JP2006264171A - Manufacturing method of fiber-reinforced resin molding - Google Patents

Manufacturing method of fiber-reinforced resin molding Download PDF

Info

Publication number
JP2006264171A
JP2006264171A JP2005086986A JP2005086986A JP2006264171A JP 2006264171 A JP2006264171 A JP 2006264171A JP 2005086986 A JP2005086986 A JP 2005086986A JP 2005086986 A JP2005086986 A JP 2005086986A JP 2006264171 A JP2006264171 A JP 2006264171A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
crushed
fiber reinforced
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005086986A
Other languages
Japanese (ja)
Inventor
Yasuhiro Saito
康宏 斉藤
Toshio Ida
俊夫 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005086986A priority Critical patent/JP2006264171A/en
Publication of JP2006264171A publication Critical patent/JP2006264171A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a regenerated fiber-reinforced resin molding which, uses a used fiber-reinforced molding material, excels in strength and rigidity and also allows nails and screws to be driven easily. <P>SOLUTION: The manufacturing method of the fiber-reinforced resin molding comprises the steps of fixedly installing a projection 11 on a predetermined position of the bottom plate 12 of a form 13 that has a bottom plate 12, fitting the projection 11 with a cylindrical insert 2, supplying into the form the slender crushed pieces of the fiber-reinforced molding material whose fiber direction is aligned in the direction of the major axis, with an adhesive attached thereon, while orientating so that the direction of the crushed strips becomes the same, and molding the supplied material under heat and pressure by a press. Although the hardness of the fiber-reinforced resin molding becomes high by the compaction of the crushed pieces by the press, since the cylindrical insert is embedded, by using an insert material easy to make a perforation, the nails and screws can easily be driven. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は繊維強化成形材の破砕片を利用した繊維強化樹脂成形品の製造方法に関するものである。   The present invention relates to a method for producing a fiber reinforced resin molded article using a crushed piece of a fiber reinforced molded material.

近来、鉄道の軌道に用いられる枕木、崖崩れを防止するために用いられる受圧板、水槽や水路を覆うために用いられる蓋板等には、木材に代えて耐食性や強度に優れた合成木材が多く使用されている。
この合成木材は、長手方向に配向されたガラス繊維等で補強された硬質合成樹脂発泡体を素材としており、軽量で耐食性に優れ長期の使用に耐え得るものである。
しかしながら、使用済の合成木材の破砕物をそのまま使用して新規の合成木材を再生しても、破砕まえの合成木材の強度や剛性を発現させることは難しい。その理由は、合成木材の組織の大部分が樹脂で占められているために、破砕時に樹脂相が粉末状に粉砕されてなる粉砕物が多量に生成され、これらの粉末樹脂が骨材として寄与せず、再生合成木材の強度や剛性の向上が図られないためである。
特に、繊維強化硬質合成樹脂発泡体組織の合成木材では、破砕すると樹脂相が発泡体であるために一層に粉末化され易く、再生合成木材の強度や剛性の低下が顕著である。たとえ、樹脂粉末を除去した破砕物のみを利用しても、元の組織のように繊維を一方向に引き揃えた合成木材の強度・剛性を期待することは難しい。
Synthetic wood with excellent corrosion resistance and strength is used instead of wood for sleepers used in railway tracks, pressure plates used to prevent landslides, and cover plates used to cover water tanks and waterways. Many are used.
This synthetic wood is made of a hard synthetic resin foam reinforced with glass fibers or the like oriented in the longitudinal direction, and is lightweight, excellent in corrosion resistance and capable of withstanding long-term use.
However, it is difficult to develop the strength and rigidity of the synthetic wood before crushing, even if the new synthetic wood is regenerated using the used synthetic wood crush as it is. The reason is that most of the tissue of the synthetic wood is occupied by resin, so a large amount of pulverized material is produced by crushing the resin phase into powder during crushing, and these powder resins contribute as aggregates This is because the strength and rigidity of the recycled synthetic wood cannot be improved.
In particular, in synthetic wood having a fiber-reinforced hard synthetic resin foam structure, when crushed, the resin phase is a foam, so that it is more easily pulverized, and the strength and rigidity of regenerated synthetic wood are significantly reduced. Even if only the crushed material from which the resin powder is removed is used, it is difficult to expect the strength and rigidity of synthetic wood in which fibers are aligned in one direction as in the original structure.

