary shaft 1 can be efficiently rotated. In this case, as a method for reducing the torque of a rolling bearing used under forced lubrication like the ball bearing 3 (15), conventionally, drag (each rolling element is removed from the surrounding lubricating oil during the operation of the rolling bearing). There is known a method of reducing the resistance). As specific methods for reducing the drag in this way, there are a method of using a low-viscosity lubricant as described above, and a method of reducing the amount of lubricant supplied to the rolling element installation section. However, when the drag is reduced in this way, the contact is formed between the rolling surfaces of the balls 9 and 9 constituting the ball bearing 3 (15) and the outer and inner ring raceways 4 and 6 correspondingly. The oil film becomes thinner. As a result, if the oil film breaks easily at these contact portions, the rolling surfaces of the balls 9, 9 and the outer ring and inner ring tracks 4, 6 are likely to be damaged early. For this reason, in such a method of reducing the drag, it is difficult to sufficiently reduce the torque of the ball bearing 3 (15) because it is necessary to secure a minimum oil film at each contact portion.

尚、上述した様に従来は、上記玉軸受3(15)に付与する予圧荷重の大きさを、この玉軸受3(15)を構成する各玉9、9の転動面と外輪、内輪各軌道4、6との接触部に滑りが殆ど生じない程度に大きくしていた。この理由は、これら各接触部で滑りが生じ易くなると、その分だけこれら各接触部で油膜切れが生じ易くなり、結果として上記各玉9、9の転動面及び上記外輪、内輪各軌道4、6に早期に損傷が生じ易くなると考えられていた為である。従って従来は、上記玉軸受3(15)の低トルク化を図る方法として、上記転がり接触部に大きな滑りが生じる程にまで、上記予圧荷重を小さくする方法が採用される事はなかった。
尚、本発明に関連する先行技術文献としては、以下の特許文献1〜2及び非特許文献1がある。
As described above, conventionally, the magnitude of the preload applied to the ball bearing 3 (15) is set so that the rolling surfaces of the balls 9, 9 constituting the ball bearing 3 (15), the outer ring, the inner ring, The contact area with the tracks 4 and 6 was increased to such a degree that slip hardly occurred. The reason for this is that if slipping easily occurs at each of these contact parts, oil film breakage easily occurs at each of these contact parts, and as a result, the rolling surfaces of the balls 9, 9 and the outer ring and inner ring tracks 4 respectively. This is because it was thought that damage was likely to occur at an early stage. Therefore, conventionally, as a method of reducing the torque of the ball bearing 3 (15), a method of reducing the preload load to such an extent that a large slip occurs at the rolling contact portion has not been adopted.
As prior art documents related to the present invention, there are the following Patent Documents 1 and 2 and Non-Patent Document 1.

特開2002−54451号公報JP 2002-54451 A 特許第2794336号公報Japanese Patent No. 2794336 山本精穂,石原滋,「転がり軸受における摩耗−高速軸受におけるスキッディング損傷−」,潤滑,日本潤滑学会,1979年,第24巻,第11号,p.725−728Seiho Yamamoto, Shigeru Ishihara, “Abrasion in Rolling Bearings—Skidding Damage in High-Speed Bearings”, Lubrication, Japan Lubrication Society, 1979, Vol. 24, No. 11, p. 725-728

本発明の回転支持装置は、上述の様な事情に鑑み、玉軸受の低トルク化を十分に図れて、しかもこの玉軸受を構成する各転動体の転動面と各軌道との接触部で油膜切れを生じにくくできる構造を実現すべく発明したものである。   In view of the circumstances as described above, the rotation support device of the present invention can sufficiently reduce the torque of the ball bearing, and at the contact portion between the rolling surface of each rolling element constituting each ball bearing and each track. It was invented to realize a structure that can hardly cause oil film breakage.

本発明の回転支持装置は、ハウジングと、回転軸と、この回転軸をこのハウジングの内側に回転自在に支持する玉軸受とを備える。
このうちの玉軸受は、内周面に外輪軌道を有し、上記ハウジングに内嵌した外輪と、外周面に内輪軌道を有し、上記回転軸に外嵌した内輪と、上記外輪軌道と上記内輪軌道との間に保持器により保持した状態で転動自在に設けられた複数個の玉とを備える。
そして、上記玉軸受にアキシアル方向の予圧荷重を付与すると共に、この玉軸受の外部から上記各玉の設置部に潤滑油を供給しつつ(例えば、オイルジェット潤滑等の強制潤滑や油浴潤滑を行ないつつ)、上記内輪を上記回転軸と共に高速回転させて使用する。
特に、本発明の回転支持装置に於いては、上記予圧荷重の大きさと上記潤滑油の種類(粘度)及び供給条件(供給の仕方、供給量)とを規制する事により、使用時に実現される上記内輪の回転速度範囲の少なくとも一部(例えば、高速度側)で、この内輪の回転速度の変化に拘らず上記保持器の回転速度がほぼ一定となるか又は上記内輪の回転速度が大きくなるに従って上記保持器の回転速度が小さくなる様にしている。これと共に、上記少なくとも一部の回転速度範囲で、少なくとも所望とする運転時間中、上記各玉の転動面と外輪、内輪各軌道とに損傷や焼付きが生じない様にしている。
The rotation support device of the present invention includes a housing, a rotation shaft, and a ball bearing that rotatably supports the rotation shaft inside the housing.
Among these, the ball bearing has an outer ring raceway on an inner peripheral surface, an outer ring fitted in the housing, an inner ring raceway on an outer peripheral surface, an outer ring fitted on the rotary shaft, the outer ring raceway, and the above A plurality of balls provided so as to be able to roll while being held by a cage between the inner ring raceway and the inner ring raceway.
An axial preload is applied to the ball bearing, and lubricating oil is supplied from the outside of the ball bearing to the ball installation portion (for example, forced lubrication such as oil jet lubrication or oil bath lubrication). The inner ring is rotated at a high speed together with the rotating shaft.
In particular, in the rotation support device of the present invention, it is realized at the time of use by regulating the magnitude of the preload, the type (viscosity) of the lubricating oil, and the supply conditions (how to supply and supply amount). In at least a part of the rotational speed range of the inner ring (for example, on the high speed side), the rotational speed of the cage is substantially constant or the rotational speed of the inner ring is increased regardless of changes in the rotational speed of the inner ring. Accordingly, the rotational speed of the cage is reduced. At the same time, the rolling surface of each ball and the outer ring and the inner ring track are prevented from being damaged or seized in at least a part of the rotational speed range at least during a desired operation time.

