JP2006263751A - Flat plate working information acquiring method, and flat plate working method - Google Patents

Flat plate working information acquiring method, and flat plate working method Download PDF

Info

Publication number
JP2006263751A
JP2006263751A JP2005082504A JP2005082504A JP2006263751A JP 2006263751 A JP2006263751 A JP 2006263751A JP 2005082504 A JP2005082504 A JP 2005082504A JP 2005082504 A JP2005082504 A JP 2005082504A JP 2006263751 A JP2006263751 A JP 2006263751A
Authority
JP
Japan
Prior art keywords
flat plate
curved surface
curvature
distribution
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005082504A
Other languages
Japanese (ja)
Other versions
JP4899039B2 (en
Inventor
Tetsuya Akiyama
哲也 秋山
Toshio Terasaki
俊夫 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2005082504A priority Critical patent/JP4899039B2/en
Publication of JP2006263751A publication Critical patent/JP2006263751A/en
Application granted granted Critical
Publication of JP4899039B2 publication Critical patent/JP4899039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for acquiring flat plate working information capable of reproducing the working procedure by a skilled person as much as possible and necessary for forming a plate having a curved surface shape out of a flat plate, and a flat plate working method. <P>SOLUTION: The method for acquiring flat plate working information necessary for forming a plate having a curved surface shape out of a flat plate comprises a step of functioning the objective curved surface shape, a step of drawing the geodesic line to the functioned curved surface, a step of obtaining the in-plane distortion distribution from the changes in the interval on the geodesic line to satisfy the condition of being parallel on the plane, a step of obtaining the principal curvature distribution and the initial curvature distribution to obtain the objective curved surface shape, and a step of obtaining the curvature distribution to be added from the difference between the principal curvature distribution and the initial curvature distribution. In the flat plate working method, a plate having the curved surface shape is formed out of a flat plate based on the flat plate working information. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、造船の外板の成形手順の決定等に利用することができる、曲面形状を有する板材を平板から成形するのに必要な平板加工情報の取得方法および平板加工方法に関する。   The present invention relates to a flat plate processing information acquisition method and a flat plate processing method necessary for forming a plate material having a curved shape from a flat plate, which can be used for determining a forming procedure of a shipbuilding outer plate.

例えば船舶の船殻の一部や航空機、列車等の外殻は曲面形状を呈しており、これら曲面を形成するに際しては、従来、曲面形状を特定の方法によって平面に展開した展開図が描かれ、高度の熟練と経験を持つ技能者の経験と勘によって、例えば線状加熱による曲面形成加工が行われてきた。   For example, a part of a ship's hull and the outer shells of aircraft, trains, etc. have curved shapes, and conventionally, when these curved surfaces are formed, a developed view in which the curved surface shape is developed on a plane by a specific method is drawn. According to the experience and intuition of highly skilled and experienced technicians, for example, curved surface forming processing by linear heating has been performed.

近年、板材にひずみを与えた後の変形形状が数値計算シミュレーションによって求められることを利用して、最適な問題として付加ひずみと変形の関係を取り扱うことが行われている。
一方、平板材料を線状加熱によって目的とする曲面に形成するに際し、曲げ加工後の仕上げ切断を不要にすべく、正確な板取をするために、予め個々の線状加熱の固有ひずみ、固有変形を求めてデータベースとして蓄積しておき、目的とする曲面形状が与えられた時点で曲げ加工を遂行する線状加熱方法を策定したうえで、生成固有ひずみ分布目的曲面形状に付加して自由に変形させるFEM(有限要素法)弾性シミュレーションを行って曲面を平面形状に展開する方法が知られている(例えば特許文献1参照。)。
特開2000−237826号公報
In recent years, the relationship between the added strain and deformation has been handled as an optimal problem by utilizing the fact that the deformation shape after applying strain to the plate material is obtained by numerical simulation.
On the other hand, when forming a flat plate material into the desired curved surface by linear heating, in order to eliminate the need for finishing cutting after bending, in order to perform accurate chamfering, the inherent strain and inherent deformation of each linear heating in advance. After creating a linear heating method that performs bending when the desired curved surface shape is given, the generated inherent strain distribution is added to the desired curved surface shape and freely deformed A method of developing a curved surface into a planar shape by performing FEM (finite element method) elasticity simulation is known (see, for example, Patent Document 1).
JP 2000-237826 A

しかしながら、上記従来技術においては、目的とする曲面形状を得るための加工方法(加工法案)が非常に複雑であった。また、曲面形成に要求される面内ひずみの方向として複数の方向が必要であり、このため、現実には非常に困難な加工法案であったり、大型変形に対応し難かったりする問題が残されていた。また、熟練工の作業手順と大きく異なっていた。   However, in the above prior art, the processing method (processing method) for obtaining the desired curved surface shape is very complicated. In addition, a plurality of directions are required as in-plane strain directions required for curved surface formation, which leaves a problem that it is a very difficult processing method in reality or difficult to cope with large deformation. It was. Moreover, it was very different from the work procedure of skilled workers.

本発明は、上記の課題に鑑みてなされたものであり、熟練工が行う作業手順をできるだけ再現することができる平板加工情報の取得方法を提供することを目的とする。   This invention is made | formed in view of said subject, and it aims at providing the acquisition method of the flat plate processing information which can reproduce the work procedure which a skilled worker performs as much as possible.

本発明に係る平板加工情報の取得方法は、
曲面形状を有する板材を平板から成形するのに必要な平板加工情報の取得方法において、
目的の曲面形状を関数化する工程と、
関数化された曲面に対し測地線を描く工程と、
平面上で平行な条件を満たす測地線上での間隔の変化から面内ひずみ分布を求める工程と、
目的の曲面形状を得るための主曲率分布および初期曲率分布を求める工程と、
主曲率分布および初期曲率分布の差分から追加する曲率分布求める工程と、
を有することを特徴とする。
The method for obtaining flat plate processing information according to the present invention is as follows.
In the acquisition method of flat plate processing information necessary for forming a plate material having a curved shape from a flat plate,
Functionalizing the desired curved surface shape;
Drawing a geodesic curve on a functionalized surface;
Obtaining an in-plane strain distribution from a change in spacing on a geodesic line that satisfies a parallel condition on a plane;
Obtaining a main curvature distribution and an initial curvature distribution for obtaining a desired curved surface shape;
A step of obtaining a curvature distribution to be added from the difference between the main curvature distribution and the initial curvature distribution;
It is characterized by having.

また、本発明に係る平板加工方法は、上記の平板加工情報の取得方法により得られる平板加工情報に基づいて曲面形状を有する板材を平板から成形することを特徴とする。   The flat plate processing method according to the present invention is characterized in that a plate material having a curved shape is formed from a flat plate based on the flat plate processing information obtained by the flat plate processing information acquisition method.

本発明に係る平板加工情報の取得方法は、関数化された曲面に対し測地線を描く工程と、平面上で平行な条件を満たす測地線上での間隔の変化から面内ひずみ分布を求める工程と、 目的の曲面形状を得るための主曲率分布および初期曲率分布を求める工程と、主曲率分布および初期曲率分布の差分から追加する曲率分布を求める工程と、を有するため、熟練工が行う作業手順をできるだけ再現することができる。   The flat processing information acquisition method according to the present invention includes a step of drawing a geodesic line on a functionalized curved surface, a step of obtaining an in-plane strain distribution from a change in an interval on the geodesic line that satisfies a parallel condition on the plane, and Since there are a step of obtaining a main curvature distribution and an initial curvature distribution for obtaining a desired curved surface shape, and a step of obtaining a curvature distribution to be added from a difference between the main curvature distribution and the initial curvature distribution, the work procedure performed by a skilled worker is performed. It can be reproduced as much as possible.

本発明の実施の形態について、以下に説明する。   Embodiments of the present invention will be described below.

船舶の外板など曲面を平板から成形するには、(1)平板上への展開図の描画(現図展開)と、(2)ローラやプレス、ぎょう鉄と呼ばれる加熱による曲げ加工の2つの工程が行われる。もともと平面ではない形状に、曲げ変形、捩れ変形、伸びや縮み変形などを加えて平坦にならした展開図形を、改めて曲げ、捩れ、伸び縮みなどを逆向きに加えて曲面に再構築するわけであるから、曲面を平面に展開したときに加えた変形量が正確に分かっていなければもとの形には戻せない。
この展開に必要な変形量の定量化は一般に困難とされている。特に伸び縮み変形に分類される面内変形量はその定量化が困難である。面内変形量が正確でなかった場合には、例えば球面上に紙を貼ったときのように、必ずどこかに「しわ」がよってしまう(図2および図3参照)。「しわ」の量的な分布を知ることができ、これを予め取り除いておくことができれば、きれいな曲面を成形できることになる。
To form a curved surface such as a ship's outer plate from a flat plate, (1) drawing a development view on the flat plate (current drawing development), and (2) bending by heating called a roller, a press, or a go iron. Two steps are performed. An unfolded figure that has been flattened by adding bending deformation, torsional deformation, stretching or shrinking deformation to a shape that is not a flat surface, is reconstructed into a curved surface by adding bending, twisting, stretching or shrinking in the opposite direction. For this reason, the original shape cannot be restored unless the amount of deformation applied when the curved surface is developed on a flat surface is known.
It is generally difficult to quantify the amount of deformation required for this development. In particular, it is difficult to quantify the in-plane deformation amount classified as expansion / contraction deformation. When the in-plane deformation amount is not accurate, for example, when a paper is pasted on a spherical surface, a “wrinkle” is always generated somewhere (see FIGS. 2 and 3). If the quantitative distribution of “wrinkles” can be known and removed beforehand, a beautiful curved surface can be formed.

本発明では、コンピュータ内で曲面が取り扱えるように、(1)曲面を数式で近似する機能、(2)近似した曲面にコンピュータ内で紙を貼る機能、(3)「しわ」の寸法を測る機能を備えたコンピュータシステムを構築して、曲面を数学的にかつ機械的に取り扱う。   In the present invention, so that a curved surface can be handled in the computer, (1) a function for approximating the curved surface with a mathematical expression, (2) a function for pasting paper on the approximated curved surface in the computer, and (3) a function for measuring the size of “wrinkles” A computer system equipped with a computer is constructed to handle the curved surface mathematically and mechanically.

すなわち、本発明に係る平板加工情報の取得方法は、目的の曲面形状を関数化する工程と、関数化された曲面に対し測地線を描く工程と、平面上で平行な条件を満たす測地線上での間隔の変化から面内ひずみ分布を求める工程と、目的の曲面形状を得るための主曲率分布および初期曲率分布を求める工程と、主曲率分布および初期曲率分布の差分から追加する曲率分布求める工程と、を有する。   That is, the flat processing information acquisition method according to the present invention includes a step of functionalizing a target curved surface shape, a step of drawing a geodesic line on the functionalized curved surface, and a geodesic line that satisfies a parallel condition on the plane. A step of obtaining an in-plane strain distribution from a change in the distance between the steps, a step of obtaining a main curvature distribution and an initial curvature distribution for obtaining a desired curved surface shape, and a step of obtaining a curvature distribution to be added from a difference between the main curvature distribution and the initial curvature distribution And having.

本発明に係る平板加工情報の取得方法について、図1のフローチャートを参照して、さらに説明する。
まず、例えば船舶の船殻の一部となる外殻の局面形状、すなわち、目的の曲面形状を関数化し、目的曲面形状を付与する(図1中、S10)。
目的の曲面形状として、例えば、図形情報から離散的な空間座標を受け取り、z=z(x、y)の形式で曲面を近似する。このとき、関数には、例えばシグモイド関数を利用したニューラルネットワークを用い、曲面上の(x、y)座標の入力に対しz座標が出力となるよう学習させる。これにより、コンピュータに(x、y)座標を与えると、曲面上のz座標がわかる。
The flat plate processing information acquisition method according to the present invention will be further described with reference to the flowchart of FIG.
First, for example, the phase shape of the outer shell that becomes a part of the hull of the ship, that is, the target curved surface shape is functionalized to give the target curved surface shape (S10 in FIG. 1).
As the target curved surface shape, for example, discrete spatial coordinates are received from graphic information, and the curved surface is approximated in the form of z = z (x, y). At this time, for example, a neural network using a sigmoid function is used as the function, and learning is performed so that the z coordinate is output with respect to the input of the (x, y) coordinate on the curved surface. Thus, when the (x, y) coordinates are given to the computer, the z coordinates on the curved surface can be known.

つぎに、関数化された曲面上に、以下の要領で測地線を描く。すなわち、測地線による幹線の離散的描画を行い(図1中、S12)、さらに、測地線による枝線の離散的描画を行う(図1中、S14)。
先に説明した球面上に紙を貼ったときで言えば、例えば、図2に示す例では、まず辺ABを球面上に貼り、つづいてAD、BCなど縦方向に伸びる接着位置を貼ってゆく。ここで、辺ABが上記測地線の幹線に対応し、線AD、BCが上記測地線の枝線に対応する。これに対して、図3に示す例では、正方形の中心点Oをまず貼り、つづいて点Oから放射状に貼ってゆく。結果として生じるであろう「しわ」を模式的に両図(a)に示している。これらの場合、球面上の領域ABCDの展開図には正方形ABCDが対応し、面内変形には「しわ」が対応することは言うまでもない。機械的に処理を行うためには「しわ」の向きをできるだけ揃えておいた方が便利で、そのためには規則正しい貼り方が必要である。図2の場合、展開図上で「しわ」の向きは1方向である。したがって図2に示す方法は面内変形量を独立した直交2方向成分に分解する必要がなく簡単な表記となりうるため、好適である。
Next, a geodesic line is drawn on the functionalized curved surface as follows. That is, the trunk line is drawn discretely by the geodesic line (S12 in FIG. 1), and the branch line is drawn by the geodesic line (S14 in FIG. 1).
For example, in the example shown in FIG. 2, when the paper is pasted on the spherical surface described above, the side AB is first pasted on the spherical surface, and then the adhesive position extending in the vertical direction such as AD and BC is pasted. . Here, the side AB corresponds to the trunk line of the geodesic line, and the lines AD and BC correspond to branch lines of the geodesic line. On the other hand, in the example shown in FIG. 3, the square center point O is first pasted, and then radially pasted from the point O. The resulting “wrinkles” are shown schematically in both figures (a). In these cases, it goes without saying that the square ABCD corresponds to the development of the area ABCD on the spherical surface, and “wrinkles” correspond to the in-plane deformation. In order to perform the processing mechanically, it is convenient to align the direction of “wrinkles” as much as possible. In the case of FIG. 2, the direction of the “wrinkle” is one direction on the development view. Therefore, the method shown in FIG. 2 is preferable because it is not necessary to decompose the in-plane deformation amount into independent orthogonal two-direction components and can be expressed simply.

上記のことから、コンピュータ内で曲面上に紙を貼るには、以下の性質を利用することになる。なお、図2(b)に示す正方形のことを展開図と呼ぶことにする。
(1)接着部は展開図上では直線である。
(2)接着部は、一本の基線(幹線)とそれに垂直に交わる複数の枝線から構成される。
(3)展開図は、接着後、曲面に上記(1)の直線で接している。
(4)曲面上で上記(3)を満たす接線は測地線と呼ばれる幾何学的に特徴のある線である。
以上のことから、曲面上に基線(幹線)ならびに基線に垂直な枝線に相当する測地線を描けば、それがすなわち接着位置である。
From the above, the following properties are used to paste paper on a curved surface in a computer. The square shown in FIG. 2B is referred to as a development view.
(1) The bonding portion is a straight line on the development view.
(2) The bonding portion is composed of a single base line (trunk line) and a plurality of branch lines that intersect perpendicularly thereto.
(3) In the developed view, after bonding, the curved surface is in contact with the straight line (1).
(4) A tangent line satisfying the above (3) on the curved surface is a geometrically characteristic line called a geodesic line.
From the above, if a geodesic line corresponding to a base line (trunk line) and a branch line perpendicular to the base line is drawn on the curved surface, this is the bonding position.

測地線は、具体的には、以下の手順で描画する。
すなわち、図4に示すように、始点をx‐y平面上に点S(x、y)として決定する。曲面を現す関数にこの(x、y)座標を与えれば、容易にz座標を知ることができ、これがG1点で、測地線の始点になる。点Dは測地線を引く方向をx‐y平面上で示すベクトルSDの終点である。SDに垂直なx‐y面上の直線上に点Sを挟んで等距離に点S1、Sを定める。点S1、Sのx、y座標に対応する曲面P上のz座標を曲面関数を用いて求め、曲面上の点h1、f1を定める。
線分h1f1に垂直な面内にあり、中心をそれぞれ点h1、f1に持つ同一半径の円を点C1、Cとする。円C1、Cと曲面Pの交点のうち、測地線の進行方向側の点をh、fをとする。
さらに、円C1、Cと同じ大きさで円C1、Cに平行な面内で中心をG1に持つ円と曲面Pの交点のうち、測地線の進行方向側の点をGとする。
先に線分h1f1と点G1に対してして行った操作を、線分hfおよび点Gに対して行い、順次G点を求めその座標を記録すると、1本の測地線上の点を等間隔で区切った(x、y、z)座標を測地線の離散座標として得ることができる。
図4では、点h1、hを通る直線と点G1での接線との間に、平均値の定理を利用している。したがって、点Sは必ずしも点S1とS2の中点である必要はなく、特別な場合として、点Sが点S1とS2のどちらかと一致する場合も許される。
Specifically, the geodesic line is drawn by the following procedure.
That is, as shown in FIG. 4, the starting point is determined as a point S (x, y) on the xy plane. If this (x, y) coordinate is given to a function that expresses a curved surface, the z coordinate can be easily obtained, and this is the G 1 point, which is the starting point of the geodesic line. Point D is the end point of vector SD indicating the direction of drawing a geodesic line on the xy plane. Points S 1 and S 2 are determined at equal distances across a point S on a straight line on the xy plane perpendicular to SD. The z coordinate on the curved surface P corresponding to the x and y coordinates of the points S 1 and S 2 is obtained by using a curved surface function, and the points h 1 and f 1 on the curved surface are determined.
The circles of the same radius that are in the plane perpendicular to the line h 1 f 1 and have the centers at the points h 1 and f 1 are the points C 1 and C 2 . Of the intersections of the circles C 1 and C 2 and the curved surface P, the points on the geodesic line traveling direction side are h 2 and f 2 .
Furthermore, the circle C 1, of the intersection of the circle and a curved P centered in a plane parallel to the circle C 1, C 2 to G 1 at the same size as the C 2, a point in the traveling direction side of the geodesic G 2 .
When the operations previously performed on the line segment h 1 f 1 and the point G 1 are performed on the line segment h 2 f 2 and the point G 2 , the G point is sequentially obtained and its coordinates are recorded. (X, y, z) coordinates obtained by dividing the points on the geodesic line at equal intervals can be obtained as the discrete coordinates of the geodesic line.
In FIG. 4, the average value theorem is used between the straight line passing through the points h 1 and h 2 and the tangent line at the point G 1 . Therefore, the point S does not necessarily need to be a midpoint between the points S 1 and S 2 , and as a special case, the point S may be coincident with either the point S 1 or S 2 .

一旦、測地線を図4中、連続するG点として一本引き終えたなら、先に線分h1f1および点G1に対して行った操作を、図5に示すように、線分G13および点Gに対して行って、点Nを求め繰返しN点を求めると、先の測地線に点Gで垂直に交わる測地線上の点Nの(x、y、z)座標を離散座標として得ることができる。図5の場合、点G1、Gを通る直線と点Gでの接線との間に、平均値の定理を利用している。したがって、必ずしも点G1、GとGの3点から点N2を求める必要はなく、特別な場合として、隣り合う2点G1とG2から点N2(またはN)を求めることも許される。
こうして、基線となる測地線とそれに直交する枝線となる測地線を曲面上に描くことができる。
Once a geodesic line has been drawn as a continuous G point in FIG. 4, the operations previously performed on the line h 1 f 1 and the point G 1 are as shown in FIG. When G 1 G 3 and point G 2 are performed and point N 2 is obtained and N point is obtained repeatedly, the point N on the geodesic line that intersects the previous geodesic line perpendicularly at point G 2 (x, y, z ) Coordinates can be obtained as discrete coordinates. In the case of FIG. 5, the average value theorem is used between the straight line passing through the points G 1 and G 3 and the tangent line at the point G 2 . Therefore, it is not always necessary to obtain the point N 2 from the three points G 1 , G 2 and G 3. As a special case, the point N 2 (or N 1 ) is obtained from the two adjacent points G 1 and G 2. It is also allowed.
Thus, a geodesic line as a base line and a geodesic line as a branch line orthogonal to the base line can be drawn on the curved surface.

つぎに、幹線方向の枝線間隔を測定することで面内ひずみを算出する(図1中、S16)。
基線および枝線を描いた紙を曲面上に基線と枝線の位置で貼ったときに生じる「しわ」すなわち面内ひずみの大きさは、隣り合う枝線上の基線から等距離の位置にある点(例えば図5で、NとN)の間隔の変化で表される。枝線間の距離が変化しないとき「しわ」は生じる必要はない。また、今までは「しわ」とだけ呼んできたが「ひきつり」すなわち紙が伸びる場合も実際にはありうる。測地線上の点の座標は既に求められているので、枝線上の点間距離ならびにその変化量も容易に知ることができる。
ここで、曲面形成に必要な面内ひずみ分布を求めるに当たり、曲面上の特定の測地線上の面内ひずみを零に指定し、曲面形成に必要な面内ひずみを、先の測地線と平行なひずみのみの成分として算出する。
これにより、平板加工を行なう者(ユーザー)がひずみを与えたくない場所を指定でき、かつ、平板加工を行なう者の希望する一方向のひずみ分布として加工法案の作成が可能になる。このひずみ分布を従来の作業の三角焼きに対応させることができる。
Next, the in-plane strain is calculated by measuring the branch line spacing in the trunk direction (S16 in FIG. 1).
“Wrinkles”, or in-plane strain, that occurs when a paper depicting a base line and a branch line is pasted on the curved surface at the position of the base line and the branch line, is a point that is at the same distance from the base line on the adjacent branch line. (e.g. in FIG. 5, N 1 and N 2) represented by the change in the spacing of. “Wrinkles” do not need to occur when the distance between branches does not change. In addition, although it has been called only “wrinkles” until now, there is actually a case where “hikitsuri”, that is, paper stretches. Since the coordinates of the points on the geodesic line have already been obtained, the distance between the points on the branch line and the amount of change can be easily known.
Here, in obtaining the in-plane strain distribution necessary for curved surface formation, the in-plane strain on a specific geodesic line on the curved surface is designated as zero, and the in-plane strain necessary for curved surface formation is parallel to the previous geodesic line. Calculated as a strain-only component.
Thereby, a person who performs flat plate processing (user) can designate a place where he / she does not want to give strain, and a processing method can be created as a unidirectional strain distribution desired by the flat plate processing person. This strain distribution can be made to correspond to the triangular work of the conventional work.

以上説明した、目的の曲面形状を関数化する工程と、関数化された曲面に対し測地線を描く工程と、平面上で平行な条件を満たす測地線上での間隔の変化から面内ひずみ分布を求める工程を経ることにより、曲面形状を有する板材を平板から成形するのに必要な基本的な加工情報を得ることができ、この加工情報をガイドとして用いて、曲面形状を有する板材を平板から成形することができる。   The in-plane strain distribution is calculated from the process of functionalizing the target curved surface shape described above, the process of drawing a geodesic line on the functionalized curved surface, and the change in the interval on the geodesic line that satisfies the parallel condition on the plane. Through the required steps, basic processing information necessary to form a plate with a curved shape from a flat plate can be obtained. Using this processing information as a guide, a plate with a curved shape is formed from a flat plate. can do.

本発明に係る平板加工情報の取得方法では、さらに、目的の曲面形状を得るための主曲率分布および初期曲率分布を求める工程と、主曲率分布および初期曲率分布の差分から追加する曲率分布求める工程と、を有する。   In the flat plate machining information acquisition method according to the present invention, a step of obtaining a main curvature distribution and an initial curvature distribution for obtaining a target curved surface shape, and a step of obtaining a curvature distribution added from a difference between the main curvature distribution and the initial curvature distribution And having.

ここで、可展面および非可展面について説明する。
可展面とは、developable surfaceのことで、Gaussの曲率が0で平均曲率が0でない曲面のことである。別の言い方をすると、2つの主曲率のうち一方が0、さらに平たく言うと表面に紙を貼っても「しわ」がよらない曲面のことであり、円柱や円錐の側面がこれに相当する。
非可展面とは2つの主曲率がともに0でない曲面であり、さらにGaussの曲率が0でない曲面とも言え、平均曲率についてはどうでも良くてundevelopable surfaceと英訳される曲面のことである。
本発明では曲面に紙を貼ったときに「しわ」がよることを想定しているから、対象となる曲面は非可展面の方である。すなわち、本発明で対象となる曲面、すなわち、面内ひずみ分布が求められるときの関数化された曲面(図1中、S10)は、非可展面である。
Here, the developable surface and the non-expandable surface will be described.
A developable surface is a developable surface, which is a curved surface with a Gaussian curvature of zero and an average curvature that is not zero. In other words, one of the two main curvatures is 0, and more flatly, it is a curved surface that does not “wrinkle” even when paper is attached to the surface, and the side of a cylinder or cone corresponds to this.
A non-developable surface is a curved surface that has two principal curvatures that are not zero, and is a curved surface that has a non-zero Gaussian curvature. The average curvature is a surface that can be interpreted as an undevelopable surface.
In the present invention, since it is assumed that “wrinkles” are caused when paper is pasted on a curved surface, the target curved surface is a non-expandable surface. That is, the curved surface that is the subject of the present invention, that is, the curved surface that is functionalized when the in-plane strain distribution is obtained (S10 in FIG. 1) is a non-developable surface.

さらに、トーラスモデルの面内ひずみ分布について説明する。
図6に示す形状はトーラスと呼ばれ、図中の寸法Rとrで形状が決まる。図5に示す2点間の長さの変化を調べるために設けた点(隣り合う枝線上の基線から等距離の位置にある点、例えば図5で、NとN以下、これを標点という。)と展開線を平面に描き、幹線とx-y面が一致するように配置し平面上の標点と展開線をトーラス表面に移す。標点は間隔1の格子点上に設ける。
トーラスでは、x-y面とトーラスの交線上の長さを基準にしたひずみの理論解が既知である。
Further, the in-plane strain distribution of the torus model will be described.
The shape shown in FIG. 6 is called a torus, and the shape is determined by dimensions R and r in the figure. A point provided for examining a change in length between two points shown in FIG. 5 (a point located at an equal distance from a base line on an adjacent branch line, for example, N 1 and N 2 or less in FIG. Draw a development line on the plane and place it so that the trunk line and the xy plane coincide with each other, and move the gauge and the development line on the plane to the torus surface. The gauge points are set on the grid points with an interval of 1.
In the torus, a theoretical solution of strain based on the length of the intersection line between the xy plane and the torus is known.

上記の知見を前提として、曲面形成に必要な初期曲率の方向と分布を求める。
曲面上の任意点近傍は、2つの主曲率を持つトーラス曲面となっている。主曲率が場所によって変化する場合にも、十分狭い範囲では、トーラス曲面として扱うことができる。
板を予め円筒形に曲げた型をつけ、そこに面内ひずみを与えると曲面を形成することができるが、与える面内ひずみが同じであっても最初の円筒形の半径が異なれば、出来上がる曲面の主曲率は同じではない。このため、これらの関係を、弾性力学に基づいて導き出し、曲面全体に渡って計算することで、曲面全体を成形するための初期曲率分布を求めることができる。
Based on the above knowledge, the direction and distribution of the initial curvature necessary for curved surface formation are obtained.
Near the arbitrary point on the curved surface is a torus curved surface with two principal curvatures. Even when the main curvature varies depending on the location, it can be treated as a torus curved surface within a sufficiently narrow range.
If a plate is previously bent into a cylindrical shape and an in-plane strain is applied to it, a curved surface can be formed, but even if the in-plane strain is the same, if the radius of the first cylinder is different, it will be completed The main curvature of the curved surface is not the same. For this reason, the initial curvature distribution for shaping the entire curved surface can be obtained by deriving these relationships based on elastic mechanics and calculating the entire curved surface.

初期曲率は、目的とする曲面の主曲率と曲面上での方向が分からなくては決定できない。近似曲面上で、主曲率とその方向を決める必要がある。これには、曲面上で主曲率方向を求めたい点を通る測地線を45°間隔に描く必要がある。そこで、まず、非可展面である、関数化された曲面(図1中、S10)上で、R3〜R6の4方向の曲率の測定を行う(図1中、S20)。
図7に、45°間隔で離散的に求めた測地線上の点を示す。各方向の測地線上の3点から求められる曲率半径をR3〜R6とすると、R3方向と主曲率方向の成す角θとの間には、次式の関係がある。この式より、主曲率方向が求まる。
The initial curvature cannot be determined unless the principal curvature of the target curved surface and the direction on the curved surface are known. It is necessary to determine the principal curvature and its direction on the approximate curved surface. For this purpose, it is necessary to draw a geodesic line passing through a point where the principal curvature direction is desired on the curved surface at 45 ° intervals. Therefore, first, the curvatures in the four directions R3 to R6 are measured (S20 in FIG. 1) on the functionalized curved surface (S10 in FIG. 1) which is a non-developable surface.
FIG. 7 shows points on the geodesic line obtained discretely at 45 ° intervals. Assuming that the curvature radii calculated from three points on the geodesic line in each direction are R3 to R6, there is a relationship of the following equation between the angle θ formed by the R3 direction and the main curvature direction. From this equation, the main curvature direction can be obtained.

また、次の2式より主曲率半径R1、R2がそれぞれ与えられる。   Also, the principal curvature radii R1 and R2 are given from the following two equations, respectively.

曲面上でこの操作を繰り返すことにより、主曲率分布が得られる(図1中、S22)。   By repeating this operation on the curved surface, a main curvature distribution is obtained (S22 in FIG. 1).

曲面の成形は、曲面上の各部分の主曲率を目的の主曲率にすることで達成される。目的の主曲率を得るためには、曲面形成に必要な面内ひずみの付与のほかに、曲げ変形を加える必要がある。例えば、円筒形に曲げた板に面内ひずみを与えると、始めに設定した円筒形の変形に応じたトーラス曲面を得ることができる。言い換えると、与える面内ひずみが同じでも始めの円筒形の曲率(初期曲率と呼ぶ)が正しくないと目的の曲面は得られない。
そこで、与えた面内歪の影響で初期曲率が別の大きさの曲率に変化することを見込んで、計算目的の主曲率半径をRT1、RT2とし、それを得るための初期曲率半径R0の関係が必要になる。
弾性論により、種々の半径の円筒形に、目的の主曲率半径を得るための面内ひずみを与えたときに得られる主曲率をR1、R2とし、初期曲率半径R0との関係を図8に示す。ここで、目的曲率半径の相乗平均をRAVとおいている。
The curved surface is formed by setting the main curvature of each part on the curved surface to a target principal curvature. In order to obtain the desired principal curvature, it is necessary to apply bending deformation in addition to the application of in-plane strain necessary for curved surface formation. For example, when an in-plane strain is applied to a plate bent into a cylindrical shape, a torus curved surface corresponding to the initially set cylindrical deformation can be obtained. In other words, even if the in-plane strain applied is the same, the target curved surface cannot be obtained unless the initial cylindrical curvature (called initial curvature) is correct.
Therefore, assuming that the initial curvature changes to a different curvature due to the effect of in-plane strain, the main curvature radii for calculation are RT1 and RT2, and the relationship between the initial curvature radii R0 to obtain it Is required.
The main curvatures obtained when in-plane strain is applied to a cylindrical shape with various radii by elastic theory to obtain the desired principal curvature radius is R1 and R2, and the relationship with the initial curvature radius R0 is shown in FIG. Show. Here, RAV is the geometric mean of the target radii of curvature.

図8は、横軸に平均曲率RAVと大きい方の主曲率R1との比をとり、縦軸に、初期曲率R0と平均曲率との比ならびに、小さい方の曲率と平均曲率との比を表している。傾き1の直線は、R1そのものを表している。横軸が1のところは、大きい方の曲率と平均曲率が1すなわち球を示している。このときの初期曲率は0を示している。すなわち、初期曲率を与えないで面内ひずみのみを与えた場合に球が得られる。また、横軸が6以上では概ね初期曲率と大きい方の目的曲率が等しく、この場合には、初期曲率として目的曲率の大きい方を与えればよいことになる。
目的曲面上の主曲率分布から各点のR0を求めることで、曲面形成に必要な初期曲率分布が得られ、すなわち初期曲率が推定される(図1中、S24)。
ここで、平板に与えることができる初期曲率には制約がある。円筒形または円錐形といったいわゆる可展面の形状以外の形状に平板を変形させることはできない。
上記の手順では、可展面として表すことのできる初期曲率の分布が推定される。
In FIG. 8, the horizontal axis represents the ratio between the average curvature RAV and the larger main curvature R1, and the vertical axis represents the ratio between the initial curvature R0 and the average curvature and the ratio between the smaller curvature and the average curvature. ing. A straight line with an inclination of 1 represents R1 itself. When the horizontal axis is 1, the larger curvature and the average curvature are 1, that is, a sphere. The initial curvature at this time is 0. That is, a sphere can be obtained when only an in-plane strain is given without giving an initial curvature. When the horizontal axis is 6 or more, the initial curvature and the larger target curvature are approximately equal. In this case, the larger initial curvature may be given as the initial curvature.
By obtaining R0 of each point from the main curvature distribution on the target curved surface, an initial curvature distribution necessary for curved surface formation is obtained, that is, the initial curvature is estimated (S24 in FIG. 1).
Here, there is a restriction on the initial curvature that can be given to the flat plate. The flat plate cannot be deformed into a shape other than a so-called developable surface shape such as a cylindrical shape or a conical shape.
In the above procedure, an initial curvature distribution that can be expressed as a developable surface is estimated.

そして、得られた初期曲率分布から、可展面をフィットさせて、例えば錐形の初期形状を決める(図1中、S26)。 Then, the developable surface is fitted from the obtained initial curvature distribution to determine, for example, the initial shape of a cone (S26 in FIG. 1).

ところで、上記のとおり、目的形状の形成に必要な初期曲率分布、すなわち、非可展面である初期曲率分布と、与えることが可能な初期曲率分布、すなわち、可展面として表すことのできる初期曲率分布とは同じではない。このため、より厳密には、面内ひずみを与えた後に追加する曲率の差分、すなわち、初期形状を決める際(図1中、S26)に反映されなかった非可展面としての曲率を計算し(図1中、S28)、部分的に付加する曲率情報を得る(図1中、S30)。具体的には、目的形状の形成に必要な初期曲率分布から、与えることが可能な初期曲率分布をベクトルとして引き算して、非可展面としての曲率分布を求める。
以上により、曲面形成に要する加工情報として、初期曲率および追加曲率が得られる。
上記した本発明に係る平板加工情報の取得方法の一連の手順を実施することで、平板加工のガイドとなる情報を得ることができる。また、この平板加工情報に基づいて、平板加工することで、熟練工が行う作業手順をできるだけ再現することができる。
By the way, as described above, the initial curvature distribution necessary for forming the target shape, that is, the initial curvature distribution that is a non-developable surface, and the initial curvature distribution that can be given, that is, the initial curvature that can be expressed as a developable surface. It is not the same as the curvature distribution. For this reason, more precisely, the difference in curvature to be added after applying in-plane strain, that is, the curvature as a non-developable surface that is not reflected when determining the initial shape (S26 in FIG. 1) is calculated. (S28 in FIG. 1), curvature information to be partially added is obtained (S30 in FIG. 1). Specifically, the initial curvature distribution that can be given is subtracted as a vector from the initial curvature distribution necessary for forming the target shape to obtain the curvature distribution as a non-expandable surface.
As described above, the initial curvature and the additional curvature are obtained as the processing information required for the curved surface formation.
By performing a series of steps of the flat plate processing information acquisition method according to the present invention described above, information serving as a guide for flat plate processing can be obtained. Moreover, the work procedure performed by the skilled worker can be reproduced as much as possible by performing flat plate processing based on this flat plate processing information.

目的形状を図9に示す。場所により、小さい方の曲率半径が変化する形状を選んだ。また、面内ひずみを求め、初期曲率を与えた円錐形にその面内ひずみを与えた結果の形状を図10に示す。図10は、変形計算後の図9中の1本の幹線に沿った複数の枝線方向の曲率の分布を比較したものである。すなわち、小さい方の曲率半径の分布を示している。実線が目的の曲率半径分布、丸が与えた初期曲率、△が有限要素法を用いて計算した変形後の形状である。
ここでは、追加曲率を与えていないが、△と実線は概ね一致していることが分かる。
The target shape is shown in FIG. The shape with the smaller radius of curvature was chosen depending on the location. Further, FIG. 10 shows a shape obtained by obtaining the in-plane strain and giving the in-plane strain to the cone having the initial curvature. FIG. 10 is a comparison of the distribution of curvature in a plurality of branch line directions along one trunk line in FIG. 9 after the deformation calculation. That is, the distribution of the smaller radius of curvature is shown. The solid line is the target curvature radius distribution, the initial curvature given by the circle, and Δ is the deformed shape calculated using the finite element method.
Here, although no additional curvature is given, it can be seen that Δ and the solid line are almost the same.

本発明に係る平板加工情報の取得方法について、その手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure about the acquisition method of the flat plate processing information which concerns on this invention. 本発明に係る平板加工情報の取得方法の基本概念を説明するためのものであり、球面上に紙を貼るときの1つの方法について、(a)は球面上に紙を貼った状態を、(b)は球面に貼る前の平面展開した紙を、それぞれ示す図である。It is for demonstrating the basic concept of the acquisition method of the flat plate processing information which concerns on this invention, About one method when sticking paper on a spherical surface, (a) is the state which stuck paper on the spherical surface, ( b) is a diagram showing the paper developed on a plane before being attached to a spherical surface. 本発明に係る平板加工情報の取得方法の基本概念を説明するためのものであり、球面上に紙を貼るときの他の1つの方法について、(a)は球面上に紙を貼った状態を、(b)は球面に貼る前の平面展開した紙を、それぞれ示す図である。It is for demonstrating the basic concept of the acquisition method of the flat plate processing information which concerns on this invention, About another one method when sticking paper on a spherical surface, (a) shows the state which stuck paper on the spherical surface. (B) is a figure which respectively shows the paper which carried out the plane development before sticking on a spherical surface. 測地線を描く方法を説明するためのものであり、測地開始点を示す図である。It is for demonstrating the method of drawing a geodesic line, and is a figure which shows a geodesic start point. 測地線を描く方法を説明するためのものであり、垂直方向の測地開始点を示す図である。It is a figure for demonstrating the method of drawing a geodesic line, and is a figure which shows the geodesic start point of a perpendicular direction. トーラスモデルの面内ひずみ分布について説明するための図である。It is a figure for demonstrating the in-plane distortion distribution of a torus model. 曲面上で主曲率方向を求めたい点を通る測地線を45°間隔で離散的に求めた状態を示す図である。It is a figure which shows the state which calculated | required the geodesic line which passes along the point which wants to obtain | require the principal curvature direction on a curved surface discretely at 45 degree intervals. 横軸に平均曲率RAVと大きい方の主曲率R1との比をとり、縦軸に、初期曲率R0と平均曲率との比ならびに、小さい方の曲率と平均曲率との比を表した図である。The horizontal axis represents the ratio between the average curvature RAV and the larger main curvature R1, and the vertical axis represents the ratio between the initial curvature R0 and the average curvature and the ratio between the smaller curvature and the average curvature. . 実施例の目的形状を示す図である。It is a figure which shows the target shape of an Example. 本発明で得られる曲面形状と他の方法で得られる曲面形状のそれぞれ小さい方の曲率半径の分布を示して比較した図である。It is the figure which showed and compared distribution of the smaller curvature radius of the curved surface shape obtained by this invention, and the curved surface shape obtained by another method, respectively.

Claims (2)

曲面形状を有する板材を平板から成形するのに必要な平板加工情報の取得方法において、
目的の曲面形状を関数化する工程と、
関数化された曲面に対し測地線を描く工程と、
平面上で平行な条件を満たす測地線上での間隔の変化から面内ひずみ分布を求める工程と、
目的の曲面形状を得るための主曲率分布および初期曲率分布を求める工程と、
主曲率分布および初期曲率分布の差分から追加する曲率分布を求める工程と、
を有することを特徴とする平板加工情報の取得方法。
In the acquisition method of flat plate processing information necessary for forming a plate material having a curved shape from a flat plate,
Functionalizing the desired curved surface shape;
Drawing a geodesic curve on a functionalized surface;
Obtaining an in-plane strain distribution from a change in spacing on a geodesic line that satisfies a parallel condition on a plane;
Obtaining a main curvature distribution and an initial curvature distribution for obtaining a desired curved surface shape;
Obtaining a curvature distribution to be added from the difference between the main curvature distribution and the initial curvature distribution;
A flat plate machining information acquisition method characterized by comprising:
請求項1記載の平板加工情報の取得方法により得られる平板加工情報に基づいて曲面形状を有する板材を平板から成形することを特徴とする平板加工方法。
A flat plate processing method comprising forming a plate material having a curved surface shape from a flat plate based on the flat plate processing information obtained by the flat plate processing information acquisition method according to claim 1.
JP2005082504A 2005-03-22 2005-03-22 Method of obtaining flat plate processing information and flat plate processing method Active JP4899039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082504A JP4899039B2 (en) 2005-03-22 2005-03-22 Method of obtaining flat plate processing information and flat plate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082504A JP4899039B2 (en) 2005-03-22 2005-03-22 Method of obtaining flat plate processing information and flat plate processing method

Publications (2)

Publication Number Publication Date
JP2006263751A true JP2006263751A (en) 2006-10-05
JP4899039B2 JP4899039B2 (en) 2012-03-21

Family

ID=37200262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082504A Active JP4899039B2 (en) 2005-03-22 2005-03-22 Method of obtaining flat plate processing information and flat plate processing method

Country Status (1)

Country Link
JP (1) JP4899039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102554788B1 (en) * 2023-03-17 2023-07-12 기득산업 주식회사 A Curvature Analysis Method for plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074200A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074200A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102554788B1 (en) * 2023-03-17 2023-07-12 기득산업 주식회사 A Curvature Analysis Method for plate
KR102560913B1 (en) * 2023-03-17 2023-07-28 기득산업 주식회사 A Curvature Analysis Method for plate

Also Published As

Publication number Publication date
JP4899039B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4585165B2 (en) Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface
CN101368823B (en) Evaluation system and method for processing precision of bending part
WO2010122769A1 (en) Molding simulation method, molding simulation device, molding simulation program, and recording medium therefor
JP4795700B2 (en) Bending method, metal plate, heating position determination program, and heating position determination device
Yoon et al. Deformation analysis and shape prediction for sheet forming using flexibly reconfigurable roll forming
US6711530B1 (en) Method for evaluating error in shape of free curved surface
Salehi et al. A more robust multiparameter conformal mapping method for geometry generation of any arbitrary ship section
JP2010169395A (en) System and method for evaluating degree of completion of processing of curve-shaped member
JP4899039B2 (en) Method of obtaining flat plate processing information and flat plate processing method
Liu et al. Path planing for robotic polishing of sheet metal parts
Zhang et al. Adaptive NC path generation from massive point data with bounded error
Bambach et al. Performance assessment of element formulations and constitutive laws for the simulation of incremental sheet forming (ISF)
JP6337619B2 (en) Surface shape evaluation method and surface shape evaluation system
JP2005228260A (en) Distortion distribution calculation method for shaping plate material to objective curved surface
Sushitskii et al. Determination of optimal shot peen forming patterns using the theory of non-Euclidean plates
JP4471412B2 (en) How to select the expanded shape of a metal plate for bending
JP5173971B2 (en) Bending method, metal plate, heating position determination program and apparatus
JPH07210230A (en) Pipe surface copying control method using force control robot
JP2015056027A (en) Method for calculating contact surface pressure between two objects, and computer program for calculating contact surface pressure
Jang et al. Acquisition of line heating information for automatic plate forming
Obata et al. Fine-grid method for large-strain analysis near a notch Tip: A fine-grid method was applied to large-strain analysis in a local region surrounding a notch tip. The Lagrangian description was used as a strain-displacement relation
KR102641784B1 (en) A system and method that forms the curved shell of the hull
KR102665036B1 (en) A system and method that forms the curved shell of the hull
Park et al. Application of heating line computation model in a shipyard: A case study
Park et al. A localization algorithm for improving fabrication of curved hull plates in shipbuilding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150