そこで、本出願人においては、使用済の合成木材を破砕しその破砕物から粉末を除去して細長破砕物のみを選別し、この細長破砕物を接着剤を付着させて型枠内に細長破砕物の向きを同一方向とするように配向しつつ供給し、この供給材をプレスで加熱加圧成形して繊維強化樹脂成形品を製造することを既に提案した(特許文献1)
特開2004−148796号公報
Therefore, the present applicant crushes the used synthetic wood, removes the powder from the crushed material, selects only the slender crushed material, attaches the slender crushed material with an adhesive, and crushes the slender crushed material into the mold. It has already been proposed that a fiber-reinforced resin molded product is manufactured by supplying the materials while being oriented in the same direction, and heating and press-molding the supply material with a press (Patent Document 1).
JP 2004-148996 A

この製造方法によれば、プレスによる加熱加圧成形により、破砕片の密度をプレス前の1.5倍以上にも増加することが可能であり、かかる圧密化を行えば、優れた強度・剛性の再生繊維強化樹脂成形品を得ることができる。   According to this manufacturing method, it is possible to increase the density of crushed pieces by 1.5 times or more of that before pressing by heating and pressing with a press, and if such compaction is performed, excellent strength and rigidity are achieved. A recycled fiber reinforced resin molded article can be obtained.

合成木材を枕木等として使用する場合、レールと枕木との締結等のために釘や螺子を打ち込む必要があり、通常、現場で下穴を穿ち、その下穴に釘や螺子を打ち込んでいる。
しかしながら、前記特許文献1の繊維強化樹脂成形品の製造方法において、破砕片の密度を1.5倍以上にもするように圧密化すると、得られた繊維強化樹脂成形品の硬度が相当に高くなり、通常の合成木材(長繊維がガラス繊維で、樹脂がウレタン発泡体)に較べ下穴の穿設、釘や螺子の打ち込みが至難になる。
When synthetic wood is used as a sleeper or the like, it is necessary to drive a nail or a screw for fastening the rail and the sleeper or the like. Usually, a pilot hole is drilled in the field, and the nail or screw is driven into the pilot hole.
However, in the method for producing a fiber reinforced resin molded article of Patent Document 1, if the density of the crushed pieces is increased to 1.5 times or more, the hardness of the obtained fiber reinforced resin molded article is considerably high. Thus, compared to ordinary synthetic wood (long fibers are glass fibers and resin is urethane foam), it is difficult to drill a pilot hole and drive nails and screws.

本発明は、使用済の繊維強化成形材を再利用して強度・剛性に優れ、しかも釘や螺子の打ち込みを容易に行い得る再生繊維強化樹脂成形品を製造することを目的としている。   An object of the present invention is to produce a recycled fiber reinforced resin molded product that is excellent in strength and rigidity by reusing a used fiber reinforced molded material and that can be easily driven with a nail or a screw.

本発明に係る繊維強化樹脂成形品の製造方法は、底板を有する型枠の底板上の所定位置に突子を固設し、該突子に筒状インサートを装着し、繊維方向が長軸方向に揃えられた繊維強化成形材の細長破砕片を接着剤を付着させて前記の型枠内に細長破砕片の向きを同一方向とするように配向しつつ供給し、この供給材をプレスにより加熱・加圧成形すること
を特徴とする。
The method for producing a fiber-reinforced resin molded product according to the present invention includes fixing a protrusion at a predetermined position on a bottom plate of a mold having a bottom plate, attaching a cylindrical insert to the protrusion, and a fiber direction being a major axis direction. The elongated crushed pieces of the fiber reinforced molding material arranged in the above are supplied while adhering the adhesive so that the orientation of the elongated crushed pieces is the same direction in the mold, and the supply material is heated by a press.・ It is characterized by pressure molding.

