JP2006264240A - Energy absorbing member - Google Patents

Energy absorbing member Download PDF

Info

Publication number
JP2006264240A
JP2006264240A JP2005088655A JP2005088655A JP2006264240A JP 2006264240 A JP2006264240 A JP 2006264240A JP 2005088655 A JP2005088655 A JP 2005088655A JP 2005088655 A JP2005088655 A JP 2005088655A JP 2006264240 A JP2006264240 A JP 2006264240A
Authority
JP
Japan
Prior art keywords
resin layer
layer
resin
energy absorbing
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005088655A
Other languages
Japanese (ja)
Other versions
JP5077731B2 (en
Inventor
Tomoyuki Shinoda
知行 篠田
Kenichi Yoshioka
健一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005088655A priority Critical patent/JP5077731B2/en
Publication of JP2006264240A publication Critical patent/JP2006264240A/en
Application granted granted Critical
Publication of JP5077731B2 publication Critical patent/JP5077731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy absorbing member capable of maintaining excellent energy absorbing performance as a whole by improving adhesion between a metallic layer and a fiber-reinforced resin layer, in the case of composing the energy absorbing member from a metal/fiber-reinforced resin composite material. <P>SOLUTION: The energy absorbing member composed of the metal/fiber-reinforced resin composite material is made by bonding the metallic layer and the fiber-reinforced resin layer with an intermediate resin layer placed between them and integrating them wherein the intermediate resin layer contains thermoplastic resin particles having an average diameter of 3 to 10 μm and an imidazole silane compound. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属/繊維強化樹脂複合材料からなるエネルギー吸収部材に関し、とくに金属層と繊維強化樹脂層との接着性を向上し、全体として目標とするエネルギー吸収性能を確実に発揮可能なエネルギー吸収部材に関する。   The present invention relates to an energy absorbing member made of a metal / fiber reinforced resin composite material, and in particular, to improve the adhesiveness between a metal layer and a fiber reinforced resin layer, and to achieve energy absorption performance that can reliably exhibit the target energy absorption performance as a whole. It relates to members.

金属と繊維強化樹脂を積層・接着一体化した複合材料は、金属が有する優れた耐衝撃性、導電性等と、繊維強化樹脂が有する優れた軽量性、高力学特性の両方を発現し得る材料として知られている。   A composite material in which metal and fiber reinforced resin are laminated and bonded together is a material that can exhibit both the excellent impact resistance, conductivity, etc. possessed by the metal, and the excellent lightness and high mechanical properties possessed by the fiber reinforced resin. Known as.

とくに、エネルギー吸収部材においては、軽量化の観点から、アルミニウム合金製のエネルギー吸収部材が知られているが、アルミニウム合金が鋼材に比べて、強度、弾性率ともに低いため、エネルギー吸収量が小さいという問題がある。そのため、アルミニウム合金に繊維強化樹脂を接着一体化して、軽量性を維持しつつ、エネルギー吸収性能の向上をはかるようにしたエネルギー吸収部材が知られている。このように繊維強化樹脂を接着一体化してエネルギー吸収量を向上するためには、繊維強化樹脂がエネルギー吸収して破断に至るまで、良好に金属層と接着されていることが要求される。   In particular, as an energy absorbing member, an aluminum alloy energy absorbing member is known from the viewpoint of weight reduction, but the aluminum alloy is lower in strength and elastic modulus than a steel material, so the energy absorption amount is small. There's a problem. Therefore, an energy absorbing member is known in which a fiber reinforced resin is bonded and integrated with an aluminum alloy so as to improve the energy absorbing performance while maintaining light weight. Thus, in order to improve the energy absorption amount by bonding and integrating the fiber reinforced resin, it is required that the fiber reinforced resin is well bonded to the metal layer until it absorbs energy and breaks.

しかしながら、単に金属層と繊維強化樹脂層とを積層・接着して構成した金属/繊維強化樹脂複合材料からなるエネルギー吸収部材においては、金属層と繊維強化樹脂層との間で層間剥離が生じるおそれがあり、目標とする所定のエネルギー吸収性能を発現できないという問題がある。とくに金属層がアルミニウム合金やチタン合金等の難接着金属からなる場合には、層間剥離が生じやすく、接着性を向上させるためには、ケミカルエッチングなどの表面処理を施す必要があり、生産性の悪化、高コストの問題が残されており、実用化に至っていない。   However, in an energy absorbing member composed of a metal / fiber reinforced resin composite material simply formed by laminating and bonding a metal layer and a fiber reinforced resin layer, delamination may occur between the metal layer and the fiber reinforced resin layer. There is a problem that a predetermined energy absorption performance as a target cannot be expressed. In particular, when the metal layer is made of a difficult-to-adhere metal such as an aluminum alloy or a titanium alloy, delamination is likely to occur, and surface treatment such as chemical etching is required to improve the adhesion. The problem of deterioration and high cost remains, and it has not been put into practical use.

金属層の接着性を向上するために、陽極酸化皮膜を形成したりする表面処理も提案されているが(例えば、特許文献1、特許文献2)、金属と接着剤との接着性は向上するものの、接着剤と繊維強化樹脂との接着性は必ずしも向上されない。また、接着剤自体を高靱性化する手法も提案されているが(例えば、特許文献3、特許文献4)、接着剤層内での破壊は抑制されるものの、接着剤層と繊維強化樹脂層との界面の耐剥離強度等は必ずしも向上されない。
特開2002−129387号公報 特開平7−252687号公報 特開昭58−189277号公報 特開2004−263104号公報
In order to improve the adhesion of the metal layer, surface treatments such as forming an anodized film have been proposed (for example, Patent Document 1 and Patent Document 2), but the adhesion between the metal and the adhesive is improved. However, the adhesiveness between the adhesive and the fiber reinforced resin is not necessarily improved. In addition, although a technique for increasing the toughness of the adhesive itself has been proposed (for example, Patent Document 3 and Patent Document 4), the adhesive layer and the fiber reinforced resin layer are suppressed although destruction in the adhesive layer is suppressed. The peel strength at the interface with the film is not necessarily improved.
JP 2002-129387 A JP-A-7-252687 JP 58-189277 A JP 2004-263104 A

そこで本発明の課題は、とくにエネルギー吸収部材を金属/繊維強化樹脂複合材料から構成する場合に、金属層と繊維強化樹脂層との接着性を向上することにより、各層それぞれの優れた特性を発揮させつつ両層間の剥離等の問題を解消でき、全体として優れたエネルギー吸収性能の維持が可能なエネルギー吸収部材を提供することにある。   Therefore, the object of the present invention is to exhibit excellent characteristics of each layer by improving the adhesion between the metal layer and the fiber reinforced resin layer, particularly when the energy absorbing member is composed of a metal / fiber reinforced resin composite material. An object of the present invention is to provide an energy absorbing member that can solve problems such as delamination between both layers while maintaining excellent energy absorption performance as a whole.

