JP2006265305A - Method for producing foamed aromatic polycarbonate resin and foamed aromatic polycarbonate resin - Google Patents

Method for producing foamed aromatic polycarbonate resin and foamed aromatic polycarbonate resin Download PDF

Info

Publication number
JP2006265305A
JP2006265305A JP2005082288A JP2005082288A JP2006265305A JP 2006265305 A JP2006265305 A JP 2006265305A JP 2005082288 A JP2005082288 A JP 2005082288A JP 2005082288 A JP2005082288 A JP 2005082288A JP 2006265305 A JP2006265305 A JP 2006265305A
Authority
JP
Japan
Prior art keywords
foam
aromatic polycarbonate
polycarbonate resin
heat
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005082288A
Other languages
Japanese (ja)
Other versions
JP2006265305A5 (en
JP4596465B2 (en
Inventor
Yoshihisa Ishihara
義久 石原
Yoshinari Saito
良成 斎藤
Kenichi Goto
兼一 後藤
Satoshi Iwasaki
聡 岩崎
Kazuhiko Morita
和彦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2005082288A priority Critical patent/JP4596465B2/en
Publication of JP2006265305A publication Critical patent/JP2006265305A/en
Publication of JP2006265305A5 publication Critical patent/JP2006265305A5/en
Application granted granted Critical
Publication of JP4596465B2 publication Critical patent/JP4596465B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a foamed aromatic polycarbonate resin stably keeping the dimension even by using at a high temperature and provide a foamed aromatic polycarbonate resin produced by the method. <P>SOLUTION: The method for forming a foamed aromatic polycarbonate resin comprises the heat-treatment process to heat an extrusion foamed material composed of an aromatic polycarbonate resin at ≥(Tg-40°C) and ≤Tg wherein Tg (°C) is the glass transition temperature of the aromatic polycarbonate resin and cool to ≤(Tg-100°C). The heat-treatment is carried out in a manner to obtain the foamed product having a dimensional change ratio of ≤0.15% after a heating test of the product at Tg-40°C for 30 hours. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、芳香族ポリカーボネート系樹脂発泡体の製造方法及び芳香族ポリカーボネート系樹脂発泡体に関し、詳しくは芳香族ポリカーボネート系樹脂押出発泡体の加熱処理による製造方法、及び高温での寸法変化が小さいポリカーボネート系樹脂発泡体に関する。   The present invention relates to a method for producing an aromatic polycarbonate-based resin foam and an aromatic polycarbonate-based resin foam, and more specifically, a method for producing an aromatic polycarbonate-based resin extruded foam by heat treatment, and a polycarbonate having a small dimensional change at high temperatures. The present invention relates to a resin foam.

ポリカーボネート系樹脂発泡体は、耐熱性、耐老化性、耐水性等が高く、電気的及び機械的性質も良いことから、自動車の内装材、建築材料、包装材、各種容器等への用途展開が期待されている。更に、自動車用内装材として使用される場合、80℃以上の雰囲気での耐熱テストに合格することが要求され、しかも軽量化を阻害しないこと、内装材として安全で且つ一定の曲げ強さを必要とされることから、機械的強度に優れるポリカーボネート系樹脂発泡体に対する期待が大きい。   Polycarbonate-based resin foam has high heat resistance, aging resistance, water resistance, etc., and has good electrical and mechanical properties, so it can be used for automobile interior materials, building materials, packaging materials, various containers, etc. Expected. Furthermore, when used as an interior material for automobiles, it is required to pass a heat resistance test in an atmosphere of 80 ° C. or higher, and does not impede weight reduction, and requires a safe and constant bending strength as an interior material. Therefore, there is a great expectation for a polycarbonate resin foam excellent in mechanical strength.

このようなポリカーボネート系樹脂発泡体が、特許文献1、特許文献2に開示されている。特許文献1には、発泡剤が練り込まれている混練物を、所定温度で押出機先端のサーキュラーダイから低圧部に管状の発泡体として押出し、これを円柱形状の樹脂冷却装置(マンドレル)の円柱側面上に沿わせて引取ることで管状発泡体を形成させてから、押出方向に切り開くことにより得られる、ポリカーボネート系樹脂押出発泡シートが開示されている。特許文献2には、サーキュラーダイから低圧部にチューブ状の発泡体として押出し、この発泡体を積層することにより得られる、ポリカーボネート系樹脂発泡シートが開示されている。さらに、特許文献2には、発泡体を積層する方法として、熱風により発泡体表面を熱溶融させた後、圧着積層する方法や、押出直後に得られたチューブ状の発泡体を膨らませ、バルーンの内面が接着可能な状態にあるうちに押圧ロールでバルーンを挟み込み内面を貼り合わせ積層する方法等が開示されている。
また、厚さが10mmを超えるようなポリカーボネート系樹脂発泡体は、特許文献3に開示されている。
Such polycarbonate resin foams are disclosed in Patent Document 1 and Patent Document 2. In Patent Document 1, a kneaded product in which a foaming agent is kneaded is extruded as a tubular foam from a circular die at the tip of an extruder to a low pressure portion at a predetermined temperature, and this is extruded into a cylindrical resin cooling device (mandrel). There is disclosed a polycarbonate resin extruded foam sheet obtained by forming a tubular foam by pulling along a cylindrical side surface and then cutting it in the extrusion direction. Patent Document 2 discloses a polycarbonate resin foam sheet obtained by extruding a circular die from a circular die as a tube-like foam and laminating the foam. Further, in Patent Document 2, as a method of laminating the foam, a method of laminating the surface of the foam with hot air and then laminating it by pressure, or inflating the tubular foam obtained immediately after extrusion, A method of sandwiching and laminating inner surfaces by sandwiching a balloon with a pressure roll while the inner surfaces are in an adhesive state is disclosed.
Further, Patent Document 3 discloses a polycarbonate resin foam having a thickness exceeding 10 mm.

特開平8−66953公報JP-A-8-66953 特開平9−104093号公報JP-A-9-104093 特開平11−254502号公報JP-A-11-254502

しかし、特許文献1、特許文献2に開示されたポリカーボネート系樹脂押出発泡体は、自動車分野や建築分野で使用するには、耐熱性に不満が残るものであった。これらの分野では、高温雰囲気下で使用されることが多く、厳しい寸法精度の維持が要求されるので、従来のポリカーボネート系樹脂押出発泡体では使用することができるものではなかった。即ち、上記従来のポリカーボネート系樹脂押出発泡体は、80℃での雰囲気での耐熱テストには合格するが、より安全を図るために、100℃以上の雰囲気での耐熱テストを行うと、大きく変形してしまうものであった。   However, the polycarbonate-based resin extruded foams disclosed in Patent Document 1 and Patent Document 2 remain unsatisfactory in heat resistance when used in the automotive field and the architectural field. In these fields, since they are often used in a high-temperature atmosphere and it is required to maintain strict dimensional accuracy, they cannot be used with conventional polycarbonate resin extruded foams. That is, the above-mentioned conventional polycarbonate-based resin extruded foam passes the heat resistance test in an atmosphere at 80 ° C., but for safety, when the heat resistance test in an atmosphere of 100 ° C. or higher is performed, it is greatly deformed. It was something to end up with.

本発明は、前記従来技術の問題点に鑑み、[ガラス転移温度(Tg:℃)−40℃]の高温下で使用しても寸法が狂うことがない芳香族ポリカーボネート系樹脂発泡体の製造方法、及び芳香族ポリカーボネート系樹脂発泡体を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention provides a method for producing an aromatic polycarbonate-based resin foam that does not go out of dimension even when used at a high temperature of [glass transition temperature (Tg: ° C.)-40 ° C.]. And an aromatic polycarbonate-based resin foam.

本発明は、以下に示す芳香族ポリカーボネート系樹脂発泡体の製造方法及び芳香族ポリカーボネート系樹脂発泡体を提供するものである。
〔1〕 芳香族ポリカーボネート系樹脂からなる押出発泡体を、該芳香族ポリカーボネート系樹脂の[ガラス転移温度(Tg:℃)−40℃]以上ガラス転移温度(Tg:℃)以下の温度で加熱してから、[ガラス転移温度(Tg:℃)−100℃]以下に冷却する熱処理工程により芳香族ポリカーボネート系樹脂発泡体を製造する方法であって、該熱処理工程において、得られる該発泡体を[ガラス転移温度(Tg:℃)−40℃]で30時間の加熱試験後の寸法変化率が0.15%以下となるように熱処理することを特徴とする芳香族ポリカーボネート系樹脂発泡体の製造方法。
〔2〕 該熱処理工程において、厚みが1〜8mm、幅及び長さの最小寸法が30〜300mmの芳香族ポリカーボネート系樹脂押出発泡体を熱処理する、又は厚みが1〜8mmの芳香族ポリカーボネート系樹脂発泡体を複数枚積み重ねた、高さ、幅及び長さの最小寸法が30〜300mmの積層物を熱処理することを特徴とする前記〔1〕に記載の芳香族ポリカーボネート系樹脂発泡体の製造方法。
〔3〕 押出発泡方法により製造されてなる厚みが1〜8mm、見掛け密度が0.12〜0.6g/cm、連続気泡率が60%以下、[ガラス転移温度(Tg:℃)−40℃]で30時間の加熱試験後の寸法変化率が0.15%以下であることを特徴とする芳香族ポリカーボネート系樹脂発泡体。
〔4〕 125℃のヒートサグ試験にて測定される垂下がり量が5mm以下であることを特徴とする前記〔3〕に記載の芳香族ポリカーボネート系樹脂発泡体。
〔5〕 車両荷台覆い芯材として用いられていることを特徴とする前記〔3〕又は〔4〕に記載の芳香族ポリカーボネート系樹脂発泡体。
〔6〕 自動車内装材基材として用いられていることを特徴とする前記〔3〕又は〔4〕に記載の芳香族ポリカーボネート系樹脂発泡体。
The present invention provides the following method for producing an aromatic polycarbonate resin foam and an aromatic polycarbonate resin foam.
[1] An extruded foam made of an aromatic polycarbonate resin is heated at a temperature not lower than the [glass transition temperature (Tg: ° C.)-40 ° C.] of the aromatic polycarbonate resin and not higher than the glass transition temperature (Tg: ° C.). Then, a method of producing an aromatic polycarbonate-based resin foam by a heat treatment step of cooling to [glass transition temperature (Tg: ° C.)-100 ° C.] or lower, wherein the foam obtained in the heat treatment step is [ A process for producing an aromatic polycarbonate-based resin foam, characterized by heat-treating at a glass transition temperature (Tg: ° C.)-40 ° C.] such that the dimensional change after a 30-hour heating test is 0.15% or less. .
[2] In the heat treatment step, an aromatic polycarbonate resin having a thickness of 1 to 8 mm and a minimum width and length of 30 to 300 mm is heat-treated, or an aromatic polycarbonate resin having a thickness of 1 to 8 mm. The method for producing an aromatic polycarbonate resin foam according to [1], wherein a laminate in which a plurality of foams are stacked and having a minimum height, width and length of 30 to 300 mm is heat-treated. .
[3] The thickness produced by the extrusion foaming method is 1 to 8 mm, the apparent density is 0.12 to 0.6 g / cm 3 , the open cell ratio is 60% or less, [glass transition temperature (Tg: ° C.)-40 An aromatic polycarbonate-based resin foam having a dimensional change rate of 0.15% or less after a 30-hour heating test at [° C.].
[4] The aromatic polycarbonate resin foam according to [3], wherein the amount of sag measured by a heat sag test at 125 ° C. is 5 mm or less.
[5] The aromatic polycarbonate resin foam according to [3] or [4], which is used as a vehicle carrier cover core.
[6] The aromatic polycarbonate resin foam according to [3] or [4], which is used as an automobile interior material base material.