上述した様な本発明の回転支持装置を実施する場合、上記予圧荷重の大きさと、上記潤滑油の種類及び供給条件とは、それぞれ予め対象となる玉軸受を用いて実験を行なう事により、所望通りに規制する事ができる。以下、この点に就いて、図1を参照しつつ説明する。   When the rotary support device of the present invention as described above is implemented, the magnitude of the preload load, the type of the lubricating oil, and the supply conditions are each determined by performing an experiment using a target ball bearing in advance. Can be regulated on the street. Hereinafter, this point will be described with reference to FIG.

図1は、内輪に対する玉の公転滑り率λ(横軸)と、内輪と玉との接触部に作用するトラクションT、及び、玉のドラッグD(縦軸)との関係を示したグラフである。尚、上記公転滑り率λは、次の(1)式で表す事ができる。
λ=(VA −VB )/VA ―――――(1)
A :内輪と玉との間に滑りが生じないと仮定した場合の玉の公転速度(理論値)
B :実際の玉の公転速度(実測値:理論値以下)
FIG. 1 is a graph showing the relationship between the ball revolution slip ratio λ (horizontal axis) relative to the inner ring, the traction T acting on the contact portion between the inner ring and the ball, and the ball drag D (vertical axis). . The revolution slip ratio λ can be expressed by the following equation (1).
λ = (V A −V B ) / V A ――――― (1)
V A : Revolution speed of ball assuming that no slip occurs between inner ring and ball (theoretical value)
V B : Actual ball revolution speed (actual value: theoretical value or less)

又、図1で、T1 、T2 は、それぞれ当該個所に作用している法線力の大きさが互いに異なる接触部に就いてのトラクション曲線を表している。接触部に作用するトラクションTは、「トラクション係数」×「接触部に作用する法線力」で表される。ここで、この「接触部に作用する法線力」は、玉軸受の予圧荷重が大きくなる程大きくなる(玉軸受の予圧荷重が小さくなる程小さくなる)。この為、玉軸受の予圧荷重を大きくすれば、トラクション曲線の各点の位置を全体的に高くする事ができる(例えば、トラクション曲線をT2 →T1 に変化させる事ができる)。反対に、玉軸受の予圧荷重を小さくすれば、トラクション曲線の各点の位置を全体的に低くする事ができる(例えば、トラクション曲線をT1 →T2 に変化させる事ができる)。 In FIG. 1, T 1 and T 2 represent traction curves for contact portions having different normal forces acting on the respective portions. The traction T acting on the contact portion is expressed by “traction coefficient” × “normal force acting on the contact portion”. Here, the “normal force acting on the contact portion” increases as the preload load of the ball bearing increases (decreases as the preload load of the ball bearing decreases). For this reason, if the preload load of the ball bearing is increased, the position of each point of the traction curve can be increased as a whole (for example, the traction curve can be changed from T 2 to T 1 ). Conversely, if the preload of the ball bearing is reduced, the position of each point of the traction curve can be lowered as a whole (for example, the traction curve can be changed from T 1 to T 2 ).

又、図1で、D1 、D2 、D3 は、それぞれ設定された潤滑条件が互いに異なる玉軸受に就いてのドラッグ曲線を表している。これら各ドラッグ曲線D1 、D2 、D3 が図1で右肩下がりの曲線となる理由は、次の通りである。即ち、玉のドラッグDは、運転時に玉が潤滑油から受ける抵抗であり、玉の公転速度が小さくなる程小さくなる(玉の公転速度が大きくなる程大きくなる)。一方、玉の公転速度は、内輪の回転速度を一定とすると、公転滑り率λが大きくなる程小さくなる。この為、玉のドラッグDは、公転滑り率λが大きくなる程小さくなる。従って、上記各ドラッグ曲線D1 、D2 、D3 は、図1で右肩下がりの曲線となる。又、玉のドラッグDは、潤滑条件によって変化する。具体的には、潤滑油の粘度を大きくしたり、或は潤滑油の供給量を多くすると、玉のドラッグは大きくなる。反対に、潤滑油の粘度小さくしたり、或は潤滑油の供給量を少なくすると、玉のドラッグDは小さくなる。この為、潤滑油の粘度を大きくしたり、或は潤滑油の供給量を多くすれば、ドラッグ曲線の各点の位置を全体的に高くする事ができる(例えば、ドラッグ曲線をD2 →D1 →D3 と変化させる事ができる)。反対に、潤滑油の粘度を小さくしたり、或は潤滑油の供給量を少なくすれば、ドラッグ曲線の各点の位置を全体的に低くする事ができる(例えば、ドラッグ曲線をD3 →D1 →D2 と変化させる事ができる)。 In FIG. 1, D 1 , D 2 , and D 3 represent drag curves for ball bearings having different set lubrication conditions. The reason why each of these drag curves D 1 , D 2 , D 3 becomes a downward-sloping curve in FIG. 1 is as follows. That is, the drag D of the ball is a resistance that the ball receives from the lubricating oil during driving, and decreases as the ball revolution speed decreases (increases as the ball revolution speed increases). On the other hand, the revolution speed of the ball decreases as the revolution slip ratio λ increases, assuming that the rotation speed of the inner ring is constant. For this reason, the ball drag D decreases as the revolution slip ratio λ increases. Accordingly, the drag curves D 1 , D 2 , and D 3 are curved downwards in FIG. The ball drag D varies depending on the lubrication conditions. Specifically, when the viscosity of the lubricating oil is increased or the supply amount of the lubricating oil is increased, the ball drag increases. Conversely, when the viscosity of the lubricating oil is reduced or the supply amount of the lubricating oil is reduced, the ball drag D is reduced. For this reason, if the viscosity of the lubricating oil is increased or the supply amount of the lubricating oil is increased, the position of each point of the drag curve can be increased as a whole (for example, the drag curve is changed from D 2 → D 1 → D 3 can be changed). Conversely, if the viscosity of the lubricating oil is reduced or the supply amount of the lubricating oil is reduced, the position of each point of the drag curve can be lowered as a whole (for example, the drag curve is changed from D 3 → D 1 → D 2 can be changed).