上記課題を解決するために、本発明に係るエネルギー吸収部材は、金属層と繊維強化樹脂層が中間樹脂層を介して接着一体化された金属/繊維強化樹脂複合材料から構成されたエネルギー吸収部材であって、前記中間樹脂層が、平均粒径3〜10μmの熱可塑性樹脂の粒子およびイミダゾールシラン化合物を含有していることを特徴とするものからなる。   In order to solve the above problems, an energy absorbing member according to the present invention is an energy absorbing member composed of a metal / fiber reinforced resin composite material in which a metal layer and a fiber reinforced resin layer are bonded and integrated through an intermediate resin layer. The intermediate resin layer contains thermoplastic resin particles having an average particle diameter of 3 to 10 μm and an imidazolesilane compound.

このエネルギー吸収部材においては、前記中間樹脂層と前記繊維強化樹脂層との境界部(界面近傍部)が、前記粒子を構成する熱可塑性樹脂と前記繊維強化樹脂層の強化繊維とが混在した混合層を形成していることが好ましい。   In this energy absorbing member, the boundary portion (interface vicinity portion) between the intermediate resin layer and the fiber reinforced resin layer is a mixture in which the thermoplastic resin constituting the particles and the reinforced fibers of the fiber reinforced resin layer are mixed. It is preferable to form a layer.

また、前記熱可塑性樹脂の粒子は、粒子同士の融着等により少なくとも部分的に連続相の形態で前記中間樹脂層内に存在していることが好ましい。   The thermoplastic resin particles are preferably present in the intermediate resin layer at least partially in the form of a continuous phase due to fusion of particles or the like.

また、繊維強化樹脂層のマトリックス樹脂と中間樹脂層の母材樹脂とが同種の樹脂(望ましくは、同一の樹脂)からなることが好ましい。例えば、繊維強化樹脂層のマトリックス樹脂と中間樹脂層の母材樹脂が同種あるいは同一の熱硬化性樹脂(例えば、エポキシ樹脂)からなることが好ましい。   The matrix resin of the fiber reinforced resin layer and the base resin of the intermediate resin layer are preferably made of the same kind of resin (preferably, the same resin). For example, the matrix resin of the fiber reinforced resin layer and the base resin of the intermediate resin layer are preferably made of the same type or the same thermosetting resin (for example, epoxy resin).

前記金属層としては種々の金属を採用し得るが、軽量化の観点から、高張力鋼やアルミニウム合金、チタン合金などが好ましく用いられる。とくにアルミニウム合金やチタン合金などの難接着金属を含む層からなる場合に、本発明による効果はとくに大きい。金属層の形状は、とくに限定されず、単なる層形状(板形状)の場合もあるし、箱型断面等の形状の場合もあり、いずれの場合にも本発明の適用が可能である。   Various metals can be adopted as the metal layer, but high-strength steel, aluminum alloy, titanium alloy and the like are preferably used from the viewpoint of weight reduction. In particular, the effect of the present invention is particularly great when the layer includes a hard-to-bond metal such as an aluminum alloy or a titanium alloy. The shape of the metal layer is not particularly limited, and may be a simple layer shape (plate shape) or a shape such as a box-shaped cross section. In any case, the present invention can be applied.

また、前記繊維強化樹脂層の強化繊維としても種々の強化繊維を使用し得るが、とくに炭素繊維は比強度、比弾性率が高く力学特性に優れているため、炭素繊維を強化繊維として含む層に構成すると、エネルギー吸収部材全体としてより優れた特性が得られやすく、かつ、その特性も制御しやすくなる。   Various reinforcing fibers can be used as the reinforcing fiber of the fiber-reinforced resin layer. In particular, the carbon fiber has a high specific strength and a high specific modulus, and has excellent mechanical properties. If it comprises, it will become easy to obtain the characteristic more excellent as the whole energy absorption member, and it will become easy to control the characteristic.

本発明に係るエネルギー吸収部材としては、エネルギー吸収用に使用されるものであれば特に限定されず、あらゆる分野におけるあらゆる形態のエネルギー吸収部材を含む。   The energy absorbing member according to the present invention is not particularly limited as long as it is used for energy absorption, and includes any form of energy absorbing member in all fields.

このような本発明に係るエネルギー吸収部材においては、中間樹脂層が所定範囲の粒径の熱可塑性樹脂粒子を含有することにより、熱可塑性樹脂粒子が中間樹脂層の所定の厚みを確保するためのスペーサ的な役割を果たし、金属層と繊維強化樹脂層との間に所定厚みの中間樹脂層が確実に介在されることになる。そして、中間樹脂層に熱可塑性樹脂粒子が配合されていることにより、中間樹脂層自体の高靱性化も可能になる。   In such an energy absorbing member according to the present invention, the intermediate resin layer contains thermoplastic resin particles having a particle diameter in a predetermined range, so that the thermoplastic resin particles ensure a predetermined thickness of the intermediate resin layer. An intermediate resin layer having a predetermined thickness is reliably interposed between the metal layer and the fiber reinforced resin layer. In addition, since the thermoplastic resin particles are blended in the intermediate resin layer, the toughness of the intermediate resin layer itself can be increased.

この中間樹脂層を介して金属層と繊維強化樹脂層が接着一体化されるが、中間樹脂層がイミダゾールシラン化合物を含有していることにより、金属との接着性が向上され、難接着金属に対しても、良好な接着性を発現できるようになって、中間樹脂層と金属層間の接着性が大幅に向上される。   The metal layer and the fiber reinforced resin layer are bonded and integrated through this intermediate resin layer, but the intermediate resin layer contains an imidazole silane compound, thereby improving the adhesion to the metal and making it difficult to adhere to a metal. In contrast, good adhesiveness can be expressed, and the adhesiveness between the intermediate resin layer and the metal layer is greatly improved.