請求項1に係わる発明の製造方法によれば、芳香族ポリカーボネート系樹脂を基材樹脂とする押出発泡体を、特定条件下で熱処理することにより、高温雰囲気下でも熱変形が少ない芳香族ポリカーボネート系樹脂発泡体を得ることができる。
請求項2に係わる発明の製造方法によれば、厚みが1〜8mm、幅及び長さの最小寸法が特定の寸法を有する押出発泡体、又は厚みが1〜8mmの押出発泡体を積重ねた、幅、長さ及び高さの最小寸法が特定の寸法の積層物を熱処理することにより、高温雰囲気下でも、熱変形することが殆どない芳香族ポリカーボネート系樹脂発泡体を高い生産性で得ることができる。
本発明の請求項3、4に係わる発明の芳香族ポリカーボネート系樹脂発泡体は、特定の厚み、見掛け密度、連続気泡率、耐熱性を有するので、軽量であるにもかかわらず、機械的強度に優れ、高温雰囲気下でも熱変形が少ないものであり、車両荷台覆い芯材や自動車内装材基材等として好適に用いられるものである。
According to the production method of the invention according to claim 1, an aromatic polycarbonate-based resin that is less likely to be thermally deformed even in a high-temperature atmosphere by heat-treating an extruded foam having an aromatic polycarbonate-based resin as a base resin under specific conditions. A resin foam can be obtained.
According to the manufacturing method of the invention according to claim 2, the extruded foam having a thickness of 1 to 8 mm and the minimum width and length having specific dimensions, or the extruded foam having a thickness of 1 to 8 mm, are stacked. By heat-treating a laminate having specific dimensions of width, length and height, it is possible to obtain an aromatic polycarbonate-based resin foam that hardly undergoes thermal deformation even in a high-temperature atmosphere with high productivity. it can.
The aromatic polycarbonate resin foam of the invention according to claims 3 and 4 of the present invention has a specific thickness, apparent density, open cell ratio, and heat resistance, so that it is lightweight but has high mechanical strength. It is excellent and has little thermal deformation even in a high temperature atmosphere, and is suitably used as a vehicle carrier covering core material, an automobile interior material base material, and the like.

以下、本発明の芳香族ポリカーボネート系樹脂発泡体の製造方法、及び芳香族ポリカーボネート系樹脂発泡体について詳細に説明する。
本発明方法においては、芳香族ポリカーボネート系樹脂からなる押出発泡体(以下、単に「押出発泡体」ともいう。)を、熱処理工程において熱処理することによって、芳香族ポリカーボネート系樹脂発泡体(以下、単に「発泡体」ともいう。)が製造される。即ち、本発明によれば、熱処理(アニーリング)することにより、押出発泡時の残留応力を取り除くので、ガラス転移温度に近い高温度下で使用しても寸法変化が小さい発泡体を製造することができる。
Hereafter, the manufacturing method of the aromatic polycarbonate-type resin foam of this invention and an aromatic polycarbonate-type resin foam are demonstrated in detail.
In the method of the present invention, an extruded foam made of an aromatic polycarbonate resin (hereinafter also simply referred to as “extruded foam”) is subjected to a heat treatment in a heat treatment step, whereby an aromatic polycarbonate resin foam (hereinafter simply referred to as “extruded foam”). Also referred to as “foam”). That is, according to the present invention, the residual stress at the time of extrusion foaming is removed by heat treatment (annealing), so that it is possible to produce a foam having a small dimensional change even when used at a high temperature close to the glass transition temperature. it can.

本発明方法で用いられる押出発泡体は、押出発泡により製造されたものでさえあれば制限はないが、例えば、特許文献1や特許文献2に開示されている押出発泡体が好適に用いられる。特に、サーキュラーダイから低圧域にチューブ状発泡体として押し出し、このチューブ状発泡体の内部に空気を出し入れして一定の大きさのバルーン状となるように調整し、このバルーン状発泡体をその内面が接着可能な状態にあるうちに押圧ロールで挟み込んで内面を貼り合わせて積層する方法により製造されたものが好ましい。該方法によれば、厚み1〜8mmの発泡体を容易に得ることができる。   The extruded foam used in the method of the present invention is not limited as long as it is produced by extrusion foaming. For example, the extruded foam disclosed in Patent Document 1 and Patent Document 2 is preferably used. In particular, it is extruded as a tubular foam from a circular die to a low pressure region, and the inside of the tubular foam is adjusted so as to form a balloon of a certain size by introducing air into the tubular foam. Is preferably produced by a method of sandwiching and laminating the inner surfaces while sandwiching them with a pressure roll while the material is in a state capable of bonding. According to this method, a foam having a thickness of 1 to 8 mm can be easily obtained.

尚、このような押出発泡法により押出発泡体を製造すると、得られる押出発泡体には、ダイから押出されたチューブ状発泡体を引取る際の分子の延伸による残留歪や、気泡の延伸による残留歪が発生しやすいと考えられる。特に、バルーン状発泡体を押圧ロールで挟み込んで内面を貼り合わせる方法により製造された押出発泡体の場合、バルーン状発泡体を平板状に押し潰して成形する為に複雑な方向に分子や気泡が延伸されて残留歪が発生すると考えられる。このように残留歪が発生した押出発泡体は、高温で使用されると、延伸された分子が縮んだり、気泡が円形に戻ろうとするので、寸法変化が発生すると考えられる。   In addition, when an extruded foam is produced by such an extrusion foaming method, the resulting extruded foam has a residual strain due to molecular stretching when a tubular foam extruded from a die is drawn, or due to cell stretching. Residual strain is likely to occur. In particular, in the case of an extruded foam manufactured by a method in which a balloon-shaped foam is sandwiched between pressing rolls and bonded to each other, molecules and bubbles are formed in complicated directions in order to crush the balloon-shaped foam into a flat plate shape. It is considered that residual strain occurs due to stretching. When the extruded foam having such residual strain is used at a high temperature, the stretched molecules are shrunk, and the bubbles try to return to a circular shape. Therefore, it is considered that a dimensional change occurs.

本明細書において、芳香族ポリカーボネート系樹脂とは、芳香族ポリカーボネート樹脂を50重量%以上含有する樹脂をいい、芳香族ポリカーボネート樹脂とは下記一般化学式(1)で表される、炭酸結合を有する基本構造単位を50モル%以上、好ましくは70モル%以上含むポリマーを言う。   In the present specification, the aromatic polycarbonate resin means a resin containing 50% by weight or more of an aromatic polycarbonate resin, and the aromatic polycarbonate resin is a basic compound having a carbonic acid bond represented by the following general chemical formula (1). A polymer containing 50 mol% or more, preferably 70 mol% or more of structural units.

Figure 2006265305
(1)
Figure 2006265305
(1)

上記一般化学式(1)において、Rはビスフェノール類の芳香族炭化水素である。   In the above general chemical formula (1), R is a bisphenol aromatic hydrocarbon.

本発明で用いられる芳香族ポリカーボネート系樹脂は、芳香族ポリカーボネート樹脂以外にポリエチレン系樹脂やポリプロピレン系樹脂などのポリオレフィン系樹脂や、ポリスチレン、ゴム変性ポリスチレン、スチレン―アクリロニトリル共重合体、スチレン―ブタジエン―アクリロニトリル共重合体、スチレン―アクリル酸共重合体、ポリスチレン―ポリフェニレンエーテル共重合体、ポリスチレンとポリフェニレンエーテルとの混合物などのポリスチレン系樹脂を、所望される耐熱性を損なわない範囲で含有することができ、そのガラス転移温度(Tg)は、140〜170℃であることが耐熱性向上のため好ましい。   In addition to the aromatic polycarbonate resin, the aromatic polycarbonate resin used in the present invention is a polyolefin resin such as polyethylene resin or polypropylene resin, polystyrene, rubber-modified polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile. A polystyrene resin such as a copolymer, a styrene-acrylic acid copolymer, a polystyrene-polyphenylene ether copolymer, and a mixture of polystyrene and polyphenylene ether can be contained within a range that does not impair the desired heat resistance, The glass transition temperature (Tg) is preferably 140 to 170 ° C. for improving heat resistance.

