JP2006266332A - 複層ポリエチレン管 - Google Patents

複層ポリエチレン管 Download PDF

Info

Publication number
JP2006266332A
JP2006266332A JP2005082495A JP2005082495A JP2006266332A JP 2006266332 A JP2006266332 A JP 2006266332A JP 2005082495 A JP2005082495 A JP 2005082495A JP 2005082495 A JP2005082495 A JP 2005082495A JP 2006266332 A JP2006266332 A JP 2006266332A
Authority
JP
Japan
Prior art keywords
molecular weight
polyethylene
pipe
tube
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005082495A
Other languages
English (en)
Inventor
Yoshihiro Hashimoto
好弘 橋本
Junichi Yuasa
淳一 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005082495A priority Critical patent/JP2006266332A/ja
Publication of JP2006266332A publication Critical patent/JP2006266332A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】
耐摩耗性を向上させることができると共に、軽量化をはかることができる複層ポリエチレン管を提供する。
【解決手段】
分子量30万以上の超高分子量ポリエチレンからなる内管2の外周に、分子量10万以下のポリエチレンからなる外管3を設けることにより、複層ポリエチレン管1が構成されている。外管3を形成する分子量10万以下のポリエチレンとしては、ISO/TR9080に規定する外挿法でPE100と認定されている高密度ポリエチレンが好適に使用される。内管2を形成する分子量30万以上の超高分子量ポリエチレンとは、エチレンを主成分とするものであり、例えば、エチレンの単独重合体、エチレンを主成分とし、エチレンと、このエチレンに共重合可能な単量体との共重合体などが挙げられる。
【選択図】 図1

Description

本発明は、管内面の耐摩耗性を向上させた複層ポリエチレン管に関するものである。
従来、下水道および排水道などの配管路において、地下埋設管、ビル配管、温水用配管、気体用配管、化学薬品用配管などに用いる管として、耐摩耗性が要求される場合は、金属管を使用し、この金属管の内面に亜鉛メッキ層、あるいは塩化ビニル樹脂やポリエチレンによる樹脂ライニング層などの保護層を形成することによって、金属管の耐蝕性を向上させた複層管が使用されている。
しかし、前記従来の複層管の場合、岩石を含む泥水や生コンクリートの如きスラリーなどの輸送物と管内面との摩擦によって、金属管の内面に形成した保護層が削り取られ、露出した金属面から腐蝕が進行することにより、耐久性が損なわれるという問題がある。
そこで、耐摩耗性、非粘着性、自己潤滑性、耐薬品性などに優れた超高分子量ポリエチレンを金属管の内面にライニング処理した複層管が提案されている(例えば、特許文献1等参照)。
この複層管は、外管となる鋼管の内面に、この鋼管の内径よりも小さい外径を有する薄肉の超高分子量ポリエチレンからなる内管を遊嵌させ、内管に内側から圧力を加えた状態で内管を加熱して拡径させ、内管の外周面および/または外管の内周面に予め塗布された接着剤を介して外管と内管とを接着固定することにより製造される。
特開平5−24153号公報(図1乃至図3、0009段落乃至0034段落)
しかしながら、従来の複層管は、超高分子量ポリエチレンからなる内管を拡径するために、加圧空気を内管内に送り込む必要があるため、内管内部を気密に保つなどのために大掛かりな設備が必要となり、設備費用が増大するため、複層管が高価になるという問題がある。
また、外管は鋼管であるため、複層管の重量が増大するという問題がある。
一方、近年、耐震性の向上、真空下水道システムへの適用などのために開発された分子量10万以下のポリエチレンからなる下水道用ポリエチレン管は、その特徴を活かし、下水道管路や排水管路に使用されるようになってきた。
ここで、従来においては、高地部から低地部への管路敷設は、下水道管路設計指針に基づき、汚水、泥水などの流速を3m/秒以下にするため、道路に沿って緩やかに流し、且つマンホールに落差を持たせていたため、施工費は増大する傾向にあった。
これに対し、前記下水道用ポリエチレン管は、他管種に勝る水密性(管路中への木の根の不進入)や耐摩耗性を活かし、急傾斜を流速3m/秒以上で一気に下る急傾斜下水、排水管路での使用に適しており、徐々に普及し始めてきている。
これは、山間部の傾斜を活かした落差を利用し、一気に汚水、泥水などを落下させるこ
とにより、管路長を短縮し、材料費、工事費を抑え、また、山間部の傾斜を利用するため、従来の道路埋設とは異なりトラック等の振動に対する対策が不要となるため、埋設に対する保護が簡素化でき、工費を安価にできるというメリットがある。
一方、山間部の傾斜地での施工は、足場の問題などから重機を使うことができず、人手による施工に頼らざるを得ないため、管の外径や重量がある程度制限されるようになってしまう。
また、大規模な設計流量に耐えるように耐摩耗性を向上させようとすると、管の厚さを大きくする必要があり、管のコストが増大する原因となり、さらには、重量が増大して傾斜地への運搬の難しさから、敷設場所が限定されてしまうことになる。
そこで、本発明は、耐摩耗性を向上させることができると共に、軽量化をはかることができる複層ポリエチレン管を提供することを目的としている。
前記目的を達成するために、請求項1の発明は、分子量10万以下のポリエチレンからなる外管の内面に分子量30万以上の超高分子量ポリエチレンからなる内管を有している複層ポリエチレン管を特徴としている。
また、請求項2に記載されたものは、前記内管は、発泡層を有する請求項1記載の複層ポリエチレン管を特徴としている。
さらに、請求項3に記載されたものは、前記外管と前記内管とは一体化されている請求項1または請求項2記載の複層ポリエチレン管を特徴としている。
さらに、請求項4に記載されたものは、前記外管によってEF(エレクトロフュージョン)接合またはバット接合が可能に形成されている請求項1乃至請求項3のうちいずれか1項に記載の複層ポリエチレン管を特徴としている。
このように構成された請求項1のものは、分子量10万以下のポリエチレンからなる外管の内面に分子量30万以上の超高分子量ポリエチレンからなる内管を有している。
このように、内管を分子量30万以上の超高分子量ポリエチレンで構成することにより、管内面の耐摩耗性を向上させることができ、大規模な設計流量に耐えることができる複層ポリエチレン管を実現することができる。
しかも、この複層ポリエチレン管は、外管と内管が共にポリエチレンにより構成されるため、管全体の重量を軽量化することができる。
また、請求項2に記載されたものは、内管を分子量30万以上の超高分子量ポリエチレンからなる発泡層としたものである。
このように、内管を発泡層として独立気泡を含有させることにより、複層ポリエチレン管の重量をより軽量化することができる。
さらに、請求項3に記載されたものは、外管と内管とが一体化されたものである。
このように、内管と外管とを一体化させると、両者の密着性が大きくなり、複層ポリエ
チレン管の機械的強度を向上させることができる。
さらに、請求項4に記載されたものは、分子量10万以下のポリエチレンからなる外管によってEF(エレクトロフュージョン)接合またはバット接合が可能に形成されている。
このため、本発明の複層ポリエチレン管は、通常のポリエチレン管と同様の施工方法を採用することができる。
以下、本発明の最良の実施の形態について図面を参照して説明する。
図1は、本実施の形態による複層ポリエチレン管を示しており、複層ポリエチレン管1は、分子量30万以上の超高分子量ポリエチレンからなる内管2の外周に、分子量10万以下のポリエチレンからなる外管3を設けることにより構成されている。
外管3を形成する分子量10万以下のポリエチレンとしては、ISO/TR9080に規定する外挿法でPE100と認定されている高密度ポリエチレンが好適に使用される。
このPE100により形成した管は、20℃で50年間管が破壊しない応力値が10MPa以上という優れた特性値を有している。
内管2を形成する分子量30万以上の超高分子量ポリエチレンとは、エチレンを主成分とするものであり、例えば、エチレンの単独重合体、エチレンを主成分とし、エチレンと、このエチレンに共重合可能な単量体との共重合体などが挙げられる。
エチレンに共重合可能な単量体としては、特に限定されないが、例えば、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のモノオレフィン;1,3−ブタジエン、2−メチル−2,4−ペンタジエン、2,3−ジメチル−1,3−ブタジエン、2,4−ヘキサジエン、3−メチル−2,4−ヘキサジエン、1,3−ペンタジエン、2−メチル−1,3−ブタジエン等の共役ジエン系炭化水素化合物;1,4−ペタンジエン、1,5−ヘキサジエン、1,6−ヘプタジエン、1,7−オクタジエン、2,5−ジメチル−1,5−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、4−エチル−1,4−オクタジエン、4−n−プロピル−1,4−デカジエン等の非共役ジエン系炭化水素化合物;1,3,5−ヘキサトリエン、1,3,5,7−オクタテトラエン、2−ビニル−1,3−ブタジエン等の共役ポリオレフィン系炭化水素化合物;スクアレン等の非共役ポリオレフィン系炭化水素化合物;その他ジビニルベンゼン、ビニルノルボルネン等の分子内に少なくとも2個の不飽和結合、好ましくは二重結合を有する炭化水素化合物等が挙げられる。
本発明においては、耐摩耗性を実現する上で分子量30万以上の超高分子量ポリエチレンが使用されるが、このようなポリエチレンの具体例としては、旭化成ケミカルズ製サンファインUH650(分子量100万)、サンファインUH850(分子量200万)といったものを挙げることができるが、これらに限定されるものではない。
さらに、分子量の上限は特に限定しないが、200万以下のものが好ましく、分子量が200万を超えても、図2のポリエチレンの分子量と摩耗量の関係をあらわすグラフから明らかなように、耐摩耗性の大幅な改善は期待できず、また、分子量を大きくしても成形性からある程度の厚みが必要であるため軽量化に繋がらず、コストメリットが得られない
ためである。
さらに、超高分子量ポリエチレンには、本発明の目的を達成できる範囲で、必要に応じて他の合成樹脂や天然樹脂、可塑剤、耐熱安定剤、耐候安定剤、滑剤、アンチブロッキング剤、スリップ剤、顔料、染料、充填剤等を配合したり、また、分子量30万以上の超高分子量ポリエチレン中に分子量が30万未満のポリエチレンを10重量%を超えない程度まで含有させたりしても差し支えない。
内管2は、非発泡層であってもよく、また、内部に独立気泡を多数含有させた発泡層であってもよく、また、非発泡層と発泡層の双方を有するものであっても良い。
内管2を発泡層とする場合の発泡倍率は、2倍以下とすることが好ましく、発泡倍率が2倍を超えると、内管2の耐摩耗性が低下すると共に、複層ポリエチレン管1の機械的強度が低下する。
内管2の成形時に、超高分子量ポリエチレンに炭酸ガスなどの発泡ガスを混練りしてから押出すことにより、多数の独立気泡を含有させることができ、これによって、内管2を発泡層とすることができる。
また、内管2と外管3との間に接着剤を介在させ、内管2と外管3とを一体化させることが好ましい。
このように、本実施の形態における複層ポリエチレン管1は、内管2が分子量30万以上の超高分子量ポリエチレンで構成されており、管内面の耐摩耗性を向上させることができ、このため、大規模な設計流量に耐え得るようになる。
しかも、この複層ポリエチレン管1は、内管2と外管3とが共にポリエチレンにより構成されるため、管全体の重量を軽量化することができる。
さらに、内管を分子量30万以上の超高分子量ポリエチレンからなる発泡層とすることにより、複層ポリエチレン管1の重量をより軽量化することができる。
さらに、内管2と外管3とを一体化させると、両者の密着性が大きくなり、複層ポリエチレン管1の機械的強度を向上させることができる。
さらに、PE100により外管3を形成した複層ポリエチレン管1は、通常のポリエチレン管と同様に、EF(エレクトロフュージョン)接合やバット接合を行うことができ、通常のポリエチレン管と同様に取り扱うことができる。
次に、本実施の形態における複層ポリエチレン管の製造方法について説明する。
本実施の形態における複層ポリエチレン管の製造方法は、図6に示すように、分子量10万以下のポリエチレンからなる管3aの内側に、下記式
膨張率(e)={(加熱後の外径−加熱前の外径)/(加熱前の外径)}×100[%]
(ここで、加熱後の外径とは、140℃のエアーオーブン中にて1時間加熱後、23℃で24時間放置した後の外径である)
で表される膨張率(e)が5%以上である超高分子量ポリエチレンからなる管2aを遊嵌した後、管2aを加熱して膨張させることにより、管3aの内面に内管2aを圧接させたものである。
ここで、膨張率(e)が5%以上である超高分子量ポリエチレンからなる管2aの製造方法について説明する。
まず、図3に示すように、耐圧構造になったホッパ4から超高分子量ポリエチレンを押出機5内に供給する。
そして、押出機5の供給部8に供給された超高分子量ポリエチレンを、押出機5のシリンダ6内に備えられたスクリュー7によって図面正面視で右方向に向かって送ると同時に、押出機5に設けられた加熱手段(図示せず)により加熱して溶融状態とする。
また、ガスボンベ9aから供給される二酸化炭素を加圧ポンプ10aを用いて加圧し、次いでこの高圧状態の二酸化炭素を、供給部8に設けられたガス供給口11aより押出機5内に供給し、溶融状態の樹脂を非反応性ガスに曝して、樹脂中に非反応性ガスを溶解させ、樹脂の粘度を低くする。
さらに、樹脂をスクリュー7によって溶融部12に送り、この溶融部12で加熱手段によってさらに加熱するとともに、ガスボンベ9bから供給され、加圧ポンプ10bを用いて加圧された高圧状態の非反応性ガスを、溶融部12に設けられたガス供給口11bより押出機5内に供給する。
このガス供給口11bからの非反応性ガスの供給によって、溶融した樹脂中に非反応性ガスがさらに溶解し、樹脂の粘度がさらに低くなり、易成形状態の溶融超高分子量ポリエチレンとなる。
なお、樹脂に対するガスの溶解量によって、上記のようにガス供給口11a,11bを2つ用いてもよく、またはいずれか1つのガス供給口のみを用いても良い。
上記のようにして、易成形状態になった溶融超高分子量ポリエチレンを図3乃至図5に示すように、入口側樹脂流路13の断面積S1と出口側樹脂流路14の断面積S2との比(S1/S2)が1.0より大きく、入口側樹脂流路13の外径D1と、出口側樹脂流路14の外径D2との比(D1/D2)が1.05よりも大きい断面縮小部15を有する押出機5の排出口に設けられた金型16に連続的に供給する。
前記膨張率(e)は、比(S1/S2)、比(D1/D2)および樹脂温度に大きく影響され、比(S1/S2)が1.0より小さい場合、発泡しやすく、賦形が困難になる恐れがあり、比(S1/S2)が大きすぎると、圧力が高くなりすぎて、押出が困難になる恐れがある。
一方、比(D1/D2)が1.05より小さい場合、膨張率が小さく、ポリエチレン管3aに対する被覆応力が小さくなる恐れがあり、大きすぎると、圧力が高くなりすぎて、押出が困難となったり、長手方向(管軸方向)の収縮が大きく、被覆効率が悪くなり好ましくない。
そして、断面縮小部15を通過させながら、溶融超高分子量ポリエチレンを超高分子量ポリエチレンの(降温時の結晶化ピーク温度−20℃)〜(融点+20℃)の温度に保ちながら、押出機5のシリンダ6の内径より縮径した状態、すなわち、出口側樹脂流路14の断面形状に賦形したのち、この賦形物を金型の排出口から超高分子量ポリエチレンの融点以下の温度にして押し出して膨張率(e)が5%以上である図6に示すような円筒形の超高分子量ポリエチレン管2aを得る。
溶融状態の超高分子量ポリエチレンを断面縮小部に通過させた後の断面縮小部出口における樹脂の温度が融点を超える場合には、得られる管の機械強度を高くする効果が小さいという不都合が生じる恐れがある。
したがって、樹脂が金型内部の断面縮小部を通過する際の温度は、(降温時の結晶化ピーク温度−20℃)以上(融点+20℃)の範囲が好ましく、(降温時の結晶化ピーク温度)以上(融点+10℃)以下の範囲がより好ましい。そして、断面縮小部の出口を通過する際は、融点以下の温度とすることが好ましい。
すなわち、(降温時の結晶化ピーク温度−20℃)未満の場合には、樹脂はかなり硬化している状態になっているため、樹脂が断面縮小部を通過する際に必要な押出圧力が高くなり、樹脂を押し出すことができなくなる場合がある。一方、(融点+20℃)を越えた場合には、断面縮小部での樹脂の冷却が不十分であり、融点以下で樹脂を断面縮小部の出口から押し出すことができなくなる場合がある。
また、膨張率(e)は、断面縮小部を通過している樹脂が、融点以下になる位置および出口断面での樹脂温度により調節することが可能であり、例えば、融点以下になる位置が入口側に近づくほど、また出口側での樹脂温度が低いほど膨張率(e)が大きくなる。
さらに、樹脂の降温時の結晶化ピーク温度以下の条件で脱圧して押出成形すると、樹脂中に溶解しているガスの発泡を抑制することができ、内部に欠陥となる気泡が存在しない管を製造できる。
一方、結晶化ピーク温度以上の条件で脱圧して押出成形すると、樹脂中に溶解しているガスが発泡して発泡体となり、押出後の加熱による膨張率が小さくなる。
この場合、脱圧は断面縮小部と流路が連続している金型内でガスを溶解している樹脂を冷却した後、その金型先端から押出すると同時に行うことができる。
また、断面縮小部を有する金型から直ちに高圧賦形装置にガスを溶解している樹脂を導入し、この装置内で冷却しながら装置出口から押出すると同時に脱圧することも可能である。
前記製造方法において、非反応性ガスとは、常温・常圧で気体状態の有機または無機物質であって、超高分子量ポリエチレンと反応を起こさず、さらにこの樹脂を劣化させるなどの悪影響を樹脂に与えないガスを意味する。
このようなガスとてしは、上記の条件を満たせば特に限定されず、例えば、二酸化炭素、窒素、アルゴン、ネオン、ヘリウム、酸素などの無機ガス、フロン、低分子量の炭化水素などの有機ガスなどが挙げられ、これらガスのうち、環境に与える悪影響が低く、そしてガスの回収を必要としない点で無機ガスが好ましく、超高分子量ポリエチレンに対する溶解度が高く、樹脂の可塑化効果が大きく、そして直接大気中に放出してもほとんど害がないという観点から、二酸化炭素が好ましい。
なお、このような非反応性ガスは、単独で用いられてもよく、あるいは2種類以上併用してもよい。
超高分子量ポリエチレンに非反応性ガスを高圧下で溶解させる方法としては、非反応性ガスを溶融状態の樹脂に溶解させる方法、および固体状態の樹脂に溶解させる方法が挙げ
られ、どちらの手段を用いてもよく、両者を併用してもよい。
非反応性ガスを溶融状態の超高分子量ポリエチレンに溶解させる方法としては、例えば、ベントタイプスクリュー押出機を用いて、樹脂が充填されたシリンダーの途中からベント部分に非反応性ガスを混入する方法、タンデム押出機を用いて、第1押出機内部または第2押出機への樹脂流入部付近においてガスを圧入して第2押出機内部で十分樹脂中にガスを溶解・混練する方法などが挙げられる。
固体状態の樹脂に溶解させる方法としては、例えば、(1)予め高圧容器などでペレットまたはパウダー状の固体状態にある樹脂に非反応性ガスを溶解させておく方法、および(2)成形装置の耐圧ホッパ内および/または押出機の固体輸送部において非反応性ガスを固体状態にある樹脂中に溶解させる方法などが挙げられる。
前記(1)の方法の場合、非反応性ガスを溶解させた樹脂を押出機に供給する際には、樹脂に溶解した非反応性ガスが拡散によって樹脂の外へ抜けてしまうことを抑制するために、できるだけ速やかに供給を行うことが好ましい。一方、上記(2)の手段の場合には、非反応性ガスが押出機の外部に揮散しないように、スクリュー駆動軸およびホッパを耐圧シール構造とすることが好ましい。
非反応性ガスはガスボンベから押出機に直接供給してもよく、プランジャーポンプなどを用いて加圧供給しても良い。
超高分子量ポリエチレンに対する非反応性ガスの溶解量は、溶解によって樹脂の溶解粘度が成形に適した粘度になれば、特に限定されず、樹脂の分子量、非反応性ガスの種類によって適宜選択できる。
因みに、非反応性ガスとして二酸化炭素を用いる場合には、超高分子量ポリエチレンに対する二酸化炭素の溶解量を、1重量%以上30重量%以下とすることが好ましく、3重量%以上20重量%以下とすることがより好ましい。
すなわち、超高分子量ポリエチレンに対する二酸化炭素の溶解量が1重量%未満である場合には、超高分子量ポリエチレンの粘度が充分に低下せず、流動性に欠け押出が困難になる恐れがあり、超高分子量ポリエチレンに対する二酸化炭素の溶解量が30重量%を超える量にしようとする場合、大がかりな設備を用いて溶解時の圧力を極端に高くする必要がある場合があり、生産効率上好ましくない。
非反応性ガスとして二酸化炭素が用いられる場合には、超高分子量ポリエチレンに対する二酸化炭素の溶解量を上記の1重量%以上30重量%以下の範囲内とするためには、二酸化炭素の圧力を約0.2MPa以上約50MPa以下とすることが好ましく、約0.6MPa以上約35MPa以下とすることがより好ましい。
ここで、高圧の発生・保持は、液体、例えば、グリセリン等を密閉し、加圧する方法や樹脂を塑性変形させることで生じる圧力を利用する方法等を行うことができる。また、脱圧後に引取りを行うことでより安定して成形することができる。
なお、本発明において、降温時の結晶化ピーク温度とは、溶融状態の樹脂が冷却されて結晶化する際の結晶化ピーク温度を意味し、より詳細には、このような冷却の際に、樹脂が発熱する熱量が最大となる温度を意味する。
降温時の結晶化ピーク温度は、大気圧下で示差走査型熱量計(DSC)により測定され
、JIS K 7121の9.2にその求め方と共に詳細に記載されている。金型は、その内面およびインナーダイの表面が、フッ素樹脂によって被覆されていることが好ましい。
このようにして製造された超高分子量ポリエチレン管2aは、図6に示すように、内径が超高分子量ポリエチレン管2aの外径より大きいポリエチレン管3a内に遊嵌したのち、この状態で熱風加熱炉中に投入して加熱膨張させられる。
すると、図1に示すように、外管3の内周面に膨張した内管2の外周面が圧接し、外管3の内側に超高分子量ポリエチレンからなる内管2が固定された複層管1が得られる。
ポリエチレン管3aの肉厚が薄すぎると加工時に変形してしまうため、ポリエチレン管3aの外径が315mm未満のときはSDR(Standard Dimension Ratio=外径/肉厚)は13.6〜30の範囲、外径が315mm以上のときはSDRは13.6〜21の範囲から選択することが好ましい。
また、加熱膨張前の超高分子量ポリエチレン管2aの外径や肉厚は特に限定されないが、外径は50mm〜350mmの範囲、肉厚は1mm以上とするのが好ましく、SDRは20〜100の範囲とするのが好ましい。
この製造方法によれば、加熱して超高分子量ポリエチレン管2aを膨張させるだけで複層管を得ることができるため、製造設備が小規模なものですみ、設備コストを低減することができる。
さらに、内管2として、超高分子量ポリエチレン管2aを用いたので、耐磨耗性、非粘着性、自己潤滑性、耐薬品性に優れており、鉱石,石炭,穀物等の粉粒体、岩石を含む泥水、生コンクリートの如きスラリー、あるいは、液体食品等の輸送管として好適に使用できる複層管を得ることができる。
一方、超高分子量ポリエチレン管2aを製造する際に、樹脂中に非反応性ガスを溶解させることにより樹脂が可塑化するようにしたので、容易に成形が可能になる。しかも、超高分子量ポリエチレンに非反応性ガスを溶解した状態で金型16に溶融樹脂が導入され、金型16の断面縮小部15で縮径されながら融点以下まで冷却されるため、縮径前の形状を記憶した状態で固化する。したがって、再加熱により形状記憶効果があらわれて、5%以上の膨張率(e)となる。
また、降温時の結晶化ピーク温度以下の温度まで冷却した後、押し出して脱圧するので、超高分子量ポリエチレン中に溶解している非反応性ガスによる発泡を抑制することができ、内部に欠陥となる気泡を含まない超高分子量ポリエチレン管2aを得ることができる。
本実施の形態において、遊嵌とは、超高分子量ポリエチレン管2aの外径がポリエチレン管3aの内径より小さく、挿入時に、超高分子量ポリエチレン管2aがポリエチレン管3aの軸方向に自由にスライドできる状態を意味する。
具体的には、超高分子量ポリエチレン管2aの外径は、ポリエチレン管3aの内径より1%〜30%小径であることが好ましく、小径となる程度が1%未満の場合には、ポリエチレン管3aへの挿入が困難になる恐れがあり、30%を超えるとポリエチレン管3aへの被覆応力が小さくなり、ポリエチレン管3aとの密着性が低下する恐れがあるとともに、加熱膨張機の長手方向(管軸方向)の収縮が大きく、被覆効率が悪くなる恐れがある。
本実施の形態において、圧接とは、上記で規定した膨張率(e)の温度を実際の加熱温度に置き換えた測定方法により、その加熱温度での超高分子量ポリエチレン管2aをポリエチレン管3aに遊嵌した後、超高分子量ポリエチレン管2aの実質膨張率が、同じく加熱により熱膨張したポリエチレン管3aとの隙間も塞ぐのに必要な膨張率よりも大きくなる条件で、ポリエチレン管3aに内面被覆している状態をいう。
すなわち、この圧接では、超高分子量ポリエチレン管2aの内部にポリエチレン管3aを拡径する方向に残留応力が発生し、膨張した超高分子量ポリエチレン管2aとポリエチレン管3aとが強固に密着する。
これらの条件は、超高分子量ポリエチレン管2a製造時の金型流路形状や温度条件を調節することにより達成可能である。
また、超高分子量ポリエチレン管2aとポリエチレン管3aとの間には、超高分子量ポリエチレン管2aとポリエチレン管3aとの密着性を強固にするため、接着剤を介在させるようにしても差し支えない。
接着剤としては、超高分子量ポリエチレン管2aとポリエチレン管3aとを接着できるものであれば、特に限定されないが、ホットメルトタイプの接着剤が好ましい。
接着剤は、超高分子量ポリエチレン管2aの外周面と、ポリエチレン管3aの内周面との両方に均一に塗布しておくことが好ましい。
膨張させる場合の加熱方法としては、特に限定されず、例えば、エアーオーブン等の熱風による加熱、電熱ヒータによる加熱、液体熱媒槽による加熱、火炎等による加熱等の方法にて行うことができる。
超高分子量ポリエチレン管2aを膨張させる場合の加熱温度は、接着剤の使用有無により若干異なり、接着剤を使用しない場合、100℃以上160℃以下が好ましく、120℃以上140℃以下がより好ましい。一方、接着剤を使用する場合、接着剤の融点+10℃以上160℃以下が好ましい。
以上、図面を参照して、本発明の最良の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
例えば、前記実施の形態では、外管を形成するポリエチレンとして、ISO/TR9080に規定する外挿法でPE100と認定されている高密度ポリエチレンを挙げて説明したが、ポリエチレン管としての機械的強度を達成できる分子量10万以下のポリエチレンであれば、PE100以外のものであっても良く、特に限定されるものではない。
また、前記実施の形態では、外管の内面に内管を圧接して複層ポリエチレン管を製造する例について説明したが、内管の外周に外管を押出被覆などにより形成して複層ポリエチレン管を製造しても良い。
本発明の最良の実施の形態の複層ポリエチレン管の構成を説明する断面図である。 ポリエチレンの分子量と摩耗量の関係を表したグラフである。 本発明の最良の実施の形態の複層ポリエチレン管の内管となる超高分子量ポリエチレン管の製造装置の説明図である。 図3に示した超高分子量ポリエチレン管の製造装置のX−X線断面図である。 図3に示した超高分子量ポリエチレン管の製造装置のY−Y線断面図である。 本発明の最良の実施の形態の複層ポリエチレン管の製造方法を説明する断面図である。
符号の説明
1 複層ポリエチレン管
2 内管
3 外管

Claims (4)

  1. 分子量10万以下のポリエチレンからなる外管の内面に分子量30万以上の超高分子量ポリエチレンからなる内管を有していることを特徴とする複層ポリエチレン管。
  2. 前記内管は、発泡層を有することを特徴とする請求項1記載の複層ポリエチレン管。
  3. 前記外管と前記内管とは一体化されていることを特徴とする請求項1または請求項2記載の複層ポリエチレン管。
  4. 前記外管によってEF(エレクトロフュージョン)接合またはバット接合が可能に形成されていることを特徴とする請求項1乃至請求項3のうちいずれか1項に記載の複層ポリエチレン管。

JP2005082495A 2005-03-22 2005-03-22 複層ポリエチレン管 Pending JP2006266332A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082495A JP2006266332A (ja) 2005-03-22 2005-03-22 複層ポリエチレン管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082495A JP2006266332A (ja) 2005-03-22 2005-03-22 複層ポリエチレン管

Publications (1)

Publication Number Publication Date
JP2006266332A true JP2006266332A (ja) 2006-10-05

Family

ID=37202530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082495A Pending JP2006266332A (ja) 2005-03-22 2005-03-22 複層ポリエチレン管

Country Status (1)

Country Link
JP (1) JP2006266332A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084140A1 (en) * 2007-01-10 2008-07-17 Oy Kwh Pipe Ab Multiple layer pipe
JP2009103195A (ja) * 2007-10-23 2009-05-14 Kurabe Ind Co Ltd ホース及びその製造方法
CN103707597A (zh) * 2013-12-24 2014-04-09 贵州蓝图新材料有限公司 超高分子量聚乙烯多层溜槽及其制备方法
EP2805823A3 (de) * 2013-05-22 2015-01-07 egeplast international GmbH Mindestens zweischichtiges Kunststoffrohr
KR101548600B1 (ko) * 2013-11-20 2015-09-01 (주)남광포리마 내마모성이 우수한 다중 복합관 및 그 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084140A1 (en) * 2007-01-10 2008-07-17 Oy Kwh Pipe Ab Multiple layer pipe
US8701714B2 (en) 2007-01-10 2014-04-22 Oy Kwh Pipe Ab Multiple layer pipe
JP2009103195A (ja) * 2007-10-23 2009-05-14 Kurabe Ind Co Ltd ホース及びその製造方法
EP2805823A3 (de) * 2013-05-22 2015-01-07 egeplast international GmbH Mindestens zweischichtiges Kunststoffrohr
KR101548600B1 (ko) * 2013-11-20 2015-09-01 (주)남광포리마 내마모성이 우수한 다중 복합관 및 그 제조방법
CN103707597A (zh) * 2013-12-24 2014-04-09 贵州蓝图新材料有限公司 超高分子量聚乙烯多层溜槽及其制备方法

Similar Documents

Publication Publication Date Title
AU773222B2 (en) Extruded, injection moulded or blow moulded plastic pipe, fitting or formed part to produce pipelines for liquid, pasty and gaseous media
JP2006266332A (ja) 複層ポリエチレン管
EA000977B1 (ru) Ориентированные полимерные изделия
EA003240B1 (ru) Способ уплотнения кольцевого пространства, скважина и труба
CN111365559B (zh) 一种fipp法管道修复用管材及其管道修复方法
CN104070672B (zh) 具有内衬的管的制造方法
CN108284659B (zh) 具有多层中间层的热塑性复合材料管材
WO2017096580A1 (zh) 一种耐温连续复合内衬软管及其制造方法
US20100310803A1 (en) Composite products and methods of making same
US7661729B2 (en) Apparatus for connecting plastic-lined metallic pipes
US5104595A (en) Process and apparatus for in situ rehabilitation of pipelines
AU2006331316A1 (en) Composite product
JP4028649B2 (ja) 複層パイプの製造方法
JP2006504828A (ja) ポリオレフィンとポリアミドとのブレンドから製造されたポリマーパイプおよびライナー
CN107420666B (zh) 一种钢质管线内衬防腐施工段之间的连接方法
CN104999658B (zh) 一种超高分子量聚乙烯板材无缝焊接的方法
KR101532663B1 (ko) 합성수지제 프로파일관
US20210079673A1 (en) Water-containing fluid transport pipe and transport method for water-containing fluid
CN111016146A (zh) 高强度、耐拉伸rf钢塑复合增强缠绕管及其制备方法
JP2009162241A (ja) 管継手、その製造方法、これを用いたマンホール構造物並びに管の接続方法
CN105805435A (zh) 一种hdpe加强型缠绕波纹管
CN112055797B (zh) 制造加衬有内衬的管道的方法
EP1870235A1 (en) Potable water pipe
CN203322521U (zh) 三层高密度耐热聚乙烯保温管材
CN211450002U (zh) 一种大口径伸缩节式弯管接头