また、中間樹脂層は所定範囲の微小粒径の熱可塑性樹脂粒子を含有しているので、繊維強化樹脂層との界面近傍においては、熱可塑性粒子が多かれ少なかれ繊維強化樹脂層の強化繊維間に侵入していく形態を容易に形成することができる。すなわち、中間樹脂層と繊維強化樹脂層との境界部を、熱可塑性樹脂粒子と繊維強化樹脂層の強化繊維とが混在した混合層に形成された形態とすることができる。このような形態において、例えば、熱可塑性樹脂粒子の融点以上の温度で中間樹脂層と繊維強化樹脂層を同時成形すれば、粒子同士は融着等により容易に少なくとも部分的に連続相の形態に連なる。このような形態を現出すれば、融着等により少なくとも部分的に連続相の形態になった熱可塑性樹脂が、中間樹脂層と繊維強化樹脂層との界面において、中間樹脂層と繊維強化樹脂層の両方にまたがって存在することになり、いずれの層からみても、互いにアンカー効果を発揮することになる。このアンカー効果により、中間樹脂層と繊維強化樹脂層との接着性も、確実にかつ大幅に向上されることになる。さらに、最表層が繊維強化樹脂層である場合には、該繊維強化樹脂層の最表層に撥水処理が施され、撥水層が形成されていることが好ましい。本発明のエネルギー吸収部材が、高湿度もしくは温水に曝された場合、繊維強化樹脂層が吸湿もしくは吸水することにより、金属と繊維強化樹脂との接着性が劣化する懸念があるが、撥水層を形成することにより、吸湿もしくは吸水を抑制し、接着性の劣化を防ぐことができるためである。   Further, since the intermediate resin layer contains thermoplastic resin particles having a fine particle diameter within a predetermined range, in the vicinity of the interface with the fiber reinforced resin layer, more or less thermoplastic particles are present between the reinforced fibers of the fiber reinforced resin layer. An invading form can be easily formed. That is, the boundary portion between the intermediate resin layer and the fiber reinforced resin layer can be formed in a mixed layer in which the thermoplastic resin particles and the reinforced fibers of the fiber reinforced resin layer are mixed. In such a form, for example, if the intermediate resin layer and the fiber reinforced resin layer are simultaneously formed at a temperature equal to or higher than the melting point of the thermoplastic resin particles, the particles are easily at least partially in a continuous phase form by fusion or the like. It is a series. If such a form appears, the thermoplastic resin that is at least partially in the form of a continuous phase by fusion or the like is formed at the interface between the intermediate resin layer and the fiber reinforced resin layer. It exists across both layers, and the anchor effect will be exhibited from any layer. Due to this anchor effect, the adhesion between the intermediate resin layer and the fiber reinforced resin layer is also reliably and significantly improved. Furthermore, when the outermost layer is a fiber reinforced resin layer, it is preferable that the outermost layer of the fiber reinforced resin layer is subjected to water repellent treatment to form a water repellent layer. When the energy absorbing member of the present invention is exposed to high humidity or warm water, there is a concern that the adhesion between the metal and the fiber reinforced resin may deteriorate due to moisture absorption or water absorption of the fiber reinforced resin layer. This is because moisture absorption or water absorption can be suppressed and adhesion deterioration can be prevented.

そして、金属層と繊維強化樹脂層が、中間樹脂層を介して、剥離を生じることのない強固な接着力で接着一体化されることにより、金属層が有する優れた耐衝撃性等と、繊維強化樹脂層が有する優れた軽量性、力学特性を共に安定して発現させることが可能になり、繊維強化樹脂層は破断に至るまで確実に中間樹脂層を介して金属層と接着された状態に保たれ、目標とする所定のエネルギー吸収性能が確実に発揮されることになる。   The metal layer and the fiber reinforced resin layer are bonded and integrated with a strong adhesive force that does not cause peeling through the intermediate resin layer, so that the metal layer has excellent impact resistance and the like. Both the excellent lightweight properties and mechanical properties of the reinforced resin layer can be expressed stably, and the fiber reinforced resin layer is securely bonded to the metal layer through the intermediate resin layer until it breaks. Thus, the target predetermined energy absorption performance is surely exhibited.

このように、本発明に係るエネルギー吸収部材によれば、所定粒径の熱可塑性樹脂粒子とイミダゾールシラン化合物を含有した中間樹脂層を介して金属層と繊維強化樹脂層を接着一体化することにより、接着性を大幅に向上でき、層間剥離を生じずに優れたエネルギー吸収性能を発現できる金属/繊維強化樹脂複合材料からなるエネルギー吸収部材を実用化できる。   Thus, according to the energy absorbing member of the present invention, the metal layer and the fiber reinforced resin layer are bonded and integrated through the intermediate resin layer containing the thermoplastic resin particles having a predetermined particle diameter and the imidazole silane compound. Thus, an energy absorbing member made of a metal / fiber reinforced resin composite material that can greatly improve the adhesiveness and can exhibit excellent energy absorbing performance without causing delamination can be put into practical use.