尚、芳香族ポリカーボネート系樹脂は、さらに必要に応じて種々の添加剤、例えば、着色剤、触媒中和剤、滑剤、結晶核剤、増粘剤、その他の樹脂添加剤等の添加物を含有することができる。但し、これらの添加物は、本発明の目的を阻害しない範囲内で、できる限り少量であることが望ましい。上記添加物の添加量(発泡剤のように最終的に気散してなくなるものは除く)は、熱可塑性樹脂100重量部に対して、添加物の使用目的にもよるが20重量部以下が好ましい。より好ましくは、10重量部以下であり、さらに好ましくは0.001〜5重量部である。   The aromatic polycarbonate resin further contains various additives as required, for example, additives such as a colorant, a catalyst neutralizing agent, a lubricant, a crystal nucleating agent, a thickener, and other resin additives. can do. However, it is desirable that these additives be as small as possible within the range not impairing the object of the present invention. The addition amount of the above additives (excluding those that will eventually be no longer diffused like a foaming agent) is 20 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin, depending on the purpose of use of the additive. preferable. More preferably, it is 10 weight part or less, More preferably, it is 0.001-5 weight part.

本発明の熱処理工程においては、押出発泡体は、該押出発泡体を構成する芳香族ポリカーボネート系樹脂の[ガラス転移温度(Tg:℃)−40℃]以上ガラス転移温度(Tg:℃)以下の温度で加熱されてから、[ガラス転移温度(Tg:℃)−100℃]以下に冷却される。この場合、[ガラス転移温度(Tg:℃)−40℃]未満の加熱では、温度が低すぎて残留応力が充分に除去されないので、高温度下で使用されると大きな寸法変化が発生する。ガラス転移温度を超える加熱では、温度が高すぎて芳香族ポリカーボネート系樹脂が軟化して、発泡体が二次発泡するので、激しい寸法変化が起きてしまう。
かかる観点から、熱処理工程における加熱温度は、[ガラス転移温度(Tg:℃)−35℃]以上[ガラス転移温度(Tg:℃)−15℃]以下が好ましく、[ガラス転移温度(Tg:℃)−30℃]以上[ガラス転移温度(Tg:℃)−20℃]以下がより好ましい。
In the heat treatment step of the present invention, the extruded foam has a glass transition temperature (Tg: ° C.) of not less than [glass transition temperature (Tg: ° C.)-40 ° C.] of the aromatic polycarbonate resin constituting the extruded foam. After being heated at a temperature, it is cooled to [glass transition temperature (Tg: ° C.) − 100 ° C.] or lower. In this case, when the heating is less than [glass transition temperature (Tg: ° C.) − 40 ° C.], the temperature is too low to sufficiently remove the residual stress, so that a large dimensional change occurs when used at a high temperature. When heating exceeds the glass transition temperature, the temperature is too high and the aromatic polycarbonate-based resin is softened and the foam is secondarily foamed, resulting in severe dimensional changes.
From this viewpoint, the heating temperature in the heat treatment step is preferably [glass transition temperature (Tg: ° C.) − 35 ° C.] or more and [glass transition temperature (Tg: ° C.) − 15 ° C.] or less, and [glass transition temperature (Tg: ° C.). ) -30 ° C.] or more and [glass transition temperature (Tg: ° C.)-20 ° C.] or less.

上記熱処理工程における押出発泡体の加熱時間は、[ガラス転移温度(Tg:℃)−40℃]で30時間の加熱試験後の寸法変化率が0.15%以下となるように定められる。通常は、耐熱性を付与する為に12時間以上が好ましく、18時間以上がより好ましい。一方、生産性の観点から40時間以下が好ましく、32時間以下がより好ましい。
尚、上記加熱時間は、[ガラス転移温度(Tg:℃)−40℃]付近の低い温度では、長い加熱時間が必要であり、加熱温度がガラス転移温度(Tg:℃)に近い高い温度では、加熱時間は短くて済む。また、加熱時間は、加熱温度の他に加熱する押出発泡体の大きさにもよる。
The heating time of the extruded foam in the heat treatment step is determined so that the rate of dimensional change after a 30-hour heating test is 0.15% or less at [glass transition temperature (Tg: ° C.) − 40 ° C.]. Usually, 12 hours or more is preferable and 18 hours or more is more preferable in order to impart heat resistance. On the other hand, 40 hours or less is preferable from the viewpoint of productivity, and 32 hours or less is more preferable.
The above heating time requires a long heating time at a low temperature around [glass transition temperature (Tg: ° C.) − 40 ° C.], and at a high temperature near the glass transition temperature (Tg: ° C.). The heating time is short. In addition to the heating temperature, the heating time depends on the size of the extruded foam to be heated.

加熱方法としては、例えば、熱風、赤外線による加熱などが挙げられる。   Examples of the heating method include heating with hot air and infrared rays.

また、加熱する際、押出発泡体の反りや変形を防止する為に形状を維持する冶具を使用することが好ましい。押出発泡体の形状が例えば、板やシートの場合、その上下の表面全体を金属製の板で挟むことにより反りや変形を防止できる。   Moreover, when heating, it is preferable to use a jig that maintains the shape in order to prevent warpage and deformation of the extruded foam. When the shape of the extruded foam is, for example, a plate or a sheet, warpage or deformation can be prevented by sandwiching the entire upper and lower surfaces with a metal plate.

また、加熱後に[ガラス転移温度(Tg:℃)−100℃]以下の温度まで冷却しないと、冷却が不十分で、ポリカーボネート系樹脂が軟化状態にあるため、得られた発泡体が保管時に変形する虞がある。押出発泡体が積み重ねられている場合、[ガラス転移温度(Tg:℃)−100℃]以下の温度まで冷却する際、上記金属製の板で挟んだまま冷却することが好ましい。そうしないと、冷却が不十分で、ポリカーボネート系樹脂が軟化状態にあるため、得られた発泡体が変形する虞がある。
押出発泡体の冷却速度は、[ガラス転移温度(Tg:℃)−100℃]以下の温度まで冷却しさえすれば冷却速度は限定されないが10℃/min以下が好ましく、1℃/min以下がより好ましい。冷却速度が速すぎると、冷却の際に再び残留応力が発生し、残留応力を除去する効果が低減する虞がある。
Further, if the glass foam is not cooled to a temperature of [glass transition temperature (Tg: ° C.)-100 ° C.] or lower after heating, the cooling is insufficient and the polycarbonate resin is in a softened state, so that the obtained foam is deformed during storage. There is a risk of doing. When extrudate foams are stacked, when cooling to a temperature of [glass transition temperature (Tg: ° C.) − 100 ° C.] or lower, it is preferable to cool while sandwiched between the metal plates. Otherwise, the cooling is insufficient and the polycarbonate resin is in a softened state, so that the obtained foam may be deformed.
The cooling rate of the extruded foam is not limited as long as it is cooled to a temperature of [glass transition temperature (Tg: ° C.) − 100 ° C.] or less, but is preferably 10 ° C./min or less, preferably 1 ° C./min or less. More preferred. If the cooling rate is too high, residual stress is generated again during cooling, and the effect of removing the residual stress may be reduced.

本発明方法における加熱温度、冷却温度とは、発泡体の表面に接触温度計をあてて10秒後に示す温度をいい、押出発泡体が積重ねられている場合には、中心部の1枚を抜き取って測定するものとする。   The heating temperature and cooling temperature in the method of the present invention are the temperatures indicated after 10 seconds by placing a contact thermometer on the surface of the foam, and when the extruded foam is stacked, one piece of the central part is extracted. Shall be measured.

本明細書におけるガラス転移温度(Tg)とは、JIS K7121(1987年)に準拠して、加熱速度10℃/minの昇温条件で熱流束DSCにより求めた中間点ガラス転移温度(℃)をいい、試験片の状態調節については「一定の熱処理を行なった後、ガラス転移温度を測定する場合」を採用するものとする。   The glass transition temperature (Tg) in the present specification refers to the midpoint glass transition temperature (° C.) obtained by heat flux DSC under the temperature rising condition at a heating rate of 10 ° C./min according to JIS K7121 (1987). For adjusting the state of the test piece, “when measuring the glass transition temperature after performing a certain heat treatment” shall be adopted.

加熱試験は、試料を準備し、熱風循環式のオーブンを用いて[ガラス転移温度(Tg:℃)−40℃]の雰囲気に30時間放置し、押出方向(MD)、巾方向(TD)の各々につき寸法変化を測定し、下式(1)により寸法変化率を算出し、MD、TDの測定値の内、大きな方の値を発泡体の寸法変化率とし、その絶対値で示すこととする。
寸法変化率=|(加熱前寸法(mm)−加熱後寸法(mm))×100
/加熱前寸法(mm)| ・・・(1)
In the heating test, a sample was prepared and left in an atmosphere of [glass transition temperature (Tg: ° C.) − 40 ° C.] for 30 hours using a hot-air circulating oven, in the extrusion direction (MD) and the width direction (TD). Measure the dimensional change for each, calculate the dimensional change rate by the following formula (1), and take the larger value of the measured values of MD and TD as the dimensional change rate of the foam, and indicate the absolute value thereof. To do.
Dimensional change rate = | (size before heating (mm) −size after heating (mm)) × 100
/ Dimensions before heating (mm) | (1)

本発明の熱処理工程では、一枚の押出発泡体を熱処理する場合には、厚みが1〜8mmであって、幅及び長さの最小寸法が30〜300mmの押出発泡体を熱処理することが好ましい。このようにすれば、効率よく熱変形することが殆どない発泡体を得ることができる。幅及び長さの最小寸法が30mm未満であると生産性が悪くなる虞れや、使用する用途が制限される虞れがある。一方、幅及び長さの最小寸法が300mmを超えると、熱処理に時間がかかり、取り扱いが悪くなる。   In the heat treatment step of the present invention, when heat treating one extruded foam, it is preferable to heat treat the extruded foam having a thickness of 1 to 8 mm and a minimum width and length of 30 to 300 mm. . In this way, it is possible to obtain a foam that hardly thermally deforms efficiently. If the minimum width and length dimensions are less than 30 mm, the productivity may be deteriorated, and the use application may be limited. On the other hand, when the minimum dimensions of the width and length exceed 300 mm, the heat treatment takes time and handling becomes worse.

