JP2006266206A - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine Download PDF

Info

Publication number
JP2006266206A
JP2006266206A JP2005087956A JP2005087956A JP2006266206A JP 2006266206 A JP2006266206 A JP 2006266206A JP 2005087956 A JP2005087956 A JP 2005087956A JP 2005087956 A JP2005087956 A JP 2005087956A JP 2006266206 A JP2006266206 A JP 2006266206A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
ignition
capacitor
ignition device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005087956A
Other languages
Japanese (ja)
Other versions
JP4494264B2 (en
Inventor
Yoshio Ishida
良夫 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2005087956A priority Critical patent/JP4494264B2/en
Publication of JP2006266206A publication Critical patent/JP2006266206A/en
Application granted granted Critical
Publication of JP4494264B2 publication Critical patent/JP4494264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ignition device for an internal combustion engine solving problems that a spark discharging time T becomes longer and no sufficient time required for ion current detection can be ensured when a general-purpose ignition device of high output energy is used. <P>SOLUTION: The current interruption type ignition device provided with a series circuit composed of a power source, a primary wire ring of an ignition coil, and a switching element, includes a means for connecting a capacitor for temporarily storing a part of counter electromotive force of the primary wire ring of the ignition coil generated in current interruption of the switching element and instantly applying an electric charge of the capacitor to the primary wire ring during or after reversal of the counter electromotive force of the primary wire ring. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は排気ガス対策や燃費向上のために有効な燃料直噴内燃機関などに要求される高出力エネルギー内燃機関点火装置、特に内燃機関の燃焼により生じるイオン量の変化を検出することにより少なくとも内燃機関の失火及びノッキングの発生を検知する内燃機関の燃焼状態検出装置と組み合わされるに最適な内燃機関点火装置に関するものである。 The present invention relates to a high-power energy internal combustion engine ignition device required for a direct fuel injection internal combustion engine that is effective for measures against exhaust gas and fuel consumption, and particularly at least an internal combustion engine by detecting a change in the amount of ions caused by combustion of the internal combustion engine. The present invention relates to an internal combustion engine ignition device that is optimally combined with a combustion state detection device for an internal combustion engine that detects the occurrence of engine misfire and knocking.

従来より、内燃機関点火装置は、電流遮断方式の点火装置が多用されているが、近年の排気ガス対策や燃費向上のための高圧縮リーン燃焼に適合するには、その放電電流の形態によるエネルギー不足があるために、ダブルスパーク点火装置やマルチスパーク点火装置あるいは交流スパーク点火装置が提案されている。一方、内燃機関の燃焼状態検出装置は、連続的な失火を検出し、内燃機関の取り扱い者に警告を示すために、失火時における内燃機関の回転数の変動をセンサにて検知する回転変動方式の失火検出機能が提案されている。 Conventionally, an internal combustion engine ignition device has been frequently used as a current interruption type ignition device. However, in order to comply with recent high-compression lean combustion for measures against exhaust gas and fuel efficiency, the energy depending on the form of the discharge current is used. Due to the shortage, double spark igniters, multi-spark igniters or alternating spark igniters have been proposed. On the other hand, the combustion state detection device for an internal combustion engine detects a continuous misfiring and detects a change in the rotational speed of the internal combustion engine at the time of misfiring with a sensor in order to indicate a warning to the operator of the internal combustion engine. A misfire detection function has been proposed.

また、イオン電流による内燃機関の燃焼状態検出装置は、回転変動方式では失火検出精度が落ちる多気筒エンジンにおいても優れた失火検出性を示し、気筒毎の失火検出も可能であり、従来より種々提案されているが、高エネルギー点火装置は一般的に放電持続時間が長いことから、イオン検出開始時間が制約されるために相性が悪い。 In addition, the combustion state detection device for an internal combustion engine using an ionic current exhibits excellent misfire detection performance even in a multi-cylinder engine in which the misfire detection accuracy is lowered by the rotation variation method, and can detect misfire for each cylinder. However, since the high energy ignition device generally has a long discharge duration, the ion detection start time is limited, which is incompatible.

図8は、従来の電流遮断方式の内燃機関点火装置であり、図9はその出力の点火栓の放電電流波形である。 FIG. 8 shows a conventional current interruption type internal combustion engine ignition device, and FIG. 9 shows a discharge current waveform of the spark plug of the output.

図において、点火コイル1の一次線輪101の一方は電源2に、他方はスイッチング素子3に接続されており、スイッチング素子3は内燃機関制御ECUへの接続端子7を有する一次電流制御回路4によって制御され、当該制御回路の点火信号によってスイッチング素子3が電流遮断することにより、点火コイル1の二次線輪102に高電圧が誘起されてダイオード5を介して点火栓6に図9に示される放電電流形態の火花放電が行われる。ここでダイオード5の役割は、スイッチング素子3が通電開始した時に、電源2の電圧が一次線輪101に印加されて二次線輪102に電圧が1.5KV程度誘起されるが、このタイミングでは点火栓6に火花放電をさせないために設けられたものである。 In the figure, one primary wire ring 101 of the ignition coil 1 is connected to a power source 2 and the other is connected to a switching element 3, which is connected by a primary current control circuit 4 having a connection terminal 7 to an internal combustion engine control ECU. When the switching element 3 is interrupted by the ignition signal of the control circuit, a high voltage is induced in the secondary wire ring 102 of the ignition coil 1, and the ignition plug 6 is shown in FIG. 9 via the diode 5. A spark discharge in the form of a discharge current is performed. Here, the role of the diode 5 is that when the switching element 3 starts energization, the voltage of the power source 2 is applied to the primary wire ring 101 and the voltage is induced to the secondary wire ring 102 by about 1.5 KV. This is provided in order not to cause the spark discharge in the stopper 6.

図9において、点火コイル100の一次線輪101と二次線輪102の巻数比が少ない時にはイ、巻数比が多い時にはロの形態の放電電流が得られるが、何れも放電初期には放電電流が比較的大きい三角波であって、渦流の強い燃焼が行われる直噴内燃機関などにおいては、上記三角波の後半の電流は乱れが大きくなることにより、燃料の点火に殆ど寄与しない。 In FIG. 9, when the turns ratio of the primary wire 101 and the secondary wire 102 of the ignition coil 100 is small, a discharge current in the form of B is obtained when the turn ratio is large. In a direct-injection internal combustion engine or the like that has a relatively large triangular wave and in which strong eddy current combustion is performed, the current in the latter half of the triangular wave hardly contributes to the ignition of the fuel due to the increased turbulence.

また、図10はイオン図8に示される内燃機関点火装置に、従来のイオン電流による内燃機関の燃焼状態検出装置を付加したものであり、図11はイオン電流の形態を示し、(a)図は正常なイオン電流検出波形、(b)図は失火時のイオン電流検出波形を示す図である。 FIG. 10 shows an internal combustion engine ignition device shown in FIG. 8 with a conventional internal combustion engine combustion state detection device using an ion current. FIG. 11 shows the form of the ion current. Is a normal ion current detection waveform, (b) is a diagram showing an ion current detection waveform at the time of misfire.

図10において、点火コイル100の二次線輪102の高電圧側には点火栓6が接続され、低電圧側には定電圧ダイオード8とダイオード9の直列回路が接続されており、上記定電圧ダイオード8と並列にイオン検出電源を構成するためのキャパシタ10、ダイオード9にはレジスタ11とイオン検出回路12の入力端子の直列回路が各々並列に接続されてる。さらにイオン検出回路12の入力端子に保護用ダイオード13が接続されると同時に、出力端子は内燃機関制御ECUへの入力端子14に接続されている。 In FIG. 10, a spark plug 6 is connected to the high voltage side of the secondary coil 102 of the ignition coil 100, and a series circuit of a constant voltage diode 8 and a diode 9 is connected to the low voltage side. A series circuit of a resistor 11 and an input terminal of the ion detection circuit 12 is connected in parallel to the capacitor 10 and the diode 9 for constituting an ion detection power source in parallel with the diode 8. Further, the protective diode 13 is connected to the input terminal of the ion detection circuit 12, and the output terminal is connected to the input terminal 14 to the internal combustion engine control ECU.

内燃機関の点火信号がECU出力端子7から出力されるとスイッチング素子3が電流遮断して、点火コイル100の二次線輪102の高電圧側がマイナスの電圧が発生し、点火栓6に火花放電を開始して流れる電流によって、ダイオード9を介してキャパシタ10に定電圧ダイオード8に制限される電荷が蓄積される。なお、ダイオード9はスイッチング素子3がターンオンした時の電圧をブロックして点火栓6に放電させないために設けられたもので、レジスタ11の抵抗値は十分に高く設定してあり、図8に示されるダイオード5の役割を有するものである。 When the ignition signal of the internal combustion engine is output from the ECU output terminal 7, the switching element 3 cuts off the current, a negative voltage is generated on the high voltage side of the secondary coil 102 of the ignition coil 100, and a spark discharge is generated in the spark plug 6. As a result of the current flowing starting from, charge limited to the constant voltage diode 8 is accumulated in the capacitor 10 via the diode 9. The diode 9 is provided in order to block the voltage when the switching element 3 is turned on and prevent the spark plug 6 from discharging, and the resistance value of the resistor 11 is set sufficiently high as shown in FIG. It has a role of the diode 5 to be operated.

図11に示される火花放電時間Tが過ぎると、キャパシタ10の電荷電圧が点火栓6に印加されていることにより、上記点火栓での火花放電による内燃機関内の燃焼による燃焼イオンのプラスイオンが内燃機関壁に、マイナスイオンが点火栓6の中心電極に捕集されて、(a)図に示されるイオン電流がイオン検出回路12で検出されて、入力端子14を経てECUに入力される。なお図で示されるイオン電流の小さくなる時間tは圧縮上死点であり、主として上死点を過ぎてからがイオン電流判別が行われている。なお、図(b)は失火時のイオン電流波形である。 When the spark discharge time T shown in FIG. 11 has passed, the charge voltage of the capacitor 10 is applied to the spark plug 6, so that positive ions of combustion ions caused by combustion in the internal combustion engine due to the spark discharge at the spark plug are generated. Negative ions are collected on the center electrode of the spark plug 6 on the wall of the internal combustion engine, and the ionic current shown in FIG. (A) is detected by the ion detection circuit 12 and input to the ECU via the input terminal 14. Note that the time t when the ion current decreases in the figure is the compression top dead center, and the ion current discrimination is performed mainly after the top dead center. Fig. (B) shows an ion current waveform at the time of misfire.

近年の排気ガス対策では、内燃機関の始動時から高回転域に至るまでイオン電流の変化情報をきめ細かく収集して、空燃比をEGRと組み合わせて制御するシステムが望まれているために、上記のイオン電流での燃焼悪化状態やノッキングを検出するには上死点を過ぎてから15度付近もしくはそれ以降がイオン電流判別の重要な時間帯であることが確かめられてきたが、当該判別時間を確保する一方では、リーン燃料での燃料直噴内燃機関などに対応するために、イオン電流による制御以前の問題として高出力エネルギーの点火装置が望まれているが、汎用の高出力エネルギーの点火装置を用いた場合は、図11に示される火花放電時間Tが長くなり、イオン電流検出に必要な十分な時間が取れないと云う問題があった。 In recent exhaust gas countermeasures, there is a demand for a system that finely collects information on changes in ion current from the start of the internal combustion engine to the high speed range and controls the air-fuel ratio in combination with EGR. In order to detect combustion deterioration or knocking with ionic current, it has been confirmed that the critical time zone for ionic current discrimination is around 15 degrees after the top dead center or later. On the other hand, in order to cope with a direct fuel injection internal combustion engine with lean fuel, etc., a high output energy ignition device is desired as a problem before control by ion current, but a general purpose high output energy ignition device is desired. When this is used, there has been a problem that the spark discharge time T shown in FIG. 11 becomes long and sufficient time required for ion current detection cannot be taken.

一般的な電流遮断方式の点火装置では段落0006に示したように、点火コイル100の一次線輪101と二次線輪102の巻数比で放電電流の多少の増加が得られるが、何れも放電初期には放電電流が比較的大きい三角波であって、渦流の強い燃焼が行われる直噴内燃機関などにおいては、上記三角波の後半の電流は乱れが大きくなることにより、燃料の点火に殆ど寄与しないと云う問題がある。 In a general current interruption type ignition device, as shown in paragraph 0006, a slight increase in discharge current can be obtained depending on the turn ratio of the primary wire 101 and the secondary wire 102 of the ignition coil 100. In a direct injection internal combustion engine, etc., in which the discharge current is a relatively large triangular wave in the initial stage and combustion is strong in eddy currents, the current in the latter half of the triangular wave hardly contributes to the ignition of fuel due to the increased turbulence. There is a problem.

さらに、イオン電流によるきめ細かな情報を収集しようとするときに、点火栓6でマイナス放電の一方方向の電圧印加による火花放電では、点火コイル100と点火栓6の実装電気回路の漏洩キャパシタンス(一般的な実装状態では15pF程度)に火花放電終了後1〜3KV程度の電荷が残り、イオン電流検出期間中にコロナ放電などを伴うために、上記イオン電流情報を妨げる新たな問題として浮上してきている。 Furthermore, when trying to collect detailed information based on the ionic current, in the spark discharge by applying a voltage in one direction of negative discharge at the spark plug 6, the leakage capacitance of the electric circuit mounted with the ignition coil 100 and the spark plug 6 (general In such a mounting state, about 1 to 3 kV of electric charge remains after the end of the spark discharge, and corona discharge occurs during the ionic current detection period, which has emerged as a new problem that hinders the ionic current information.

従って、高出力エネルギーの点火装置として、スイッチング素子3を点火タイミングで短時間にターンオフとターンオンを数回繰り返すものは、上記問題点を解決できない。また、交流点火装置は放電出力の終焉部を自由振動にすることにより漏洩キャパシタンスの残留電荷問題を解決できるが、交流にするための回路とイオン電流を検出するために独立した電源を設置して、点火出力時とイオン電流検出時に各々切り替える必要があるなど、煩雑な回路構成が必要である。 Therefore, as a high output energy ignition device, the switching element 3 that repeats turn-off and turn-on several times in a short time at the ignition timing cannot solve the above problem. In addition, the AC ignition device can solve the residual charge problem of leakage capacitance by making the end of the discharge output free vibration, but an independent power supply is installed to detect the circuit and the ion current for AC. A complicated circuit configuration is required, such as switching between ignition output and ion current detection.

この発明の請求項1に係る内燃機関点火装置は、電源と点火コイルの一次線輪およびスイッチング素子の直列回路からなる電流遮断方式の点火装置において、上記スイッチング素子の電流遮断時に発生する点火コイルの一次線輪の逆起電力の一部を一時的に蓄えるキャパシタを接続し、上記一次線輪の逆起電力が反転中あるいは反転後に上記キャパシタの電荷を上記一次線輪に瞬時に印加する手段を構成することで、電流遮断方式の欠点である放電電流の終焉部分のふらつきの無い安定した火花放電が得られるものである。 An internal combustion engine ignition device according to claim 1 of the present invention is a current interruption type ignition device comprising a series circuit of a power source, a primary wire ring of an ignition coil, and a switching element, and an ignition coil generated when the current of the switching element is interrupted. A capacitor for temporarily storing a part of the counter electromotive force of the primary wire ring, and means for instantaneously applying the charge of the capacitor to the primary wire ring during or after the reverse electromotive force of the primary wire ring is inverted. By comprising, the stable spark discharge without the wobbling of the end part of the discharge current which is a fault of the current interruption method can be obtained.

この発明の請求項2に係る内燃機関点火装置は、電源と点火コイルの一次線輪およびスイッチング素子の直列回路からなる電流遮断方式の点火装置において、上記スイッチング素子の電流遮断時に発生する点火コイルの一次線輪の逆起電力の一部を一時的に蓄えるキャパシタを接続し、上記一次線輪の逆起電力が反転中あるいは反転後に上記キャパシタの電荷を上記一次線輪に瞬時に印加する手段有し、さらに上記キャパシタの電荷放電振動が少なくとも一サイクル行われる構成として、電流遮断方式の欠点である放電電流の終焉部分のふらつきの無い安定した火花放電が得ると同時に、点火コイルの二次線輪と点火栓の間の漏洩キャパシタンスの影響をキャンセルするものである。 An internal combustion engine ignition device according to a second aspect of the present invention is an ignition device of a current interrupt system comprising a series circuit of a power source, a primary wire ring of an ignition coil and a switching element, and an ignition coil generated when the current of the switching element is interrupted. A capacitor for temporarily storing a part of the counter electromotive force of the primary wire ring is connected, and means for instantaneously applying the charge of the capacitor to the primary wire ring during or after the counter electromotive force of the primary wire ring is inverted is provided. In addition, as a configuration in which the charge discharge oscillation of the capacitor is performed for at least one cycle, a stable spark discharge without wobbling of the end portion of the discharge current, which is a drawback of the current interruption method, is obtained, and at the same time, the secondary coil of the ignition coil This cancels the influence of leakage capacitance between the spark plug and the spark plug.

この発明の請求項3に係る内燃機関点火装置は、請求項1および/または請求項2に記載した点火装置のキャパシタの電荷を点火コイルの一次線輪に瞬時に印加するタイミングが内燃機関の回転数によって、変化する構成として、内燃機関の運転状態に適合させたものである。 According to a third aspect of the present invention, there is provided an internal combustion engine ignition device in which the charge of the capacitor of the ignition device according to the first and / or second embodiment is instantaneously applied to the primary wire ring of the ignition coil. The configuration that changes depending on the number is adapted to the operating state of the internal combustion engine.

この発明の請求項4に係る内燃機関点火装置は、請求項1および/または請求項2に記載の点火装置の点火のタイミングであるスイッチング素子の電流遮断の瞬間から、キャパシタの電荷を点火コイルの一次線輪に印加するタイミングが、内燃機関の回転数1000rpmの時0.7ms〜1.5ms、8000rpmの時0.5ms以内の勾配をもって変化する構成とし、内燃機関の各々の回転域に適合して十分な点火エネルギーが得られるように構成したものである。 According to a fourth aspect of the present invention, there is provided an internal combustion engine igniter in which the charge of the capacitor is supplied to the ignition coil from the moment of current interruption of the switching element, which is the ignition timing of the igniter according to the first and second aspects. The timing applied to the primary wheel changes with a gradient within 0.7 ms to 1.5 ms when the rotational speed of the internal combustion engine is 1000 rpm and within 0.5 ms when the rotational speed of the internal combustion engine is 8000 rpm, and is adapted to each rotational range of the internal combustion engine. And sufficient ignition energy can be obtained.

この発明の請求項5に係る内燃機関点火装置は、請求項1および/または請求項2に記載の点火装置の点火コイルの二次線輪の高電圧側に点火栓を接続し、低電圧側に内燃機関の燃焼イオン検出回路を検出電源と共に構成して、前記の問題点を解決するものである。 According to a fifth aspect of the present invention, there is provided an internal combustion engine ignition device comprising: an ignition plug connected to the high voltage side of the secondary wire of the ignition coil of the ignition device according to the first and / or second aspect; Further, the combustion ion detection circuit of the internal combustion engine is configured with a detection power source to solve the above-mentioned problems.

この発明の請求項6に係る内燃機関点火装置は、請求項1および/または請求項2に記載の点火装置の点火コイルの二次線輪の高電圧側に点火栓を接続し、低電圧側に内燃機関の燃焼イオン検出回路を検出電源と共に構成し、上記イオン検出開始時間を少なくとも内燃機関実用回転域においてATDC(圧縮上死点後)15度程度として、前記の問題点を解決するものである。 An internal combustion engine ignition device according to a sixth aspect of the present invention comprises an ignition plug connected to the high voltage side of the secondary wire of the ignition coil of the ignition device according to the first and / or second aspects, and the low voltage side. Further, the combustion ion detection circuit of the internal combustion engine is configured with a detection power source, and the above-mentioned problems are solved by setting the ion detection start time to about 15 degrees ATDC (after compression top dead center) at least in the practical engine rotation range. is there.

この発明の請求項7に係る内燃機関点火装置は、請求項1および/または請求項2に記載の点火装置の点火コイルの二次線輪の高電圧側に点火栓を接続し、低電圧側に互いに逆向きに直列接続された少なくとも2本の定電圧ダイオードを有し、当該一方の定電圧ダイオードに並列にキャパシタを接続して電源とし、上記直列接続点からレジスタを介して燃焼イオン検出回路に接続して、前記の問題点を解決するものである。 An internal combustion engine ignition device according to a seventh aspect of the present invention comprises an ignition plug connected to the high voltage side of the secondary wire ring of the ignition coil of the ignition device according to the first and second aspects, and the low voltage side. Having at least two constant voltage diodes connected in series in opposite directions to each other, connecting a capacitor in parallel to the one constant voltage diode as a power source, and a combustion ion detection circuit from the series connection point via a resistor To solve the above-mentioned problems.

以上のように、この発明によれば、近年の排気ガス対策で要求されている内燃機関の始動時から高回転域に至るまでイオン電流の変化情報をきめ細かく収集して、空燃比をEGRと組み合わせて制御するシステムに対して、イオン電流での燃焼悪化状態やノッキングを検出するために必要なATDC15度程度までの判別時間を確保する一方、リーン燃料での燃料直噴内燃機関などに対応するために、イオン電流による制御以前の問題として高出力エネルギーの点火装置が望まれているが、汎用の高出力エネルギーの点火装置に、点火補助キャパシタとダイオードおよびSCR等のスイッチング素子を追加する程度で低回転数から高回転数までの広域に渡って、最大限の点火エネルギーを確保できると同時に、二次線輪と点火栓の間の漏洩キャパシタンスの帯電問題をも解決できるイオン電流制御に最適な内燃機関点火装置を得ることができるものである。 As described above, according to the present invention, the change information of the ionic current is collected finely from the start of the internal combustion engine, which has been required in recent exhaust gas countermeasures, to the high speed range, and the air-fuel ratio is combined with the EGR. In order to cope with a direct fuel injection internal combustion engine with lean fuel, etc., while ensuring a discrimination time up to about 15 degrees ATDC necessary for detecting a deterioration state of combustion due to ion current and knocking, In addition, an ignition device with high output energy is desired as a problem before control by ion current. However, it is low enough to add an ignition auxiliary capacitor and a switching element such as a diode and SCR to a general-purpose high output energy ignition device. The maximum ignition energy can be secured over a wide range from the rotation speed to the high rotation speed, and at the same time, the leakage key between the secondary wheel and the spark plug In which it is possible to obtain optimum engine ignition device in the ion current control can be solved the Pashitansu charging problem.

実施の形態1.
図1は請求項1乃至請求項4で記載したこの発明の第1の実施例であり、図2(a)と(b)はこの実施例の出力の点火栓6での放電電流波形である。
Embodiment 1 FIG.
FIG. 1 shows a first embodiment of the present invention described in claims 1 to 4, and FIGS. 2 (a) and 2 (b) show discharge current waveforms at the spark plug 6 of the output of this embodiment. .

図8の従来の電流遮断方式の内燃機関点火装置に対し、電源と点火コイル100の一次線輪101の間にダイオード15が接続され、二次線輪102と点火栓6の間に接続されているスイッチング素子3のターンオン時の火花放電防止のダイオード5に替わって定電圧ダイオード16が接続されている。また、一次線輪101とスイッチング素子3の直列回路と並列に、キャパシタ17、ダイオード18とSCR19の直列回路が各々接続され、上記SCR19のゲートは一次電流制御回路7の出力端子に接続され、上記ダイオード18とSCR19の接続点は、点火補助キャパシタ20を介して一次線輪101とスイッチング素子3の接続点に接続されている。 8, a diode 15 is connected between the power source and the primary wire ring 101 of the ignition coil 100, and is connected between the secondary wire wheel 102 and the spark plug 6. A constant voltage diode 16 is connected in place of the diode 5 for preventing spark discharge when the switching element 3 is turned on. A series circuit of a capacitor 17, a diode 18 and an SCR 19 is connected in parallel with a series circuit of the primary wire ring 101 and the switching element 3, and the gate of the SCR 19 is connected to an output terminal of the primary current control circuit 7, A connection point between the diode 18 and the SCR 19 is connected to a connection point between the primary wire ring 101 and the switching element 3 via the ignition auxiliary capacitor 20.

スイッチング素子3が一次電流制御回路4のターンオン信号により、一次線輪101に電圧が印加されて、二次線輪102に電圧を誘起するが、点火栓6に印加される電圧は、定電圧ダイオード16の阻止電圧越えない、または越えても1KV以下の電圧に押さえられており、点火栓6に火花放電は行われない。次に、スイッチング素子3がターンオフすることににより一次電流が遮断されると、一次線輪101の逆起電力の一部がダイオード18を介して点火補助キャパシタ20を充電すると同時に、二次線輪102に高電圧を誘起して定電圧ダイオード16を介して点火栓6に火花放電を開始する。 A voltage is applied to the primary wire ring 101 by the switching element 3 in response to a turn-on signal from the primary current control circuit 4 to induce a voltage in the secondary wire ring 102. The voltage applied to the spark plug 6 is a constant voltage diode. The voltage does not exceed 16 blocking voltage, or even if it exceeds, the voltage is suppressed to 1 KV or less, and no spark discharge is performed on the spark plug 6. Next, when the primary current is interrupted by turning off the switching element 3, a part of the back electromotive force of the primary wire ring 101 charges the ignition auxiliary capacitor 20 via the diode 18 and at the same time, the secondary wire ring. A high voltage is induced at 102 and spark discharge is started at the spark plug 6 via the constant voltage diode 16.

火花放電電流は開始直後は数十ミリアンペアと比較的高いが、火花放電によるエネルギー消費により点火コイル100の磁束の変化量が暫減してくるタイミングで、一次電流制御回路4よりSCR19のゲートにターンオン信号が送られることにより、キャパシタ20の充電電荷は上記キャパシタ20の容量に比べて比較的大きな容量のキャパシタ17を介して再び一次線輪101に印加され、図2に示されるように、火花放電終焉部の電流を大きくすることができることにより、高圧縮リーン燃焼などの内燃機関をも容易に点火することができる。 The spark discharge current is relatively high at several tens of milliamperes immediately after the start, but at the timing when the amount of change in the magnetic flux of the ignition coil 100 is reduced temporarily due to the energy consumption by the spark discharge, the primary current control circuit 4 turns on the gate of the SCR 19 When the signal is sent, the charge of the capacitor 20 is applied again to the primary wire ring 101 via the capacitor 17 having a relatively large capacity compared to the capacity of the capacitor 20, and as shown in FIG. Since the current at the end portion can be increased, an internal combustion engine such as high compression lean combustion can be easily ignited.

上記キャパシタ20の放電電流の反転エネルギーは、SCR19をターンオフすると同時にダイオード18を介して電流が流れることにより、一サイクルで終了する。当該反転電流を押さえるためにダイオード18に直列にレジスタを挿入したり、定電圧ダイオード16の阻止電圧を変えることでキャパシタ20の火花放電の反転エネルギーを変更できることは説明するまでもない。 The reversal energy of the discharge current of the capacitor 20 is completed in one cycle because the current flows through the diode 18 simultaneously with turning off the SCR 19. Needless to say, the reversal energy of the spark discharge of the capacitor 20 can be changed by inserting a resistor in series with the diode 18 in order to suppress the reversal current or changing the blocking voltage of the constant voltage diode 16.

当該変転エネルギーは、点火コイル100の二次線輪102と点火栓6との間の漏洩キャパシタンスの電荷を放電でさせる目的のみのも使用できる。 The transformation energy can be used only for the purpose of discharging the electric charge of the leakage capacitance between the secondary wire 102 of the ignition coil 100 and the spark plug 6.

勿論、点火コイル100の一次線輪101と二次線輪102の巻数比が小さく設定され、スイッチング素子3のターンオン時の二次線輪に誘起される電圧が1KVを下回る時は、ダイオード5や定電圧ダイオード16は不要である一方、キャパシタ20の反転エネルギーを完全阻止したい時は、通常のダイオード5が採用できる。 Of course, when the turn ratio of the primary wire 101 and the secondary wire 102 of the ignition coil 100 is set small and the voltage induced in the secondary wire when the switching element 3 is turned on is less than 1 KV, the diode 5 or While the constant voltage diode 16 is unnecessary, the normal diode 5 can be used when it is desired to completely block the inversion energy of the capacitor 20.

さらに、内燃機関の低速回転時には出力エネルギーを図2(a)に示される様に、放電持続時間を長くとり有効に活用し、高速回転時には図2(b)のように、放電持続時間を短くするなど、内燃機関回転数によって放電持続時間を制御することは、SCR19のターンオン・タイミングを制御することによって容易にできる。 Further, as shown in FIG. 2 (a), the output energy is effectively utilized by increasing the discharge duration during low speed rotation of the internal combustion engine, and the discharge duration is shortened as shown in FIG. 2 (b) during high speed rotation. It is possible to easily control the discharge duration according to the internal combustion engine speed, for example, by controlling the turn-on timing of the SCR 19.

実施の形態2.
図3は請求項1と請求項2で記載したこの発明の第2の実施例であり、第1の実施例のSCR19のターンオン・タイミングを一次電流制御回路4を介さずに固定化して簡略化したものである。
Embodiment 2. FIG.
FIG. 3 shows a second embodiment of the present invention as set forth in claim 1 and claim 2, wherein the turn-on timing of the SCR 19 of the first embodiment is fixed without using the primary current control circuit 4 and simplified. It is what.

図3は図1の実施例に示されるものに、ダイオード18と直列にレジスタ21を接続し、さらに当該レジスタ21に並列にトリガー用のキャパシタ22と定電圧ダイオード23の直列回路が接続され、上記キャパシタ22と定電圧ダイオード23の接続点がSCR19のゲートに接続されており、SCR19のゲートとカソード間には保護用のレジスタ24とキャパシタ25が接続され、電源用のキャパシタ17には並列に放電用のレジスタ26が接続されている。 3 is the same as that shown in the embodiment of FIG. 1 except that a resistor 21 is connected in series with the diode 18, and a series circuit of a trigger capacitor 22 and a constant voltage diode 23 is connected in parallel with the resistor 21. The connection point between the capacitor 22 and the constant voltage diode 23 is connected to the gate of the SCR 19, a protective resistor 24 and a capacitor 25 are connected between the gate and the cathode of the SCR 19, and the capacitor 17 for power supply is discharged in parallel. A register 26 is connected.

一次電流制御回路4の点火信号を受けてスイッチング素子3が、ターンオフすると一次線輪101の逆起電力の一部がレジスタ21とダイオード18を介してキャパシタ20に蓄積されると同時に、上記レジスタ21の電圧降下分の電荷が定電圧ダイオード23を介してトリガー用キャパシタ22に充電開始される。この間、二次線輪102に高電圧を発生し、定電圧ダイオード16を介して点火栓6に火花放電を開始する。 When the switching element 3 is turned off in response to the ignition signal from the primary current control circuit 4, a part of the back electromotive force of the primary wire ring 101 is accumulated in the capacitor 20 via the resistor 21 and the diode 18, and at the same time, the resistor 21. The charge for the voltage drop is started to be charged in the trigger capacitor 22 via the constant voltage diode 23. During this time, a high voltage is generated in the secondary wire ring 102 and spark discharge is started in the spark plug 6 via the constant voltage diode 16.

上記キャパシタ20の充電電流が飽和点に達すると、同時に充電されていたキャパシタ22の電荷は、レジスタ21を介してSCR19のゲートに放電印加されるようになり、閾値に達するとSCR19はターンオンしてキャパシタ17を介して一次線輪101にキャパシタ20の電荷を放電する。 When the charging current of the capacitor 20 reaches the saturation point, the charge of the capacitor 22 that has been charged at the same time is discharged and applied to the gate of the SCR 19 via the register 21, and when the threshold value is reached, the SCR 19 is turned on. The electric charge of the capacitor 20 is discharged to the primary wire ring 101 through the capacitor 17.