また、特別な表面処理等を施さずに所定のエネルギー吸収性能を発現させることができるので、エネルギー吸収部材を、高い生産性をもって、安価にかつ容易に製造できるようになる。   Moreover, since predetermined energy absorption performance can be expressed without performing special surface treatment or the like, the energy absorption member can be easily manufactured at high cost with high productivity.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係るエネルギー吸収部材を示している。図1において、1はエネルギー吸収部材全体を示しており、このエネルギー吸収部材1は、任意の要求形状に形成された(図示例では箱型断面に形成された)金属層2としての金属製エネルギー吸収部材と、繊維強化樹脂層3と、金属層2と繊維強化樹脂層3との間に介在され、金属層2と繊維強化樹脂層3を接着一体化する中間樹脂層4を有している。ただし、金属層2は、図示例の如く最外層を形成するように配置されていてもよく、部材全体からみた内層、あるいは繊維強化樹脂層内等に配置されていてもよい。また、金属層2の形状や厚みは、部材全体の要求厚みやエネルギー吸収性能に応じて設定されればよく、繊維強化樹脂層3との接着強度が後述の如く大幅に向上されることを勘案した上で、部材に要求される力学特性やエネルギー吸収性能に応じて設定されればよい。ただし、エネルギー吸収部材1全体の軽量化をはかる点からは、力学特性に支障の出ない限り薄肉で、かつ小型のものが好ましい。エネルギー吸収性能は、例えば、エネルギー吸収部材1の両端部を丸棒等の支持部材で受け(P点)、上方から衝撃荷重Fを加える、いわゆる3点曲げテストを実施し、繊維強化樹脂層3が破断に至るまでの衝撃荷重Fをすることにより、主として繊維強化樹脂層3の引張強度によって発現される部材全体としてのエネルギー吸収性能の測定が可能である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an energy absorbing member according to an embodiment of the present invention. In FIG. 1, 1 shows the whole energy absorbing member, and this energy absorbing member 1 is a metal energy as a metal layer 2 formed in an arbitrary required shape (formed in a box-shaped cross section in the illustrated example). It has an intermediate resin layer 4 that is interposed between the absorbent member, the fiber reinforced resin layer 3, and the metal layer 2 and the fiber reinforced resin layer 3 to bond and integrate the metal layer 2 and the fiber reinforced resin layer 3. . However, the metal layer 2 may be disposed so as to form the outermost layer as illustrated, or may be disposed in an inner layer viewed from the entire member, a fiber reinforced resin layer, or the like. Further, the shape and thickness of the metal layer 2 may be set in accordance with the required thickness and energy absorption performance of the entire member, and the adhesive strength with the fiber reinforced resin layer 3 is greatly improved as described later. In addition, it may be set according to the mechanical characteristics and energy absorption performance required for the member. However, from the viewpoint of reducing the weight of the energy absorbing member 1 as a whole, a thin and small-sized one is preferable as long as dynamic characteristics are not hindered. The energy absorption performance is obtained by, for example, receiving a both-end portion of the energy absorption member 1 with a support member such as a round bar (P point), and applying a shock load F from above, so-called a three-point bending test, and the fiber reinforced resin layer 3 By performing the impact load F until the fracture occurs, the energy absorption performance of the entire member expressed mainly by the tensile strength of the fiber reinforced resin layer 3 can be measured.

上記中間樹脂層4に、所定粒径(平均粒径3〜10μm)の熱可塑性樹脂粒子とイミダゾールシラン化合物が含有されている。繊維強化樹脂層3は、強化繊維とマトリックス樹脂(例えば、エポキシ樹脂等の熱硬化性樹脂)からなる複合材料に構成されている。   The intermediate resin layer 4 contains thermoplastic resin particles having a predetermined particle diameter (average particle diameter of 3 to 10 μm) and an imidazolesilane compound. The fiber reinforced resin layer 3 is composed of a composite material composed of reinforced fibers and a matrix resin (for example, a thermosetting resin such as an epoxy resin).

このような中間樹脂層4と金属層2および繊維強化樹脂層3との接着構造の例を、図2、図3に示す。図3の方が、より好ましい例である。   Examples of such an adhesive structure between the intermediate resin layer 4, the metal layer 2, and the fiber reinforced resin layer 3 are shown in FIGS. FIG. 3 is a more preferable example.

図2は図1のA部について示したものであり、この例においては、金属層2と、強化繊維(群)5および熱硬化性マトリックス樹脂6を含む繊維強化樹脂層3との間に、熱硬化性樹脂7を母材樹脂とし熱可塑性樹脂8(熱可塑性樹脂連続相8a、熱可塑性樹脂粒子相8b)を含む接着樹脂層としての中間樹脂層4が介在されている。中間樹脂層4に所定粒径の熱可塑性樹脂粒子が配合されることにより、該粒子がスペーサの役割を果たし、中間樹脂層4の所望の厚みを確保し、金属層2と繊維強化樹脂層3との間に望ましい層間厚みを確保できる。また、熱可塑性樹脂粒子を配合することで、中間樹脂層4を高靱性化でき、含有粒子は、例えば、クラックに対するピン止め効果も発揮できる。この中間樹脂層4に含有されていた上記所定粒径の熱可塑性樹脂粒子は、例えば図示の如く、融着等により少なくとも部分的に連続相の形態(線状あるいは膜状の連続相形態)を有する熱可塑性樹脂連続相部分8aと、実質的に粒子の形態のまま残された熱可塑性樹脂粒子相部分8bとの混在形態とされる。このように熱可塑性樹脂が連続相の形態で中間樹脂層4に含有されていることにより、金属層2と繊維強化樹脂層3との接着性が向上する。特に、金属層2に、繊維強化樹脂層3から引き剥がすような剥離モードの応力が加わった時には、中間樹脂層4内の熱可塑性樹脂が連続相8aの形態を有するため、中間樹脂層4を構成する熱硬化性母材樹脂7に対するアンカーとして作用し、接着性が向上すると考えられる。ここで、繊維強化樹脂層3を構成する熱硬化性マトリックス樹脂6と中間樹脂層4を構成する熱硬化性母材樹脂7は同一の樹脂組成であってもよいし、それぞれ異なる熱硬化性樹脂であってもよい。   FIG. 2 shows the portion A of FIG. 1, and in this example, between the metal layer 2 and the fiber reinforced resin layer 3 including the reinforcing fiber (group) 5 and the thermosetting matrix resin 6, An intermediate resin layer 4 serving as an adhesive resin layer including a thermoplastic resin 8 (a thermoplastic resin continuous phase 8a and a thermoplastic resin particle phase 8b) with a thermosetting resin 7 as a base resin is interposed. When the thermoplastic resin particles having a predetermined particle diameter are blended in the intermediate resin layer 4, the particles serve as a spacer to ensure a desired thickness of the intermediate resin layer 4, and the metal layer 2 and the fiber reinforced resin layer 3. A desirable interlayer thickness can be ensured between Moreover, the intermediate resin layer 4 can be toughened by blending the thermoplastic resin particles, and the contained particles can also exhibit a pinning effect against cracks, for example. The thermoplastic resin particles having the predetermined particle diameter contained in the intermediate resin layer 4 are at least partially in a continuous phase form (linear or film-like continuous phase form) by, for example, fusion as shown in the figure. The thermoplastic resin continuous phase portion 8a and the thermoplastic resin particle phase portion 8b that are substantially left in the form of particles are mixed. Thus, by including the thermoplastic resin in the intermediate resin layer 4 in the form of a continuous phase, the adhesion between the metal layer 2 and the fiber reinforced resin layer 3 is improved. In particular, when a stress in a peeling mode such as peeling from the fiber reinforced resin layer 3 is applied to the metal layer 2, the thermoplastic resin in the intermediate resin layer 4 has the form of the continuous phase 8a. It is considered that it acts as an anchor for the thermosetting base material resin 7 to be configured, and the adhesiveness is improved. Here, the thermosetting matrix resin 6 constituting the fiber reinforced resin layer 3 and the thermosetting matrix resin 7 constituting the intermediate resin layer 4 may have the same resin composition or different thermosetting resins. It may be.

また、上記中間樹脂層4を構成する熱硬化性樹脂7は、イミダゾールシラン化合物を含有している。このイミダゾールシラン化合物を含むことにより、中間樹脂層4と金属層2、とくにアルミニウム合金等の難接着金属を含む金属層2との接着性が向上する。また、高温高湿度暴露後の接着性の低下が抑えられ、耐環境暴露特性も向上できる。イミダゾールシラン化合物の熱硬化性樹脂への配合量は、樹脂組成物重量対比0.1重量%以上2.0重量%以下であることが好ましい。すなわち、イミダゾールシラン化合物の混合量が、0.1重量%未満では、接着性向上の効果が小さいため好ましくない。2.0重量%を越えると、特に熱硬化性樹脂にエポキシ樹脂を用いた場合などに、イミダゾールシラン化合物が硬化剤もしくは硬化促進剤としても作用してしまうため、過剰に硬化が促進してしまうため好ましくない。この場合、イミダゾールシラン化合物をエタノールなどの有機溶媒に溶融した溶液を、金属の接着表面に塗布、乾燥して表面処理を施して使用することも好ましい使用形態のひとつである。このように、本発明におけるイミダゾールシラン化合物の使用目的は、特に金属層2への接着性の向上が目的であり、熱硬化性樹脂の硬化剤もしくは硬化促進剤もしくは金属の防錆として使用するものではない。   The thermosetting resin 7 constituting the intermediate resin layer 4 contains an imidazole silane compound. By including this imidazolesilane compound, the adhesiveness between the intermediate resin layer 4 and the metal layer 2, particularly the metal layer 2 containing a difficult-to-bond metal such as an aluminum alloy is improved. In addition, a decrease in adhesiveness after exposure to high temperature and high humidity is suppressed, and the resistance to environmental exposure can be improved. The blending amount of the imidazole silane compound in the thermosetting resin is preferably 0.1% by weight or more and 2.0% by weight or less with respect to the weight of the resin composition. That is, when the amount of the imidazole silane compound is less than 0.1% by weight, the effect of improving adhesiveness is small, which is not preferable. If it exceeds 2.0% by weight, especially when an epoxy resin is used as the thermosetting resin, the imidazole silane compound also acts as a curing agent or a curing accelerator, so that curing is excessively accelerated. Therefore, it is not preferable. In this case, it is also one of preferable usage forms that a solution obtained by melting an imidazolesilane compound in an organic solvent such as ethanol is applied to a metal adhesion surface, dried and subjected to a surface treatment. Thus, the purpose of use of the imidazolesilane compound in the present invention is to improve the adhesion to the metal layer 2 in particular, and is used as a curing agent or curing accelerator for a thermosetting resin or as a rust preventive for metals. is not.

図3は、より好ましい形態例を示している。すなわち、図3に示すエネルギー吸収部材11においては、中間樹脂層12が、繊維強化樹脂層3との境界部において、繊維強化樹脂層3の強化繊維5と、熱可塑性樹脂、とくに連続相の熱可塑性樹脂8aとが混在している混合層12bを偏在して形成している。混合層12bよりも金属層2寄りの部分は、実質的に図2に示した中間樹脂層4と同等の形態を有している。このように強化繊維5と熱可塑性樹脂連続相8aが混在することにより、熱可塑性樹脂連続相8aが強化繊維群5に対してアンカーとして作用し、中間樹脂層12と繊維強化樹脂層3との接着性が大幅に向上する。各熱可塑性樹脂連続相8aは、複数の強化繊維5と接触していることがより好ましい。   FIG. 3 shows a more preferable embodiment. That is, in the energy absorbing member 11 shown in FIG. 3, the intermediate resin layer 12 is formed at the boundary between the fiber reinforced resin layer 3 and the reinforced fibers 5 of the fiber reinforced resin layer 3, and the thermoplastic resin, particularly the continuous phase heat. The mixed layer 12b in which the plastic resin 8a is mixed is formed unevenly. The portion closer to the metal layer 2 than the mixed layer 12b has substantially the same form as the intermediate resin layer 4 shown in FIG. Thus, by mixing the reinforcing fiber 5 and the thermoplastic resin continuous phase 8a, the thermoplastic resin continuous phase 8a acts as an anchor for the reinforcing fiber group 5, and the intermediate resin layer 12 and the fiber reinforced resin layer 3 Adhesion is greatly improved. It is more preferable that each thermoplastic resin continuous phase 8a is in contact with a plurality of reinforcing fibers 5.

この中間樹脂層12の厚みは、例えば15μm以上150μm以下であることが好ましく、かつ、混合層12bの最大厚みが10μm以上100μm以下であることが好ましい。図4に中間樹脂層12の厚みをTa,強化繊維群5との熱可塑性樹脂連続相8aとの混合層12bの厚みをTpfを示す。Ta、Tpfは複合材料の断面を光学顕微鏡、CCDを用いた顕微鏡、SEM、TEMにより観察することにより測定することができる。   The thickness of the intermediate resin layer 12 is preferably 15 μm or more and 150 μm or less, for example, and the maximum thickness of the mixed layer 12b is preferably 10 μm or more and 100 μm or less. FIG. 4 shows the thickness of the intermediate resin layer 12 as Ta and the thickness of the mixed layer 12b with the thermoplastic resin continuous phase 8a as the reinforcing fiber group 5 as Tpf. Ta and Tpf can be measured by observing the cross section of the composite material with an optical microscope, a microscope using a CCD, SEM, and TEM.

中間樹脂層12の厚みTaが15μm未満では、中間樹脂層12が薄すぎて、層が破壊しやすいため好ましくない。一方、150μmより厚い場合には、中間樹脂層12が厚すぎるために、中間樹脂層12の重量が増加し、複合材料としての軽量化が損なわれるため好ましくない。   If the thickness Ta of the intermediate resin layer 12 is less than 15 μm, the intermediate resin layer 12 is too thin and the layer is easily broken, which is not preferable. On the other hand, when the thickness is larger than 150 μm, the intermediate resin layer 12 is too thick, so that the weight of the intermediate resin layer 12 increases and the weight reduction as a composite material is impaired.

さらに強化繊維5と熱可塑性樹脂連続相8aとが混在している混合層12bの厚みTpfは10μm未満でも構わないが、10μm以上であることにより、より接着性が向上するため好ましい。一方、100μmより厚いと厚すぎるために、中間樹脂層12の重量が増加するため好ましくない。また、熱可塑性樹脂連続相8aを強化繊維間に100μmより厚く混在させることは、成形の観点から非常に困難になるおそれがあるため好ましくない。   Furthermore, the thickness Tpf of the mixed layer 12b in which the reinforcing fiber 5 and the thermoplastic resin continuous phase 8a are mixed may be less than 10 μm, but is preferably 10 μm or more because the adhesiveness is further improved. On the other hand, if it is thicker than 100 μm, it is not preferable because it is too thick and the weight of the intermediate resin layer 12 increases. Moreover, it is not preferable to mix the thermoplastic resin continuous phase 8a thicker than 100 μm between the reinforcing fibers because it may be very difficult from the viewpoint of molding.

中間樹脂層12内に配合される熱可塑性樹脂粒子に関しては、上記のような連続形状の連続相と平均粒径が3μm以上10μm以下の粒子形状が混在していることが好ましい。中間樹脂層12は、熱硬化性樹脂からなる母材樹脂7と熱可塑性樹脂から構成されるが、この熱可塑性樹脂は、平均粒径3μm以上10μm以下の粒子形状で、熱硬化性樹脂に混合されている。3μm以上10μm以下の粒子形状にすることにより、成形前に中間樹脂層12をフィルム形状などにする加工が容易であること、さらに硬化、成形工程において、該熱可塑性樹脂が強化繊維間に介在しやすくなり、成形後に強化繊維と熱可塑性樹脂とが混在している層12bを形成しやすくなる。このため、粒子形状で混合した熱可塑性樹脂が連続形状の連続相を形成する他に、該熱可塑性樹脂の一部が、粒子形状のままの状態で存在することが好ましい。   Regarding the thermoplastic resin particles blended in the intermediate resin layer 12, it is preferable that a continuous phase having the above-described continuous shape and a particle shape having an average particle diameter of 3 μm or more and 10 μm or less are mixed. The intermediate resin layer 12 is composed of a base resin 7 made of a thermosetting resin and a thermoplastic resin. The thermoplastic resin has a particle shape with an average particle size of 3 μm to 10 μm and is mixed with the thermosetting resin. Has been. By making the particle shape 3 μm or more and 10 μm or less, it is easy to process the intermediate resin layer 12 into a film shape or the like before molding. Further, in the curing and molding process, the thermoplastic resin is interposed between the reinforcing fibers. It becomes easy to form the layer 12b in which the reinforcing fiber and the thermoplastic resin are mixed after molding. For this reason, it is preferable that the thermoplastic resin mixed in the particle shape forms a continuous phase having a continuous shape, and a part of the thermoplastic resin is present in the particle shape.

なお、本発明における中間樹脂層12を構成する樹脂組成物そのものは、ASTM D 5045−96「Standard Test Methods for Plane−Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials」に基づいて測定した歪みエネルギー開放率(Strain Energy Release Rate)GICが、400J/m2 以上1000J/m2 以下であることが好ましい。GICが400J/m2 未満では、歪みエネルギー開放率が低すぎるため、中間樹脂層12の破壊が比較的容易に進むため好ましくない。中間樹脂層12内の熱可塑性樹脂が連続形状の連続相で混在することにより、GICを向上させることができる。また、該熱可塑性樹脂の熱硬化性樹脂への混合量を増加させることにより、GICを向上させることが可能である。一方、GICを1000J/m2 よりも大きくするためには、より多くの熱可塑性樹脂を混合する必要があるが、熱可塑性樹脂混合量が多すぎると、樹脂組成物のフィルム形状などへの加工が困難になること、また樹脂層の耐熱性もしくは弾性率の低下の懸念があるため好ましくない。 In addition, the resin composition itself constituting the intermediate resin layer 12 in the present invention is measured based on ASTM D 5045-96 “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Rate of Matter Release”. The rate (Strain Energy Release Rate) G IC is preferably 400 J / m 2 or more and 1000 J / m 2 or less. A G IC of less than 400 J / m 2 is not preferable because the strain energy release rate is too low and the destruction of the intermediate resin layer 12 proceeds relatively easily. G IC can be improved by mixing the thermoplastic resin in the intermediate resin layer 12 in a continuous phase having a continuous shape. Further, by increasing the mixing amount of the thermosetting resin of the thermoplastic resin, it is possible to improve the G IC. On the other hand, in order to make G IC larger than 1000 J / m 2, it is necessary to mix a larger amount of thermoplastic resin. However, if the amount of the thermoplastic resin mixed is too large, the resin composition may have a film shape or the like. This is not preferable because it becomes difficult to process and there is a concern that the heat resistance or elastic modulus of the resin layer may decrease.

上記熱可塑性樹脂を融着等により少なくとも部分的に連続相とするために、熱可塑性樹脂粒子の融点(あるいは、軟化点)以上の温度で成形することが好ましい。粒子を強化繊維間に入り込ませるために、中間樹脂層12と繊維強化樹脂層3の成形を同時に行うか、もしくは、硬化後の繊維強化樹脂を用いる場合には、粒子の粒径以上の表面粗さまで接着表面をブラスト処理する方法も採用できる。   In order to at least partially make the thermoplastic resin into a continuous phase by fusion or the like, it is preferable to mold at a temperature equal to or higher than the melting point (or softening point) of the thermoplastic resin particles. When the intermediate resin layer 12 and the fiber reinforced resin layer 3 are molded simultaneously in order to allow the particles to enter between the reinforced fibers, or when a cured fiber reinforced resin is used, the surface roughness is equal to or larger than the particle diameter of the particles. A method of blasting the adhesive surface can also be adopted.

前記熱可塑性樹脂の融点もしくは軟化点としては、200℃以下であることが好ましい。本発明においては、該熱可塑性樹脂の融点もしくは軟化点以上の温度および適切な加圧条件において、複合材料を成形することによって、中間樹脂内の熱可塑性樹脂を一度溶融もしくは軟化させることにより、該熱可塑性樹脂を容易に連続相の形態で混在させることができる。熱可塑性樹脂の融点もしくは軟化点が200℃よりも高い場合には、複合材料の成形温度も200℃より高くする必要があり、成形温度が高くなりすぎるため好ましくない。   The melting point or softening point of the thermoplastic resin is preferably 200 ° C. or lower. In the present invention, the thermoplastic resin in the intermediate resin is once melted or softened by molding a composite material at a temperature equal to or higher than the melting point or softening point of the thermoplastic resin and an appropriate pressure condition. A thermoplastic resin can be easily mixed in the form of a continuous phase. When the melting point or softening point of the thermoplastic resin is higher than 200 ° C., the molding temperature of the composite material needs to be higher than 200 ° C., which is not preferable because the molding temperature becomes too high.

本発明において、前記強化繊維群を構成する強化繊維としては、炭素繊維、ガラス繊維、アルミナ繊維などの無機繊維や、アラミド繊維、ポリアミド系合成繊維などの有機繊維、およびそれら2種類以上を組み合わせて使用することができるが、かかる強化繊維としては、とくに炭素繊維が好ましい。炭素繊維は比重が小さく、高強度、高弾性率であるため、比強度、比弾性率が大きく、本発明に係るエネルギー吸収部材の複合材料を軽量化、高強度化、高弾性率化できるため、好ましく使用でき、また、エネルギー吸収特性の制御も行いやすい。   In the present invention, the reinforcing fibers constituting the reinforcing fiber group include inorganic fibers such as carbon fibers, glass fibers, and alumina fibers, organic fibers such as aramid fibers and polyamide synthetic fibers, and a combination of two or more thereof. Although it can be used, carbon fiber is particularly preferable as the reinforcing fiber. Since carbon fiber has a low specific gravity, high strength, and high elastic modulus, the specific strength and specific elastic modulus are large, and the composite material of the energy absorbing member according to the present invention can be reduced in weight, increased in strength, and increased in elastic modulus. It can be preferably used, and it is easy to control energy absorption characteristics.

本発明において、前記熱可塑性樹脂としては、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネイト系樹脂、スチレン系樹脂、EVA樹脂、ウレタン系樹脂、アクリル系樹脂、ポリオレフィン系樹脂およびPPS系樹脂の群より選択される少なくとも1種の樹脂であることが好ましい。とくにポリアミド系樹脂は、熱硬化性樹脂との接着性が優れるためより好ましい。   In the present invention, the thermoplastic resin is selected from the group of polyamide resin, polyester resin, polycarbonate resin, styrene resin, EVA resin, urethane resin, acrylic resin, polyolefin resin, and PPS resin. At least one kind of resin is preferred. In particular, a polyamide-based resin is more preferable because it has excellent adhesion to a thermosetting resin.

また、本発明に係るエネルギー吸収部材において、金属層を構成する金属としては、前述のアルミニウム合金以外にも、軽量性を保ちつつ所定のエネルギー吸収性能を発揮させるものとして、例えば高張力鋼やチタン合金を使用することが可能である。ただし、使用する金属種は、各種要求特性に応じて選択すればよい。   In addition, in the energy absorbing member according to the present invention, the metal constituting the metal layer is not limited to the above-described aluminum alloy. For example, high-strength steel or titanium can be used to exhibit predetermined energy absorption performance while maintaining lightness. Alloys can be used. However, the metal species to be used may be selected according to various required characteristics.

本発明の一実施態様に係るエネルギー吸収部材の断面図である。It is sectional drawing of the energy absorption member which concerns on one embodiment of this invention. 図1のエネルギー吸収部材のA部の構成例を示す拡大部分断面図である。It is an expanded partial sectional view which shows the structural example of the A section of the energy absorption member of FIG. エネルギー吸収部材の各層接着部の別の構成例を示す拡大部分断面図である。It is an expanded partial sectional view which shows another structural example of each layer adhesion part of an energy absorption member.

符号の説明Explanation of symbols

1、11 エネルギー吸収部材
2 金属層(金属製エネルギー吸収部材)
3 繊維強化樹脂層
4、12 中間樹脂層
5 強化繊維(群)
6 繊維強化樹脂層のマトリックス樹脂
7 中間樹脂層の母材樹脂
8 熱可塑性樹脂
8a 熱可塑性樹脂連続相
8b 熱可塑性樹脂粒子相
12a 金属層寄りの中間樹脂層部分
12b 混合層
1, 11 Energy absorbing member 2 Metal layer (metal energy absorbing member)
3 Fiber reinforced resin layers 4 and 12 Intermediate resin layer 5 Reinforcing fibers (group)
6 Matrix resin of fiber reinforced resin layer 7 Base resin of intermediate resin layer 8 Thermoplastic resin 8a Thermoplastic resin continuous phase 8b Thermoplastic resin particle phase 12a Mixed layer of intermediate resin layer 12b near metal layer

Claims (8)

金属層と繊維強化樹脂層が中間樹脂層を介して接着一体化された金属/繊維強化樹脂複合材料から構成されたエネルギー吸収部材であって、前記中間樹脂層が、平均粒径3〜10μmの熱可塑性樹脂の粒子およびイミダゾールシラン化合物を含有していることを特徴とするエネルギー吸収部材。   An energy absorbing member composed of a metal / fiber reinforced resin composite material in which a metal layer and a fiber reinforced resin layer are bonded and integrated through an intermediate resin layer, wherein the intermediate resin layer has an average particle size of 3 to 10 μm An energy absorbing member comprising thermoplastic resin particles and an imidazole silane compound. 前記中間樹脂層と前記繊維強化樹脂層との境界部が、前記粒子を構成する熱可塑性樹脂と前記繊維強化樹脂層の強化繊維とが混在した混合層を形成している、請求項1に記載のエネルギー吸収部材。   The boundary part of the said intermediate | middle resin layer and the said fiber reinforced resin layer forms the mixed layer in which the thermoplastic resin which comprises the said particle | grain, and the reinforced fiber of the said fiber reinforced resin layer were mixed. Energy absorbing member. 前記熱可塑性樹脂の粒子は、融着等により少なくとも部分的に連続相の形態で前記中間樹脂層内に存在している、請求項1または2に記載のエネルギー吸収部材。   The energy absorbing member according to claim 1 or 2, wherein the thermoplastic resin particles are present in the intermediate resin layer at least partially in the form of a continuous phase by fusion or the like. 繊維強化樹脂層のマトリックス樹脂と中間樹脂層の母材樹脂とが同種の樹脂からなる、請求項1〜3のいずれかに記載のエネルギー吸収部材。   The energy absorption member according to any one of claims 1 to 3, wherein the matrix resin of the fiber reinforced resin layer and the base resin of the intermediate resin layer are made of the same kind of resin. 前記同種の樹脂が熱硬化性樹脂からなる、請求項4に記載のエネルギー吸収部材。   The energy absorbing member according to claim 4, wherein the same kind of resin is made of a thermosetting resin. 前記繊維強化樹脂層が炭素繊維を含む層からなる、請求項1〜5のいずれかに記載のエネルギー吸収部材。   The energy absorbing member according to claim 1, wherein the fiber reinforced resin layer is formed of a layer containing carbon fibers. 前記金属層がアルミニウム合金製の金属製エネルギー吸収部材からなる、請求項1〜6のいずれかに記載のエネルギー吸収部材。   The energy absorbing member according to any one of claims 1 to 6, wherein the metal layer is made of a metal energy absorbing member made of an aluminum alloy. 最表層の繊維強化樹脂層の表面に撥水層が形成されていることを特徴とする、請求項1〜7のいずれかに記載のエネルギー吸収部材。   The energy absorbing member according to any one of claims 1 to 7, wherein a water-repellent layer is formed on the surface of the outermost fiber reinforced resin layer.
JP2005088655A 2005-03-25 2005-03-25 Energy absorbing member Expired - Fee Related JP5077731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088655A JP5077731B2 (en) 2005-03-25 2005-03-25 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088655A JP5077731B2 (en) 2005-03-25 2005-03-25 Energy absorbing member

Publications (2)

Publication Number Publication Date
JP2006264240A true JP2006264240A (en) 2006-10-05
JP5077731B2 JP5077731B2 (en) 2012-11-21

Family

ID=37200690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088655A Expired - Fee Related JP5077731B2 (en) 2005-03-25 2005-03-25 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP5077731B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097676A (en) * 2014-11-25 2016-05-30 ザ・ボーイング・カンパニーThe Boeing Company Composite laminate including interlayers with through-plane regions fused to fiber beds
JP2016521335A (en) * 2013-04-03 2016-07-21 エアバス ディフェンス アンド スペース エスアーエス Connection of thin metal liner and composite wall with thermoplastic particle coating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142354A (en) * 1981-01-21 1982-09-03 Scott Bader Co Composite material giving metallic coating product and its method and product obtained through said method
JPH05186479A (en) * 1991-08-01 1993-07-27 Nikko Kyodo Co Ltd New imidazolesilane compound and its production and metal surface treating agent using the same
JPH10237079A (en) * 1997-02-21 1998-09-08 Japan Energy Corp Surface treatment agent or additive for resin
WO1999010168A1 (en) * 1997-08-21 1999-03-04 Toray Industries, Inc. Light metal/cfrp structural member
JPH11173356A (en) * 1997-12-11 1999-06-29 Toray Ind Inc Shock absorbing member made of aluminum/fiber reinforced resin
JP2002240658A (en) * 2001-02-15 2002-08-28 Toray Ind Inc Impact absorber member made of metal/frp
JP2004338207A (en) * 2003-05-15 2004-12-02 Toray Ind Inc Composite material and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142354A (en) * 1981-01-21 1982-09-03 Scott Bader Co Composite material giving metallic coating product and its method and product obtained through said method
JPH05186479A (en) * 1991-08-01 1993-07-27 Nikko Kyodo Co Ltd New imidazolesilane compound and its production and metal surface treating agent using the same
JPH10237079A (en) * 1997-02-21 1998-09-08 Japan Energy Corp Surface treatment agent or additive for resin
WO1999010168A1 (en) * 1997-08-21 1999-03-04 Toray Industries, Inc. Light metal/cfrp structural member
JPH11173356A (en) * 1997-12-11 1999-06-29 Toray Ind Inc Shock absorbing member made of aluminum/fiber reinforced resin
JP2002240658A (en) * 2001-02-15 2002-08-28 Toray Ind Inc Impact absorber member made of metal/frp
JP2004338207A (en) * 2003-05-15 2004-12-02 Toray Ind Inc Composite material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521335A (en) * 2013-04-03 2016-07-21 エアバス ディフェンス アンド スペース エスアーエス Connection of thin metal liner and composite wall with thermoplastic particle coating
JP2016097676A (en) * 2014-11-25 2016-05-30 ザ・ボーイング・カンパニーThe Boeing Company Composite laminate including interlayers with through-plane regions fused to fiber beds

Also Published As

Publication number Publication date
JP5077731B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP2006297927A (en) Structure for automobile
US11135825B2 (en) Metal/fiber-reinforced resin material composite body and method for producing same
JP4501861B2 (en) Titanium or titanium alloy, adhesive resin composition, prepreg and composite material
CN103338925B (en) The fiber metal laminate improved
JP2007521995A5 (en)
JP4752566B2 (en) Aircraft structure
JP4784362B2 (en) Tubular body
CA2551080A1 (en) High strength, impact resistant, elastic composite laminates
JP2006505655A (en) Polymer composite structure reinforced with shape memory alloy and manufacturing method thereof
Shanmugam et al. Influence of UHMWPE fiber and Ti6Al4V metal surface treatments on the low-velocity impact behavior of thermoplastic fiber metal laminates
Abd El‐baky et al. Experimental study on the improvement of mechanical properties of GLARE using nanofillers
JP5004940B2 (en) Composite member and manufacturing method thereof
TW201226253A (en) Load bearing component, in particular for a bicycle, having a stack of insert piece segments and fibre layers
WO2019168064A1 (en) Metal-fiber reinforced resin material composite body and method for producing metal-fiber reinforced resin material composite body
Xu et al. Mechanical Properties and Interlaminar Fracture Toughness of Glass‐Fiber‐Reinforced Epoxy Composites Embedded with Shape Memory Alloy Wires
JP2016107485A (en) Composite molding, and production method thereof
JP5077731B2 (en) Energy absorbing member
JP2006198784A (en) Fiber reinforced composite material and its manufacturing method
JP2011079221A (en) Different material composite
JP2005161852A5 (en)
JP4175174B2 (en) Composite material and manufacturing method thereof
JP2005161852A (en) Metal/fiber-reinforced plastic composite material, and its production method
JP2009019089A (en) Fiber-reinforced plastic and reinforced heat-insulating composite material using the same
JP5239350B2 (en) Prepreg and fiber reinforced composite materials
JPH06179251A (en) Pipe made of frp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5077731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees