JP2005228260A - Distortion distribution calculation method for shaping plate material to objective curved surface - Google Patents

Distortion distribution calculation method for shaping plate material to objective curved surface Download PDF

Info

Publication number
JP2005228260A
JP2005228260A JP2004038676A JP2004038676A JP2005228260A JP 2005228260 A JP2005228260 A JP 2005228260A JP 2004038676 A JP2004038676 A JP 2004038676A JP 2004038676 A JP2004038676 A JP 2004038676A JP 2005228260 A JP2005228260 A JP 2005228260A
Authority
JP
Japan
Prior art keywords
curved surface
geodesic
plane
shape
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004038676A
Other languages
Japanese (ja)
Inventor
Tetsuya Akiyama
哲也 秋山
Toshio Terasaki
俊夫 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2004038676A priority Critical patent/JP2005228260A/en
Publication of JP2005228260A publication Critical patent/JP2005228260A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calculation method for obtaining distortion distribution required to shape plate material to objective curved surface, while giving a shape when developing a curved surface to a plane. <P>SOLUTION: This method consists of following processes; a. a process which converts a curved surface shape displayed by coordinate of discrete points etc. into a function, b. a process which draws geodesic lines in longitudinal and lateral directions on a curved surface made by the function, c. a process which performs calculation of distribution of the distortion quantity concerning an undevelopable surface formation necessary for curved surface formation from shape change on a curved surface of a domain surrounded by four geodesic lines forming a square on a plane or change of interval on the geodesic lines which satisfies parallel condition on a plane, and d. a process which extracts developable transformation component bringing the difference when difference exists between the undevelopable surface obtained by giving distribution of distortion quantity obtained by each process above mentioned to the plate material and the objective curved surface, and which performs calculation of both of the undevelopable transformation and developable transformation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、曲面上の離散点の座標などで与えられた曲面情報から、平板材料たとえば鋼板を目的とする曲面形状に成形するに要する歪の種類と大きさの分布をコンピュータシステムによって演算算出する方法に関する。   According to the present invention, from a curved surface information given by coordinates of discrete points on a curved surface, the computer system calculates and calculates the strain type and size distribution required to form a flat plate material such as a steel plate into a desired curved surface shape. Regarding the method.

たとえば船舶の船殻の一部や航空機、列車等の外殻は曲面形状を呈しており、これら曲面を成形するに際しては、従来、曲面形状を特定の方法で平面に展開した展開図が描かれ、高度の熟練と経験をもつ技能者の経験と勘によって、たとえば線状加熱による曲面形成が遂行されていた。   For example, part of the ship's hull and the outer shell of aircraft, trains, etc. have curved shapes, and when these curved surfaces are formed, conventionally developed views of the curved shape developed on a plane by a specific method have been drawn. Based on the experience and intuition of highly skilled and experienced technicians, for example, curved surface formation by linear heating has been performed.

近来、板材に歪を与えた後の変形形状が数値計算シミュレーションによって求められることを利用して、最適化問題として付加歪と変形の関係を取り扱うことがなされている。一方、平板材料を線状加熱によって目的とする曲面に成形するに際し、曲げ加工後の仕上げ切断を不要にすべく正確な板取りをするために、予め個々の線状加熱の固有歪、固有変形を求めてデータベースとして蓄積しておき、目的とする曲面形状が与えられた時点で曲げ加工を遂行する線状加熱方法を策定した後、加熱線の固有変形データを呼び出しこれら固有変形の方向を正負逆にした上で生成固有歪分布を目的曲面形状に付加して自由に変形させるFEM(有限要素法)弾性シミュレーションを行って曲面を平面形状に展開する方法が知られている(たとえば、特許文献1参照)。
特開2000−237826
In recent years, the relationship between additional strain and deformation has been dealt with as an optimization problem by utilizing the fact that the deformation shape after applying strain to a plate material is obtained by numerical simulation. On the other hand, when a flat plate material is formed into a desired curved surface by linear heating, in order to make an accurate cutting to eliminate the need for finishing cutting after bending, the inherent distortion and inherent deformation of each linear heating are previously performed. After creating a linear heating method that performs bending when the desired curved surface shape is given, the intrinsic deformation data of the heating wire is called and the direction of the intrinsic deformation is positive or negative A method is known in which a curved surface is developed into a planar shape by performing an FEM (finite element method) elastic simulation in which a generated inherent strain distribution is added to a target curved surface shape after being reversed and deformed freely (for example, Patent Documents) 1).
JP2000-237826A

しかしながら、上記従来技術においては、目的とする曲面形状を得るために加えるべき歪量が不明のまま作業が遂行されている問題があった。上記従来技術にあって板材に付加されるべき歪量は、曲面を平面へ展開する方法に依存するものであるにも拘わらず曲面から平面への展開方法と曲面成形方法との間に何らの関連付けも行われていなかった。上記先行技術によって手順書通りに展開図を描き、必要とされる板材を切り出しても、平板材料の何処にどれだけの歪を与えるべきか不明であった。また、歪の種類と量分布が不明のままで数値シミュレーションを行うため、膨大な計算時間を必要とし最終的には熟練工による手直し作業を必要としていた。   However, the above prior art has a problem that the work is performed without knowing the amount of distortion to be added in order to obtain the desired curved surface shape. In the above prior art, the amount of strain to be added to the plate material depends on the method of developing the curved surface to the plane, but between the method of developing the curved surface to the plane and the method of forming the curved surface. There was no association. Even if a development diagram is drawn according to the above-described prior art and a required plate material is cut out, it is unclear where and how much strain should be applied to the flat plate material. In addition, since the numerical simulation is performed while the strain type and the quantity distribution are unknown, a huge amount of calculation time is required, and finally a rework by a skilled worker is required.

本発明は、上記従来技術における問題を解決すべく、曲面を平面に展開したときの形状を与えるとともに展開された平面形状を目的曲面に成形するに要する歪分布を併せ得ることができる、コンピュータシステムによる演算算出方法を提供することを目的とする。   In order to solve the above-described problems in the prior art, the present invention can provide a shape when a curved surface is developed into a flat surface, and can obtain a strain distribution required for forming the developed flat shape into a target curved surface. It is an object of the present invention to provide a calculation calculation method based on the above.

上記課題を解決するための請求項1に記載の発明は、a. 離散点の座標等で表示された曲面形状を関数化する過程 b. 前記またはそれ以外の方法で関数化された曲面上に縦横に測地線を描く過程 c. 平面上で平行な条件を満たす、測地線上での間隔の変化または平面上で方形を形成する4本の測地線で囲まれた領域の曲面上での形状変化から、曲面形成に必要な非可展面形成に係る歪量の分布を演算算出する過程 d. 上記各過程によって得られた歪量の分布を平板材料に与えて得られる非可展変形による曲面と目的曲面形状との間に相異が存する場合に、該相異をもたらす可展変形成分を抽出し、これら非可展変形および可展変形の双方を演算算出する過程をコンピュータシステムによって処理することを特徴とする平板材料を目的曲面に成形するに要する歪分布演算算出方法である。   The invention described in claim 1 for solving the above-mentioned problems is: a. A step of functionalizing a curved surface shape displayed by coordinates of discrete points, etc. b. On a curved surface functionalized by the above or other methods Process of drawing geodesic lines vertically and horizontally c. Change in distance on geodesic lines that satisfy the parallel condition on the plane, or change of shape on the curved surface of the area surrounded by four geodesic lines forming a square on the plane A process of calculating and calculating the distribution of the strain amount related to the formation of the non-developable surface necessary for forming the curved surface d. The curved surface by the non-deformable deformation obtained by giving the distribution of the strain amount obtained by the above processes to the flat plate material If there is a difference between the target curved surface shape and the target curved surface shape, the process of extracting the deformable deformation component causing the difference and calculating both the non-developable deformation and the deformable deformation is processed by a computer system. The target curved surface is a flat plate material characterized by A strain distribution calculation method of calculating required to molding.

請求項2に記載の発明は、離散点の座標等で表示された曲面形状を関数化する過程が、曲面形状を数値データとして付与し、該数値データを要求精度で複数ステップに分解可能なニューラルネットワークによって関数化するものである請求項1に記載の平板材料を目的曲面に成形するに要する歪分布演算算出方法である。   According to a second aspect of the present invention, the function of converting the curved surface shape displayed with discrete point coordinates or the like into a function assigns the curved surface shape as numeric data, and the numerical data can be decomposed into a plurality of steps with the required accuracy. The strain distribution calculation calculation method required for forming the flat plate material according to claim 1 into a target curved surface, which is functionalized by a network.

請求項3に記載の発明は、請求項2に記載のニューラルネットワークによって関数化された近似曲面関数上または他の方法で与えられた曲面関数上に任意の点を始点として任意の方向に測地線を描き、任意の間隔でその軌跡を記録するとともに平面へ展開された面上での方眼に対応する測地線を曲面上に縦横に描きその軌跡を記録するようにしたことを特徴とする平板材料を目的曲面に成形するに要する歪分布演算算出のための測地線作成用コンピュータシテムである。   According to a third aspect of the present invention, a geodesic line in an arbitrary direction starts from an arbitrary point on the approximate surface function that is functionalized by the neural network according to the second aspect or on the curved surface function given by another method. This is a flat plate material characterized by recording the trajectory at arbitrary intervals and recording the trajectory corresponding to the grid on the surface developed into a plane vertically and horizontally on the curved surface. This is a computer system for creating a geodesic curve for calculating a strain distribution calculation required to form a target curved surface.

請求項4に記載の発明は、請求項3に記載の測地線作成用コンピュータシテムによる測地線の軌跡情報から、平面への展開図上における平行線に対応する曲面上測地線の間隔の変化を歪に換算するかまたは、平面への展開図上において平行な直行する2組4本の直線に対応する曲面上測地線の交点間距離および交点を結ぶ線分が作り出す四角形形状の変化から、曲面成形に必要な非可展変形に係る歪量の分布を演算算出することを特徴とする平板材料を目的曲面に成形するに要する歪分布演算算出方法である。   According to a fourth aspect of the present invention, the change in the distance between the geodesic curves on the curved surface corresponding to the parallel lines on the development map to the plane is obtained from the geodesic trajectory information by the geodesic line creation computer system according to the third aspect. From the change in the quadrilateral shape created by the distance between the intersections of the geodesic curves on the curved surface corresponding to two sets of four straight lines parallel to each other in the development on the plane A strain distribution calculation calculation method required for forming a flat plate material into a target curved surface, which calculates and calculates a distribution of strain amount related to non-deformable deformation necessary for forming.

請求項5に記載の発明は、請求項4に記載の歪量の分布を演算算出するコンピュータシステムにおいて用いた測地線上の点を頂点にもつ方形を1つの単位とする要素に分解した目的曲面に対し、任意の可展変形を加えた場合の形状変化をシミュレーションし目的曲面形状を得るに必要な可展変形を決定するシミュレーション用コンピュータシステムである。   According to a fifth aspect of the present invention, there is provided a target curved surface obtained by decomposing a square having a point on the geodesic line as a vertex, which is used in the computer system for calculating and calculating the distribution of the distortion amount according to the fourth aspect, into elements having one unit. On the other hand, this is a computer system for simulation that determines the deformable deformation necessary to obtain the target curved surface shape by simulating the shape change when an arbitrary deformable deformation is applied.

本発明によれば、任意の曲面形状を平板上材料から成形するに要する歪量を決定できるようにしたから、勘に頼った作業を行う必要がなくなる。万一、変形量が予定量と異なった場合でも自動形状測定などを行い、改めて測地線の情報から歪量を求めることによって修正に要する歪量を追加する形で補修することができる。   According to the present invention, since the amount of strain required to form an arbitrary curved surface shape from a flat plate material can be determined, there is no need to perform an operation that relies on intuition. Even if the amount of deformation is different from the planned amount, it is possible to repair by adding an amount of distortion required for correction by performing automatic shape measurement and obtaining the amount of distortion again from geodesic information.

請求項2に記載の発明によるときは、離散点の座標等で表示された曲面形状を関数化する過程を、複数ステップに分解可能なニューラルネットワークによって関数化を遂行するようにしたから、たとえば3%程度の比較的粗い精度で一旦重み関数を求めて粗い近似式を得ることにし、次いで、正解値と近似値の誤差を求め、この誤差分を近似する重みをたとえば10%で得、逐次誤差を解消するための近似式を求めることで短時間に精度の高い近似曲面を得ることができる。   According to the second aspect of the present invention, the process of functionalizing the curved surface shape displayed with the coordinates of discrete points or the like is performed by a neural network that can be decomposed into a plurality of steps. The weight function is once obtained with a relatively coarse accuracy of about% to obtain a rough approximate expression, and then an error between the correct value and the approximate value is obtained, and a weight for approximating the error is obtained, for example, at 10%, and a sequential error is obtained. By obtaining an approximate expression for eliminating the above, a highly accurate approximate curved surface can be obtained in a short time.

歪の付加に自動制御の容易なレーザを線状加熱手段として用い自動形状測定器と組み合わせることによって、曲面形成の自動化を行うことができる。一方、曲面形成のための歪の与え方として、直交する歪の一方向のみを与える方法と、二方向の歪を与える方法の何れかを選択できる。曲面形成には、作業が簡単な一方向歪を与える作業方法を採ることが効率の面で有利である。本発明は歪取り作業にも応用でき、不要な曲面(膨れなど)を平坦に修正することができる。この場合には、二方向の歪を同時に付与することで膨れなどを取り除くことができる。   The curved surface formation can be automated by using a laser that can be easily controlled for adding strain as a linear heating means and combining it with an automatic shape measuring instrument. On the other hand, as a method of giving strain for forming a curved surface, either a method of giving only one direction of orthogonal strain or a method of giving strain in two directions can be selected. For the curved surface formation, it is advantageous in terms of efficiency to employ a working method that imparts a unidirectional strain that is easy to work. The present invention can also be applied to distortion removal work, and can correct an unnecessary curved surface (such as a bulge) to be flat. In this case, swelling and the like can be removed by simultaneously applying strain in two directions.

本発明を用いて平板材料たとえば鋼板を三次元曲面に成形するに際しては、平板材料に与えるべき非可展変形の大きさおよび分布を、目的曲面形状を関数化した情報を基に任意の曲面上に測地線を生成するプログラムを用いて描いた測地線の間隔や測地線の交点間距離の変化率から求める。一方、可展変形については、平板材料に非可展変形のみを与えた変形状態に可展変形を追加した曲面形状を推定するシミュレーションプログラムを用いて必要とされる可展変形成分を求める。   When a flat plate material such as a steel plate is formed into a three-dimensional curved surface using the present invention, the size and distribution of non-deformable deformation to be given to the flat plate material can be determined on any curved surface based on information obtained by functionalizing the target curved surface shape. It is obtained from the rate of change of the distance between the geodesic lines and the distance between the intersections of the geodesic lines drawn using a program for generating geodesic lines. On the other hand, for the deformable deformation, a necessary deformable deformation component is obtained by using a simulation program for estimating a curved surface shape obtained by adding the deformable deformation to a deformation state in which only the non-developable deformation is applied to the flat plate material.

請求項1に記載の発明に係る曲面を平面に展開する方法は、関数の形で与えられる曲面のみならず、離散的な数値データで与えられる曲面であっても曲面関数を要求される精度で求め、得られた関数曲面上または与えられた関数曲面上に自在に測地線を描くことにより、測地線の間隔の変化や測地線の交点間距離の変化などから曲面展開に必要な歪量の分布を演算算出する。この演算算出過程で得られた歪分布を逆に利用すれば、平板材料から曲面に成形することができる。   The method of developing the curved surface according to the first aspect of the present invention into a plane is not only a curved surface given in the form of a function but also a curved surface given by discrete numerical data with the accuracy required for the curved surface function. The amount of distortion required for surface expansion can be calculated from the change in geodesic spacing and the distance between intersections of geodesic lines by freely drawing geodesic curves on the obtained function curved surface or the given function curved surface. Calculate the distribution. If the strain distribution obtained in the calculation calculation process is used in reverse, the flat plate material can be formed into a curved surface.

平板材料から曲面を形成するためには、非可展変形のほかに可展変形が必要である。そのためには、測地線作成用コンピュータシステムおよび歪分布演算算出コンピュータシステムによってひずみ分布を与えた数値解析を行うかまたは、請求項5に記載の可展変形シミュレーション用コンピュータシテムによって弾性エネルギ最小の形状を予測し、目的曲面形状との差を補完する可展変形量を決定する。非可展変形および可展変形双方の情報が得られたとき、変形に必要な歪量全てが決定したことになる。   In order to form a curved surface from a flat plate material, a deformable deformation is necessary in addition to a non-developable deformation. For this purpose, numerical analysis with a strain distribution is performed by a computer system for generating a geodesic curve and a computer system for calculating and calculating a strain distribution, or a shape having the minimum elastic energy is obtained by a computer system for simulation of developable deformation according to claim 5. Predict and determine the amount of deformable deformation that complements the difference from the target curved surface shape. When information on both the non-developable deformation and the developable deformation is obtained, all the distortion amounts necessary for the deformation are determined.

本発明において、離散点の座標等で表示された曲面形状を関数化する過程について説明する。この実施例においては、ニューラルネットワークを用いて曲面を関数化している。このニューラルネットワークを用いたノード(シナプス)にはシグモイド関数を用いている。図1に、1つのノードの模式図を示す。複数の入力値に重みWを掛け合わせた値の合計がSである。   In the present invention, the process of functionalizing the curved surface shape displayed by the coordinates of discrete points and the like will be described. In this embodiment, the curved surface is functionalized using a neural network. A sigmoid function is used for a node (synapse) using this neural network. FIG. 1 shows a schematic diagram of one node. The sum of values obtained by multiplying the plurality of input values by the weight W is S.

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

数式2に示す関数Fがシグモイド関数とよばれる関数であって、関数値Fに重みWを掛けた値が次のノードへの出力となる。この実施例のネットワークでは、入力はxとyの2つであり、最終出力はzの1つである。図2に、ニューラルネットワークの一例を示す。図2における○が1つのノードを示しており、Bはバイアスと呼ばれる定数入力値を表す。また、ノードとノードをつなぐ線分の部分には、重みが存在する。入力側からみて最初のノード群を入力層、最後のノード群を出力層、その間の群を隠れ層と呼び、各層のノードの数を節点数という。隠れ層の数は、問題の複雑さに応じて決める。ニューラルネットワークを用いるということは、適当な入力値に対して目的の出力値が得られるよう重みの値を決めることである。この実施例においては、バックプロパゲーション法を用いている。   The function F shown in Formula 2 is a function called a sigmoid function, and a value obtained by multiplying the function value F by the weight W is an output to the next node. In this example network, there are two inputs, x and y, and the final output is one of z. FIG. 2 shows an example of a neural network. A circle in FIG. 2 represents one node, and B represents a constant input value called a bias. Also, there is a weight in the line segment connecting the nodes. When viewed from the input side, the first node group is called the input layer, the last node group is called the output layer, the group between them is called the hidden layer, and the number of nodes in each layer is called the number of nodes. The number of hidden layers depends on the complexity of the problem. The use of a neural network is to determine a weight value so that a target output value can be obtained for an appropriate input value. In this embodiment, the back propagation method is used.

ニューラルネットワークの予測誤差は、次式で定義される。   The prediction error of the neural network is defined by the following equation.

Figure 2005228260
Figure 2005228260

数式3における添え字のkはデータの番号、tは真の値、nはネットワークが予測した値である。誤差E中の未知数は重みのみであるから、Eを最小にする重みを探すことができる。重みの変化量に対する誤差の変化量から重みの修正量を決め、誤差が収束するまで繰り返し修正する方法をバックプロパゲーション法という。   The subscript k in Equation 3 is a data number, t is a true value, and n is a value predicted by the network. Since the unknown in the error E is only the weight, the weight that minimizes E can be searched. A method of determining the weight correction amount from the error change amount with respect to the weight change amount and repeatedly correcting until the error converges is called a back propagation method.

次に、具体的な例を示す。小半径10、大半径20のトーラスを対象とし、隠れ層を1、節点数を11としてバイアスを用いた。また、シグモイド関数の領域は0から1の範囲であるから、次式   Next, a specific example is shown. A bias was used for a torus with a small radius of 10 and a large radius of 20, with a hidden layer of 1 and the number of nodes of 11. Since the sigmoid function region ranges from 0 to 1,

Figure 2005228260
Figure 2005228260

を用いてzの変域24.74<z<30を変域0.05<O<0.95に変換し学習させた。また、入力値(x,y)は、 Was used to convert z domain 24.74 <z <30 into domain 0.05 <O 1 <0.95. The input value (x, y) is

Figure 2005228260
Figure 2005228260

を用いて領域を制限して学習させた。学習には、−8<x<8、−8<y<8の範囲で、(−8,8)を始点にx正方向に2、y正方向に2の間隔の格子点上の合計81点の(x,y,z)を教師データとした。収束誤差を3%と設定したときに得られた重みを表1に示す。また、教師データを表2に示す。   The area was limited using the, and learning was performed. For learning, in the range of −8 <x <8, −8 <y <8, a total of 81 on the lattice points with an interval of (−8, 8) starting from (−8, 8) and 2 in the x positive direction and 2 in the y positive direction. The point (x, y, z) was used as teacher data. Table 1 shows the weights obtained when the convergence error was set to 3%. The teacher data is shown in Table 2.

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

表1において、i=0は入力層と隠れ層の間の重み、i=1は隠れ層と出力層間の重み、j=1は入力xに対応する重み、j=2は入力yに対応する重みであり、j=0はバイアスの値である。kは隠れ層のノードの番号である。   In Table 1, i = 0 is a weight between the input layer and the hidden layer, i = 1 is a weight between the hidden layer and the output layer, j = 1 is a weight corresponding to the input x, and j = 2 is corresponding to the input y. It is a weight, and j = 0 is a bias value. k is the node number of the hidden layer.

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

がzの近似値になる。   Becomes an approximate value of z.

次に、関数化された曲面上に測地線を描く過程について、説明する。図3に、測地線開始点を示す。先ず、図3に示すように、始点をx−y平面上に点S(x,y)として決定する。ニューラルネットワークにこの(x,y)座標を与えれば容易にz座標を知ることができ、これがG点であって測地線の始点となる。点Dは測地線を描く方向をx−y平面上に示すベクトルSDの終点である。SDに垂直なx−y平面上の直線上に点Sを挟んで等距離に点S、Sを定める。点S、Sのx、y座標に対応する曲面P上のz座標をニューラルネットワークを用いて求め、曲面上の点h,fを定める。 Next, the process of drawing a geodesic curve on a functionalized curved surface will be described. FIG. 3 shows the geodesic start point. First, as shown in FIG. 3, the starting point is determined as a point S (x, y) on the xy plane. This neural network (x, y) be given the coordinates can be easily know the z-coordinate, which is the starting point of the geodesic a point G. Point D is the end point of vector SD indicating the direction in which the geodesic line is drawn on the xy plane. Points S 1 and S 2 are determined at equal distances across a point S on a straight line on the xy plane perpendicular to SD. A z-coordinate on the curved surface P corresponding to the x and y coordinates of the points S 1 and S 2 is obtained using a neural network, and points h 1 and f 1 on the curved surface are determined.

線分hに垂直な面内にあり、中心をそれぞれ点h,fにもつ同一半径の円をC,Cとする。円C,Cと曲面Pの交点のうち、測地線の進行方向側の点をh,fとする。さらに、円C,Cと同じ大きさで円C,Cに平行な面内で中心を点Gにもつ円と曲面Pの交点のうち、測地線の進行方向側の点をGとする。先に、線分hと点Gに対して行った操作を、線分hおよび点Gに対して行い、順次G点を求めその座標を記録すると、1本の測地線上の点を等間隔に区切った(x,y,z)座標を測地線の離散座標として得ることができる。 Let C 1 and C 2 be circles of the same radius that are in a plane perpendicular to the line segment h 1 f 1 and have their centers at points h 1 and f 1 , respectively. Of the intersections of the circles C 1 and C 2 and the curved surface P, the points on the geodesic traveling direction side are defined as h 2 and f 2 . Furthermore, among the intersection points of the circle C 1, C 2 and circle C 1 at the same size, a circle centered at point G 1 in a plane parallel to the C 2 and the curved surface P, and the point in the traveling direction side of the geodesic and G 2. When the operations previously performed on the line segment h 1 f 1 and the point G 1 are performed on the line segment h 2 f 2 and the point G 2 , the G point is sequentially obtained and its coordinates are recorded. (X, y, z) coordinates obtained by dividing points on the geodesic line at equal intervals can be obtained as discrete coordinates of the geodesic line.

図4に、図3に示す測地線開始点に垂直な方向の測地線の開始部を示す。一旦測地線を、図4に示すように、連続するG点として1本引き終えたなら、先に、線分hおよび点Gに対して行った操作を、図4に示すように、線分Gおよび点Gに対して行って、点Nを求め繰り返しN点を求めると、先の測地線に点Gで垂直に交わる測地線上の点Nの(x,y,z)座標を離散座標として得ることができる。 FIG. 4 shows a geodesic start portion perpendicular to the geodesic start point shown in FIG. Once a geodesic line has been drawn as a continuous G point as shown in FIG. 4, the operations previously performed on the line segment h 1 f 1 and the point G 1 are as shown in FIG. Then, it is performed on the line segment G 1 G 3 and the point G 2 , and the point N 2 is obtained and the N point is repeatedly obtained. When the point N 2 intersects the previous geodesic line at the point G 2 (x , Y, z) coordinates can be obtained as discrete coordinates.

次に、平行な条件を満たす、測地線上での間隔の変化または平面上で方形を形成する4本の測地線で囲まれた領域の、曲面上での形状変化から曲面形成に必要な非可展面形成に係る歪量の分布を演算算出する過程について説明する。図5および図6に、曲面を平面に展開する方法の基本的な考え方を示す。図5に示すように、曲面Pに任意の測地線OBを描き、点Oで測地線OBに垂直に交わる測地線OAを描く。さらに、点Bで測地線OBに垂直に交わる測地線BCを描き、点Aで測地線OAに垂直に交わる測地線ACを描く。測地線ACと測地線BCは点Cで交わるけれども垂直に交わるとは限らない。   Next, the non-necessity necessary for the curved surface formation from the change in the distance on the geodesic line that satisfies the parallel condition or the change in the shape on the curved surface of the area surrounded by the four geodesic lines forming the square on the plane. A process of calculating and calculating the distribution of the strain amount related to the development of the surface will be described. 5 and 6 show a basic concept of a method of developing a curved surface into a plane. As shown in FIG. 5, an arbitrary geodesic line OB is drawn on the curved surface P, and a geodesic line OA that intersects the geodesic line OB perpendicularly at the point O is drawn. Further, a geodesic line BC perpendicular to the geodesic line OB is drawn at the point B, and a geodesic line AC perpendicular to the geodesic line OA is drawn at the point A. Geodesic line AC and geodesic line BC intersect at point C but do not necessarily intersect perpendicularly.

図6は、図5に示す曲面を平面に展開したときの図である。図6におけるO’A’は、図5における測地線OAを平面P’に展開したものである。測地線は平面に直線として展開が可能であり、O’A’は直線である。これは、平面P’を曲面P上で測地線OAで接するように配置し、接点を点Oから点Aに移動させたときにできる接点の軌跡である。測地線OAと測地線OBは点Oで垂直に交わっているから、平面P’に測地線OBの展開線O’B’を描くとき、点O’近傍でO’A’とO’B’は垂直かつO’B’は直線に展開されるのでO’A’とO’B’は互いに垂直に交わる直線になる。測地線BCの展開図であるB’C’’も同様の理由で直線O’B’に垂直に交わる直線である。O’A’は平面P’を曲面P上に接する方法でOA上に写し取った線であるから、OA上の道のりはO’A’上に伸縮のない実寸として写し取られる。OB上の道のりもO’B’に実寸として移される。   FIG. 6 is a diagram when the curved surface shown in FIG. 5 is developed into a plane. O′A ′ in FIG. 6 is obtained by developing the geodesic line OA in FIG. 5 on the plane P ′. Geodesic lines can be developed as straight lines on a plane, and O'A 'is a straight line. This is a locus of contact formed when the plane P ′ is arranged on the curved surface P so as to be in contact with the geodesic line OA and the contact is moved from the point O to the point A. Since geodesic line OA and geodesic line OB intersect perpendicularly at point O, when drawing development line O'B 'of geodesic line OB on plane P', O'A 'and O'B' in the vicinity of point O ' Is vertical and O′B ′ is developed into a straight line, so that O′A ′ and O′B ′ become straight lines that intersect perpendicularly to each other. B′C ″, which is a developed view of the geodesic line BC, is a straight line that intersects the straight line O′B ′ perpendicularly for the same reason. Since O′A ′ is a line copied on OA by a method in which plane P ′ is in contact with curved surface P, the road on OA is copied on O′A ′ as an actual size without expansion and contraction. The road on OB is also moved to O'B 'as actual size.

A’C’は測地線ACを平面P’に展開した直線であり、点A’で直線O’A’に垂直に交わる。図5における測地線ACの道のりを図6における直線A’C’に移し、その点をC’とする。B’C’’は測地線BCを平面P’に展開した直線であり、点B’で直線O’B’に垂直に交わる。図5における測地線BCの道のりを図6における直線B’C’’に移し、その点をC’’とする。点C’と点C’’が同一の点となる場合には、曲面P上のOACBの4辺の長さは平面P’上の長方形O’A’C’’’B’と同じ辺の長さをもつことになり、このとき、何処にも歪はなく可展変形のみである。   A'C 'is a straight line obtained by developing the geodesic line AC on the plane P', and intersects the straight line O'A 'perpendicularly at the point A'. The path of the geodesic line AC in FIG. 5 is moved to the straight line A′C ′ in FIG. 6, and that point is defined as C ′. B′C ″ is a straight line obtained by developing the geodesic line BC on the plane P ′, and intersects the straight line O′B ′ perpendicularly at the point B ′. The path of the geodesic line BC in FIG. 5 is moved to the straight line B′C ″ in FIG. 6, and that point is designated as C ″. When the point C ′ and the point C ″ are the same point, the length of the four sides of the OACB on the curved surface P is the same side as the rectangle O′A′C ′ ″ B ′ on the plane P ′. At this time, there is no distortion anywhere, and only the deformable deformation.

非可展変形の場合には、曲面P上の道のりに長さの変化を生じるため、点C’と点C’’は同一の位置にはない。図5における測地線OAと同じ道のりを点Bから測地線BC上に取った点をC’’’’とする。このとき、曲面P上で点Aを始点とし点C’’’’を通る測地線の道のりと測地線OBの変化量は、この間のOB方向の歪となる。この歪を図2に示す平面P’に与えた場合、O’B’方向の歪のみを与えることになるため、変形の前後でO’A’方向の長さに変化は生じず平面P’上の点C’’’は曲面P上ではC’’’’に現れる。また、図6における長さO’A’と長さB’C’’の変化率は、O’A’方向の歪を、長さO’B’と長さA’C’の変化率は直線O’B’方向の歪を与える。この直交する2方向の歪を同時に平面P’に与えると、平面P’上の長方形O’A’C’’’B’は曲面P上ではOACBに移され、平面P’上の点C’’’を曲面P上の点Cに移すことができる。   In the case of non-developable deformation, the length of the path on the curved surface P is changed, so that the point C ′ and the point C ″ are not at the same position. A point where the same path as the geodesic line OA in FIG. 5 is taken from the point B on the geodesic line BC is defined as C ′ ″ ″. At this time, on the curved surface P, the path of the geodesic line starting from the point A and passing through the point C ′ ″ ″ and the amount of change of the geodesic line OB become distortion in the OB direction during this period. When this strain is applied to the plane P ′ shown in FIG. 2, only the strain in the O′B ′ direction is applied, so that the length in the O′A ′ direction does not change before and after the deformation, and the plane P ′. The upper point C ′ ″ appears at C ″ ″ on the curved surface P. In addition, the change rate of the length O′A ′ and the length B′C ″ in FIG. 6 is the strain in the O′A ′ direction, and the change rate of the length O′B ′ and the length A′C ′ is A distortion in the direction of the straight line O′B ′ is given. When the two orthogonal directions of strain are simultaneously applied to the plane P ′, the rectangle O′A′C ′ ″ B ′ on the plane P ′ is moved to the OACB on the curved surface P, and the point C ′ on the plane P ′. '' Can be moved to a point C on the curved surface P.

図7に、一方向の垂直歪のみで非可展変形を発現させる具体的方法を示す。ニューラルネットワーク等によって関数化した曲面をPとする。曲面P上に基準となる測地線を1本描く。この測地線を図7にQMとして示す。この測地線を、本発明においては幹線と呼ぶ。この幹線上に既知の間隔で複数の点を配置する。これらの点の間隔は、既知であれば全ての間隔が同じである必要はないが、揃えておいた方が処理しやすい。これらの点のうちの2点が、図7に示すQ、Mである。点Qを通り測地線QMに垂直に交わる測地線をQNとする。また、点Mを通り測地線QMに垂直に交わる測地線をMLとする。これら幹線に垂直に交わる測地線を、本発明においては枝線と呼ぶ。これら2本の枝線上で、幹線から同じ道のりにある点をそれぞれN、Lとする。道のりQMと道のりNLの変化率が点Nまたは点Lの位置での歪である。曲面Pの大きさに比し道のりQMを十分に小さく設定すれば、道のりQMと道のりNLは距離QMと距離NLで代用することができる。本発明の測地線作成用コンピュータシステムによって曲面P上に幹線と枝線を描くことができ、本発明の歪分布演算算出方法によって歪分布を得ることができる。図8は、図7に示す曲面の展開図である。   FIG. 7 shows a specific method for developing non-developable deformation only by vertical strain in one direction. Let P be a curved surface functionalized by a neural network or the like. A reference geodesic curve is drawn on the curved surface P. This geodesic curve is shown as QM in FIG. This geodesic line is called a trunk line in the present invention. A plurality of points are arranged on the main line at known intervals. The intervals between these points need not be the same as long as they are known, but are easier to process if they are aligned. Two of these points are Q and M shown in FIG. A geodesic line that passes through the point Q and intersects the geodesic line QM perpendicularly is defined as QN. A geodesic line passing through the point M and perpendicular to the geodesic line QM is defined as ML. Geodesic lines that intersect perpendicularly with these trunk lines are called branch lines in the present invention. On these two branch lines, points on the same road from the main line are denoted as N and L, respectively. The rate of change of the road QM and the road NL is the distortion at the position of the point N or the point L. If the road QM is set sufficiently smaller than the size of the curved surface P, the distance QM and the road NL can be substituted by the distance QM and the distance NL. The trunk line and the branch line can be drawn on the curved surface P by the geodesic line creation computer system of the present invention, and the strain distribution can be obtained by the strain distribution calculation calculation method of the present invention. FIG. 8 is a development view of the curved surface shown in FIG.

図9に、板材に2方向の垂直歪を適用して非可展変形を発現させる具体的方法を示す。この場合、曲面P上に直交する2本の幹線1組を描く必要があり、図9におけるOGおよびOEがそれである。この操作は、本発明の測地線作成用コンピュータシステムによってなされる。さらに、各々の幹線に既知の間隔で枝線を曲面P上に引く。各幹線上の枝線を2本ずつ選んで図9にGK、FH、DJ、およびEKで示す。距離GF、距離EDを微小とみなすと、曲面P内の任意の位置の2方向の歪を、距離GFと距離KHの変化率および距離EDと距離KJの変化率から求めることができる。また、四角形KHIJの形状変化からせん断歪を求めることも可能である。本発明の歪分布演算算出方法によって歪分布を得ることができる。図10は、図9に示す曲面の展開図である。   FIG. 9 shows a specific method for developing non-deformable deformation by applying vertical strain in two directions to a plate material. In this case, it is necessary to draw a pair of two trunk lines orthogonal to the curved surface P, which is OG and OE in FIG. This operation is performed by the geodesic line creation computer system of the present invention. Further, branch lines are drawn on the curved surface P at known intervals for each trunk line. Two branch lines on each trunk line are selected and indicated by GK, FH, DJ, and EK in FIG. When the distance GF and the distance ED are considered to be minute, the distortion in two directions at an arbitrary position in the curved surface P can be obtained from the change rate of the distance GF and the distance KH and the change rate of the distance ED and the distance KJ. It is also possible to determine the shear strain from the shape change of the quadrangle KHIJ. The strain distribution can be obtained by the strain distribution calculation calculation method of the present invention. FIG. 10 is a development view of the curved surface shown in FIG.

本発明の平板材料を目的曲面に成形するに要する歪分布演算算出方法は、目的曲面形状を得るに要する歪の分布量を求め得るのみならず、既存する曲面の形状測定データからその曲面に内在する歪量を求めることもできる。従って、曲面成形過程において何らかの問題が生じ目的曲面形状が得られなかった場合等にあって、目的とする歪量と現在の歪量の差から、追加すべき歪量を求めることができる。   The strain distribution calculation calculation method required for forming the flat plate material of the present invention into the target curved surface can not only obtain the strain distribution amount required to obtain the target curved surface shape, but also can be obtained from the existing curved surface shape measurement data. The amount of distortion to be obtained can also be obtained. Therefore, when a problem occurs in the curved surface forming process and the target curved surface shape cannot be obtained, the strain amount to be added can be obtained from the difference between the target strain amount and the current strain amount.

図11に、本発明の平板材料を目的曲面に成形するに要する歪分布演算算出方法を実施するときのコンピュータシステムによる演算処理ステップを示す。S1からS5までの処理過程は、第一回目のステップである。ステップS1は、本発明のニューラルネットワークによる曲面の関数化プログラムによって遂行される。ステップS2は、本発明の測地線作成用コンピュータシステムによって行われる。ステップS3は、本発明の歪量分布の演算算出用コンピュータシステムによって遂行される。ステップS4およびステップS5は、後述する本発明の可展変形シミュレーション用コンピュータシステムによってなされる。平板材料を曲面に成形するに際しては、ステップS6で実施工がなされたり或は、数値シミュレーションによって予備実験を行うこともある。ステップS7で形状検査を行い、目的曲面形状が得られていれば処理ステップを終了するが、誤差が大きな場合は変形後の曲面形状中の歪量を算出し、目的とする歪量との過不足分を追加することになる。図11における太枠部が本発明のコンピュータシステムによって遂行される部分である。   FIG. 11 shows calculation processing steps by a computer system when a strain distribution calculation calculation method required for forming the flat plate material of the present invention into a target curved surface is performed. The process from S1 to S5 is the first step. Step S1 is performed by the curved surface functionalization program using the neural network of the present invention. Step S2 is performed by the geodesic line creation computer system of the present invention. Step S3 is performed by the computer system for calculation of strain amount distribution of the present invention. Steps S4 and S5 are performed by the computer system for the deformable deformation simulation of the present invention described later. When the flat plate material is formed into a curved surface, an implementation process may be performed in step S6, or a preliminary experiment may be performed by numerical simulation. In step S7, the shape is inspected, and if the target curved surface shape is obtained, the processing step is terminated. If the error is large, the distortion amount in the curved surface shape after deformation is calculated, and an excess of the target distortion amount is calculated. The shortage will be added. A thick frame portion in FIG. 11 is a portion executed by the computer system of the present invention.

本発明においては、同一曲面形状を得る場合でも幹線位置の選び方で与えるべき歪量が異なる。これは、加工方法が限定されている場合には便利である。線状加熱のような加工方法による場合は引張り歪を与え難く、鍛造加工による場合は圧縮歪を与え難い。平板材料から曲面形状に成形する領域内で予め求めた歪分布から、最も大きな引張り歪が要求されていた部分を幹線に選べば、全て圧縮歪の条件で加工手順を決定することができる。逆に、最も大きな圧縮歪が要求されていた部分を幹線に選べば、全て引張り歪の条件で加工手順を決定することができる。これは、幹線部で歪が必ず零になる性質があるからである。   In the present invention, even when the same curved surface shape is obtained, the amount of distortion to be given differs depending on how the trunk line position is selected. This is convenient when the processing method is limited. In the case of a processing method such as linear heating, it is difficult to give a tensile strain, and in the case of forging, it is difficult to give a compressive strain. If the portion where the greatest tensile strain is required is selected as the main line from the strain distribution obtained in advance in the region where the flat plate material is formed into a curved surface shape, the processing procedure can be determined under the condition of compressive strain. Conversely, if the portion where the greatest compressive strain is required is selected as the trunk line, the processing procedure can be determined under the conditions of all tensile strains. This is because the distortion is always zero at the main line.

次に、本発明において目的曲面を得るべく、非可展変形と併せ可展変形を平板材料に付加するときの形状変化をシミュレートする方法について、説明する。図12、に測地線を示す曲面上の4点で囲まれる領域の要素を示す。図12において、4つの要素が頂点を共有する1点に注目してこの4つの要素についてのみ先ず考える。4つの要素が共有する点をOとする。図12に示すように、角度θから角度θと名付ける。このとき、要素間における面間の角度は、隣り合う要素の頂角の和が180°の場合を除き従属関係をもつ。この関係を先ず導く。 Next, a method for simulating a shape change when a deformable deformation is added to a flat plate material together with a non-developable deformation in order to obtain a target curved surface in the present invention will be described. FIG. 12 shows elements of a region surrounded by four points on a curved surface indicating a geodesic line. In FIG. 12, focusing on one point where four elements share a vertex, only these four elements will be considered first. Let O be the point shared by the four elements. As shown in FIG. 12, the angles θ 1 to θ 4 are named. At this time, the angle between the surfaces between the elements has a dependency relationship except when the sum of the apex angles of the adjacent elements is 180 °. First, this relationship is derived.

図13に、点Oを共有して隣り合う要素の関係を示す。図13において、φ12は要素1と要素2の面間角度、θ、θはそれぞれ頂角である。Iは、要素1、要素2の交線上の点Oから距離1の位置にある点である。点Iを通る要素1、要素2の交線に引いた垂線が、要素1、要素2の他の辺と交わる点を、図13に示すように、J、Kとする。三角形IJKと三角形OJKについて、辺JKにおいて余弦定理を適用すると、 FIG. 13 shows the relationship between elements that share the point O and are adjacent to each other. In FIG. 13, φ 12 is an angle between elements 1 and 2, and θ 1 and θ 2 are apex angles. I is a point at a distance of 1 from the point O on the intersection line of the elements 1 and 2. As shown in FIG. 13, let J and K be points where a perpendicular drawn to the intersection line of element 1 and element 2 passing through point I intersects with the other sides of element 1 and element 2. For the triangle IJK and the triangle OJK, applying the cosine theorem on the side JK,

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

より Than

Figure 2005228260
Figure 2005228260

を得る。また、ψ12=ψ34 ψ41=ψ23 であるから、面間角度φ12とφ34の関係ならびにφ41とφ23Get. Since ψ 12 = ψ 34 ψ 41 = ψ 23 , the relationship between the inter-plane angles φ 12 and φ 34 and φ 41 and φ 23 are

Figure 2005228260
Figure 2005228260

のように求めることができる。従って、次に、面間角度φ12とφ41の関係を示せば、これら4つの面間角度の関係をすべて導き出したことになる。 Can be obtained as follows. Therefore, then, if Shimese the relationship interplanar angle phi 12 and phi 41, so that the derived all the relationship of these four faces between the angle.

図14に、要素間の面間角度の関係を示す。図14に示すように、要素1と要素2の交線上に点Oから距離1の位置に点Gを取る。要素3と要素4の交線上に点Oから距離1の位置に点Hを取る。角度GOHをψ41=ψ23とおき、三角形GOHに注目すると、余弦定理より FIG. 14 shows the relationship between the inter-surface angles between elements. As shown in FIG. 14, a point G is placed at a distance 1 from the point O on the intersection line of the elements 1 and 2. A point H is set at a distance 1 from the point O on the intersection line of the elements 3 and 4. When the angle GOH is set to ψ 41 = ψ 23 and attention is paid to the triangle GOH, the cosine theorem

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

次に、平面AOE上の四角形CBOAについて考える。図15に、平面AOE上の四角形CBOAを示す。図15において、点Gから平面AOEに降ろした垂線の交点がCであり、CからOAに引いた垂線がCAであるから、平面GCAは平面AOBと平面GOAの両方に垂直な面である。従って、直線GAは直線OAに垂直に交わる。図16に、長さOCの求め方を示す。図16に示すように、x−y座標を当てはめると、点Bの座標は(cosθ・cosψ12,cosθ・sinψ12)である。直線OBの式は、 Next, consider a square CBOA on the plane AOE. FIG. 15 shows a square CBOA on the plane AOE. In FIG. 15, since the intersection of the perpendiculars drawn from the point G to the plane AOE is C and the perpendicular drawn from C to OA is CA, the plane GCA is a plane perpendicular to both the plane AOB and the plane GOA. Accordingly, the straight line GA intersects the straight line OA perpendicularly. FIG. 16 shows how to obtain the length OC. As shown in FIG. 16, when applying the x-y coordinates, the coordinates of the point B is (cosθ 2 · cosψ 12, cosθ 2 · sinψ 12). The equation for the straight line OB is

Figure 2005228260
Figure 2005228260

直線BCの式は、   The formula for the straight line BC is

Figure 2005228260
Figure 2005228260

交点の座標を求めると、   When the coordinates of the intersection are obtained,

Figure 2005228260
Figure 2005228260

となる。 It becomes.

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

で求められる。また、 Is required. Also,

Figure 2005228260
Figure 2005228260

さらに、   further,

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

F点の座標は、 The coordinates of point F are

Figure 2005228260
Figure 2005228260

以上をまとめると、面間角度φ12とφ34、φ41とφ23の関係においてφ12とφ34の関係は、 In summary, the interplanar angle phi 12 and phi 34, relationship phi 12 and phi 34 in relation to phi 41 and phi 23 are

Figure 2005228260
Figure 2005228260

φ41とφ23の関係は、 the relationship of φ 41 and φ 23 is,

Figure 2005228260
Figure 2005228260

である。φ12とφ41の関係は、 It is. the relationship of φ 12 and φ 41 is,

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

Figure 2005228260
Figure 2005228260

ならびに、 And

Figure 2005228260
Figure 2005228260

からφ12とφ41が関係づけられる。以上の関係から、四角形要素間の角度の依存関係が表されるので、どこか一箇所の面角度を変更したときの曲面全体の変形を知ることができる。可展変形は、曲面の曲率のみを変化させる変形であるから、このように四角形要素の寸法形状を変えないで面間角度のみを変化させるソフトウエアは便利である。 Φ 12 and φ 41 from are related. From the above relationship, the dependency relationship of the angle between the quadrangular elements is expressed, so that it is possible to know the deformation of the entire curved surface when the surface angle at one location is changed. Since the deformable deformation is a deformation that changes only the curvature of the curved surface, software that changes only the angle between the surfaces without changing the dimensional shape of the quadrilateral element is convenient.

図18に、トーラスと呼ばれる形状を示す。この(x,y,z)=(0,0,30)を中心に、−8<x<8、−8<y<8の範囲の曲面を対象として、x−y面上で間隔1の格子点でのz座標を求めた離散データをニューラルネットワークによって関数化するコンピュータシステムに読み込み、曲面近似した結果を図19に示す。実線が理論曲面で、プロットされた点が近似曲面上の点である。収束精度を0.3%とした場合の結果であるが、よく一致している。図18に示す−5<x<5、−5<y<5の範囲の曲面を対象として、曲面形成に必要な歪量を求め、有限要素法(FEM)で変形をシミュレートし、x−z面およびy−z面での切断面の形状を調べた結果を図20に示す。目的形状はそれぞれ曲率半径R=10およびR=30である。図20から明らかなように、よく一致している。   FIG. 18 shows a shape called a torus. Centering on this (x, y, z) = (0, 0, 30), a curved surface in a range of −8 <x <8 and −8 <y <8 is set as an object with an interval of 1 on the xy plane. FIG. 19 shows a result obtained by reading discrete data obtained by obtaining z coordinates at lattice points into a computer system that functions by a neural network and approximating a curved surface. The solid line is the theoretical surface, and the plotted points are the points on the approximate surface. Although the result is when the convergence accuracy is 0.3%, they are in good agreement. For a curved surface in the range of −5 <x <5 and −5 <y <5 shown in FIG. 18, the amount of strain required for forming the curved surface is obtained, and the deformation is simulated by a finite element method (FEM). The result of examining the shape of the cut surface in the z plane and the yz plane is shown in FIG. The target shapes are curvature radii R = 10 and R = 30, respectively. As is clear from FIG. 20, they are in good agreement.

船舶、航空機、列車などにおける曲面加工手順書の作成、歪取り作業の工法の決定に利用できる。   It can be used to create curved surface processing procedures for ships, aircraft, trains, etc., and to determine the method of distortion removal work.

ニューラルネットワークにおける1つのノード(シナプス)を示す模式図Schematic diagram showing one node (synapse) in a neural network ニューラルネットワークの一例を示すダイアグラムDiagram showing an example of a neural network 測地線開始点を示すダイアグラムDiagram showing geodesic starting point 図3に示す測地線開始部に垂直な方向の測地線開始部を示すダイアグラムDiagram showing the geodesic start portion in a direction perpendicular to the geodesic start portion shown in FIG. 測地線の描き方の概念を示す模式図Schematic diagram showing the concept of how to draw geodesic lines 図5に示す曲面を平面に展開したときの状態を示す平面図The top view which shows the state when the curved surface shown in FIG. 曲面形成に必要な歪を一方向の垂直歪のみに代表させる場合の歪の決定方法とそのときに描く測地線の模様を示す模式図Schematic diagram showing the method of determining distortion and the geodesic pattern drawn at that time when the distortion necessary for curved surface formation is represented only by vertical distortion in one direction 図7に示す曲面を平面に展開したときの状態を示す平面図The top view which shows the state when the curved surface shown in FIG. 曲面形成に必要な歪を相互に垂直な二方向の垂直歪成分とせん断歪に代表させる場合の歪量の決定方法とそのときに描く測地線の模様を示す模式図Schematic diagram showing the method of determining the amount of strain when the strain required for curved surface formation is represented by two vertical strain components perpendicular to each other and shear strain, and the geodesic pattern drawn at that time 図9に示す曲面を平面に展開したときの状態を示す平面図The top view which shows the state when the curved surface shown in FIG. 9 is developed on a plane 本発明をフィードバックに用いたときの処理プロセスを示すフローチャートA flowchart showing a processing process when the present invention is used for feedback. 測地線を示す曲面上の4点で囲まれる領域の要素を示すダイアグラムDiagram showing the elements of the area surrounded by four points on the curved surface showing the geodesic line 点Oを共有して隣り合う要素の関係を示すダイアグラムDiagram showing the relationship between adjacent elements sharing point O 要素間の面間角度の関係を示すダイアグラムDiagram showing the relationship between the face angles between elements 平面AOE上の四角形CBOAを示すダイアグラムDiagram showing square CBOA on plane AOE 図15におけるOC間の距離を求める方法を示すダイアグラムFIG. 15 is a diagram showing a method for obtaining the distance between OCs in FIG. 図14におけるCF間の距離を求める方法を示すダイアグラムDiagram showing a method for obtaining the distance between CFs in FIG. トーラスと呼ばれる形状を示す図Diagram showing a shape called a torus 図18に示すトーラスの曲面の離散数値情報からニューラルネットワークによって曲面近似したときの結果を示すグラフFIG. 18 is a graph showing a result when a curved surface is approximated by a neural network from discrete numerical information of the curved surface of the torus shown in FIG. 本発明によって求めた曲面形成に必要な歪量を有限要素法によってシミュレートし、x−z面およびy−z面での切断面における断面形状を調べた結果を示すグラフThe graph which shows the result of having simulated the amount of distortion required for curved-surface formation calculated | required by this invention by the finite element method, and having investigated the cross-sectional shape in the cut surface in a xz plane and a yz plane

Claims (5)

a. 離散点の座標等で表示された曲面形状を関数化する過程
b. 前記またはそれ以外の方法で関数化された曲面上に縦横に測地線を描く過程
c. 平面上で平行な条件を満たす、測地線上での間隔の変化または平面上で方形を形成する4本の測地線で囲まれた領域の、曲面上での形状変化から曲面形成に必要な非可展面形成に係る歪量の分布を演算算出する過程
d. 上記過程によって得られた歪量の分布を平板に与えて得られる非可展変形による曲面と目的曲面形状との間に相異が存する場合に、該相異をもたらす可展変形成分を抽出し、これら非可展変形および可展変形の双方を演算算出する過程をコンピュータシステムによって処理することを特徴とする平板材料を目的曲面に成形するに要する歪分布演算算出方法。
a. a process of functionalizing the curved surface shape displayed by the coordinates of discrete points, etc. b. a process of drawing geodesic lines vertically and horizontally on the curved surface functionalized by the above or other methods c. a parallel condition on a plane The amount of distortion related to non-developable surface formation required for curved surface formation from the change in the interval on the geodesic line or the change in shape on the curved surface of the area surrounded by four geodesic lines forming a square on the plane D. Calculating and calculating the distribution of d. If there is a difference between the curved surface due to non-deformable deformation obtained by applying the strain distribution obtained by the above process to the flat plate and the target curved surface shape, the difference Of strain distribution required to form a flat plate material into a target curved surface, which is a computer system that processes the process of calculating both non-deformable deformation and deformable deformation by extracting the deformable deformation components Calculation method.
離散点の座標等で表示された曲面形状を関数化する過程が、曲面形状を数値データとして付与し、該数値データを要求精度で複数ステップに分解可能なニューラルネットワークによって関数化するものである請求項1に記載の平板材料を目的曲面に成形するに要する歪分布演算算出方法。   The process of functionalizing the curved surface shape displayed by the coordinates of discrete points, etc. is to assign the curved surface shape as numerical data, and to convert the numerical data into a function by a neural network that can be decomposed into a plurality of steps with the required accuracy. A strain distribution calculation calculation method required for forming the flat plate material according to item 1 into a target curved surface. 請求項2に記載のニューラルネットワークによって関数化された近似曲面またはz=f(x.y)の形式で表される曲面関数上に任意の点を始点として任意の方向に測地線を描き、任意の間隔でその測地線の軌跡を記録するとともに平面へ展開された面上での方眼に対応する測地線を曲面上に縦横に描きその軌跡を記録するようにしたことを特徴とする平板材料を目的曲面に成形するに要する歪分布算出のための測地線作成用コンピュータシステム。   A geodesic line is drawn in an arbitrary direction starting from an arbitrary point on an approximate curved surface functionalized by the neural network according to claim 2 or a curved surface function expressed in the form of z = f (xy). A flat plate material characterized in that the geodesic trajectory is recorded at intervals of and the geodesic line corresponding to the grid on the plane developed into a plane is drawn vertically and horizontally on the curved surface and the trajectory is recorded. A geodesic computer system for calculating the strain distribution required for forming a target curved surface. 請求項3に記載の測地線作成用演算算出コンピュータシステムによる測地線の軌跡情報から、平面への展開図上における平行線に対応する曲面上測地線の間隔の変化を歪に換算するかまたは、平面への展開図上において平行な直交する2組4本の直線に対応する曲面上測地線の交点間距離および交点を結ぶ線分が作り出す方形形状の変化から、曲面形成に必要な非可展変形に係る歪量の分布を演算算出することを特徴とする平板材料を目的曲面に成形するに要する歪分布算出方法。   From the geodesic trajectory information by the calculation calculation computer system for geodesic line creation according to claim 3, the change in the distance between the geodesic curves on the curved surface corresponding to the parallel lines on the development view to the plane is converted into distortion, or The non-development necessary for curved surface formation from the change in the square shape created by the distance between the intersections of the geodesic curves on the curved surface corresponding to two sets of four orthogonal straight lines parallel to each other on the development to the plane and the line connecting the intersections A strain distribution calculation method required for forming a flat plate material into a target curved surface, which calculates and calculates a distribution of strain amount related to deformation. 請求項4に記載の歪量の分布を演算算出するコンピュータシステムにおいて用いた測地線上の点を頂点にもつ方形を1つの単位とする要素に分解した目的曲面に対し、任意の可展変形を加えた場合の形状変化をシミュレーションし、目的曲面形状を得るに必要な可展変形を決定する可展変形シミュレーション用コンピュータシステム。
5. An arbitrary deformable deformation is added to the target curved surface that is decomposed into elements each having a square having a point on the geodesic line as a vertex used in the computer system for calculating and calculating the strain distribution according to claim 4. A computer system for simulation of deformable deformation that determines the deformable deformation necessary to obtain the target curved surface shape by simulating the shape change in the case of the deformation.
JP2004038676A 2004-02-16 2004-02-16 Distortion distribution calculation method for shaping plate material to objective curved surface Pending JP2005228260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038676A JP2005228260A (en) 2004-02-16 2004-02-16 Distortion distribution calculation method for shaping plate material to objective curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038676A JP2005228260A (en) 2004-02-16 2004-02-16 Distortion distribution calculation method for shaping plate material to objective curved surface

Publications (1)

Publication Number Publication Date
JP2005228260A true JP2005228260A (en) 2005-08-25

Family

ID=35002895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038676A Pending JP2005228260A (en) 2004-02-16 2004-02-16 Distortion distribution calculation method for shaping plate material to objective curved surface

Country Status (1)

Country Link
JP (1) JP2005228260A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231345A (en) * 2005-02-22 2006-09-07 Mitsubishi Heavy Ind Ltd Bending method, metallic sheet, heating position determining program and three-dimensional shape processing apparatus
JP2012504815A (en) * 2008-10-01 2012-02-23 ローズマウント インコーポレイテッド Process control system capable of performing approximate calculations for process control
GB2487405A (en) * 2011-01-20 2012-07-25 Ordonez Diegoa Converting coordinates of projections of a basic geometric shape into coordinates on a tubular enveloping surface particularly in cast on cast fabrication
CN104636545A (en) * 2015-01-13 2015-05-20 中核华泰建设有限公司 Curved-surface concrete bridge deck joint measurement and control elevation positioning method
CN106541033A (en) * 2016-11-04 2017-03-29 广东工业大学 A kind of water-fire heating plate bending machine and its water gun nozzle tracking cooling means and system
CN110516388A (en) * 2019-08-31 2019-11-29 大连理工大学 Surface tessellation point cloud model ring cutting knife rail generating method based on reconciliation mapping
CN111639387A (en) * 2020-04-23 2020-09-08 江苏科技大学 Marine sail-shaped plate line fire and fire bent plate fire line path and flame parameter determination method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231345A (en) * 2005-02-22 2006-09-07 Mitsubishi Heavy Ind Ltd Bending method, metallic sheet, heating position determining program and three-dimensional shape processing apparatus
JP2012504815A (en) * 2008-10-01 2012-02-23 ローズマウント インコーポレイテッド Process control system capable of performing approximate calculations for process control
GB2487405A (en) * 2011-01-20 2012-07-25 Ordonez Diegoa Converting coordinates of projections of a basic geometric shape into coordinates on a tubular enveloping surface particularly in cast on cast fabrication
CN104636545A (en) * 2015-01-13 2015-05-20 中核华泰建设有限公司 Curved-surface concrete bridge deck joint measurement and control elevation positioning method
CN106541033A (en) * 2016-11-04 2017-03-29 广东工业大学 A kind of water-fire heating plate bending machine and its water gun nozzle tracking cooling means and system
CN110516388A (en) * 2019-08-31 2019-11-29 大连理工大学 Surface tessellation point cloud model ring cutting knife rail generating method based on reconciliation mapping
CN111639387A (en) * 2020-04-23 2020-09-08 江苏科技大学 Marine sail-shaped plate line fire and fire bent plate fire line path and flame parameter determination method
CN111639387B (en) * 2020-04-23 2024-04-26 江苏科技大学 Method for determining fire wire path and flame parameter of sail plate line and fire bending plate for ship

Similar Documents

Publication Publication Date Title
Kramer et al. The third Sandia Fracture Challenge: predictions of ductile fracture in additively manufactured metal
Lin et al. Finite element modelling of fatigue crack growth of surface cracked plates: Part I: The numerical technique
Shin et al. User-friendly, advanced line heating automation for accurate plate forming
JP4585165B2 (en) Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface
JP2004330212A (en) Analysis method for welded structure and analysis device for welded structure
Shin et al. A comprehensive line-heating algorithm for automatic formation of curved shell plates
JP2005228260A (en) Distortion distribution calculation method for shaping plate material to objective curved surface
Blount et al. Computerised blank shape prediction for sheet metal components having doubly-curved surfaces
JP4516740B2 (en) Shape estimation device
JP6337619B2 (en) Surface shape evaluation method and surface shape evaluation system
Song et al. Fully two-dimensional discrete inverse eigenstrain analysis of residual stresses in a railway rail head
CN108137128B (en) For determining the method and system of connecting element manufacture size
Barcelo Structural assessment based on photogrammetry measurements and finite element method
Sushitskii et al. Determination of optimal shot peen forming patterns using the theory of non-Euclidean plates
Jang et al. Acquisition of line heating information for automatic plate forming
Reutzel et al. A differential geometry approach to analysis of thermal forming
Shen et al. Forming information calculation algorithm of 3-D template for evaluation of curved hull plates
KR101327964B1 (en) Fem modeling method for vibration analysis of commercial vessel in shipbuilding industry
Cubells et al. Photogrammetry measurements of initial imperfections for the ultimate strength assessment of plates
KR20160055608A (en) Apparatus and method for cuved surface heating line computation of corrugated skin of ship
JP4899039B2 (en) Method of obtaining flat plate processing information and flat plate processing method
Chai et al. DIANA Modeling Cases for Precast Segmental Structures
Feulvarch et al. Mesh Morphing Based on Standard FEA Software Features and Application to Crack Propagation
Szombara Unambiguous collapse operator of digital cartographic generalisation
Reutzel et al. Path planning strategies for laser line forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100527