底板上の所定位置に固設した突子に筒状インサートを装着した状態で、繊維方向が長軸方向に揃えられた繊維強化成形材の細長破砕片を接着剤を付着させて前記の型枠内に細長破砕片の向きを同一方向とするように配向しつつ供給し、この供給材をプレスにより加熱・加圧成形しているから、筒状インサートをずれなく所定の位置に埋設できる。
繊維強化成形材の細長破砕片の密度をプレスによる加熱・加圧で増加させることができるから、強度に優れ、剛性の高い繊維強化樹脂成形品を得ることができる。
この破砕片の圧密化により繊維強化樹脂成形品の硬度が高くなるが、筒状インサートを埋入しており、穿孔が容易なインサート材質を使用することによって釘や螺子を容易に打つ込み得る繊維強化樹脂成形品を得ることができる。
In the state where the cylindrical insert is attached to a protrusion fixed at a predetermined position on the bottom plate, an adhesive is attached to the elongated crushed piece of the fiber reinforced molding material in which the fiber direction is aligned in the long axis direction, and the above-mentioned formwork The elongated shredded pieces are supplied while being oriented in the same direction, and the supply material is heated and pressurized by a press, so that the cylindrical insert can be embedded at a predetermined position without deviation.
Since the density of the elongated crushed pieces of the fiber reinforced molding material can be increased by heating and pressing with a press, a fiber reinforced resin molded product having excellent strength and high rigidity can be obtained.
This compaction of the crushed pieces increases the hardness of the fiber-reinforced resin molded product, but it is a fiber that has a cylindrical insert embedded and can be easily driven into nails and screws by using an insert material that can be easily drilled. A reinforced resin molded product can be obtained.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明により製造される繊維強化樹脂成形品の一例を示している。
図1において、Aは繊維強化樹脂成形品本体、2は繊維強化樹脂成形品本体Aの所定の締結位置に埋着された筒状インサートであり、穿孔性と釘や螺子に対する引き抜き抵抗力とを有する芯材を装填するか、内面に雌ねじ溝を加工することができる。材質としてはナイロン、エポキシ樹脂、ポリエステル、ウレタン樹脂、ポリアセタール、ポリフェニレンサルファイド等の合成樹脂、鉄、SUS等の金属を用いることができる。
筒状インサート2の頂部は閉じられており、頂上は繊維強化樹脂成形品本体Aの表面に面一とされているか、その表面に近接して埋設されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a fiber-reinforced resin molded product produced according to the present invention.
In FIG. 1, A is a fiber reinforced resin molded product main body, 2 is a cylindrical insert embedded in a predetermined fastening position of the fiber reinforced resin molded product main body A, and has piercing properties and resistance to pulling out against nails and screws. It is possible to load the core material having the above or to process the female thread groove on the inner surface. As the material, nylon, epoxy resin, polyester, urethane resin, polyacetal, polyphenylene sulfide, or other synthetic resin, iron, SUS, or other metal can be used.
The top part of the cylindrical insert 2 is closed, and the top part is flush with the surface of the fiber reinforced resin molded product main body A or is embedded close to the surface.

図2は本発明において使用する成形型Bの一例を示し、筒状インサート固定用突子11を所定の位置に固設した底板12の周囲に型枠13を取付けてある。
型枠13と底板12とは同材質とすることが好ましいが、別材質とすることもできる。特に、底板12においては、プレスからの熱を効率よく伝えるために、鉄板、アルミ板、SUS板を使用することが好ましい。
前記突子11の底板12への固着は、螺合や溶接により行うことができ、突子11の材質には、底板12と同材質のものを使用することが好ましい。異なる材質とすることも可能である。
2は突子11に装着した筒状インサートであり、スムーズな脱離を行うために抜きテーパーを付することが好ましい。底板から筒状インサート頂上面までの高さは、製造する繊維強化樹脂成形品の厚みよりも小とされている。この筒状インサートと繊維強化樹脂成形品本体との結着性を高めるために、筒状インサートの外面に凹凸を付したり、筒状インサートの材質を繊維強化樹脂成形品本体との接着性に優れたものとすることが好ましい。
FIG. 2 shows an example of a molding die B used in the present invention, and a mold 13 is attached around a bottom plate 12 in which a cylindrical insert fixing protrusion 11 is fixed at a predetermined position.
The mold 13 and the bottom plate 12 are preferably made of the same material, but may be made of different materials. In particular, in the bottom plate 12, it is preferable to use an iron plate, an aluminum plate, or a SUS plate in order to efficiently transfer heat from the press.
The protrusion 11 can be fixed to the bottom plate 12 by screwing or welding. The protrusion 11 is preferably made of the same material as the bottom plate 12. Different materials can be used.
Reference numeral 2 denotes a cylindrical insert attached to the protrusion 11, which is preferably provided with a taper for smooth removal. The height from the bottom plate to the top surface of the cylindrical insert is set to be smaller than the thickness of the fiber-reinforced resin molded product to be manufactured. In order to improve the binding between the cylindrical insert and the fiber reinforced resin molded product body, the outer surface of the cylindrical insert is made uneven, or the material of the cylindrical insert is made adhesive to the fiber reinforced resin molded product body. It is preferable to make it excellent.

本発明において使用する繊維強化成形材の細長破砕片は使用済の繊維強化成形材(合成木材)を破砕し選別することにより得られる。繊維強化成形材を破砕すると、繊維の周りに樹脂材が固着した細長い破砕片や樹脂だけの粉末が生成される。この樹脂粉末は使用せずに、繊維を含んだ細長い破砕片のみを選択して再利用に供する。この破砕片の繊維は細長の長軸方向に揃えられている。
使用済の繊維強化成形材を破砕する装置には、例えば、回転刃を有するローラで破砕を行う一軸破砕機、回転刃を有する平行に配された一対のローラの間に被破砕物を通過させることにより双方の回転刃を被破砕物に噛み込ませて破砕する2軸破砕機等を用いることができる。
細長破砕片を選別する装置としては、例えば、ウェーブローラ方式の分級機を使用できる。この分級機によれば、破砕物の厚みや巾を基準にして連続的に分級でき、破砕物から所定範囲の厚み、巾及び長さを有する細長い破砕片を選別できる。
The elongated crushed pieces of the fiber reinforced molding material used in the present invention can be obtained by crushing and selecting a used fiber reinforced molding material (synthetic wood). When the fiber reinforced molding material is crushed, slender crushed pieces in which the resin material is fixed around the fiber and powder of only the resin are generated. This resin powder is not used, but only the elongated crush pieces containing fibers are selected and reused. The fibers of the crushed pieces are aligned in the long and long axis direction.
The apparatus for crushing used fiber reinforced molding materials includes, for example, a uniaxial crusher that crushes with a roller having a rotary blade, and a material to be crushed between a pair of parallel rollers having a rotary blade. Thus, it is possible to use a biaxial crusher or the like that crushes both rotary blades by biting them into the object to be crushed.
For example, a wave roller type classifier can be used as an apparatus for sorting the elongated fragments. According to this classifier, it is possible to classify continuously based on the thickness and width of the crushed material, and it is possible to select elongated crushed pieces having a predetermined range of thickness, width and length from the crushed material.

このようにして選別した細長破砕片を接着剤を付着させて型枠内に細長破砕片の向きを同一方向とするように配向しつつ供給していく。
選別した破砕片に接着剤を付着させるには、例えば、図3の(イ)に示すようなドラムブレンダー3やコンベア上に投入した破砕片に接着剤を噴霧して破砕片の表面に接着剤を均一に付着させていくことができる。
型枠内に細長破砕片の向きを同一方向とするように配向しつつ接着剤付着細長破砕片を供給していくには、例えば、図3の(ロ)に示すように型枠Bをコンベア4で走行させ、接着剤付着細長破砕片を上側コンベア5で移送し、ディスクを所定の間隔で配置したディスクオリエンター6に向けて接着剤付着破砕片を落下させて成形型Bに投入する方法や所定の巾及び長さを有する櫛状のスリットを通して配向させる方法を使用することができる。
型枠底板上の筒状インサートはコンベア4による型枠Bの走行と共に移動され、上方から供給されてくる接着剤付着細長破砕片で打たれるが、底板に固設された突子に装着されているので、所定の位置に安定に保持できる。
The elongated shredded pieces thus selected are supplied while adhering an adhesive so that the elongated shredded pieces are oriented in the same direction in the mold.
In order to attach the adhesive to the selected crushed pieces, for example, the adhesive is sprayed on the crushed pieces put on the drum blender 3 or the conveyor as shown in FIG. Can be attached uniformly.
In order to supply the adhesive-attached elongated shredded pieces while orienting the elongated shredded pieces in the same direction so as to be in the same direction, for example, as shown in FIG. 4, the adhesive-attached elongated shredded pieces are transported by the upper conveyor 5, and the adhesive-attached shredded pieces are dropped toward the disc orienter 6 in which the discs are arranged at predetermined intervals, and are put into the molding die B. Alternatively, a method of aligning through a comb-like slit having a predetermined width and length can be used.
The cylindrical insert on the mold bottom plate is moved along with the running of the mold B by the conveyor 4 and is struck by the adhesive-attached elongated crush pieces supplied from above, but is attached to a protrusion fixed on the bottom plate. Therefore, it can be stably held at a predetermined position.

このようにして成形型に選別した細長破砕片を接着剤を付着させて型枠内に細長破砕片の向きを同一方向とするように配向しつつ供給すれば、材料はほぼ板状に整形された状態となり、この供給後に図3の(ハ)に示すように、この板状供給材料をプレス7により加熱・加圧成形していく。この加圧により所定密度にまで圧縮されるとプレス板71が所定の反発力を受ける。加圧時間は反発力の緩和時間と接着剤の効果時間に応じて設定される。加熱はプレス板を加熱することにより板状供給材料を加熱する方法、スチームや電磁波を用いて板状供給材料を加熱する方法などを使用できる。
筒状インサートの高さは供給材料の最終圧縮厚みよりも大きくされているので、プレスにもかかわらず、所定の位置に安定に保持されたままである。
If the elongated shredded pieces selected in this way are attached to the mold with the adhesive attached and oriented so that the orientation of the elongated shredded pieces is the same direction, the material is shaped into a plate shape. After this supply, the plate-shaped supply material is heated and pressure-molded by a press 7 as shown in FIG. When compressed to a predetermined density by this pressurization, the press plate 71 receives a predetermined repulsive force. The pressing time is set according to the repulsive force relaxation time and the adhesive effect time. For heating, a method of heating the plate-shaped supply material by heating the press plate, a method of heating the plate-shaped supply material using steam or electromagnetic waves, and the like can be used.
Since the height of the cylindrical insert is greater than the final compressed thickness of the feed, it remains stably held in place despite the press.

上記のように破砕片を接着剤を付着させつつ配向して板状に整形し、これをプレス整形する際、破砕片の形状のバラツキが大きいと、板状整形物中の破砕片の粗密が生じ易く、また粉末状破砕物の占める割合が多過ぎると、接着剤が多量に必要となったり、接着剤量を多くしない場合は接着剤量が不足して均一な付着が困難になり、最終製品の強度のバラツキが大きくなってしまう。
本発明では形状のバラツキの少ない破砕片を使用するために破砕片を選別しているが、選別されて使用されない破砕片または粉砕物の量を少なくするほど原料の使用効率を上げてリサイクル効率を高めることができる。而るに、繊維強化成形材を破砕すると、繊維の破断位置がばらついて破砕片の形状を一定にすることが難しく、粉砕物が多量に発生し易い。従って、繊維強化成形材を50mm〜200mmに切断したうえで破砕することが好ましい。
As described above, the crushed pieces are oriented with the adhesive attached and shaped into a plate shape, and when this is press-shaped, if there is a large variation in the shape of the crushed pieces, the density of the crushed pieces in the plate shaped shaped product will be If the proportion of powdered crushed material is too large, a large amount of adhesive is required, or if the amount of adhesive is not increased, the amount of adhesive is insufficient and uniform adhesion becomes difficult. Variations in product strength will increase.
In the present invention, the crushed pieces are selected in order to use the crushed pieces with less variation in shape. However, as the amount of crushed pieces or crushed materials that are not used after being sorted is reduced, the use efficiency of the raw material is increased to increase the recycling efficiency. Can be increased. Thus, when the fiber reinforced molding material is crushed, it is difficult to make the shape of the crushed pieces constant because the fiber breaking positions vary, and a large amount of pulverized material is likely to be generated. Therefore, it is preferable to crush the fiber reinforced molding material after cutting it into 50 mm to 200 mm.

本発明において原料として用いる使用済の繊維強化成形材は、連続の長尺繊維に熱硬化性樹脂液を含浸し、これを型に通して所定断面形状に整形しつつ含浸樹脂を硬化したものであり、例えば枕木等としてて使用済のものである。
この繊維強化成形材の熱硬化性樹脂としては、ポリウレタン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレア樹脂、メラミン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂などを列挙でき、これらの樹脂を助剤等を用いて発泡させたもの、例えば硬質ポリウレタンの発泡体も使用できる。この硬質ポリウレタン発泡体の平均密度は0.2g/cm3以上で
ある。
この繊維強化成形材の長尺繊維としては、モノフィラメント、フィブリル化繊維、撚り糸等を挙げることができ、例えば、ガラス繊維単独、ガラス繊維と炭素繊維や合成繊維等の補強繊維との複合物を挙げることができる。
The used fiber-reinforced molding material used as a raw material in the present invention is obtained by impregnating a continuous long fiber with a thermosetting resin liquid and curing the impregnated resin while shaping it into a predetermined cross-sectional shape through a mold. Yes, for example, used as sleepers.
As the thermosetting resin of this fiber reinforced molding material, polyurethane resin, phenol resin, unsaturated polyester resin, diallyl phthalate resin, vinyl ester resin, epoxy resin, urea resin, melamine resin, polyimide resin, polyamideimide resin, acrylic resin These resins can be foamed with an auxiliary agent, for example, a hard polyurethane foam. The average density of this rigid polyurethane foam is 0.2 g / cm 3 or more.
Examples of the long fibers of the fiber-reinforced molding material include monofilaments, fibrillated fibers, and twisted yarns. Examples thereof include glass fibers alone, and composites of glass fibers and reinforcing fibers such as carbon fibers and synthetic fibers. be able to.

本発明において使用する繊維強化成形材の破砕片の寸法は厚さ及び巾が0.5mm〜10mmであり、長さが10mm〜200mmである。厚さ及び巾が0.5mm未満では破砕片の表面積が広くなり過ぎ、少量の接着剤を破砕片の表面に均一に付着させることが困難になり、10mmを越えると破砕片同士の上下の交差箇所に大きな空隙が生じて応力集中による強度低下が発生し易くなる。また、長さが10mm未満では、短過ぎて引き揃えによる配向が困難になり繊維による有効な補強効果が期待できなくなり、200mm越えると破砕片の流動性の低下に低下に伴って破砕片同士が交差し易くなり、交差箇所に大きな空隙が生じて応力集中による強度低下が発生し易くなる。   The dimensions of the crushed pieces of the fiber-reinforced molding material used in the present invention are 0.5 mm to 10 mm in thickness and width, and 10 mm to 200 mm in length. If the thickness and width are less than 0.5 mm, the surface area of the crushed pieces becomes too large, and it becomes difficult to uniformly apply a small amount of adhesive to the surface of the crushed pieces. Large voids are generated at the locations, and the strength is likely to decrease due to stress concentration. Also, if the length is less than 10 mm, it is too short and orientation by alignment becomes difficult, and an effective reinforcing effect due to the fibers cannot be expected. It becomes easy to cross, and a big space | gap arises in a crossing location, and it becomes easy to generate | occur | produce the strength fall by stress concentration.

本発明において使用する接着剤としては、イソシアネート、フェノール、尿素、ウレタン、エポキシ等を列挙でき、配合量は破砕片の形状、表面性状、密度にもよるが、通常1〜20重量%とされる。軽量化のために、可及的に少量の接着剤を破砕片に均一に塗布することが好ましく、低粘度のイソシアネートを使用することが好ましい。   As the adhesive used in the present invention, isocyanate, phenol, urea, urethane, epoxy and the like can be listed, and the blending amount is usually 1 to 20% by weight although it depends on the shape, surface property and density of the crushed pieces. . In order to reduce the weight, it is preferable to apply as little amount of adhesive as possible to the crushed pieces, and it is preferable to use a low-viscosity isocyanate.

本発明において使用する繊維強化成形材の破砕片の密度は0.3g/cm〜0.9g/cmであり、最終的に得る繊維強化樹脂成形品の密度を0.9g/cm〜1.6g/cmとするようにプレス成型の加熱温度及び加圧力を設定している。その理由は、0.9g/cm未満では強度が不足し、1.6g/cmを越えると、破砕が困難になり、リサイクルが至難となるからである。例えば、繊維強化成形材の破砕片としてガラス繊維強化硬質ウレタン樹脂発泡体を使用する場合、加熱温度が180℃とされる。 The density of crushed pieces of the fiber-reinforced molding material used in the present invention is 0.3g / cm 3 ~0.9g / cm 3 , the density of the finally obtained fiber-reinforced resin moldings 0.9 g / cm 3 ~ The heating temperature and pressurizing force for press molding are set so as to be 1.6 g / cm 3 . The reason is that if it is less than 0.9 g / cm 3 , the strength is insufficient, and if it exceeds 1.6 g / cm 3 , crushing becomes difficult and recycling becomes difficult. For example, when using a glass fiber reinforced rigid urethane resin foam as a crushed piece of a fiber reinforced molding material, the heating temperature is 180 ° C.

このようにして得た繊維強化樹脂成形品においては、プレス成型のために破砕片が圧密化されており、その強度はガラス繊維強化硬質ウレタン樹脂発泡体に匹敵する。プレス成型のために、破砕片が圧密化されており、加工は困難であるが、所定の位置に筒状インサートを埋設してあり、釘や螺子はこの筒状インサートに容易に打ち込むことができ、枕木等として釘や螺子等でレールに容易に締結できる。   In the fiber reinforced resin molded product thus obtained, the crushed pieces are consolidated for press molding, and the strength thereof is comparable to that of a glass fiber reinforced rigid urethane resin foam. Due to press molding, the shredded pieces are consolidated and difficult to process, but a cylindrical insert is embedded in place, and nails and screws can be easily driven into this cylindrical insert. It can be easily fastened to the rail with nails or screws as sleepers.

本発明により製造した繊維強化樹脂成形品は、枕木として釘や螺子等で締結して使用する以外に、筒状インサート内に凍結防止用ヒータ−やセンサーを収容して使用することもできる。また、崖崩れを防止するために用いられる受圧板、水槽や水路を覆うために用いられる蓋板として釘や螺子等で締結して使用することもできる。   The fiber reinforced resin molded article produced by the present invention can be used by accommodating a freeze prevention heater or sensor in a cylindrical insert, in addition to being used as a sleeper by fastening with nails or screws. Moreover, it can also be fastened and used by a nail, a screw, etc. as a pressure receiving plate used in order to prevent a landslide, and a cover plate used in order to cover a water tank or a water channel.

鉄製の厚み6mmの底板の4ヵ所に根元径が21mmφ、長さが80mmの先細りテーパー付きの鉄製突子を溶接し、この底板の周囲に巾200×長さ2100mm×高さ140mmの型枠を溶接した成形型を使用し、筒状インサートには、深さ130mm、太さ23mmのポリエステル製雌ネジ溝付き埋込栓を使用し、前記の各突子に埋込栓を装着した。
繊維強化成形材の破砕片としては、平均長軸長さが30mm、平均短軸長さが5mmのガラス長繊維補強発泡ウレタン合成木材(積水化学工業株式会社製エスロンネオランバーFFU74)の破砕チップを使用し、接着剤としては、イソシャネート(MDI住化バイエルウレタン株式会社製スミジュール44V10)を使用した。
図3の(イ)に示すように、接着剤と破砕チップとをドラムブレンダー3内に接着剤量を15重量%とするように投入し、回転撹拌して破砕チップの表面に接着剤を均一に塗布した。
次で、図3の(ロ)に示すように、ディスクを10mm間隔で配設したディスクオリエンター6に向けて接着剤塗布破砕チップを上側のベルトコンベア5から落下させ、破砕チップの長手方向を成形ライン方向に引き揃えつつ接着剤塗布破砕チップを成形型B内に投入して板状に整形した。
次で、図3の(ハ)に示すように板状整形物をプレス装置に挿入し、180℃×1時間で加熱しつつ加圧し、巾200×長さ2100mm×厚み135mm、平均密度0.92g/cmの繊維強化樹脂成形品を得た。
この繊維強化樹脂成形品について、ポリエステル製雌ネジ溝付き埋込栓がずれなく所定の位置に埋着されており、強度がガラス長繊維補強発泡ウレタン合成木材の強度以上であることを確認できた。
A steel taper with a taper taper with a base diameter of 21 mmφ and a length of 80 mm is welded to four locations on a 6 mm thick bottom plate, and a formwork of width 200 x length 2100 mm x height 140 mm is formed around the bottom plate. A welded mold was used, and an embedded plug with a female thread groove made of polyester having a depth of 130 mm and a thickness of 23 mm was used for the cylindrical insert, and the embedded plug was attached to each of the protrusions.
As crushed pieces of fiber reinforced molding material, crushed chips of glass fiber reinforced foamed urethane synthetic wood (Eslon Neo Lumber FFU74 manufactured by Sekisui Chemical Co., Ltd.) having an average major axis length of 30 mm and an average minor axis length of 5 mm. Used as an adhesive, Isochanate (Sumijour 44V10 manufactured by MDI Sumika Bayer Urethane Co., Ltd.) was used.
As shown in FIG. 3 (a), the adhesive and the crushing tip are put into the drum blender 3 so that the amount of the adhesive is 15% by weight, and the adhesive is evenly distributed on the surface of the crushing tip by rotating and stirring. It was applied to.
Next, as shown in FIG. 3B, the adhesive-coated crushing tips are dropped from the upper belt conveyor 5 toward the disc orienter 6 in which the discs are arranged at intervals of 10 mm, and the longitudinal direction of the crushing tips is changed. While aligning in the molding line direction, the adhesive-coated crushing chip was put into the mold B and shaped into a plate shape.
Next, as shown in FIG. 3 (c), the plate-shaped shaped article is inserted into a press device and pressed while being heated at 180 ° C. × 1 hour, width 200 × length 2100 mm × thickness 135 mm, average density 0. A fiber reinforced resin molded product of 92 g / cm 3 was obtained.
About this fiber reinforced resin molded product, it was confirmed that the embedded plug with a female thread groove made of polyester was embedded in place without deviation and the strength was equal to or greater than the strength of long glass fiber reinforced urethane foam synthetic wood. .

本発明により製造される繊維強化樹脂成形品を示す図面である。It is drawing which shows the fiber reinforced resin molded product manufactured by this invention. 本発明において使用する枠型を示す図面である。It is drawing which shows the frame type | mold used in this invention. 本発明に係る繊維強化樹脂成形品の製造方法を示す図面である。It is drawing which shows the manufacturing method of the fiber reinforced resin molded product which concerns on this invention.

符号の説明Explanation of symbols

A 繊維強化樹脂成形本体
B 成形型
11 突子
12 底板
13 枠型
2 筒状インサート
3 ドラムブレンダー
4 コンベア
5 コンベア
6 ディスクオリエンター
7 プレス
71 プレス板
A Fiber reinforced resin molded body B Mold 11 Projection
DESCRIPTION OF SYMBOLS 12 Bottom plate 13 Frame type 2 Cylindrical insert 3 Drum blender 4 Conveyor 5 Conveyor 6 Disc orienter 7 Press 71 Press plate

Claims (1)

底板を有する型枠の底板上の所定位置に突子を固設し、該突子に筒状インサートを装着し、繊維方向が長軸方向に揃えられた繊維強化成形材の細長破砕片を接着剤を付着させて前記の型枠内に細長破砕片の向きを同一方向とするように配向しつつ供給し、この供給材をプレスにより加熱・加圧成形することを特徴とする繊維強化樹脂成形品の製造方法。 A protrusion is fixed at a predetermined position on the bottom plate of a mold having a bottom plate, a cylindrical insert is attached to the protrusion, and a long crushed piece of fiber reinforced molding material in which the fiber direction is aligned in the long axis direction is bonded. A fiber reinforced resin molding characterized in that an agent is attached and supplied into the mold so that the elongated shredded pieces are oriented in the same direction, and the supply material is heated and pressurized by a press. Product manufacturing method.
JP2005086986A 2005-03-24 2005-03-24 Manufacturing method of fiber-reinforced resin molding Pending JP2006264171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086986A JP2006264171A (en) 2005-03-24 2005-03-24 Manufacturing method of fiber-reinforced resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086986A JP2006264171A (en) 2005-03-24 2005-03-24 Manufacturing method of fiber-reinforced resin molding

Publications (1)

Publication Number Publication Date
JP2006264171A true JP2006264171A (en) 2006-10-05

Family

ID=37200628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086986A Pending JP2006264171A (en) 2005-03-24 2005-03-24 Manufacturing method of fiber-reinforced resin molding

Country Status (1)

Country Link
JP (1) JP2006264171A (en)

Similar Documents

Publication Publication Date Title
US11345100B2 (en) Composite rail tie apparatus and method
US5055339A (en) Shaped elements
EA036303B1 (en) Method for producing a tie for use in the track superstructure
AU4813593A (en) Cryogenic processing of used tires and other materials
JP2006264171A (en) Manufacturing method of fiber-reinforced resin molding
KR20050078841A (en) Fiber-mesh thin-steel-plate one-directional-fiber composite panel and how to make it and how to reinforce a concrete structure by it
JP4495407B2 (en) Recycled molded material manufacturing method, recycled molded material, recycled structure material, synthetic sleeper and lightweight synthetic wood
JP4653520B2 (en) Manufacturing method of fiber-reinforced resin molded product
JP2005288899A (en) Regenerated molded product and its manufacturing method
KR200419232Y1 (en) Waste crusher
KR101279902B1 (en) Apparatus for diminishing expanded polyethylene pellet
JP4733396B2 (en) Recycled molding material manufacturing method
JP4309793B2 (en) Recycled molded body
JP2005288898A (en) Method for manufacturing regenerated molded product
CN110315781A (en) A kind of glass-magnesium composite plate waste recovery reuse method and products thereof
JP2004338228A (en) Method for manufacturing regenerated molding material
US20100260878A1 (en) Auger feeder for concrete mix, method of manufacturing the auger feeder, and slipform-casting apparatus
US11691312B2 (en) Method of molding plant-based material and molded body
JP3973185B2 (en) Molded plate
KR20180032781A (en) Manufacturing method of deck with urethane pad
JPH06206224A (en) Method and apparatus for grinding thermosetting resin molded product
JP2004338194A (en) Method for manufacturing regenerated molding material
JP2004338227A (en) Method for manufacturing regenerated molding material
JP2004338226A (en) Method for molding fiber-reinforced resin crushed material
JP2000296572A (en) Composite material and continuous production thereof