上記のように1枚の押出発泡体を熱処理しても構わないが生産効率を向上させるためには、大量の押出発泡体を同時に熱処理する必要があるので、押出発泡体は積重ねられた状態で熱処理することが好ましい。積重ねる形状としては、長方形の押出発泡体を直方体状に積重ねるのが通常である。この場合、連続気泡率が低い発泡体、特に連続気泡率60%以下のものは、断熱性が高く、押出発泡体の内部まで均一に加熱することが困難である。従って、厚みが1〜8mmの芳香族ポリカーボネート系樹脂発泡体を複数枚積み重ねた、高さ、幅及び長さの最小寸法が30〜300mmの積層物を熱処理することが好ましい。具体的には、幅及び長さを特定しない場合、厚みが1〜8mmの押出発泡体を高さが30〜300mmの範囲内となるように複数枚積重ねて熱処理するか、幅又は長さの寸法が30〜300mmとなるように押出発泡体を、断裁して小さな形状にしてから積重ねて熱処理することが好ましい。   Although a single extruded foam may be heat-treated as described above, in order to improve production efficiency, it is necessary to heat treat a large amount of extruded foam at the same time, so the extruded foam is in a stacked state. It is preferable to heat-treat. As a shape to be stacked, rectangular extruded foams are usually stacked in a rectangular parallelepiped shape. In this case, a foam having a low open cell ratio, particularly one having an open cell ratio of 60% or less, has high heat insulating properties, and it is difficult to uniformly heat the inside of the extruded foam. Therefore, it is preferable to heat-treat a laminate having a minimum height, width and length of 30 to 300 mm obtained by stacking a plurality of aromatic polycarbonate resin foams having a thickness of 1 to 8 mm. Specifically, when the width and length are not specified, a plurality of extruded foams having a thickness of 1 to 8 mm are stacked and heat-treated so that the height is within the range of 30 to 300 mm, or the width or length is It is preferable that the extruded foam is cut and formed into a small shape so as to have a size of 30 to 300 mm, and then stacked and heat-treated.

上記直方体状に積重ねられた押出発泡体の積層物の全ての辺が300mmを超えると、熱が積重ねた押出発泡体の中心に伝わるのに長時間かかるので、生産性が悪くなる。一方、幅及び長さの寸法が30mm未満となるように押出発泡体を、断裁して小さな形状にしてから積重ねて熱処理する場合には、使用する用途が制限される虞れがある。   When all sides of the laminate of extruded foams stacked in a rectangular parallelepiped shape exceed 300 mm, it takes a long time for heat to be transferred to the center of the stacked extruded foams, resulting in poor productivity. On the other hand, when the extruded foam is cut and formed into a small shape so that the width and length dimensions are less than 30 mm, and then stacked and heat-treated, there is a possibility that the application to be used is limited.

なお、厚みが1〜8mmの押出発泡体を複数枚積重ねた高さが30mm未満の場合には、熱処理時間が短くなるという観点からは生産性に優れているが、一回の処理枚数が少なくなるという観点からは、生産性が悪くなる虞があるので、熱処理時間が短くて済む利点と、処理枚数が少なくなる欠点のバランスを考慮する必要がある。   In addition, in the case where the height of a stack of a plurality of extruded foams having a thickness of 1 to 8 mm is less than 30 mm, it is excellent in productivity from the viewpoint of shortening the heat treatment time, but the number of sheets processed at one time is small. From the point of view, productivity may be deteriorated, so it is necessary to consider the balance between the advantage of shortening the heat treatment time and the disadvantage of reducing the number of processed sheets.

以上、押出発泡体の厚みが1〜8mmの場合の熱処理を説明したが、次に該厚みが1〜8mm以外の場合について説明する。
押出発泡体の厚みが8mmを超え30mm以下の場合、幅及び長さの最小寸法が30〜300mmとなるように断裁して熱処理することが上記と同じ効果が得られる観点から好ましい。また、押出発泡体の厚みが30mmを超える押出発泡体を熱処理する場合には、厚みを30〜300mmに断裁しても構わないが幅及び長さの最小寸法が30〜300mmとなるように断裁して熱処理することが反りが少ない発泡体を得ることができるので好ましい。
The heat treatment when the thickness of the extruded foam is 1 to 8 mm has been described above. Next, the case where the thickness is other than 1 to 8 mm will be described.
When the thickness of the extruded foam is more than 8 mm and not more than 30 mm, it is preferable from the viewpoint of obtaining the same effect as described above that it is cut and heat-treated so that the minimum dimensions of the width and length are 30 to 300 mm. In addition, when heat-treating an extruded foam having a thickness of more than 30 mm, the thickness may be cut to 30 to 300 mm, but the width and length are cut to be 30 to 300 mm. Then, heat treatment is preferable because a foam with less warpage can be obtained.

尚、本明細書でいう幅及び長さの最小寸法とは、押出発泡体の正面図、側面図及び平面図上の各々に現れる面積を求め、その中の最大の面積を選び、その最大の面積が現れている図面上で、押出発泡体を包摂する長方形(正方形を含む)であって、面積が最小となるものを描き、その長方形(正方形を含む)の短い方の辺の長さをいう。具体的には、押出発泡体が平板状の場合、その平面図上に現れる面積が最大の面積となり、その平面図上に現れる図形そのものが押出発泡体を包摂する長方形となり、該長方形の短辺が最小寸法となる。また、押出発泡体が薄い円柱状の場合、その平面図上に現れる面積が最大の面積となり、その平面図上に現れる円形を包摂する正方形を描き、その正方形の辺の長さ(即ち、円形の直径)が最小寸法となる。   In addition, the minimum dimensions of the width and length referred to in this specification are the areas appearing on the front view, side view, and plan view of the extruded foam, and the maximum area is selected and the maximum dimension is selected. On the drawing where the area appears, draw a rectangle (including a square) that contains the extruded foam that has the smallest area, and specify the length of the shorter side of the rectangle (including the square). Say. Specifically, when the extruded foam is flat, the area appearing on the plan view is the maximum area, and the figure itself appearing on the plan view is a rectangle that encompasses the extruded foam, and the short side of the rectangle Is the minimum dimension. In addition, when the extruded foam is a thin cylinder, the area appearing on the plan view is the maximum area, and a square that encompasses the circle appearing on the plan view is drawn, and the length of the side of the square (ie, the circle) Diameter) is the minimum dimension.

また、押出発泡体を複数枚積み重ねた、幅、長さ及び高さの最小寸法とは、積層物の正面図、側面図及び平面図上の各々に現れる面積を求め、その中の最小の面積を選び、その最小の面積が現れている図面上で、押出発泡体を包摂する長方形(正方形を含む)であって、面積が最小となるものを描き、その長方形(正方形を含む)の短い方の辺の長さをいう。具体的には、積層物が直方体の場合、その正面図上に現れる面積が最小の面積となり、その正面図上に現れる図形そのものが押出発泡体を包摂する長方形となり、該長方形の短辺が最小寸法となる。また、積層物が円柱状の場合、平面図上に現れる面積が最小であれば、その平面図上に現れる円形を包摂する正方形を描き、その正方形の辺の長さ(即ち、円形の直径)が最小寸法となる。また、正面図(又は側面図)上に現れる面積が最小であれば、正面図(又は側面図)上に現れる長方形(正方形を含む)であって、面積が最小となるものを描き、その長方形(正方形を含む)の短い方の辺の長が最小寸法となる。   In addition, the minimum dimensions of width, length, and height obtained by stacking a plurality of extruded foams are the areas that appear on the front, side, and plan views of the laminate, and the minimum area among them On the drawing where the smallest area appears, draw the rectangle (including the square) that will contain the extruded foam and have the smallest area, and the shorter of the rectangle (including the square) The length of the side. Specifically, when the laminate is a rectangular parallelepiped, the area appearing on the front view is the smallest area, and the figure itself appearing on the front view is a rectangle that includes the extruded foam, and the short side of the rectangle is the smallest. It becomes a dimension. In addition, when the laminate is cylindrical, if the area that appears on the plan view is the smallest, a square that encompasses the circle that appears on the plan view is drawn, and the length of the side of the square (ie, the diameter of the circle) Is the minimum dimension. Also, if the area that appears on the front view (or side view) is the smallest, a rectangle (including a square) that appears on the front view (or side view) that has the smallest area is drawn. The length of the shorter side (including the square) is the minimum dimension.

熱処理工程で押出発泡体を熱処理する場合、鉄板などの金属板の上に押出発泡体を積重ね、その最上面及び/又は最下面に鉄板などの金属板を置くことが好ましい。このようにすると、熱により発泡体の反りや変形を抑制することができる。また、熱伝導が促進され、生産効率が良化する。金属板の厚さは反りや変形を抑制できれば特に限定されない。また、金属板の重さは特に限定しないが、面圧で2g/cm以上20g/cm以下のものが好ましく使用される。20g/cm超では、重すぎて作業性が悪くなり、2g/cm未満では、特に反りや変形の抑制に効果が低い。 When heat-treating the extruded foam in the heat treatment step, it is preferable to stack the extruded foam on a metal plate such as an iron plate and place a metal plate such as an iron plate on the uppermost surface and / or the lowermost surface thereof. If it does in this way, the curvature and deformation | transformation of a foam can be suppressed with a heat | fever. In addition, heat conduction is promoted and production efficiency is improved. The thickness of the metal plate is not particularly limited as long as warpage and deformation can be suppressed. The weight of the metal plate is not particularly limited, but a surface pressure of 2 g / cm 2 or more and 20 g / cm 2 or less is preferably used. If it exceeds 20 g / cm 2, it is too heavy and workability is poor, and if it is less than 2 g / cm 2 , the effect is particularly low in suppressing warpage and deformation.

次に、本発明の芳香族ポリカーボネート系樹脂発泡体について説明する。該発泡体は、押出発泡方法により製造された押出発泡体を熱処理することにより得られたものである。
本発明の発泡体の厚みは1〜8mmである。該発泡体の厚みが1mm未満の場合、曲げ強度、圧縮強度などの機械的強度が弱く、自動車の内装材基材として使用できない虞がある。この観点から1.5mm以上が好ましく、2mm以上がより好ましい。一方、厚みが8mm超の場合、自動車の内装材基材としては厚すぎる虞がある。この観点から6mm以下が好ましく、5mm以下がより好ましい。
Next, the aromatic polycarbonate resin foam of the present invention will be described. The foam is obtained by heat-treating an extruded foam produced by an extrusion foaming method.
The thickness of the foam of the present invention is 1 to 8 mm. When the thickness of the foam is less than 1 mm, the mechanical strength such as bending strength and compressive strength is weak, and there is a possibility that it cannot be used as an automobile interior material base material. From this viewpoint, it is preferably 1.5 mm or more, and more preferably 2 mm or more. On the other hand, if the thickness exceeds 8 mm, it may be too thick as an automobile interior material base material. From this viewpoint, 6 mm or less is preferable, and 5 mm or less is more preferable.

厚みが1〜8mmの発泡体は、厚み1〜8mmの押出発泡体を熱処理することにより得ることができる。   A foam having a thickness of 1 to 8 mm can be obtained by heat-treating an extruded foam having a thickness of 1 to 8 mm.

本発明の発泡体の見掛け密度は0.12〜0.6g/cmであり、好ましくは0.15〜0.5g/cmである。見掛け密度が0.12g/cm未満の場合、見掛け密度が低すぎて機械的強度が弱く、用途が限定され、例えば自動車の内装材基材や建築材料として使用できない虞がある。上記観点から好ましくは0.15g/cm以上が好ましく、0.2g/cm以上がより好ましい。一方、見掛け密度が0.6g/cm超の場合、軽量性が損なわれ、例えば、自動車の内装材基材や建築材料とした場合、重くなりすぎる虞があることや、断熱性が失われる虞もある。この観点から0.5g/cm以下が好ましく、0.45g/cm以下がより好ましい。 The apparent density of the foam of the present invention is 0.12 to 0.6 g / cm 3 , preferably 0.15 to 0.5 g / cm 3 . When the apparent density is less than 0.12 g / cm 3 , the apparent density is too low, the mechanical strength is weak, and the application is limited. For example, the apparent density may not be used as an automobile interior material base material or a building material. From the above viewpoint, 0.15 g / cm 3 or more is preferable, and 0.2 g / cm 3 or more is more preferable. On the other hand, when the apparent density is more than 0.6 g / cm 3 , the lightness is impaired. For example, when it is used as an automobile interior material base material or a building material, there is a possibility that it becomes too heavy, or heat insulation is lost. There is also a fear. Preferably 0.5 g / cm 3 or less from the viewpoint, 0.45 g / cm 3 or less is more preferable.

見掛け密度が0.12〜0.6g/cmの発泡体は、0.12〜0.6g/cmの押出発泡体を熱処理することにより得ることができる。 Foam apparent density 0.12~0.6g / cm 3 can be obtained by heat treating the extruded foam 0.12~0.6g / cm 3.

本発明における発泡体の連続気泡率は60%以下であり、好ましくは50%以下である。連続気泡率が60%超の場合、一定のたわみ量の荷重が小さくなる等の剛性が低下する虞れや断熱性が低下する虞れがある。特に、自動車の内装材基材や建築材料として使用できない虞がある。なお、連続気泡率の下限は特に限定されないが0%が最も好ましい。   The open cell ratio of the foam in the present invention is 60% or less, preferably 50% or less. When the open cell ratio is more than 60%, there is a fear that rigidity such as a load of a certain amount of deflection becomes small or heat insulation may be lowered. In particular, there is a possibility that it cannot be used as an automobile interior material base material or a building material. The lower limit of the open cell ratio is not particularly limited, but 0% is most preferable.

本発明の発泡体においては、[ガラス転移温度(Tg:℃)−40℃]で30時間の加熱試験後の寸法変化率が0.15%以下であり、好ましくは0.1%以下、より好ましくは0.08%以下、最も好ましくは0%である。この構成は、押出発泡体を前記熱処理することにより達成されたものであり、この構成を満たす発泡体は、高温度環境下での寸法変化が小さいものであり、例えば、自動車の内装材基材等の耐熱性を必要とされる用途に対して好ましく使用できるものである。該寸法変化率が0.15%超の発泡体は、高温雰囲気下例えば、自動車の内装材基材等として使用できない虞がある。尚、[ガラス転移温度(Tg:℃)−40℃]とした理由は、夏場の室内及び車内において最高温度が80℃となることから、予測を超えて温度が上がった場合であっても発泡体が変形しないことを、余裕をもって確認するためである。また、30時間とした理由も十分な時間をかけて試験することで、高温下でも耐えられることを確認するためである。   In the foam of the present invention, the rate of dimensional change after a 30-hour heating test at [glass transition temperature (Tg: ° C.) − 40 ° C.] is 0.15% or less, preferably 0.1% or less. Preferably it is 0.08% or less, Most preferably, it is 0%. This configuration is achieved by heat-treating the extruded foam, and the foam satisfying this configuration has a small dimensional change under a high temperature environment, for example, an automobile interior material base material. It can be preferably used for applications that require heat resistance. There is a possibility that the foam having a dimensional change rate of more than 0.15% cannot be used as, for example, an automobile interior material base material in a high temperature atmosphere. The reason for the [glass transition temperature (Tg: ° C.) − 40 ° C.] is that the maximum temperature is 80 ° C. indoors and in the car in summer, so even if the temperature rises beyond prediction, foaming occurs. This is to confirm that the body does not deform with a margin. Moreover, the reason for setting it to 30 hours is to confirm that it can withstand even under high temperature by conducting a test with sufficient time.

本発明の発泡体においては、125℃のヒートサグ試験にて測定される垂下がり量が5mm以下が好ましく、より好ましくは2mm以下である。一方、下限は0mmであることが最も好ましい。該ヒートサグ値が5mm超の発泡体は、高温度環境では使用することができない虞がある。即ち、ヒートサグ試験は、特定寸法の平板を片持ち梁の状態で高温雰囲気下に置き、垂れ下がり量を測定する試験である。この値が小さい発泡体は、125℃の雰囲気下での変形が小さいものであり、特に、自動車内装材基材等の耐熱性を必要とされる用途に対して好適に使用されるものである。   In the foam of the present invention, the amount of sag measured by a heat sag test at 125 ° C. is preferably 5 mm or less, more preferably 2 mm or less. On the other hand, the lower limit is most preferably 0 mm. The foam having a heat sag value exceeding 5 mm may not be used in a high temperature environment. In other words, the heat sag test is a test in which a flat plate having a specific dimension is placed in a cantilevered state in a high temperature atmosphere and the amount of sag is measured. A foam having a small value has a small deformation under an atmosphere of 125 ° C., and is particularly suitable for an application requiring heat resistance such as an automobile interior material base material. .

本明細書において、ヒートサグ試験はJIS K7195(1993年)に準拠して行うものとする。
具体的には、発泡体から切り出した10mm×130mm(厚みは、製造された発泡体の厚み)の平板状試験片の一端を固定し、他端に幅10mm、7.5gの板鉛を巻き付けた状態で一時間、125℃雰囲気下に放置した後、垂れ下がり量を測定する。尚、125℃でヒートサグ試験を行なう理由としては、夏場の室内及び車内において最高温度が80℃となることから、予測を超えて温度が上がった場合であっても発泡体が変形しないことを、余裕をもって確認するためである。尚、長手方向が押出方向となる試験片、幅方向となる試験片の各々を切り出し、長手方向と押出方向の内、値が大きい方をヒートサグ試験の垂れ下がり量として採用する。
In this specification, the heat sag test is performed in accordance with JIS K7195 (1993).
Specifically, one end of a 10 mm × 130 mm (thickness is the thickness of the manufactured foam) cut out from the foam is fixed, and the other end is wrapped with 10 mm in width and 7.5 g of plate lead. After standing in an atmosphere at 125 ° C. for 1 hour, the amount of sag is measured. The reason for conducting the heat sag test at 125 ° C. is that the maximum temperature is 80 ° C. indoors and in the car in the summer, so that the foam does not deform even when the temperature rises beyond prediction, This is to confirm with a margin. A test piece whose longitudinal direction is the extrusion direction and a test piece whose width direction is each cut out, and the larger one of the longitudinal direction and the extrusion direction is adopted as the amount of sag in the heat sag test.

また、本明細書において、発泡体の見掛け密度、発泡体の厚みは次のように測定する。
発泡体の見掛け密度の測定は、JIS K 6767(1994年)に準拠して行なう。但し、発泡体が発泡層に未発泡の樹脂層が積層されてなる場合には、樹脂層を剥がした試料について測定するものとする。
発泡体に樹脂層が積層されてなる場合であって、樹脂層を容易に剥がすことができない場合、厚み、見掛け密度は次のように測定する。
まず、発泡体から、無作為に選んだ地点において、発泡体の押出方向(以下、MDともいう)と一致する方向に50cm、且つ発泡体のMDと直交する幅方向(以下、TDともいう)と一致する方向に50cmの正方形のサンプルを切り出す。尚、この際、TDの中央部とサンプル中央部が一致するようにする。尚、サンプルサイズがこれより小さい場合は最大サイズにて測定する。
Moreover, in this specification, the apparent density of a foam and the thickness of a foam are measured as follows.
The apparent density of the foam is measured according to JIS K 6767 (1994). However, when the foam is formed by laminating an unfoamed resin layer on the foamed layer, the measurement is performed on the sample from which the resin layer has been peeled off.
When the resin layer is laminated on the foam and the resin layer cannot be easily peeled off, the thickness and the apparent density are measured as follows.
First, at a point randomly selected from the foam, the width direction (hereinafter also referred to as TD) is 50 cm in the direction coinciding with the extrusion direction of the foam (hereinafter also referred to as MD) and orthogonal to the MD of the foam. A 50 cm square sample is cut out in a direction consistent with. At this time, the central part of the TD and the central part of the sample are made to coincide. If the sample size is smaller than this, measure at the maximum size.

次に、サンプルの幅方向(TD)のいずれか一方の切断面において、片方の端部を基準として5cm間隔で他方の端部に至るまでのTD両端部を除く合計九箇所の地点について、顕微鏡で撮影し、発泡体全体の厚みと発泡層の厚みを、その写真より求める。
尚、後述の計算には、上記測定によって得られた小数点以下2桁目までの数値を使用するが、請求範囲中の発泡層の厚みは、小数点以下2桁目を四捨五入して小数点以下1桁まで求める。
発泡体の厚み(mm)は、上記9点の測定値の相加平均値として求める。また、樹脂層の厚み(mm)は、発泡体の厚みの上記9点の測定値の相加平均値(mm)から発泡層の相加平均値(mm)を引くことによって得られる値をもって代用する。
Next, on any one of the cut surfaces in the width direction (TD) of the sample, a total of nine points excluding both ends of the TD up to the other end at intervals of 5 cm with respect to one end as a reference. The thickness of the whole foam and the thickness of the foam layer are obtained from the photograph.
In the calculation described later, the numerical value up to the second decimal place obtained by the above measurement is used. The thickness of the foam layer in the claims is rounded off to the first decimal place. To ask.
The thickness (mm) of the foam is obtained as an arithmetic average value of the measured values at the nine points. Further, the thickness (mm) of the resin layer is a value obtained by subtracting the arithmetic average value (mm) of the foam layer from the arithmetic average value (mm) of the measured values of the nine points of the foam thickness. To do.