又、上述した様に、玉のドラッグDは、玉の公転速度が大きくなる程大きくなる(玉の公転速度が小さくなる程小さくなる)。一方、玉の公転速度は、公転滑り率λを一定とすると、内輪の回転速度が大きくなる程大きくなる(内輪の回転速度が小さくなる程小さくなる)。この為、内輪の回転速度を大きくすれば、ドラッグ曲線の各点の位置を全体的に高くする事ができる(例えば、ドラッグ曲線をD2 →D1 →D3 と変化させる事ができる)。反対に、内輪の回転速度を小さくすれば、ドラッグ曲線の各点の位置を全体的に低くする事ができる(例えば、ドラッグ曲線をD3 →D1 →D2 と変化させる事ができる)。 Further, as described above, the ball drag D increases as the ball revolution speed increases (smaller as the ball revolution speed decreases). On the other hand, the revolution speed of the ball increases as the rotational speed of the inner ring increases (the rotational speed of the inner ring decreases) when the revolution slip ratio λ is constant. For this reason, if the rotation speed of the inner ring is increased, the position of each point of the drag curve can be increased as a whole (for example, the drag curve can be changed from D 2 → D 1 → D 3 ). On the other hand, if the rotational speed of the inner ring is reduced, the position of each point on the drag curve can be lowered as a whole (for example, the drag curve can be changed from D 3 → D 1 → D 2 ).

上述した様な図1のグラフに於いて、今、動作点が、トラクション曲線T1 とドラッグ曲線D1 との交点Pであるとする。この交点Pは、トラクション曲線T1 上で、公転滑り率λが変化した場合にトラクションTの変化が大きくなる領域Xに存在する。前述した従来の低トルク実現法は、潤滑油の粘度を小さくしたり、或は潤滑油の供給量を少なくする事により、玉のドラッグDを小さくする事で、低トルク化を実現しようと言うものである。これを図1で示すと、上述の様にして玉のドラッグDを小さくする事により、ドラッグ曲線をD1 からD2 に移す(D1 →D2 とする)事で、動作点の位置を、上記交点Pから、トラクション曲線T1 とドラッグ曲線D2 との交点Qに移す(P→Qとする)事を意味する。この場合、これら交点P及びQに対応するドラッグD又はトラクションTの差が、トルクの減少分に相当する。但し、前述した様に、この様にして低トルク化を図ると、玉と内輪との接触部に油膜を確保するのが難しくなる。 In the graph of FIG. 1 as described above, it is assumed that the operating point is the intersection P between the traction curve T 1 and the drag curve D 1 . This intersection point P exists on the traction curve T 1 in a region X where the change in the traction T increases when the revolution slip rate λ changes. The conventional low torque realization method mentioned above intends to realize low torque by reducing the drag D of the ball by reducing the viscosity of the lubricating oil or reducing the supply amount of the lubricating oil. Is. As shown in FIG. 1, by reducing the drag D of the ball as described above, the drag curve is moved from D 1 to D 2 (D 1 → D 2 ). This means that the intersection point P is shifted to the intersection point Q between the traction curve T 1 and the drag curve D 2 (P → Q). In this case, the difference in drag D or traction T corresponding to these intersections P and Q corresponds to the decrease in torque. However, as described above, when the torque is reduced in this way, it is difficult to secure an oil film at the contact portion between the ball and the inner ring.

一方、本発明は、予圧荷重を小さくする事により低トルク化を実現しようと言うものである。これを図1で示すと、予圧荷重を小さくする事により、トラクション曲線をT1 からT2 に移す(T1 →T2 とする)事で、動作点の位置を、上記交点Pから、トラクション曲線T2 とドラッグ曲線D1 との交点Rに移す(P→Rとする)事を意味する。この場合、これら交点P及びRに対応するドラッグD又はトラクションTの差が、トルク減少分に相当する。 On the other hand, the present invention is intended to reduce the torque by reducing the preload. As shown in FIG. 1, by reducing the preload, the traction curve is moved from T 1 to T 2 (T 1 → T 2 ), so that the position of the operating point is changed from the intersection point P to the traction. It means moving to the intersection R of the curve T 2 and the drag curve D 1 (P → R). In this case, the difference in drag D or traction T corresponding to these intersections P and R corresponds to the torque reduction.

尚、この場合、上記交点P及びRに対応する公転滑り率λの差の分、内輪と玉との接触部で滑りが生じ易くなる。但し、この様に内輪と玉との接触部で滑りが生じ易くなる様な場合でも、この接触部の潤滑条件との関係で、この接触部の滑り速度が或る値よりも小さく、且つ、この接触部で油膜切れが生じなければ、玉の転動面及び軌道に損傷が発生しない事が、従来から知られている(非特許文献1参照)。従って、上記潤滑条件を規制する事により、使用時に実現される内輪の回転速度範囲の全体で、上記接触部で油膜切れが生じない様にすれば、玉の転動面及び軌道が損傷する事を防止できる。   In this case, slipping is likely to occur at the contact portion between the inner ring and the ball by the difference in the revolution slip rate λ corresponding to the intersections P and R. However, even when slippage is likely to occur at the contact portion between the inner ring and the ball as described above, the sliding speed of the contact portion is smaller than a certain value due to the lubrication condition of the contact portion, and It has been conventionally known that if the oil film is not cut at the contact portion, the ball rolling surface and the raceway are not damaged (see Non-Patent Document 1). Therefore, by restricting the lubrication conditions, if the oil film is not cut at the contact portion over the entire rotation speed range of the inner ring that is realized during use, the rolling surface and raceway of the ball may be damaged. Can be prevented.

即ち、上述の様に動作点を交点Pから交点Rに移した(P→Rとした)結果、玉と内輪との接触部に十分な油膜を確保する事が困難となる場合には、この接触部で油膜を十分に確保できる様にすべく、例えば、潤滑油の供給量を増やして軸受温度を下げるか、或はこの潤滑油として粘度の高いものを使用する事により、ドラッグ曲線をD1 からD3 に移す(D1 →D3 とする)事で、動作点を、上記交点Rから交点Sに移す(R→Sとする)事もできる。ここで、これら交点R及びSは、トラクション曲線T2 上で、公転滑り率λが変化した場合でもトラクションTがほぼ一定となる領域Y{グロススリップ(GROSS SLIP)領域}に存在している。この為、上述の様に交点Rを交点Sに移した場合でも、ドラッグD及びトラクションTの変化は殆どなく、結果としてトルクの変化も殆どない。尚、この場合にトルクが増大したとしても(図示の例では、増大している)、そのトルクの増大量は、上述の様に予圧荷重を小さくした(動作点を交点Pから交点Rに移した)事によるトルクの減少量に比べれば遥かに小さい。従って、上述の様に接触部で油膜を確保する為に、潤滑油の供給量を増やしたり、或はこの潤滑油として粘度の高いものを使用しても、予圧荷重を小さくした(動作点を交点Pから交点Rに移した)事による低トルク化の効果を十分に維持できる。 That is, when it becomes difficult to secure a sufficient oil film at the contact portion between the ball and the inner ring as a result of moving the operating point from the intersection point P to the intersection point R (P → R) as described above, In order to ensure a sufficient oil film at the contact portion, for example, by increasing the supply amount of lubricating oil to lower the bearing temperature, or by using a highly viscous lubricant, the drag curve can be changed to D By moving from 1 to D 3 (D 1 → D 3 ), the operating point can be moved from the intersection R to the intersection S (R → S). Here, these intersections R and S exist on the traction curve T 2 in a region Y {gross slip (GROSS SLIP) region} where the traction T becomes substantially constant even when the revolution slip rate λ changes. For this reason, even when the intersection point R is moved to the intersection point S as described above, the drag D and the traction T hardly change, and as a result, the torque hardly changes. Even if the torque increases in this case (in the example shown in the figure), the amount of increase in torque decreases the preload as described above (the operating point is moved from the intersection point P to the intersection point R). This is much smaller than the torque reduction due to Therefore, in order to secure an oil film at the contact portion as described above, even if the supply amount of lubricating oil is increased, or even if this lubricating oil has a high viscosity, the preload is reduced (the operating point is reduced). The effect of lowering the torque due to the movement from the intersection point P to the intersection point R can be sufficiently maintained.

この様な低トルク化を実現できる様にする為には、使用時に実現される内輪の少なくとも一部の回転速度範囲で、動作点がトラクション曲線上のグロススリップ領域に存在する様に、玉軸受に付与する予圧荷重の大きさを規制する(小さくする)必要がある。又、これと同時に、上記少なくとも一部の回転速度範囲で、少なくとも所望とする運転時間中、各玉の転動面と外輪、内輪各軌道とに損傷や焼付きが生じない様に、潤滑油の種類(粘度)及び供給条件(供給の仕方、供給量)を規制する必要がある。そこで、以下、これらの規制の仕方に就いて、具体的に説明する。   In order to realize such low torque, ball bearings are used so that the operating point is in the gross slip region on the traction curve in at least a part of the rotational speed range of the inner ring that is realized during use. It is necessary to regulate (reduce) the magnitude of the preload applied to the. At the same time, in the above-mentioned at least part of the rotational speed range, the lubricating oil is used so that the rolling surface of each ball and each race of the outer ring and the inner ring raceway are not damaged or seized. Type (viscosity) and supply conditions (supply method, supply amount) must be regulated. Therefore, in the following, how to regulate these will be described in detail.

先ず、予圧荷重をどの程度小さくすれば良いか、即ち、適当な予圧荷重を設定した場合に、使用時に実現される内輪の少なくとも一部の回転速度範囲で、動作点がトラクション曲線上のグロススリップ領域に配置されるかどうかを判断する為には、ドラッグDを変化させてみて、玉の公転速度(=保持器の回転速度)が変化するかどうかを調べれば良い。この理由は、強制潤滑や油浴潤滑の様な多量の潤滑油を使用する潤滑条件の場合、ドラッグDは、内輪の回転速度ではなく、ほぼ玉の公転速度(=保持器の回転速度)の関数であると見て良いからである。即ち、前述した様に、内輪の回転速度によってドラッグDを変化させる場合、この内輪の回転速度を増加させる事に伴って、ドラッグ曲線はD2 →D1 →D3 (動作点がU→R→S)と言う様に変化する。但し、上述した様にドラッグDは、玉の公転速度(=保持器の回転速度)の関数となる為、例えば図1で、それぞれがグロススリップ領域(領域Y)に存在し、ドラッグDが互いにほぼ等しくなっている交点Rと交点Sとでは、玉の公転速度(=保持器の回転速度)も互いに等しくなる。従って、適当な予圧荷重を設定して玉軸受の運転試験を行ない、使用時に実現される内輪の回転速度範囲の少なくとも一部で、玉の公転速度(=保持器の回転速度)がほぼ一定となれば、当該回転速度範囲で、動作点がトラクション曲線上のグロススリップ領域に配置されていると判定できる。 First, how much the preload should be reduced, that is, when an appropriate preload is set, the operating point is a gross slip on the traction curve in at least a part of the rotational speed range of the inner ring that is realized during use. In order to determine whether or not to be arranged in the region, it is only necessary to change the drag D and check whether or not the revolution speed of the ball (= the rotational speed of the cage) changes. The reason for this is that in the case of lubrication conditions using a large amount of lubricating oil such as forced lubrication or oil bath lubrication, the drag D is not the rotational speed of the inner ring, but the revolution speed of the ball (= the rotational speed of the cage). This is because it can be viewed as a function. That is, as described above, when the drag D is changed depending on the rotation speed of the inner ring, the drag curve is D 2 → D 1 → D 3 (the operation point is U → R as the rotation speed of the inner ring is increased). → S) changes. However, since the drag D is a function of the revolution speed of the ball (= the rotational speed of the cage) as described above, for example, in FIG. 1, each exists in the gloss slip region (region Y), and the drag D is mutually At the intersection R and the intersection S that are substantially equal, the revolution speed of the ball (= the rotational speed of the cage) is also equal to each other. Therefore, a ball bearing operation test is performed with an appropriate preload applied, and the ball revolution speed (= cage rotation speed) is almost constant in at least part of the rotation speed range of the inner ring realized during use. If so, it can be determined that the operating point is located in the gross slip region on the traction curve within the rotational speed range.

尚、実際に玉軸受の運転試験を行なったところ、動作点がトラクション曲線上のグロススリップ領域に配置される場合には、上述の様に玉の公転速度(=保持器の回転速度)がほぼ一定となる他、内輪の回転速度が大きくなるに従って玉の公転速度(=保持器の回転速度)が小さくなる場合もある事が分かった(後述の実験結果を示す、図3参照)。従って、適当な予圧荷重を設定して玉軸受の運転試験を行ない、使用時に実現される内輪の回転速度範囲の少なくとも一部で、内輪の回転速度が大きくなるに従って玉の公転速度(=保持器の回転速度)が小さくなった場合も、当該回転速度範囲では、動作点がトラクション曲線上のグロススリップ領域に配置されていると判定できる。   In addition, when the operation test of the ball bearing was actually performed, when the operating point is arranged in the gross slip region on the traction curve, the ball revolution speed (= the rotational speed of the cage) is almost as described above. In addition to being constant, it has been found that the revolution speed of the ball (= the rotational speed of the cage) may decrease as the rotational speed of the inner ring increases (see the experimental results described later, see FIG. 3). Therefore, a ball bearing operation test is performed with an appropriate preload applied, and at least part of the inner ring rotation speed range that is realized during use, the ball revolution speed (= cage) as the inner ring rotation speed increases. In the case where the rotational speed is reduced, it can be determined that the operating point is located in the gross slip region on the traction curve within the rotational speed range.

又、上述の様な玉軸受の運転試験を行ない、動作点がトラクション曲線上のグロススリップ領域に配置されている回転速度範囲で、少なくとも所望とする運転時間中、各玉の転動面及び外輪、内輪各軌道に損傷や焼付きが生じなければ、その際に設定した潤滑油の種類(粘度)及び供給条件(供給の仕方、供給量)を、本発明を実施する場合に採用できる。   In addition, an operation test of the ball bearing as described above is performed, and the rolling surface and outer ring of each ball are operated at least during a desired operation time in the rotational speed range where the operating point is arranged in the gloss slip region on the traction curve. If the inner ring raceways are not damaged or seized, the type (viscosity) and supply conditions (supply method, supply amount) of the lubricating oil set at that time can be employed when the present invention is carried out.

上述の様に構成する本発明の回転支持装置の場合には、使用時に実現される内輪の回転速度範囲の全体で、各玉の転動面と外輪、内輪各軌道との接触部に滑りが殆ど生じない程度に予圧荷重を大きく設定している従来構造に比べて、十分な低トルク化を図れる。しかも、少なくとも所望とする運転時間中、上記各接触部で損傷や焼付きが生じる事を防止できる。   In the case of the rotation support device of the present invention configured as described above, slippage occurs at the contact portion between the rolling surface of each ball and the outer ring and each race of the inner ring over the entire rotation speed range of the inner ring realized at the time of use. A sufficiently low torque can be achieved as compared with the conventional structure in which the preload is set so large that it hardly occurs. Moreover, it is possible to prevent damage and seizure from occurring at each of the contact portions at least during a desired operation time.

本発明の回転支持装置を実施する場合には、例えば、請求項2に記載した様に、玉軸受の数を複数個とし{回転軸の外周面とハウジングの内周面との間に、複数個の玉軸受を(定位置予圧又は定圧予圧を付与して)互いに組み合わせた状態で配置する構成を採用し}、予圧荷重の大きさと潤滑油の種類及び供給条件とを規制すべき玉軸受を、上記各玉軸受のうちの少なくとも1個の玉軸受とする事もできる。   When carrying out the rotation support device of the present invention, for example, as described in claim 2, the number of ball bearings is plural, {a plurality of ball bearings are provided between the outer peripheral surface of the rotary shaft and the inner peripheral surface of the housing. Adopting a configuration in which individual ball bearings are arranged in a state of being combined with each other (giving constant position preload or constant pressure preload)}, and the ball bearing that should regulate the size of the preload load, the type of lubricant and the supply conditions The ball bearings may be at least one of the above ball bearings.

又、本発明の回転支持装置を実施する場合に、好ましくは、少なくとも各玉をセラミックス製又は窒化材製とする。
この様な構成を採用すれば、少なくとも上記各玉の転動面の耐摩耗性を十分に確保できるだけでなく、これら各玉の転動面と外輪、内輪各軌道との接触部の耐焼付き性を十分に確保できる。従って、場合によっては、潤滑油として粘度の高いものを使用したり、或はこの潤滑油の供給量を多くしなくても、少なくとも所望とする運転時間中、上記転動面及び各軌道に損傷や焼付きが生じる事を防止できる。
Moreover, when implementing the rotation support apparatus of this invention, Preferably each ball is made from ceramics or a nitride material.
If such a configuration is adopted, at least the rolling contact surface of each ball can be sufficiently secured, and the seizure resistance of the contact portion between the rolling surface of each ball and the outer ring and each race of the inner ring can be secured. Can be secured sufficiently. Therefore, in some cases, the rolling surface and each track are damaged at least during the desired operation time without using a high-viscosity lubricant or increasing the amount of lubricant supplied. And seizure can be prevented.

又、本発明の回転支持装置を実施する場合に、好ましくは、各玉の転動面と内輪軌道とのうちの少なくとも一方の面に、耐焼付き用の皮膜処理や窒化処理を施す。
この様な構成を採用すれば、少なくとも上記各玉の転動面と上記内輪軌道との接触部の耐焼付き性を十分に確保できる。そして、やはり場合によっては、潤滑油として粘度の高いものを使用したり、或はこの潤滑油の供給量を多くしなくても、少なくとも所望とする運転時間中、上記転動面及び各軌道に損傷や焼付きが生じる事を防止できる。
Moreover, when implementing the rotation support apparatus of this invention, Preferably, the coating process for galling and nitriding are performed to at least one surface of the rolling surface of each ball | bowl, and an inner ring track.
By adopting such a configuration, it is possible to sufficiently secure seizure resistance of at least a contact portion between the rolling surface of each ball and the inner ring raceway. In some cases, even if a high-viscosity lubricating oil is used, or the lubricating oil supply amount is not increased, the rolling surface and each track are provided at least for the desired operation time. Damage and seizure can be prevented.

本発明の効果を確認する為に行なった実験に就いて、図2〜3を参照しつつ説明する。本実験では、図2に示す様なアンギュラ型の玉軸受3aを試料として用いた。この玉軸受3aの基本構造は、前述の図4に示した回転支持装置を構成する玉軸受3の場合とほぼ同様である為、同等部分には同一符号(若しくは同一符号にアルファベットを付加した符号)を付して、重複する説明を省略する。尚、この玉軸受3aの諸元は、以下の通りである。
外径Do :83mm
内径Di :45mm
外輪5の幅Wo :19mm
内輪7aの幅Wi :25mm
玉9の直径d:11.112mm
玉9の総数n:14個
接触角α:20°
Experiments conducted to confirm the effects of the present invention will be described with reference to FIGS. In this experiment, an angular ball bearing 3a as shown in FIG. 2 was used as a sample. The basic structure of the ball bearing 3a is substantially the same as that of the ball bearing 3 constituting the rotation support device shown in FIG. 4 described above. ) And redundant description is omitted. The specifications of the ball bearing 3a are as follows.
Outer diameter D o : 83mm
Inner diameter D i : 45 mm
Width W o of outer ring 5: 19 mm
Inner ring 7a width W i : 25 mm
Diameter of ball 9 d: 11.112 mm
Total number n of balls 9: 14 Contact angle α: 20 °

又、本実験では、以下の試験条件(使用時と同様の条件)で上記玉軸受3aの運転を行なった。
回転速度(内輪回転):0〜32000min-1
ラジアル荷重:265N
予圧荷重(スラスト荷重):0〜816Nの範囲の中から1つの値を選択
潤滑法:強制潤滑(ジェット給油潤滑)
潤滑油:#90タービン油
潤滑油量:2.6リットル/min
給油温度:70℃
In this experiment, the ball bearing 3a was operated under the following test conditions (same conditions as in use).
Rotational speed (inner ring rotation): 0 to 32000min -1
Radial load: 265N
Preload load (thrust load): Select one value from the range of 0 to 816N Lubrication method: Forced lubrication (jet lubrication lubrication)
Lubricating oil: # 90 Turbine oil Lubricating oil amount: 2.6 liter / min
Lubrication temperature: 70 ° C

そして、この様な試験条件で上記玉軸受3aの運転を行なう事により、この玉軸受3aにどの程度の大きさの予圧荷重を付与すれば、使用時に実現される上記内輪7aの回転速度範囲(0〜32000min-1 )の少なくとも一部で、動作点がトラクション曲線上のグロススリップ領域に存在する様になるか(上記各玉9、9の転動面と内輪軌道6との間にグロススリップが生じる様になるか)を調べた。この為に、具体的には、各予圧荷重(588N、392N、294N、0N)を付与した玉軸受3aに就いての、上記内輪7aの回転速度と、保持器8の回転速度(上記各玉9、9の公転速度)とを測定し、両者の関係を調べた。図3に、測定結果を示す。尚、この図3中、直線(破線)Zは、上記各玉9、9の転動面と上記内輪軌道6との間に滑りが生じない場合のデータ(理論値)を示している。 Then, by operating the ball bearing 3a under such test conditions, how much preload is applied to the ball bearing 3a, the rotational speed range of the inner ring 7a realized during use ( 0 to 32000 min −1 ) or whether the operating point exists in the gross slip region on the traction curve (gross slip between the rolling surfaces of the balls 9 and 9 and the inner ring raceway 6) To see if this occurs. For this purpose, specifically, the rotation speed of the inner ring 7a and the rotation speed of the cage 8 (each of the above balls) for the ball bearing 3a to which each preload (588N, 392N, 294N, 0N) is applied. 9 and 9), and the relationship between the two was investigated. FIG. 3 shows the measurement results. In FIG. 3, a straight line (broken line) Z indicates data (theoretical value) when no slip occurs between the rolling surfaces of the balls 9 and 9 and the inner ring raceway 6.

この図3の測定結果に示す様に、予圧荷重を588Nとした玉軸受3aの場合には、使用時に実現される内輪7aの回転速度範囲(0〜32000min-1 )の全域で、上記保持器8の回転速度と上記内輪7aの回転速度とが、比例関係となる傾向を示した。この様な結果から、予圧荷重を588Nとした玉軸受3aの場合には、使用時に実現される内輪7aの回転速度範囲(0〜32000min-1 )の全体で、上記各玉9、9の転動面と上記内輪軌道6との間にグロススリップが生じない事が分かった。言い換えれば、588Nと言う予圧荷重の大きさは、従来採用していた予圧設定範囲に収まっている事が分かった。 As shown in the measurement results of FIG. 3, in the case of a ball bearing 3a with a preload of 588 N, the cage is maintained over the entire rotational speed range (0 to 32000 min −1 ) of the inner ring 7a realized during use. The rotational speed of 8 and the rotational speed of the inner ring 7a tended to be proportional. From these results, in the case of the ball bearing 3a with a preload of 588 N, the rotation speed of each of the balls 9 and 9 is changed over the entire rotational speed range (0 to 32000 min −1 ) of the inner ring 7a realized during use. It was found that no gross slip occurred between the moving surface and the inner ring raceway 6. In other words, it has been found that the preload load of 588 N is within the preload setting range that has been conventionally employed.

これに対し、予圧荷重を392N、294N、0N{前記ラジアル荷重(265N)の1.5倍(397.5N)以下}とした各玉軸受3aの場合には、それぞれ使用時に実現される内輪7aの回転速度範囲(0〜32000min-1 )のうち、或る回転速度(予圧荷重が392Nの場合には27500min-1 程度、予圧荷重が392Nの場合には20000min-1 程度、予圧荷重が0Nの場合には10500min-1 程度)以下の範囲では、上記保持器8の回転速度と上記内輪7aの回転速度とが、ほぼ(大まかに見て)比例関係となる傾向を示した。但し、それぞれ上記内輪7aの回転速度が上記或る回転速度を越えた範囲では、上記保持器8の回転速度が、上記内輪7aの回転速度が大きくなるに従って小さくなるか、或はこの内輪7aの回転速度が変化する事に拘らずほぼ一定となる傾向を示した。この様な傾向が現れた理由は、前述した様に、上記内輪7aの回転速度が上記或る回転速度を越えた範囲で、上記各玉9、9の転動面と上記内輪軌道6との間にグロススリップが生じた為である。即ち、この様な結果から、上記玉軸受3aに付与する予圧荷重の大きさを、上記ラジアル荷重の1.5倍以下とすれば、使用時に実現される内輪7aの回転速度範囲(0〜32000min-1 )の少なくとも一部(上記或る回転速度を越える範囲)で、上記各玉9、9の転動面と上記内輪軌道6との間にグロススリップを生じさせられる事が分かった。 On the other hand, in the case of each ball bearing 3a in which the preload is set to 392N, 294N, 0N {1.5 times (397.5N) or less of the radial load (265N)}, the inner ring 7a realized at the time of use. Within a range of rotation speeds (0 to 32000 min -1 ), a certain rotation speed (about 27500 min -1 when the preload is 392 N, about 20000 min -1 when the preload is 392 N, and 0 N when the preload is 0 N In a range of 10500 min -1 or less in this case, the rotational speed of the cage 8 and the rotational speed of the inner ring 7a tended to be in a proportional relationship (as viewed roughly). However, in a range where the rotational speed of the inner ring 7a exceeds the certain rotational speed, the rotational speed of the cage 8 decreases as the rotational speed of the inner ring 7a increases or the inner ring 7a It showed a tendency to become almost constant regardless of changes in the rotation speed. The reason why such a tendency appears is that, as described above, in the range where the rotational speed of the inner ring 7a exceeds the certain rotational speed, the rolling surfaces of the balls 9, 9 and the inner ring raceway 6 This is because a gross slip occurred between them. That is, from such a result, if the magnitude of the preload applied to the ball bearing 3a is 1.5 times or less of the radial load, the rotational speed range of the inner ring 7a realized during use (0 to 32000 min) -1 ) (a range exceeding the certain rotational speed), it was found that gross slip could be generated between the rolling surfaces of the balls 9, 9 and the inner ring raceway 6.

又、本実験では、予圧荷重を392N、294N、0N(上記ラジアル荷重の1.5倍以下)とした各玉軸受3aに就いて、上記内輪7aの回転速度を32000min-1 (グロススリップが生じる回転速度範囲のうち、本実験での最高速度)とした状態で、5分間(所望とする運転時間)連続して運転を行ない、上記各玉軸受3aを構成する各玉9、9の転動面及び外輪、内輪各軌道4、6に損傷や焼付きが生じるか否かを調べた。尚、所望とする運転時間は、用途によって決定されるが、高速回転軸を支持する為の回転支持装置を構成する、上記各玉9、9の転動面及び外輪、内輪各軌道4、6に損傷や焼付きが生じるか否かを評価する時間として、本試験に於ける運転時間は5分間とした。そして、本実験では、この様な評価を行なった結果、上記各玉軸受3aとも、それぞれ5分間の運転を行なっても、上記各玉9、9の転動面及び外輪、内輪各軌道4、6に損傷や焼付きが生じない事が確かめられた。 In this experiment, the rotational speed of the inner ring 7a is 32000 min −1 (gross slip is generated) for each ball bearing 3a with a preload of 392N, 294N, 0N (1.5 times or less of the radial load). The rolling operation of each of the balls 9 and 9 constituting each of the ball bearings 3a is performed continuously for 5 minutes (desired operation time) in a state where the rotation speed range is the maximum speed in this experiment). It was examined whether the surface, outer ring, and inner ring raceways 4 and 6 were damaged or seized. The desired operation time is determined depending on the application, but the rolling surfaces and outer rings of the balls 9, 9 and the races of the inner ring 4, 6 constituting the rotation support device for supporting the high-speed rotation shaft. As the time for evaluating whether damage or seizure occurs, the operation time in this test was 5 minutes. And in this experiment, as a result of performing such an evaluation, even if each said ball bearing 3a is each drive | operated for 5 minutes, the rolling surface of each said ball | bowl 9, 9 and an outer ring | wheel, each inner ring | wheel each track | truck 4, It was confirmed that no damage or seizure occurred in 6.

従って、図2に示した玉軸受3aの場合には、前述した様な運転条件(試験条件)で運転を行なう場合に、予圧荷重の大きさをラジアル荷重の1.5倍以下とすれば、当該玉軸受3aの低トルク化を十分に図れると共に、各玉9、9の転動面と外輪、内輪各軌道4、6との接触部に十分な油膜を確保して、これら各接触部の耐久性を十分に確保できる事が分かった。尚、図3に示した測定結果より、本発明を実施する場合には、使用時に実現される内輪7aの回転速度範囲のうち、グロススリップが生じる回転速度範囲のほぼ全体(特に、高速度側)で、グロススリップ率{GS率。保持器8の回転速度に関し「(理論値−実測値)/理論値」で表される値}が80%以下{好ましくは25〜80%(より好ましくは35〜80%)}となる様に、予圧荷重の大きさ及び潤滑条件等を設定するのが好ましい。   Therefore, in the case of the ball bearing 3a shown in FIG. 2, when the operation is performed under the operating conditions (test conditions) as described above, the preload load is 1.5 times or less of the radial load. Torque reduction of the ball bearing 3a can be sufficiently achieved, and a sufficient oil film is secured at the contact portion between the rolling surface of each ball 9, 9 and the outer ring, each raceway 4, 6 of the inner ring, It was found that the durability could be secured sufficiently. From the measurement results shown in FIG. 3, when the present invention is carried out, the rotation speed range of the inner ring 7a realized at the time of use is substantially the entire rotation speed range in which gross slip occurs (particularly on the high speed side). ), Gross slip rate {GS rate. Regarding the rotation speed of the cage 8, the value represented by “(theoretical value−actual value) / theoretical value” is 80% or less {preferably 25 to 80% (more preferably 35 to 80%)}. It is preferable to set the magnitude of the preload and the lubrication conditions.

トラクション曲線(T1 、T2 )及びドラッグ曲線(D1 、D2 、D3 )を示す線図。Diagram showing the traction curve (T 1, T 2) and the drag curve (D 1, D 2, D 3). 本発明の効果を確認する為に行なった実験で使用した玉軸受を示す断面図。Sectional drawing which shows the ball bearing used in the experiment conducted in order to confirm the effect of this invention. 同実験の結果を示す線図。The diagram which shows the result of the same experiment. 従来から知られている回転支持装置の第1例を示す断面図。Sectional drawing which shows the 1st example of the conventionally known rotation support apparatus. 同第2例を示す断面図。Sectional drawing which shows the 2nd example.

符号の説明Explanation of symbols

1 回転軸
2 軸受ハウジング
3、3a 玉軸受
4 外輪軌道
5、5a 外輪
6 内輪軌道
7、7a 内輪
8 保持器
9 玉
10 圧縮ばね
11 環状部材
12 給油通路
13 ノズル孔
14 排出口
15 複列玉軸受
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Bearing housing 3, 3a Ball bearing 4 Outer ring raceway 5, 5a Outer ring 6 Inner ring raceway 7, 7a Inner ring 8 Cage 9 Ball 10 Compression spring 11 Annular member 12 Oil supply passage 13 Nozzle hole 14 Discharge port 15 Double row ball bearing

Claims (2)

ハウジングと、回転軸と、この回転軸をこのハウジングの内側に回転自在に支持する玉軸受とを備え、このうちの玉軸受は、内周面に外輪軌道を有し、上記ハウジングに内嵌した外輪と、外周面に内輪軌道を有し、上記回転軸に外嵌した内輪と、上記外輪軌道と上記内輪軌道との間に保持器により保持した状態で転動自在に設けられた複数個の玉とを備えたものであり、上記玉軸受にアキシアル方向の予圧荷重を付与すると共に、この玉軸受の外部から上記各玉の設置部に潤滑油を供給しつつ、上記内輪を上記回転軸と共に高速回転させて使用する回転支持装置に於いて、上記予圧荷重の大きさと上記潤滑油の種類及び供給条件とを規制する事により、使用時に実現される上記内輪の回転速度範囲の少なくとも一部で、この内輪の回転速度の変化に拘らず上記保持器の回転速度がほぼ一定となるか又は上記内輪の回転速度が大きくなるに従って上記保持器の回転速度が小さくなる様にすると共に、上記少なくとも一部の回転速度範囲で、少なくとも所望とする運転時間中、上記各玉の転動面と外輪、内輪各軌道とに損傷が生じない様にした事を特徴とする回転支持装置。   The housing includes a housing, a rotating shaft, and a ball bearing that rotatably supports the rotating shaft inside the housing. The ball bearing includes an outer ring raceway on an inner peripheral surface, and is fitted in the housing. A plurality of outer rings, an inner ring raceway on the outer peripheral surface, a plurality of inner rings that are fitted on the rotating shaft, and a roll that is held between the outer ring raceway and the inner ring raceway by a cage. The ball bearing is provided with a preload in the axial direction to the ball bearing, and while supplying lubricating oil from the outside of the ball bearing to the ball installation portion, the inner ring is moved together with the rotating shaft. In a rotary support device that is rotated at a high speed, by restricting the magnitude of the preload and the type and supply conditions of the lubricating oil, at least a part of the rotational speed range of the inner ring realized at the time of use is achieved. The rotation speed of this inner ring Regardless of the rotation, the rotational speed of the cage is substantially constant or the rotational speed of the inner ring is increased so that the rotational speed of the cage decreases, and in the at least part of the rotational speed range, A rotation support device characterized in that the rolling surface of each ball and each outer race and each race of inner race are prevented from being damaged during at least a desired operation time. 玉軸受の数を複数個とし、予圧荷重の大きさと潤滑油の種類及び供給条件とを規制すべき玉軸受を、上記各玉軸受のうちの少なくとも1個の玉軸受としている、請求項1に記載した回転支持装置。   2. The ball bearing according to claim 1, wherein the number of ball bearings is plural, and the ball bearing that should regulate the size of the preload and the type and supply condition of the lubricating oil is at least one of the ball bearings. The described rotary support device.
JP2005085305A 2005-03-24 2005-03-24 Rotary supporting device Pending JP2006266395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085305A JP2006266395A (en) 2005-03-24 2005-03-24 Rotary supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085305A JP2006266395A (en) 2005-03-24 2005-03-24 Rotary supporting device

Publications (1)

Publication Number Publication Date
JP2006266395A true JP2006266395A (en) 2006-10-05

Family

ID=37202589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085305A Pending JP2006266395A (en) 2005-03-24 2005-03-24 Rotary supporting device

Country Status (1)

Country Link
JP (1) JP2006266395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204004A (en) * 2008-02-26 2009-09-10 Jtekt Corp Bearing device for turbocharger
WO2015197304A1 (en) * 2014-06-25 2015-12-30 Continental Automotive Gmbh Bearing device for a shaft, in particular of a turbocharger device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204004A (en) * 2008-02-26 2009-09-10 Jtekt Corp Bearing device for turbocharger
WO2015197304A1 (en) * 2014-06-25 2015-12-30 Continental Automotive Gmbh Bearing device for a shaft, in particular of a turbocharger device
US10107330B2 (en) 2014-06-25 2018-10-23 Continental Automotive Gmbh Bearing device for a shaft, in particular of a turbocharger device

Similar Documents

Publication Publication Date Title
EP1471275B1 (en) Roller bearing device and method of lubricating roller bearing
CA2423627C (en) Journal bearing and thrust pad assembly
JP2007107588A (en) Rolling bearing
JP2008240796A (en) Angular contact ball bearing with seal, and spindle device
JP4730168B2 (en) Test method for radial rolling bearings
WO2017164325A1 (en) Double-row spherical roller bearing
WO2018034240A1 (en) Ball bearing, ball bearing device, and machine tool
JP2005076675A (en) Tapered roller bearing for transmission of automobile
US7008113B2 (en) Roller bearing in a deep-drilling apparatus
JP2006266395A (en) Rotary supporting device
JP2007192330A (en) Rolling bearing
JP2003314542A (en) Tapered roller bearing
JP4370907B2 (en) Ball bearing
JP2017180831A (en) Double-row self-aligning roller bearing
US20050047699A1 (en) Tapered roller bearing for automobile transmission
JP2006214520A (en) Bearing device for gear speed-increasing gear
JPH11125260A (en) Rolling bearing
JP2005291445A (en) Tapered roller bearing
JP2006112559A (en) Tapered roller bearing
JP4322641B2 (en) Cylindrical roller bearing
JP2009281395A5 (en)
JP2006177504A (en) Direct drive motor
JP2007040481A (en) Rolling bearing
JP2006038134A (en) Rolling bearing and lubricating structure of rolling bearing
JP2008223964A (en) Rolling bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070507