実施の形態3.
図4は、図1で示される請求項1乃至請求項4で記載したこの発明の第1の実施例の変形実施例であり、第3の実施例である。
Embodiment 3 FIG.
FIG. 4 is a modified embodiment of the first embodiment of the present invention described in claims 1 to 4 shown in FIG. 1, and is a third embodiment.

図1との相違点は、一次線輪101とスイッチング素子3の直列回路と並列にSCR19と点火補助キャパシタ20の直列回路を構成し、上記両直列回路の接続点間にダイオード18を接続していることである。 The difference from FIG. 1 is that a series circuit of the SCR 19 and the auxiliary ignition capacitor 20 is formed in parallel with the series circuit of the primary wire ring 101 and the switching element 3, and a diode 18 is connected between the connection points of the two series circuits. It is that you are.

一次電流制御回路4の点火信号を受けてスイッチング素子3がターンオフすると、一次線輪101の逆起電力の一部はダイオード18を介してキャパシタ20に蓄積されると同時に、二次線輪102に高電圧を誘起して定電圧ダイオード16を介して点火栓6に火花放電を開始する。上記火花放電終焉近傍で一次電流制御回路4からスイッチング素子3に再度ターンオン信号を送ってスイッチング素子3が十分に通電状態の後、直ぐにSCR19のゲートにターンオン信号を送り、キャパシタ20の電荷を再び一次線輪101に印加することにより、点火栓6には最初の電流遮断による放電電流とは逆方向の放電電流が定電圧ダイオード16を介して流れる。 When the switching element 3 is turned off in response to the ignition signal of the primary current control circuit 4, a part of the back electromotive force of the primary wire ring 101 is stored in the capacitor 20 via the diode 18 and simultaneously to the secondary wire ring 102. A high voltage is induced to start spark discharge in the spark plug 6 through the constant voltage diode 16. In the vicinity of the end of the spark discharge, a turn-on signal is sent again from the primary current control circuit 4 to the switching element 3, and after the switching element 3 is sufficiently energized, a turn-on signal is sent immediately to the gate of the SCR 19, and the charge of the capacitor 20 is again primary. When applied to the wire ring 101, a discharge current in the direction opposite to the discharge current due to the first current interruption flows through the spark plug 6 via the constant voltage diode 16.

キャパシタ20の放電が終了するとスイッチング素子3には、ターンオフ信号が送られて、SCR19の通電時間より僅かに長く通電されて、次の通常の一次電流の通電タイミングまでターンオフ状態を保持する。当該スイッチング素子3には、当該キャパシタ20の放電路を形成するためだけの別のスイッチング素子を用いても良い。 When the discharge of the capacitor 20 is completed, a turn-off signal is sent to the switching element 3 and the switch element 3 is energized slightly longer than the energization time of the SCR 19 to keep the turn-off state until the next normal primary current energization timing. As the switching element 3, another switching element only for forming the discharge path of the capacitor 20 may be used.

上記キャパシタ20の放電出力は、定電圧ダイオード16の阻止電圧などにより放電初期と逆方向の火花放電を行うことの無いように、点火コイル100の二次線輪102側の漏洩キャパシタンスの電荷のキャンセルのみにも用いることができる。 The discharge output of the capacitor 20 cancels the charge of the leakage capacitance on the secondary wire ring 102 side of the ignition coil 100 so as not to cause a spark discharge in the reverse direction to the initial discharge due to the blocking voltage of the constant voltage diode 16 or the like. Can only be used.

実施の形態4.
図5は、請求項5乃至請求項7で記載した内燃機関の燃焼イオン検出回路を有し、この発明の第4の実施例であり、火花放電電流の放電持続時間は、内燃機関の回転数に反比例して短くなるように制御され、その基本放電波形を図6に、放電持続時間特性は図7に示される。
Embodiment 4 FIG.
FIG. 5 shows a combustion ion detection circuit for an internal combustion engine according to claims 5 to 7, which is a fourth embodiment of the present invention. The discharge duration of the spark discharge current is determined by the rotational speed of the internal combustion engine. The basic discharge waveform is shown in FIG. 6 and the discharge duration characteristic is shown in FIG.

基本構成は、第1の実施例である図1と従来のイオン電流による内燃機関の燃焼状態検出回路を有する図10を合成したものであり、一部の相違点はイオン電流検出電源を構成するためのダイオード9に替えて定電圧ダイオード28としている。 The basic configuration is a combination of FIG. 1 which is the first embodiment and FIG. 10 which has a combustion state detection circuit of an internal combustion engine using conventional ion current, and some differences constitute an ion current detection power source. Instead of the diode 9 for this purpose, a constant voltage diode 28 is used.

内燃機関の点火信号がECU出力端子7から出力されるとスイッチング素子3がターンオフにより一次線輪101の電流を遮断して、一次線輪101の逆起電力の一部がダイオード18を介して点火補助用のキャパシタ20を充電すると同時に、点火コイル100の二次線輪102に高電圧側がマイナスの電圧が発生し、点火栓6に図6で示される火花放電で流れる電流によって、定電圧ダイオード28を介してキャパシタ10に定電圧ダイオード8に制限される電荷が蓄積される。引き続いて、一次電流制御回路4は図7で示される内燃機関の回転数が低いときには遅く、回転数が高いときには早いタイミングで出る略斜線部のタイミングの出力信号を受けて、SCR19がターンオンすることによって上記キャパシタ20の電荷はキャパシタ17を介して放電し、低回転数の時には放電電流終焉時の電流を加算して放電持続時間を伸ばし、高回転時の時には点火コイルの磁束変化を早期に収束することで放電時間を短く制御すると同時に、キャパシタ20の転流エネルギーを定電圧ダイオード28を介して印加することにより、点火コイル100の二次線輪102と点火栓6の間の漏洩キャパシタンスによる帯電をキャンセルする。 When the ignition signal of the internal combustion engine is output from the ECU output terminal 7, the switching element 3 is turned off to cut off the current of the primary wire ring 101, and a part of the back electromotive force of the primary wire wheel 101 is ignited via the diode 18. At the same time as charging the auxiliary capacitor 20, a negative voltage is generated on the secondary wire ring 102 of the ignition coil 100, and a constant voltage diode 28 is generated by the current flowing through the spark plug 6 shown in FIG. The electric charge limited by the constant voltage diode 8 is accumulated in the capacitor 10 via. Subsequently, the primary current control circuit 4 receives the output signal at the timing of the substantially shaded portion that is delayed when the rotational speed of the internal combustion engine shown in FIG. 7 is low and early when the rotational speed is high, and the SCR 19 is turned on. As a result, the electric charge of the capacitor 20 is discharged through the capacitor 17, and at the time of low revolution, the current at the end of the discharge current is added to extend the discharge duration, and at high revolution, the change in the magnetic flux of the ignition coil is converged early. As a result, the discharge time is controlled to be short, and at the same time, the commutation energy of the capacitor 20 is applied via the constant voltage diode 28, thereby charging by the leakage capacitance between the secondary wire 102 of the ignition coil 100 and the spark plug 6. Cancel.

その後、キャパシタ10の電荷電圧がイオン電流検出電源となり、点火栓6に引き続き印加されて、内燃機関の回転数に関わりなく、種々燃焼情報を得るために必要なATDC(圧縮上死点後)15度を確保したイオン電流の変化がイオン検出回路12に取り込まれる。 Thereafter, the charge voltage of the capacitor 10 becomes an ion current detection power source, which is subsequently applied to the spark plug 6, and ATDC (after compression top dead center) 15 necessary for obtaining various combustion information regardless of the rotational speed of the internal combustion engine. A change in the ion current with a sufficient degree is taken into the ion detection circuit 12.

上記イオン電流情報を有効に検出するためには、ATDC15度程度までを観測する必要があり、そのために点火放電時間は、内燃機関の回転数1000rpmでは、0.7ms乃至1.5ms、8000rpmでは0.5ms以内の勾配を有する放電時間程度で終了することが望ましい。 In order to effectively detect the ion current information, it is necessary to observe up to about 15 degrees ATDC. For this reason, the ignition discharge time is 0.7 ms to 1.5 ms at an internal combustion engine speed of 1000 rpm, and 0 at 8000 rpm. It is desirable to end the discharge time with a gradient within 5 ms.

なお、これまでに説明した実施例では省略したが、当該発明の内燃機関点火装置には、スイッチング素子3に電流制限回路構成を付加したり、一次線輪101の逆起電力制限のための保護素子を付加できることは説明するまでもない。 Although omitted in the embodiments described so far, in the internal combustion engine ignition device of the present invention, a current limiting circuit configuration is added to the switching element 3, or protection for limiting the back electromotive force of the primary wire ring 101 is provided. Needless to say, elements can be added.

発明の実施の形態1を示す図。1 is a diagram showing Embodiment 1 of the invention. FIG. 発明の実施の形態1の出力放電電流波形図。The output discharge current waveform figure of Embodiment 1 of invention. 発明の実施の形態2を示す図。The figure which shows Embodiment 2 of invention. 発明の実施の形態3を示す図。The figure which shows Embodiment 3 of invention. 発明の実施の形態4を示す図。The figure which shows Embodiment 4 of invention. 発明の実施の形態4の出力放電電流波形図。The output discharge current waveform figure of Embodiment 4 of invention. 発明の実施の形態4の回転数と放電時間の特性図。The characteristic figure of the rotation speed and discharge time of Embodiment 4 of invention. 従来の電流遮断方式の点火装置。Conventional current interruption type ignition device. 従来の点火装置の出力放電電流図。The output discharge current figure of the conventional ignition device. 従来のイオン電流検出回路を有する点火装置。An ignition device having a conventional ion current detection circuit. イオン電流検出波形図。Ion current detection waveform diagram.

符号の説明Explanation of symbols

1 点火コイル
2 電源
3 スイッチング素子
4 一次電流制御回路
5 ダイオード
6 点火栓
7 接続端子
8 定電圧ダイオード
9 ダイオード
10 キャパシタ
11 レジスタ
12 イオン検出回路
13 保護用ダイオード
14 入力端子
15 ダイオード
16 定電圧ダイオード
17 キャパシタ
18 ダイオード
19 SCR
20 キャパシタ
21 レジスタ
22 キャパシタ
23 定電圧ダイオード
24 レジスタ
25 キャパシタ
26 レジスタ
28 定電圧ダイオード
100 点火コイル
101 一次線輪
102 二次線輪
DESCRIPTION OF SYMBOLS 1 Ignition coil 2 Power supply 3 Switching element 4 Primary current control circuit 5 Diode 6 Spark plug 7 Connection terminal 8 Constant voltage diode 9 Diode 10 Capacitor 11 Register 12 Ion detection circuit 13 Protection diode 14 Input terminal 15 Diode 16 Constant voltage diode 17 Capacitor 18 Diode 19 SCR
20 capacitor 21 register 22 capacitor 23 constant voltage diode 24 register 25 capacitor 26 register 28 constant voltage diode 100 ignition coil 101 primary wire ring 102 secondary wire ring

Claims (7)

電源と点火コイルの一次線輪およびスイッチング素子の直列回路からなる電流遮断方式の点火装置において、上記スイッチング素子の電流遮断時に発生する点火コイルの一次線輪の逆起電力の一部を一時的に蓄えるキャパシタを接続し、上記一次線輪の逆起電力が反転中あるいは反転後に上記キャパシタの電荷を上記一次線輪に瞬時に印加する手段を構成したことを特徴とする内燃機関点火装置。 In a current interruption type ignition device composed of a series circuit of a power source, a primary coil of an ignition coil and a switching element, a part of the back electromotive force of the primary coil of the ignition coil generated when the current of the switching element is interrupted is temporarily An internal combustion engine ignition device comprising: a capacitor to be connected; and means for instantaneously applying a charge of the capacitor to the primary wheel during or after the reverse electromotive force of the primary wire is reversed. 電源と点火コイルの一次線輪およびスイッチング素子の直列回路からなる電流遮断方式の点火装置において、上記スイッチング素子の電流遮断時に発生する点火コイルの一次線輪の逆起電力の一部を一時的に蓄えるキャパシタを接続し、上記一次線輪の逆起電力が反転中あるいは反転後に上記キャパシタの電荷を上記一次線輪に瞬時に印加する手段有し、さらに上記キャパシタの電荷放電振動が少なくとも一サイクル行われる構成としたことを特徴とする内燃機関点火装置。 In a current interruption type ignition device composed of a series circuit of a power source, a primary coil of an ignition coil and a switching element, a part of the back electromotive force of the primary coil of the ignition coil generated when the current of the switching element is interrupted is temporarily A capacitor for storing, and means for instantaneously applying the capacitor charge to the primary ring during or after the back electromotive force of the primary ring is reversed. An internal combustion engine ignition device characterized by the above. キャパシタの電荷を点火コイルの一次線輪に瞬時に印加するタイミングが内燃機関の回転数によって、変化する構成としたことを特徴とする請求項1および/または請求項2に記載の内燃機関点火装置。 3. The internal combustion engine ignition device according to claim 1, wherein a timing at which the electric charge of the capacitor is instantaneously applied to the primary wire ring of the ignition coil varies depending on the rotational speed of the internal combustion engine. . 点火のタイミングであるスイッチング素子の電流遮断の瞬間から、キャパシタの電荷を点火コイルの一次線輪に印加するタイミングが、内燃機関の回転数1000rpmの時0.7ms乃至1.5ms、8000rpmの時0.5ms以内の勾配をもって変化する構成としたことを特徴とする請求項1および/または請求項2に記載の内燃機関点火装置。 From the moment when the current of the switching element is cut off, which is the timing of ignition, the timing at which the charge of the capacitor is applied to the primary coil of the ignition coil is 0.7 ms to 1.5 ms when the engine speed is 1000 rpm, and 0 when the engine speed is 8000 rpm. 3. The internal combustion engine ignition device according to claim 1, wherein the internal combustion engine ignition device changes with a gradient within 5 ms. 点火コイルの二次線輪の高電圧側に点火栓を接続し、低電圧側に内燃機関の燃焼イオン検出回路を検出電源と共に構成したことを特徴とする請求項1および/または請求項2に記載の内燃機関点火装置。 3. An ignition plug is connected to the high voltage side of the secondary wire ring of the ignition coil, and a combustion ion detection circuit of the internal combustion engine is configured with a detection power source on the low voltage side. The internal combustion engine ignition device according to claim. 点火コイルの二次線輪の高電圧側に点火栓を接続し、低電圧側に内燃機関の燃焼イオン検出回路を検出電源と共に構成し、イオン検出開始時間を少なくとも内燃機関実用回転域においてATDC(圧縮上死点後)15度程度としたことを特徴とする請求項1および/または請求項2に記載の内燃機関点火装置。 An ignition plug is connected to the high voltage side of the secondary coil of the ignition coil, and the combustion ion detection circuit of the internal combustion engine is configured with a detection power source on the low voltage side, and the ion detection start time is set to ATDC (at least in the practical engine rotation range). The internal combustion engine ignition device according to claim 1 and / or 2, characterized by being about 15 degrees (after compression top dead center). 点火コイルの二次線輪の高電圧側に点火栓を接続し、低電圧側に互いに逆向きに直列接続された少なくとも2本の定電圧ダイオードを有し、当該一方の定電圧ダイオードに並列にキャパシタを接続して電源とし、上記直列接続点からレジスタを介して燃焼イオン検出回路に接続したことを特徴とする請求項1および/または請求項2に記載の内燃機関点火装置。 An ignition plug is connected to the high voltage side of the secondary coil of the ignition coil, and at least two constant voltage diodes connected in series in opposite directions to each other on the low voltage side, and in parallel with the one constant voltage diode 3. The internal combustion engine ignition device according to claim 1, wherein a capacitor is connected to serve as a power source, and is connected to a combustion ion detection circuit through a resistor from the series connection point.
JP2005087956A 2005-03-25 2005-03-25 Internal combustion engine ignition device Active JP4494264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087956A JP4494264B2 (en) 2005-03-25 2005-03-25 Internal combustion engine ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087956A JP4494264B2 (en) 2005-03-25 2005-03-25 Internal combustion engine ignition device

Publications (2)

Publication Number Publication Date
JP2006266206A true JP2006266206A (en) 2006-10-05
JP4494264B2 JP4494264B2 (en) 2010-06-30

Family

ID=37202430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087956A Active JP4494264B2 (en) 2005-03-25 2005-03-25 Internal combustion engine ignition device

Country Status (1)

Country Link
JP (1) JP4494264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261230A (en) * 2007-04-10 2008-10-30 Mazda Motor Corp Combustion state detecting device of engine
CN113932671A (en) * 2021-10-14 2022-01-14 北京理工大学 Current trigger type detonation integrated circuit applied to electronic safety system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170632A (en) * 1998-12-07 2000-06-20 Ngk Spark Plug Co Ltd Ignition device
JP2003013832A (en) * 2001-06-28 2003-01-15 Honda Motor Co Ltd Device for detecting misfire of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170632A (en) * 1998-12-07 2000-06-20 Ngk Spark Plug Co Ltd Ignition device
JP2003013832A (en) * 2001-06-28 2003-01-15 Honda Motor Co Ltd Device for detecting misfire of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261230A (en) * 2007-04-10 2008-10-30 Mazda Motor Corp Combustion state detecting device of engine
CN113932671A (en) * 2021-10-14 2022-01-14 北京理工大学 Current trigger type detonation integrated circuit applied to electronic safety system

Also Published As

Publication number Publication date
JP4494264B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
US6779517B2 (en) Ignition device for internal combustion engine
JP2002168170A (en) Ionic current detection device for internal combustion engine
JP4528469B2 (en) Ignition device for internal combustion engine
EP1201920A2 (en) Ignition apparatus for internal combustion engine
JP6029694B2 (en) Internal combustion engine leak detection device
JP2009085166A (en) Ignition coil apparatus for internal combustion engine
JP2001073914A (en) Knock control system of internal combustion engine
JP2007009890A (en) Ignitor provided with ion current detection device
US9382852B2 (en) Control device for internal combustion engine having cylinder resting mechanism
JP4494264B2 (en) Internal combustion engine ignition device
JP2007032352A (en) Ignition device equipped with ion current detection device
JP2002364509A (en) Knock detector for internal combustion engine
JP2007154829A (en) Multiple point ignition device provided with ion current detection device
JP4575264B2 (en) Ignition device having an ion current detection device
JP3940622B2 (en) Ignition device for internal combustion engine
JP4180298B2 (en) Misfire detection device
JP3676662B2 (en) Internal combustion engine ignition device
JP4521502B2 (en) Ignition device for internal combustion engine
JP4536219B2 (en) Ion current detector
JP4494297B2 (en) Internal combustion engine ignition device
JP4169266B2 (en) Ignition device for internal combustion engine
JP2003286933A (en) Ignition device for internal combustion engine
JP3577217B2 (en) Spark plug smoldering detector for internal combustion engine
JP3584664B2 (en) Capacitor discharge type internal combustion engine ignition device
JP4567878B2 (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150416

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250