次に、サンプルの重量をg単位まで測定し、その測定値を10000cm当たりの発泡体の重量に換算し、発泡体の坪量(g/cm)を求める。樹脂層の密度(例えば、ポリカーボネート樹脂の場合は1.2g/cmである。)に上記樹脂層の厚み(mm)を掛算することによって、樹脂層の坪量(g/cm)を求める。また、発泡体の坪量(g/cm)から樹脂層の坪量(g/cm)を引算することによって、発泡層の坪量(g/cm)を求める。 Next, to measure the weight of the sample to g units, converts the measured value to the weight of 10000 cm 2 per foam, obtains a basis weight of foam (g / cm 2). The basis weight (g / cm 2 ) of the resin layer is obtained by multiplying the density of the resin layer (for example, 1.2 g / cm 3 in the case of polycarbonate resin) by the thickness (mm) of the resin layer. . Further, by subtracting the basis weight of the resin layer (g / cm 2) from the basis weight of foam (g / cm 2), determined basis weight of the foam layer (g / cm 2).

本明細書における連続気泡率の測定は、ASTM D−2856−70(手順C)に準じて次の様に行なう。
東芝ベックマン株式会社製の空気比較式比重計930型を使用して測定試料の真の体積Vx(cm)を求め、測定試料の外寸から見掛けの体積Va(cm)を求め、下記(2)式により連続気泡率(%)を計算する。
尚、真の体積Vxとは、測定試料中の樹脂の体積と独立気泡部分の体積との和である。
連続気泡率(%)={(Va−Vx)/(Va−W/ρ)}×100・・・(2)
Wは測定試料の重量(g)、ρは発泡体を構成する基材の密度(g/cm)である。
尚、試験片を構成する樹脂の密度ρ(g/cm)及び試験片の重量W(g)は、発泡体試験片を加熱プレスにより気泡を脱泡させてから冷却する操作を行い、得られた試験片から求めることができる。
尚、少なくとも片面に樹脂層がある場合も、上記した方法と同様に測定することができる。
The measurement of the open cell ratio in this specification is performed as follows according to ASTM D-2856-70 (procedure C).
The true volume Vx (cm 3 ) of the measurement sample is obtained using an air comparison type hydrometer 930 type manufactured by Toshiba Beckman Co., Ltd., and the apparent volume Va (cm 3 ) is obtained from the outer dimensions of the measurement sample, and the following ( 2) Calculate the open cell ratio (%) by the equation.
The true volume Vx is the sum of the volume of the resin in the measurement sample and the volume of the closed cell portion.
Open cell ratio (%) = {(Va−Vx) / (Va−W / ρ)} × 100 (2)
W is the weight (g) of the measurement sample, and ρ is the density (g / cm 3 ) of the base material constituting the foam.
The density ρ (g / cm 3 ) of the resin constituting the test piece and the weight W (g) of the test piece are obtained by performing the operation of cooling the foam test piece after defoaming the bubbles with a hot press. It can be obtained from the obtained test piece.
In addition, even when there is a resin layer on at least one side, it can be measured in the same manner as described above.

本発明の芳香族ポリカーボネート系樹脂発泡体は、耐熱性に優れ、更に耐老化性、耐水性等が高く、電気的及び機械的性質も良いから、自動車や建造物の内装材として好適に使用されるものである。該発泡体は、例えば、特に、車両荷台覆い芯材、所謂、トノカバー芯材等や自動車のドア、自動車の天井等の自動車内装材基材として好ましく用いられるものである。自動車内装材とは、目で見える表皮材と表皮材の裏打ち材とから構成され、ここでいう自動車内装材基材とは、裏打ち材のことをいう。また、単に板状発泡体だけでなく公知の方法により熱成形されてなる凹凸部を有する発泡体であっても構わない。   The aromatic polycarbonate resin foam of the present invention is excellent in heat resistance, has high aging resistance, water resistance, etc., and has good electrical and mechanical properties, and is therefore suitably used as an interior material for automobiles and buildings. Is. The foam is particularly preferably used as a vehicle interior material base material such as a vehicle carrier covering core material, a so-called tonneau cover core material, an automobile door, an automobile ceiling, and the like. The automobile interior material is composed of a visible skin material and a backing material of the skin material, and the automobile interior material base material here refers to a backing material. Moreover, it may be not only a plate-like foam but also a foam having an uneven portion formed by thermoforming by a known method.

以下、本発明を実施例に基づいて更に具体的に説明する。但し、本発明は実施例によって限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the examples.

<芳香族ポリカーボネート系樹脂押出発泡体の製造>
押出発泡体(1)
押出機内でポリカーボネート系樹脂(三菱エンジニアリングプラスチックス株式会社製、品名「ノバレックス M7027B」ガラス転移温度(Tg)148℃)100重量部に対して発泡剤としてイソブタン30重量%、ノルマルブタン70重量%の割合で混合されている混合ブタン0.47重量部と、溶融張力を増加させる目的のために増粘剤として三菱レイヨン株式会社製、品名「メタブレンP501A」0.56重量部と、松村産業株式会社品名「ハイフィラー#200」1重量部とを溶融混練して樹脂温度235℃の溶融混練物に調整した後、溶融混練物を押出機先端に取り付けたサーキュラーダイの環状リップより押出発泡させてチューブ状発泡体を得、このチューブ状発泡体の内部に空気を出し入れして一定の大きさのバルーン状となるように調整して、このバルーン状発泡体を引取りながら、その内面が接着可能な状態にあるうちに30℃に温調された押圧ロールで挟み込み内面を貼り合わせて芳香族ポリカーボネート系樹脂押出発泡体を得た。
この時得られた押出発泡体は、厚み3.0mm、見掛け密度0.4g/cm、幅860mmであった。
<Manufacture of aromatic polycarbonate resin extruded foam>
Extruded foam (1)
In the extruder, 30% by weight of isobutane and 70% by weight of normal butane as a blowing agent with respect to 100 parts by weight of a polycarbonate-based resin (manufactured by Mitsubishi Engineering Plastics Co., Ltd., product name “Novalex M7027B” glass transition temperature (Tg) 148 ° C.) 0.47 parts by weight of mixed butane mixed in proportion, 0.56 parts by weight of “Maybrene P501A” manufactured by Mitsubishi Rayon Co., Ltd. as a thickener for the purpose of increasing melt tension, and Matsumura Sangyo Co., Ltd. After melt-kneading 1 part by weight of the product name “High Filler # 200” to prepare a melt-kneaded product having a resin temperature of 235 ° C., the melt-kneaded product is extruded and foamed from an annular lip of a circular die attached to the tip of the extruder. A balloon of a certain size is obtained by taking air into and out of the tubular foam. Aromatic polycarbonate-based by sandwiching the inner surface with a pressure roll adjusted to 30 ° C. while the inner surface of the balloon-like foam is in an adhesive state while taking the balloon-like foam. A resin extruded foam was obtained.
The extruded foam obtained at this time had a thickness of 3.0 mm, an apparent density of 0.4 g / cm 3 , and a width of 860 mm.

押出発泡体(2)
押出機内で実施例1と同じポリカーボネート系樹脂100重量部に対して発泡剤としてイソブタン30重量%、ノルマルブタン70重量%の割合で混合されている混合ブタン0.47重量部と、増粘剤として三菱レイヨン株式会社製、品名「メタブレンP501A」0.56重量部と、松村産業株式会社品名「ハイフィラー#200」1重量部とを溶融混練して樹脂温度285℃の発泡層用溶融混練物に調整し、同時に他の押出機内でポリカーボネート系樹脂(三菱エンジニアリングプラスチックス株式会社製、品名「ノバレックス M7027B」ガラス転移温度(Tg)148℃)を溶融混練し樹脂温度285℃の樹脂層用溶融混練物に調整し、発泡層用溶融混練物と樹脂層用溶融混練物を共押出用サーキュラーダイに供給して、発泡層用溶融混練物の外側に樹脂層用溶融混練物を合流させた後、共押出用サーキュラーダイの環状リップより押出発泡させてチューブ状発泡体を得、このチューブ状発泡体の内部に空気を出し入れして一定の大きさのバルーン状となるように調整して、このバルーン状発泡体を引取りながら、その内面が接着可能な状態にあるうちに30℃に温調された押圧ロールで挟み込み内面を貼り合わせて芳香族ポリカーボネート系樹脂押出発泡体を得た。
この時得られた押出発泡体は、幅630mm、全体厚み3.0mm、発泡層の両面に積層された樹脂層の厚み各々0.1mm、発泡層の厚み2.8mm、全体の見掛け密度0.4g/cm、発泡層の掛け密度0.35g/cmであった。
Extruded foam (2)
In the extruder, 0.47 parts by weight of mixed butane mixed in a ratio of 30% by weight of isobutane and 70% by weight of normal butane as a blowing agent with respect to 100 parts by weight of the same polycarbonate resin as in Example 1, and as a thickener Mitsubishi Rayon Co., Ltd., product name “Metabrene P501A” 0.56 parts by weight and Matsumura Sangyo Co., Ltd. product name “High Filler # 200” 1 part by weight are melt-kneaded to obtain a melt-kneaded product for a foam layer having a resin temperature of 285 ° C. At the same time, melt and knead polycarbonate resin (product name “Novalex M7027B” glass transition temperature (Tg) 148 ° C.) manufactured by Mitsubishi Engineering Plastics Co., Ltd.) in another extruder and melt knead for resin layer 285 ° C. The foamed layer melt-kneaded product and the resin layer melt-kneaded product are supplied to the co-extrusion circular die and used for the foamed layer. After the melt-kneaded product for the resin layer is joined to the outside of the melt-kneaded product, it is extruded and foamed from the annular lip of the coextrusion circular die to obtain a tubular foam, and air is taken in and out of the tubular foam. The balloon-shaped foam is taken up, and the inner surface is sandwiched by a pressure roll adjusted to 30 ° C. while the inner surface is in an adhesive state while the balloon-shaped foam is taken up. By bonding, an aromatic polycarbonate resin extruded foam was obtained.
The extruded foam obtained at this time had a width of 630 mm, an overall thickness of 3.0 mm, a thickness of the resin layer laminated on both sides of the foamed layer of 0.1 mm, a thickness of the foamed layer of 2.8 mm, and an overall apparent density of 0. It was 4 g / cm 3 and the applied density of the foamed layer was 0.35 g / cm 3 .

押出発泡体(3)
押出機内でポリカーボネート系樹脂(三菱エンジニアリングプラスチックス株式会社製、品名「ノバレックス M7027B」ガラス転移温度(Tg)148℃)100重量部に対して発泡剤としてイソブタン30重量%、ノルマルブタン70重量%の割合で混合されている混合ブタン1.6重量部と、溶融張力を増加させる目的のために増粘剤として三菱レイヨン株式会社製、品名「メタブレンP501A」0.56重量部と、松村産業株式会社品名「ハイフィラー#200」1重量部とを溶融混練して樹脂温度232℃の溶融混練物に調整した後、溶融混練物を押出機先端に取り付けたサーキュラーダイの環状リップより押出発泡させてチューブ状発泡体を得、このチューブ状発泡体の内部に空気を出し入れして一定の大きさのバルーン状となるように調整して、このバルーン状発泡体を引取りながら、その内面が接着可能な状態にあるうちに30℃に温調された押圧ロールで挟み込み内面を貼り合わせて芳香族ポリカーボネート系樹脂押出発泡体を得た。
この時得られた押出発泡体は、厚み3.0mm、見掛け密度0.2g/cm、幅860mmであった。
Extruded foam (3)
In the extruder, 30% by weight of isobutane and 70% by weight of normal butane as a blowing agent with respect to 100 parts by weight of a polycarbonate-based resin (manufactured by Mitsubishi Engineering Plastics Co., Ltd., product name “Novalex M7027B” glass transition temperature (Tg) 148 ° C.) 1.6 parts by weight of mixed butane mixed in a proportion, 0.56 parts by weight of “Metablene P501A” manufactured by Mitsubishi Rayon Co., Ltd. as a thickener for the purpose of increasing melt tension, and Matsumura Sangyo Co., Ltd. After melt-kneading 1 part by weight of the product name “High Filler # 200” to prepare a melt-kneaded product having a resin temperature of 232 ° C., the melt-kneaded product is extruded and foamed from an annular lip of a circular die attached to the tip of the extruder. A foam-like foam is obtained, and air is taken in and out of the tube-like foam to form a balloon of a certain size. While taking this balloon-like foam, the aromatic polycarbonate resin is obtained by sandwiching the inner surface with a pressure roll adjusted to 30 ° C. while the inner surface is in an adhesive state. An extruded foam was obtained.
The extruded foam obtained at this time had a thickness of 3.0 mm, an apparent density of 0.2 g / cm 3 , and a width of 860 mm.

押出発泡体(4)
押出機内でポリカーボネート系樹脂(出光興産株式会社製、品名「タフロンIB2500」ガラス転移温度(Tg)151℃)100重量部に対して発泡剤としてのn−ペンタン1.16重量部と、増粘剤として三菱レイヨン株式会社製、品名「メタブレンP501A」0.56重量部と、気泡調整剤として松村産業株式会社品名「ハイフィラー#200」1重量部とを溶融混練して樹脂温度235℃の溶融混練物に調整した後、溶融混練物を押出機先端に取り付けたサーキュラーダイの環状リップより押出発泡させてチューブ状発泡体を得、このチューブ状発泡体の内部に空気を出し入れして一定の大きさのバルーン状となるように調整して、このバルーン状発泡体を引取りながら、その内面が接着可能な状態にあるうちに30℃に温調された押圧ロールで挟み込み内面を貼り合わせて芳香族ポリカーボネート系樹脂押出発泡体を得た。
この時得られた押出発泡体は、厚み4.0mm、見掛け密度0.3g/cm、幅860mmであった。
Extruded foam (4)
1.16 parts by weight of n-pentane as a foaming agent with respect to 100 parts by weight of polycarbonate resin (made by Idemitsu Kosan Co., Ltd., product name “Taflon IB2500” glass transition temperature (Tg) 151 ° C.) in the extruder, and a thickener As a foam control agent, 0.56 parts by weight of Mitsubishi Rayon Co., Ltd., product name “Metabrene P501A” and 1 part by weight of Matsumura Sangyo Co., Ltd. product name “High Filler # 200” are melt-kneaded to obtain a resin temperature of 235 ° C. After adjusting to a product, the melt-kneaded product is extruded and foamed from an annular lip of a circular die attached to the tip of the extruder to obtain a tubular foam, and air is taken in and out of the tubular foam to a certain size. The temperature was adjusted to 30 ° C. while the inner surface of the balloon-like foam was in an adhesive state, while adjusting the shape so that the balloon-like foam was taken. It was bonded pinching inner surface with a pressing roll to obtain an aromatic polycarbonate resin extruded foam.
The extruded foam obtained at this time had a thickness of 4.0 mm, an apparent density of 0.3 g / cm 3 , and a width of 860 mm.

押出発泡体(5)
押出機内でポリカーボネート系樹脂(出光興産株式会社製、品名「タフロンIB2500」ガラス転移温度(Tg)151℃)100重量部に対して発泡剤としてのn−ペンタン1.16重量部と、増粘剤として三菱レイヨン株式会社製、品名「メタブレンP501A」0.56重量部と、気泡調整剤として松村産業株式会社品名「ハイフィラー#200」1重量部とを溶融混練して樹脂温度238℃の溶融混練物に調整した後、溶融混練物を押出機先端に取り付けたサーキュラーダイの環状リップより押出発泡させてチューブ状発泡体を得、このチューブ状発泡体の内部に空気を出し入れして一定の大きさのバルーン状となるように調整して、このバルーン状発泡体を引取りながら、その内面が接着可能な状態にあるうちに30℃に温調された押圧ロールで挟み込み内面を貼り合わせて芳香族ポリカーボネート系樹脂押出発泡体を得た。
この時得られた押出発泡体は、厚み4.0mm、見掛け密度0.3g/cm、幅860mmであった。
Extruded foam (5)
1.16 parts by weight of n-pentane as a foaming agent with respect to 100 parts by weight of polycarbonate resin (made by Idemitsu Kosan Co., Ltd., product name “Taflon IB2500” glass transition temperature (Tg) 151 ° C.) in the extruder, and a thickener As a foam control agent, 0.56 parts by weight manufactured by Mitsubishi Rayon Co., Ltd., and 1 part by weight of Matsumura Sangyo Co., Ltd. product name “High Filler # 200” are melt-kneaded to obtain a resin temperature of 238 ° C. After adjusting to a product, the melt-kneaded product is extruded and foamed from an annular lip of a circular die attached to the tip of the extruder to obtain a tubular foam, and air is taken in and out of the tubular foam to a certain size. The temperature was adjusted to 30 ° C. while the inner surface of the balloon-like foam was in an adhesive state, while adjusting the shape so that the balloon-like foam was taken. It was bonded pinching inner surface with a pressing roll to obtain an aromatic polycarbonate resin extruded foam.
The extruded foam obtained at this time had a thickness of 4.0 mm, an apparent density of 0.3 g / cm 3 , and a width of 860 mm.

実施例1〜6
表1に示す種類の押出発泡体を幅200mm、長さ1200mmに断裁し、養生室内において、厚み4mm、幅250mm、長さ2260mmの鉄板の上に積高さが900mmになるように積重ね、その上に、前記鉄板と同じ寸法の鉄板を重置した。そのときの鉄板面積と重さより、面圧7.4g/cmとなるようにターンバックルで固定した。次に表1に示す温度まで養生室内の温度を上昇させ、表1に示す時間その温度に保持した。次に、常温まで表1に示す冷却時間をかけて冷却し、芳香族ポリカーボネート系樹脂発泡体を得た。
Examples 1-6
The extruded foam of the type shown in Table 1 is cut to a width of 200 mm and a length of 1200 mm, and stacked in a curing chamber on a steel plate having a thickness of 4 mm, a width of 250 mm, and a length of 2260 mm so that the stack height is 900 mm. An iron plate having the same dimensions as the iron plate was placed on top. From the iron plate area and weight at that time, it fixed with the turnbuckle so that it might become surface pressure 7.4g / cm < 2 >. Next, the temperature in the curing chamber was raised to the temperature shown in Table 1, and maintained at that temperature for the time shown in Table 1. Next, it cooled over the cooling time shown in Table 1 to normal temperature, and obtained the aromatic polycarbonate-type resin foam.

比較例1〜3
表1に示した押出発泡体を用いて熱処理しないこと以外は、実施例1と同様に芳香族ポリカーボネート系樹脂発泡体を得た。
Comparative Examples 1-3
An aromatic polycarbonate resin foam was obtained in the same manner as in Example 1 except that the extruded foam shown in Table 1 was not heat-treated.

比較例4
表1に示した押出発泡体を用いて加熱温度が100℃としたこと以外は、実施例1と同様に芳香族ポリカーボネート系樹脂発泡体を得た。
Comparative Example 4
An aromatic polycarbonate resin foam was obtained in the same manner as in Example 1 except that the heating temperature was set to 100 ° C. using the extruded foam shown in Table 1.

比較例5
表1に示した押出発泡体を用いて加熱温度が150℃としたこと以外は、実施例1と同様に芳香族ポリカーボネート系樹脂発泡体を得た。その結果、厚み3.0mmが3.8mmに増加してしまい目的の厚みを得られなかった。
Comparative Example 5
An aromatic polycarbonate-based resin foam was obtained in the same manner as in Example 1 except that the heating temperature was 150 ° C. using the extruded foam shown in Table 1. As a result, the thickness of 3.0 mm increased to 3.8 mm, and the target thickness could not be obtained.

Figure 2006265305
Figure 2006265305

実施例、比較例で得られた発泡体について、厚み、見掛け密度、(Tg−40)℃×30時間の寸法変化率、125℃ヒートサグ値を測定した結果を表1に示す。なお、比較例5では、熱処理条件の加熱温度150℃で厚み方向に二次発泡してしまったので寸法変化率、125℃ヒートサグ値、発泡体強度は測定しなかった。   Table 1 shows the results of measuring the thickness, apparent density, (Tg-40) ° C. × 30 hour dimensional change rate, and 125 ° C. heat sag value for the foams obtained in Examples and Comparative Examples. In Comparative Example 5, secondary foaming occurred in the thickness direction at a heating temperature of 150 ° C. under the heat treatment conditions, so the dimensional change rate, 125 ° C. heat sag value, and foam strength were not measured.

表1における発泡体強度は、以下の通り測定を行い、荷重が高い順に番号を付けた。従って、数値が小さいほど荷重が高かったことを示し、数値が同じ場合、ほぼ同じ荷重であることを示す。
<1mmたわみ荷重の測定方法>
JIS K7171(1994年)の曲げ特性の試験方法に準拠して試験温度23℃、湿度50%RH、試験速度10mm/min、圧子の半径と支持台の半径は5mmとし、支点間距離50mmで行った。試験片は、実施例及び比較例で得られた押出発泡体からサイズ幅25mm、長さ100mmに切り出したものを使用し、温度23℃、湿度50%RH、24時間状態調整した後、押出方向と幅方向各々3点の試験片を測定し大きい値を採用した。得られた1mmたわみ荷重を上記の通り評価した。
The foam strength in Table 1 was measured as follows, and numbers were assigned in descending order of load. Therefore, the smaller the numerical value, the higher the load, and the same numerical value indicates that the load is substantially the same.
<Measurement method of 1mm deflection load>
In accordance with the test method for bending properties of JIS K7171 (1994), the test temperature is 23 ° C., the humidity is 50% RH, the test speed is 10 mm / min, the radius of the indenter and the radius of the support are 5 mm, and the distance between the fulcrums is 50 mm. It was. The test piece was cut out from the extruded foam obtained in Examples and Comparative Examples to a size width of 25 mm and a length of 100 mm, and after adjusting the temperature at 23 ° C., humidity of 50% RH for 24 hours, the extrusion direction Measured three specimens each in the width direction and adopted a large value. The obtained 1 mm deflection load was evaluated as described above.

Claims (6)

芳香族ポリカーボネート系樹脂からなる押出発泡体を、該芳香族ポリカーボネート系樹脂の[ガラス転移温度(Tg:℃)−40℃]以上ガラス転移温度(Tg:℃)以下の温度で加熱してから、[ガラス転移温度(Tg:℃)−100℃]以下に冷却する熱処理工程により芳香族ポリカーボネート系樹脂発泡体を製造する方法であって、該熱処理工程において、得られる該発泡体を[ガラス転移温度(Tg:℃)−40℃]で30時間の加熱試験後の寸法変化率が0.15%以下となるように熱処理することを特徴とする芳香族ポリカーボネート系樹脂発泡体の製造方法。   The extruded foam made of an aromatic polycarbonate resin is heated at a temperature not lower than the glass transition temperature (Tg: ° C.) of the aromatic polycarbonate resin and not higher than the glass transition temperature (Tg: ° C.). [Glass transition temperature (Tg: ° C.) − 100 ° C.] A method for producing an aromatic polycarbonate resin foam by a heat treatment step of cooling to below, wherein the foam obtained is treated with [glass transition temperature] (Tg: ° C.) − 40 ° C.] A method for producing an aromatic polycarbonate resin foam, characterized by heat treatment so that the dimensional change after a 30-hour heating test is 0.15% or less. 該熱処理工程において、厚みが1〜8mm、幅及び長さの最小寸法が30〜300mmの芳香族ポリカーボネート系樹脂押出発泡体を熱処理する、又は厚みが1〜8mmの芳香族ポリカーボネート系樹脂発泡体を複数枚積み重ねた、高さ、幅及び長さの最小寸法が30〜300mmの積層物を熱処理することを特徴とする請求項1に記載の芳香族ポリカーボネート系樹脂発泡体の製造方法。   In the heat treatment step, an aromatic polycarbonate resin foam having a thickness of 1 to 8 mm and a minimum width and length of 30 to 300 mm is heat-treated, or an aromatic polycarbonate resin foam having a thickness of 1 to 8 mm is obtained. 2. The method for producing an aromatic polycarbonate resin foam according to claim 1, wherein a plurality of stacked laminates having a minimum height, width, and length of 30 to 300 mm are heat-treated. 押出発泡方法により製造されてなる厚みが1〜8mm、見掛け密度が0.12〜0.6g/cm、連続気泡率が60%以下の芳香族ポリカーボネート系樹脂発泡体であって、[ガラス転移温度(Tg:℃)−40℃]で30時間の加熱試験後の寸法変化率が0.15%以下であることを特徴とする芳香族ポリカーボネート系樹脂発泡体。 An aromatic polycarbonate-based resin foam having a thickness of 1 to 8 mm, an apparent density of 0.12 to 0.6 g / cm 3 and an open cell ratio of 60% or less produced by an extrusion foaming method, An aromatic polycarbonate-based resin foam having a dimensional change rate of 0.15% or less after a 30-hour heating test at a temperature (Tg: ° C.-40 ° C.). 125℃のヒートサグ試験にて測定される垂下がり量が5mm以下であることを特徴とする請求項3に記載の芳香族ポリカーボネート系樹脂発泡体。   4. The aromatic polycarbonate resin foam according to claim 3, wherein the amount of sag measured by a heat sag test at 125 [deg.] C. is 5 mm or less. 車両荷台覆い芯材として用いられていることを特徴とする請求項3又は4に記載の芳香族ポリカーボネート系樹脂発泡体。   The aromatic polycarbonate-based resin foam according to claim 3 or 4, which is used as a vehicle carrier covering core material. 自動車内装材基材として用いられていることを特徴とする請求項3又は4に記載の芳香族ポリカーボネート系樹脂発泡体。   The aromatic polycarbonate resin foam according to claim 3 or 4, which is used as an automobile interior material base material.
JP2005082288A 2005-03-22 2005-03-22 Heat treatment method for vehicle carrier covering core material and aromatic polycarbonate resin extruded foam Expired - Fee Related JP4596465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082288A JP4596465B2 (en) 2005-03-22 2005-03-22 Heat treatment method for vehicle carrier covering core material and aromatic polycarbonate resin extruded foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082288A JP4596465B2 (en) 2005-03-22 2005-03-22 Heat treatment method for vehicle carrier covering core material and aromatic polycarbonate resin extruded foam

Publications (3)

Publication Number Publication Date
JP2006265305A true JP2006265305A (en) 2006-10-05
JP2006265305A5 JP2006265305A5 (en) 2008-03-21
JP4596465B2 JP4596465B2 (en) 2010-12-08

Family

ID=37201610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082288A Expired - Fee Related JP4596465B2 (en) 2005-03-22 2005-03-22 Heat treatment method for vehicle carrier covering core material and aromatic polycarbonate resin extruded foam

Country Status (1)

Country Link
JP (1) JP4596465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190679A1 (en) * 2022-03-31 2023-10-05 マクセル株式会社 Extrusion-foamed sheet, and inspection method and inspection device for extrusion-foamed sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866953A (en) * 1994-08-30 1996-03-12 Jsp Corp Polycarbonate resin extrusion foamed sheet
JPH10329206A (en) * 1997-06-02 1998-12-15 Jsp Corp Method for thermoforming polycarbonate resin foam sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866953A (en) * 1994-08-30 1996-03-12 Jsp Corp Polycarbonate resin extrusion foamed sheet
JPH10329206A (en) * 1997-06-02 1998-12-15 Jsp Corp Method for thermoforming polycarbonate resin foam sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190679A1 (en) * 2022-03-31 2023-10-05 マクセル株式会社 Extrusion-foamed sheet, and inspection method and inspection device for extrusion-foamed sheet

Also Published As

Publication number Publication date
JP4596465B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
CN110382607B (en) Foam and method for producing the same
JP6218582B2 (en) Method for producing stretched nylon film, method for producing multilayer film, method for producing packaging material, and method for producing battery
EP1749635A2 (en) Hollow foam molding and production method therefor
JP2009242811A5 (en)
JP2011510111A (en) Eco-friendly degradable polypropylene (PP) plastic foam and its manufacturing method
JP2015107583A (en) Multilayer film, package material, and battery
EP2627697B1 (en) High strength extruded thermoplastic polymer foam
JP5732208B2 (en) Manufacturing method of polyester resin foam molding
JP4596465B2 (en) Heat treatment method for vehicle carrier covering core material and aromatic polycarbonate resin extruded foam
CN111194331B (en) Polyolefin resin foam, process for producing the same, and adhesive tape
JPWO2013089081A1 (en) Biaxially stretched nylon film, method for producing biaxially stretched nylon film, and laminate packaging material
WO2013141135A1 (en) Biaxially stretched nylon film, laminated film, laminated packing material, and method of manufacturing a biaxially stretched nylon film
JPS6319232A (en) Preparation of crosslinked polyolefinic resin laminated foamed body
JP4258769B2 (en) Polystyrene resin laminated foam sheet
CN113454149B (en) Polyolefin resin foam sheet and method for producing same
WO2014141963A1 (en) Biaxially stretched nylon coating film, laminate packaging material, and molded body
JP2002243092A (en) Cylindrical foaming body
JP3912701B2 (en) Polystyrene resin laminated foam sheet
JP2004316466A (en) Blade for wind power generation
KR100260077B1 (en) Coextruded polymer film having thermal adhesiveness and the preparation thereof
WO2013137153A1 (en) Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film
JP2014176999A (en) Biaxially-oriented nylon coating film, laminated packaging material, and molding
CN115516015A (en) Polyolefin resin foam sheet and laminate
JP2002036468A (en) Polyolefinic multilayered foam sheet and method for manufacturing the same
JP2006265305A5 (en) Heat treatment method for vehicle carrier covering core material and aromatic polycarbonate resin extruded foam

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

R150 Certificate of patent or registration of utility model

Ref document number: 4596465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees