JP2004330212A - Analysis method for welded structure and analysis device for welded structure - Google Patents

Analysis method for welded structure and analysis device for welded structure

Info

Publication number
JP2004330212A
JP2004330212A JP2003125673A JP2003125673A JP2004330212A JP 2004330212 A JP2004330212 A JP 2004330212A JP 2003125673 A JP2003125673 A JP 2003125673A JP 2003125673 A JP2003125673 A JP 2003125673A JP 2004330212 A JP2004330212 A JP 2004330212A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
structure
welded
analysis
welding
step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003125673A
Other languages
Japanese (ja)
Inventor
Daijiro Fukuda
Takao Inukai
Yoshiyasu Ito
Kazuhiro Saito
Kazutoshi Takaishi
Akira Tanaka
義康 伊藤
隆夫 犬飼
明 田中
大二郎 福田
和年 高石
和宏 齊藤
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an analysis method for a welded structure and an analysis device for the welded structure which can estimate welding deformation and the residual stress with further higher accuracy when the welding deformation and the residual stress of the welded structure are analyzed by using a finite element method.
SOLUTION: The analysis method for the welded structure has a step 2 of setting welding conditions which sets the type of the welding of a weld line and heat input conditions of a welding temperature, a step 3 of dividing the set weld line to weld line elements composed of an element unit of an FEM model, a step 6 of calculating an inherent strain distribution determined corresponding to the type of the welding, a heat input amount, and the distance from the weld line regarding individual elements constituting a finite element model, a step 8 of converting the calculated inherent strain of the individual elements to at least either of the coordinate systems of the entire coordinate system of the welded structure and a local coordinate system of the element, and a step 9 of preparing FEM analysis data for imparting the inherent strain, to which coordinate conversion is executed, to the individual elements as a load condition.
COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、構造物を溶接する際に生成される熱ひずみの影響を受けて発生する構造物の溶接変形や残留応力を固有ひずみ法を用いて推定する溶接構造物の解析方法および溶接構造物の解析装置に関する。 The present invention, analyzing method and welded structure of welded structure to estimate the welding deformation and residual stress of the structure generated under the influence of thermal strain generated in welding structures with inherent strain method It related to the analysis apparatus.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
溶接構造物の産業分野では、構造物を溶接する際に生成される溶接部の熱的影響を受けて発生する構造物の溶接変形や残留応力を固有ひずみ法を用いて推定する研究が進められている。 In the industrial field of welded structures, research is proceeding be estimated using inherent strain method of welding deformation and residual stress of the thermally affected by structure generated by the welds produced in welding structures ing.
【0003】 [0003]
ここに、固有ひずみ法とは、溶接構造物の溶接変形や残留応力を推定するにあたり、まず、実際の溶接構造物に生成される固有の溶接変形や残留応力を計測し、あるいは、熱弾塑性FEM解析により求めてデータベース化しておき、次に、データベース化したひずみ値等のうち、適正値をモデル化した溶接構造物に与え、FEM(有限要素法)解析法を用いて溶接変形や残留応力などを推定する手法である。 Here, the inherent strain method, when estimating the welding deformation and residual stress of the welded structure, firstly, to measure the specific welding distortion and residual stresses that are generated on the actual welded structure, or thermal elastic-plastic leave database found through FEM analysis, then, among the distortion value or the like database, giving the welded structure that models the appropriate value, the welding deformation and residual stress using the FEM (finite element method) analysis method it is a method to estimate the like.
【0004】 [0004]
この手法は、予めデータベース化しておいた溶接構造物の固有ひずみ等のうち、適正値を選択して利用し、線形解析により溶接変形などを計算するので、構造物の形状が複雑であったり、大型の場合においても、熱弾塑性FEM構造解析に較べて短時間で構造物の溶接変形等を推定できる点で利便性が高い。 This approach, of the inherent strain such pre welded structure which has been database, and select and use the appropriate value, since calculating the welding deformation by linear analysis, is or a complicated shape of the structure, in the case of large also is highly convenient in that it can estimate the welding deformation in a short time structures compared to the thermal elastic-plastic FEM structural analysis.
【0005】 [0005]
この固有ひずみ法を用いて溶接構造物の溶接変形や残留応力を推定した技術として、例えば溶接学会全国大会講演概要第70集(2002−4)「固有ひずみ法を用いた複雑形状の溶接変形最適化」(非特許文献1)や特開平7−75835号公報(特許文献1)、特開平10−146621号公報(特許文献2)の「線状加熱による金属板の曲げ加工法」等数多くの文献が公表されている。 As the inherent strain method technique to estimate the welding deformation and residual stress of welded structures by using, for example, Welding Society National Meeting Abstract No. 70 Vol (2002-4), "welding deformation optimal complex-shaped with inherent strain method reduction "(non-Patent Document 1) and JP-a-7-75835 (Patent Document 1), JP-a-10-146621 JP-(Patent Document 2)" of the metal plate by the linear heating bend method "or the like a number of literature have been published.
【0006】 [0006]
【非特許文献1】 Non-Patent Document 1]
溶接学会全国大会講演概要第70集(2002−4)「固有ひずみ法を用いた複雑形状の溶接変形最適化」 Welding Society national convention Abstract No. 70 Vol. (2002-4) "welding deformation optimization of complex shape using the inherent strain method"
【0007】 [0007]
【特許文献1】 [Patent Document 1]
特開平7−75835号公報【0008】 Japanese Unexamined Patent Publication No. 7-75835 [0008]
【特許文献2】 [Patent Document 2]
特開平10−146621号公報【0009】 Japanese Unexamined Patent Publication No. 10-146621 [0009]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
溶接構造物の溶接変形や残留応力等を推定する際に用いられるFEM解析法は、実際の溶接構造物をモデル化し、モデル化した溶接構造物を、例えば四辺形等の予め定められた形状の要素毎に細かに分割する、いわゆるメッシュ分割を行い、分割した個々の要素の力(応力)および変位(ひずみ)と、溶接構造物全体の力および変位との連続性から溶接構造物の変形および残留応力等を推定する計算法であり、モデルを構成する要素に溶接により生じる熱ひずみに相当する適切な分布のひずみ、すなわち、固有ひずみを入力して計算することで、構造、形状が複雑であっても、変化および残留応力を比較的短時間で推定できる。 FEM analysis method used in estimating the welding deformation and residual stress or the like of a welded structure, the actual model the welded structure, a welded structure that models, for example, the predetermined shape of the quadrilateral such to finely divided for each element performs so-called mesh division, the force of the divided individual elements (stress) and displacement (the strain), deformation of the welded structure from continuity with the welded structure of the entire force and displacement and a calculation method for estimating the residual stress and the like, strain suitable distribution corresponding to the thermal strain caused by welding elements of the model, i.e., by calculating by entering a unique strain, structure, shape and complex even the change and residual stress can be estimated in a relatively short time. しかし、それでも幾つかの問題点が残されており、その1つに解析モデルの全体の座標系と溶接線まわりの固有ひずみ分布を決める座標系との整合性がある。 However, still have left some problems, is consistent with the coordinate system to determine the specific strain distribution around the whole of the coordinate system and the weld line of the analytical model to one of them.
【0010】 [0010]
すなわち、FEM解析法を用いて溶接構造物の固有ひずみおよび残留応力を推定する場合、座標系には、解析モデルとしての構造物全体の座標系のほかに、モデル化した溶接構造物の分割要素の特性によって決まる局所座標系と溶接構造物の溶接線の方向、および溶接施工位置によって決まる固有ひずみ座標系の3つがある。 That is, dividing elements in the case of estimating the inherent strain and residual stress of the welded structures using the FEM analysis, the coordinate system, in addition to the structure of the entire coordinate system of the analysis model, a welded structure was modeled 3 Tsugaaru local coordinate system determined by the characteristics and direction of the weld line of the welded structures and that inherent strain coordinate system determined by the welding position.
【0011】 [0011]
これら3つの座標系に整合性がないと、各分割要素に予めデータベース化したひずみ値を与えても誤差が大きく、場合によっては現実とかけ離れた固有ひずみ値になる等の問題があった。 Without integrity to the three coordinate system, errors can give a strain value in advance a database in each divided element is large, in some cases there is such to be inherent strain value far from the reality. 通常、FEM解析モデルはこれらの座標系が一致するようモデル化される場合が多いが、複雑な形状の3次元構造物の場合や溶接線の方向が多数にわたる場合には、FEM解析モデルの座標系と溶接線との座標系の整合を取りながらモデルを作ることが困難である。 Normally, if it is large, if the direction of the case and the weld line of a three-dimensional structure of the complex shapes over a number the coordinates of the FEM analysis model FEM analysis model that is modeled so that these coordinate systems are matched it is difficult to make a model while taking a coordinate system matching of the system and the welding line. また、使用する要素の種別によっては、更に、個々の要素ごとに局所座標系との整合に関する問題が追加される。 Also, depending on the type of elements used, further, consistency issues the local coordinate system for each individual element is added. これらは、特に、曲面、鋭角的切欠や鋭角的交差部を持つ三次元溶接構造物では、その傾向が高い。 These are, in particular, the curved surface, in the three-dimensional welded structures with sharp notches and sharp cross section, its high tendency.
【0012】 [0012]
このため、FEM解析モデルの段階において溶接線の方向や要素種別により生じる局所の座標系の整合性を維持させなくとも、簡易な手法を用いて精度の高い固有ひずみ値等をFEM解析データに与え、高い精度で溶接変形や残留応力分布を推定できる溶接構造物の解析手法の実現が望まれていた。 Therefore, without to maintain the integrity of the local coordinate systems caused by the weld line direction and elements type at the stage of the FEM analysis model, giving a highly accurate inherent strain value such as the FEM analysis data using a simple technique , realization of analytical methods of welded structure can be estimated welding distortion and residual stress distribution with high accuracy has been desired.
【0013】 [0013]
本発明は、このような事情に基づいてなされたもので、データベース化した固有ひずみ値等を選択しモデル化した溶接構造物に与え、有限要素法を用いて溶接構造物の溶接変形、残留応力を解析するにあたり、より一層精度の高い溶接変形、残留応力を推定できる溶接構造物の解析方法および溶接構造物の解析装置を提供することを目的とする。 The present invention has been made in view of such circumstances, applied to the weld structure was modeled select a unique distortion value or the like database, welding deformation of welded structures by using the finite element method, the residual stress Upon analyzing, and an object thereof is to provide an analysis apparatus more accurate welding distortion, analyzing method and welded structure of the welded structure can be estimated residual stress.
【0014】 [0014]
【課題を解決するための手段】 In order to solve the problems]
本発明に係る溶接構造物の解析方法は、請求項1に記載したように、溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向を指定する一方、この溶接線の溶接の種類、溶接温度の入熱条件を設定する溶接施工条件設定ステップと、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割するステップと、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、前記有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて定まる固有ひずみ分布を算出するステップと、算出した個々の要素の固有ひずみを前記溶接構造物の全体座標系および要素の局所座標系のうち、 The method of analysis welded structure according to the present invention, as described in claim 1, based on the mesh division of the finite element model of the welded structure, the position of the weld line, while specifying the direction of the welding line, this type of welding weld line, a welding condition setting step of setting a heat input condition of the welding temperature, dividing the welding line element comprising a weld line which is set from the element unit of the FEM model of the divided welding line elements to determine the direction, while calculating the distance and direction of a finite element model constituting element and the weld line elements of the welded structure, the individual elements constituting the finite element model, the welding type and the amount of heat input and calculating a specific strain distribution determined according to the distance from the welding line, the calculated individual elements inherent strain of the local coordinate system of the global coordinate system and elements of the welded structure, なくともいずれか一方の座標系に変換するステップと、座標変換した固有ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成するステップを有する方法である。 A method comprising the steps of creating and converting either one of the coordinate system, the FEM analysis data given as loading conditions of the inherent strain was coordinate transformation into individual elements even without.
【0015】 [0015]
また、本発明に係る溶接構造物の解析方法は、請求項2に記載したように、溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素を指定して行う方法である。 Further, the method of analysis welded structure according to the present invention, as described in claim 2, the position of the weld line, the specification of the direction of the weld line, by specifying the model mesh refinement elements of welded structures it is a way to do.
【0016】 [0016]
また、本発明に係る溶接構造物の解析方法は、請求項3に記載したように、溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素内の節点を指定して行う方法である。 Further, the method of analysis welded structure according to the present invention, as described in claim 3, the position of the weld line, the specification of the direction of the weld line, the nodes of the model mesh divided in elements of welded structures it is a method of performing specified by.
【0017】 [0017]
また、本発明に係る溶接構造物の解析方法は、請求項4に記載したように、溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素と、この要素内の節点とを組み合わせたものを指定して行う方法である。 Further, the method of analysis welded structure according to the present invention, as described in claim 4, the position of the weld line, the specification of the direction of the weld line, and the model was mesh-divided element of the welded structure, the element a method of performing by specifying a combination of a node of the inner.
【0018】 [0018]
また、本発明に係る溶接構造物の解析方法は、請求項5に記載したように、溶接線の位置、溶接線の方向の指定は、CRT画面に写した溶接構造物のモデルにおいて、ペンポインター、マウス、ナンバーキーのうち、いずれかを用い、少なくとも要素、節点、直線、曲線、弧のいずれか1つ以上を指定して行う方法である。 Further, the method of analysis welded structure according to the present invention, as described in claim 5, the position of the weld line, the specification of the direction of the weld line, in a model of a welded structure in the burst to the CRT screen, the pen pointer , mice, of the number keys, using either a method of performing at least elements, nodes, lines, curves, and specify any one or more of the arc.
【0019】 [0019]
また、本発明に係る溶接構造物の解析方法は、請求項6に記載したように、溶接施工条件のステップは、溶接の種類、溶接温度の入熱条件を固有ひずみデータベースから選択して溶接構造物のモデルをメッシュ分割した要素、節点およびこれらの組み合わせのうち、少なくともいずれか一方に与える方法である。 Further, the method of analysis welded structure according to the present invention, as described in claim 6, the step of welding conditions, the type of welding, the heat input condition of the welding temperature is selected from the inherent strain database welded structure model mesh refinement elements of the object, among the nodes, and combinations thereof, a method of providing on at least one.
【0020】 [0020]
本発明に係る溶接構造物の解析装置は、請求項7に記載したように、溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向とを指定する一方、該溶接線の溶接の種類、溶接温度の入熱条件を指定する、溶接施工条件設定する手段と、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割する手段と、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、溶接構造物の有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて決められる固有ひずみ分布を算出する手段と、算出した個々の要素の固有ひずみを溶接構造物全体座標系および要素の局所座標系のうち、 Analyzer of welded structure according to the present invention, as described in claim 7, based on the mesh division of the finite element model of the welded structure, the position of the weld line, while specifying the direction of the weld line, type solution tangent welding designates a heat input condition of the welding temperature, means for setting welding conditions, means for dividing the welding line element comprising a weld line which is set from the element unit of the FEM model, divided welded while determining the direction of the line elements, and calculates the distance and direction between the elements constituting the finite element model and the weld line elements of the welded structure, the individual elements which constitute the finite element model of the welded structure, means for calculating the inherent strain distribution determined according to the distance from the welding wire and the type of welding heat input, the calculated individual elements inherent strain of the local coordinate system of the welded structure global coordinate system and elements, なくともいずれか一方の座標系に変換する手段と、座標変換した固有ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成する手段を有するものである。 And it has a means for creating and means for converting either one of the coordinate system, the FEM analysis data given as loading conditions of the inherent strain was coordinate transformation into individual elements even without.
【0021】 [0021]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
以下、本発明に係る溶接構造物の解析方法およびその解析装置の実施形態を図面および図面に付した符号を引用して説明する。 Hereinafter will be described a code an embodiment of the analysis method and analysis apparatus of the welded structure according to the present invention were subjected to drawings and by reference.
【0022】 [0022]
図1は、本発明に係る溶接構造物の解析方法およびその解析装置の実施形態を示すブロック図である。 Figure 1 is a block diagram illustrating an embodiment of the analysis method and analysis apparatus of the welded structure according to the present invention.
【0023】 [0023]
本実施形態は、まず、溶接構造物をモデル化し、モデル化した溶接構造物に初期データ、具体的には幾何学的情報を与えてメッシュ分割するとともに、メッシュ分割する要素毎に要素データ等の情報を与える(ステップ1)。 This embodiment, first, to model the welded structure, the initial data in the welded structure modeling, as well as mesh division giving geometrical information specifically, such element data for each element of the mesh division give the information (step 1).
【0024】 [0024]
次に、本実施形態は、モデル化した溶接構造物に溶接施工条件の情報を与えて溶接施工条件を設定した後(ステップ2)、モデル化した溶接構造物の溶接線を溶接線要素毎に分割する(ステップ3)。 Next, the present embodiment, after setting the welding conditions giving information welding conditions to the welding structure modeled (step 2), the weld line of the welded structure modeled for each weld line elements split (step 3).
【0025】 [0025]
溶接線要素毎に分割した溶接構造物は、溶接線要素の方向、例えば軸方向、幅方向、深さ方向を決定するとともに(ステップ4)、上述ステップ1でメッシュ分割した個々の要素と上述ステップ3で分割した溶接線要素との距離および方向を計算し(ステップ5)、さらに上述ステップ1でメッシュ分割した個々の要素の固有ひずみを計算する(ステップ6)。 Welded structure divided for each weld line element, the direction of the weld line elements, for example axially, (Step 4), above steps with each of the elements mesh division in the above Step 1 and determines the width direction, the depth direction the distance and direction between the divided welding wire element 3 calculated (step 5), further calculates the inherent strain of each of the elements mesh division in the above step 1 (step 6).
【0026】 [0026]
個々の要素の固有ひずみの計算が終了すると、本実施形態は、上述ステップ6で求めた個々の要素の固有ひずみの成分を全体座標系に変換し(ステップ7)、さらにステップ7で求めた固有ひずみの各成分をFEM要素種別に応じた局所座標系に変換した後(ステップ8)、固有ひずみを入力したFEM解析データを作成し(ステップ9)、FEM解析計算を行い(ステップ10)、溶接構造物の溶接変形、残留応力を算出して推定する(ステップ11)。 Specific the specific strain calculation of individual elements is terminated, this embodiment, which converts the inherent strain of the components of the individual elements obtained by the above step 6 in the global coordinate system (step 7), and further determined at step 7 after converting to the local coordinate system of each component according to the FEM element type strain (step 8), to create the FEM analysis data entered the inherent strain (step 9), the FEM analysis calculation (step 10), the welding welding deformation of the structure, it is estimated by calculating the residual stress (step 11).
【0027】 [0027]
図2は、図1で示した各ステップの内容を今少し詳しく説明する概念手順図である。 Figure 2 is a conceptual procedure diagram now be described in some detail the contents of the respective steps shown in FIG.
【0028】 [0028]
ステップ1は、モデル化した溶接構造物をメッシュに分割する際、例えば三角形、四辺形等の具体的な形状を指定し、指定した形状のうち、一つ一つを「要素」として用いるとともに、一つ一つの「要素」に幾つかの「節点」を指定する一方、一つ一つの「要素」に材料を指定する。 Step 1, when dividing the welded structure modeled on a mesh, for example triangular, specify the specific shape of such quadrilateral, of the specified shape, with using each one as "elements", while you specify the "node" some of the one by one of the "elements", to specify the material to "element" of one by one.
【0029】 [0029]
また、ステップ1は、メッシュに分割した各「要素」に、ヤング率やポアソン比等の材料特性、外力や熱等の荷重、変位拘束等の境界条件のそれぞれのデータを与える。 Further, step 1 gives each "element" which is divided into meshes, material properties such as Young's modulus and Poisson's ratio, the load such as external force or heat, the respective data of boundary conditions such as displacement constraints.
【0030】 [0030]
ステップ2は、ステップ1の情報を基にして図3のうち、(a)に示す実溶接構造物の各溶接部1,2,…における「溶接軸方向」、「溶接幅方向」、「溶接深さ方向」のそれぞれの指定技術事項を、(b)に示すモデル化した溶接構造物の溶接部1,2,…の「要素」、または「節点」A,B,C,…に与えるか、あるいは(c)に示す「要素」a,b,…に示すように、「節点」、および、または「要素」を基準にして「節点」、「要素」または、「節点」と「要素」との組み合わせの並び方として与えるとともに、固有ひずみデータベースから適正に選択する、例えばサブマージアーク溶接等の溶接の種類と、例えば溶接温度等の入熱溶接条件等とをこれら「節点」、および、または「要素」の並びからなる溶接線に与える。 Step 2 of FIG. 3 based on the information in Step 1, "welding direction" each weld 1,2, in ... the actual weld structure (a), the "welding width", "Welding each designated technical matters in the depth direction ", or provide welds 1,2 welded structure modeled shown in (b), ... of the" elements ", or" node "a, B, C, ... in or shown in (c) "elements" a, b, as shown ... in, "node", and, or "element" based on the "node", "element" or a "node", "elements" together provided as the arrangement of the combination of, proper selection from the inherent strain database, for example, the type of welding, such as submerged arc welding, for example, these "nodes" and heat input welding conditions such as welding temperature, and, or " give to the weld line consisting of a sequence of elements ".
【0031】 [0031]
なお、溶接線の位置、溶接線の方向の指定は、CRT画面上にうつした有限要素解析モデルにおいて、ペンポインター、マウス、ナンバーキーなどにより、節点、要素を直接指定するだけでなく、線分、曲線、弧など、溶接線を代表する図形を指定することによっても行なうことができる。 The position of the weld line, the specification of the direction of the weld line, the finite element analysis model transferred to a CRT screen, a pen pointer, a mouse, or the like number key not only to specify nodes, elements directly, the line segment , curve, etc. arc, can also be performed by specifying a figure representing the weld line.
【0032】 [0032]
また、溶接線の位置が、要素や節点の並びから外れている場合にも、同じにオフセット量を入力することにより、溶接線の位置を決定できる。 The position of the weld line, even if you are out of a sequence of elements and nodes, same as by inputting the offset amount can be determined the position of the weld line. これらにより、溶接線を要素サイズレベルで分割した、複数の溶接線の集合とすることができる。 These were divided weld lines element size level can be a collection of a plurality of weld lines.
【0033】 [0033]
ステップ3は、ステップ1とステップ2との情報を基にし、モデル化した溶接構造物における溶接部1,2,…の溶接線を「溶接線要素」毎に分割する。 Step 3, based on information of steps 1 and 2, dividing modeled welds 1 and 2 in the welded structure was, ... weld lines of each "weld line elements". すなわち、「溶接線要素」は、図4(a)に示す「節点」A,B,Cを持つ「要素」に区画する溶接部1、「節点」D,E,Fを持つ「要素」に区画する溶接部2に対し、図4(b)に示すように、例えば溶接部1を溶接線要素▲1▼,▲2▼,…に分割する。 That is, the "weld line element" FIGS. 4 (a) to indicate "node" A, B, welds 1 for partitioning the "element" with C "node" D, E, the "element" with F to weld 2 that divides, as shown in FIG. 4 (b), for example, welds 1 welding wire element ▲ 1 ▼, ▲ 2 ▼, divides ... to.
【0034】 [0034]
ステップ3で、溶接部1,2,…を「溶接線要素」▲1▼,▲2▼,…に分割すると、ステップ4では、分割した「溶接線要素」▲1▼,▲2▼,…毎に方向を指定し、指定した「溶接線要素」▲1▼,▲2▼,…の方向をデータベース化する。 In Step 3, the weld 1,2, ... a "weld line element" ▲ 1 ▼, ▲ 2 ▼, Splitting ..., in step 4, divided "weld line element" ▲ 1 ▼, ▲ 2 ▼, ... to specify the direction, designated "weld line element" ▲ 1 ▼, ▲ 2 ▼, ... a database of directions for each.
【0035】 [0035]
このデータベース化した「溶接線要素」▲1▼,▲2▼,…は、具体的には図5のうち、(a)に示すモデル化した溶接構造物の溶接部1に「節点」A,B,Cを、溶接部2に「節点」D,E,Fをそれぞれ指定し、指定した「節点」A,B,C,…の中から選択して区画したものである。 This was database "weld line element" ▲ 1 ▼, ▲ 2 ▼, ..., of FIG. 5 in particular, "node" to weld the first welded structure that models shown in (a) A, B, and C, "node" D the weld 2, E, F were respectively designated, designated "node" a, B, C, ... is obtained by partitioning by selecting from among. そして、「溶接線要素」▲1▼,▲2▼,…には、(c),(d)に示すように、例えば「節点」A,Eに対し、「溶接線方向」、「溶接幅方向」、「溶接深さ方向」のそれぞれの技術事項が指定される。 The "weld line element" ▲ 1 ▼, ▲ 2 ▼, the ..., (c), (d), the example "node" A, to E, "weld line direction", "weld width direction ", each technology matters" weld depth "is designated.
【0036】 [0036]
また、ステップ4では、図6に示すように、ステップ1、ステップ2およびステップ3の情報を基に「溶接線要素」▲1▼,▲2▼,…のそれぞれに、「溶接線方向」V 、「溶接幅方向」V 、「溶接深さ方向」V のそれぞれを指定する。 In step 4, as shown in FIG. 6, step 1, "weld line element" based on information from step 2 and Step 3 ▲ 1 ▼, ▲ 2 ▼, to ... each "weld line direction" V 1, "welding width" V 2, that specifies the respective "weld depth" V 3.
【0037】 [0037]
これらの方向の指定については、溶接線が節点の並びで決められている場合、以下の手順で行なわれる。 The specification of these directions, if the weld line is determined by the arrangement of the nodes is performed by the following procedure. 先ず、該溶接線要素を構成する2節点の並びが決まると、溶接線方向を決めることができる。 First, the arrangement of the two nodes constituting the solution tangent element is determined, it is possible to determine the weld line direction. さらに、それらの両節点が共通して属する要素を決定すると2つの要素と2つの節点が決まるので、他の要素、節点と共有していない表面を抽出することができる。 Furthermore, since the two elements and two nodes when they both nodes determines the elements belonging in common is determined, it is possible to extract other elements, the surface that are not shared with the node. これらの表面の代表点、例えば中心から、溶接線幅方向を規定でき、さらには、溶接線の深さ方向を決定する。 Representative points of these surfaces, for example from the center, can define a weld line width direction, and further, determines the depth direction of the weld line. 溶接線が要素の並びで指定されている場合は、最初の溶接線方向は、要素の代表点、要素の表面の中心点などにより代表点をとり決定する。 If the weld line is specified by the list of elements, the first weld line direction, the representative points of the elements, determining taking a representative point due center point of the surface of the element.
【0038】 [0038]
一方、ステップ5では、図7に示すように、ステップ3で分割した各「溶接線要素」▲1▼,▲2▼,…に対し、固有ひずみ等を与えた「要素」nとの距離Δiを計算し、距離Δi(Δ3,Δ4,Δ5)が最小となる「溶接線要素」の番号Kを探し(図7では「要素」nと「溶接線要素」▲4▼との距離が短かくなるのはΔ4)、「要素」nと「溶接線要素」の番号Kとの位置、具体的には溶接線軸方向、溶接線幅方向、溶接線深さ方向の距離を計算する。 On the other hand, in step 5, as shown in FIG. 7, step each "weld line elements" divided by 3 ▲ 1 ▼, ▲ 2 ▼, ... to the distance between the "elements" n gave inherent strain like Δi the calculated distance Δi (Δ3, Δ4, Δ5) is looking for numbers K of the minimum "weld line elements" (distance 7 "element" n and a "weld line elements" ▲ 4 ▼ is short consisting of the [Delta] 4), the position of the number K of "elements" n and "weld line elements", specifically calculates weld line direction, weld line width direction, the distance between the weld line depth direction.
【0039】 [0039]
ステップ5で、「要素」nと最も近い距離の「溶接線要素」の溶接線軸方向、幅方向、深さ方向のそれぞれの距離が計算されると、ステップ6では、図8のうち、(a)に示すように、データベース化している「溶接線要素」の溶接線軸方向、幅方向、深さ方向のそれぞれの固有ひずみを「要素」に与えた後、溶接施工軸方向の固有ひずみ、溶接施工幅方向の固有ひずみ、溶接施工深さ方向の固有ひずみを計算する。 In Step 5, the weld line direction of the "weld line elements" closest distance "element" n, the width direction, the respective distances in the depth direction is calculated, in step 6, of FIG. 8, (a as shown in), after giving the weld line direction of the "weld line elements" that are a database, the width direction, each unique strain in the depth direction to the "element", welding axis of the inherent strain, welding inherent strain in the width direction, to calculate the inherent strain of welding depth.
【0040】 [0040]
ステップ6で計算した各方向の固有ひずみを、ステップ7では、図9のうち、(a)に示す「溶接線要素」の溶接軸方向、溶接幅方向、溶接深さ方向のそれぞれを定める溶接線要素座標系を、(b)に示す各方向の固有ひずみを全体座標系に変換する。 Each direction of the specific strain calculated in step 6, step 7, of FIG. 9, the weld line defining the respective welding direction, welding width, the welding depth of the "weld line elements" shown in (a) an element coordinate system into a global coordinate system of the inherent strain in each direction shown in (b).
【0041】 [0041]
なお、ステップ7では、溶接線要素局所座標系から溶接構造物全体の全体座標系に変換しているが、例えば、図10(a)に示すように、蒸気タービンノズルダイヤフラムの場合、全体座標系から板状の分割要素の局所座標系に変換する場合もある。 In step 7, it is converted into the global coordinate system of the whole welded structure from the weld line element local coordinate system, for example, as shown in FIG. 10 (a), when the steam turbine nozzle diaphragm, the global coordinate system in some cases it is converted to the local coordinate system of the plate-like dividing element from. この場合、ステップ8が加えられる。 In this case, step 8 is added.
【0042】 [0042]
ステップ7またはステップ8で固有ひずみの各方向成分の座標変換をした後、ステップ9では、図2に示すように、固有ひずみと等価なデータに換算し、換算したデータにステップ1からの情報を参照してFEM解析データを作成する。 After the coordinate transformation in each direction component of the inherent strain in step 7 or step 8, step 9, as shown in FIG. 2, in terms of inherent strain equivalent data, the information from step 1 to the converted data reference to create a FEM analysis data.
【0043】 [0043]
固有ひずみの与え方としては、各要素へ与えるひずみと等価な応力を各要素の積分点に与える、あるいは、ひずみと等価な線膨張係数を各要素の物性値に与えた後、熱荷重を与える、あるいは、要素を構成する積分点に外力を与えて等価なひずみとするなどの方法がある。 The way of giving specific strain, giving a strain equivalent stress given to each element integration point of each element, or after giving strain equivalent linear expansion coefficient values ​​of physical properties of each element, heat is applied to the load or, a method such as giving an external force to the integration points constituting elements equivalent strain. このデータを基にステップ10で計算を行い、最後のステップ11で溶接変形、残留応力を出力し、溶接構造物の溶接変形等を推定する。 It performs the computation in step 10 the data based on the welding deformation in the last step 11, and outputs the residual stresses, estimates the welding deformation of the welded structure.
【0044】 [0044]
【発明の効果】 【Effect of the invention】
以上の説明のとおり、本発明に係る溶接構造物の解析方法および溶接構造物解析装置は、溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向とを指定する一方、該溶接線の溶接の種類、溶接温度の入熱条件を設定する、溶接施工条件設定ステップと、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割するステップと、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、溶接構造物の有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて決められる固有ひずみ分布を算出するステップと、算出した個々の要素の固有ひずみを溶接構造物全体座標系およ As explained above, the analysis method and welded structure analysis apparatus of welded structure according to the present invention, designated as a reference mesh refinement of the finite element model of the welded structure, the position of the weld line, and a direction of the weld line to one, the type of solution tangent welding, setting the heat input condition of the welding temperature, the welding condition setting step, a step of dividing the welding line element comprising a weld line which is set from the element unit of the FEM model, divided the direction of the weld line element determined with, while calculating the distance and direction of a finite element model constituting element and the weld line elements of the welded structure, the individual elements constituting the finite element model of the welded structure for, calculating a specific strain distribution which is determined according to the distance from the welding wire and the type of welding heat input, the calculated individual elements inherent strain welded structure global coordinate system Oyo 要素の局所座標系のうち、少なくともいずれか一方の座標系に変換するステップとを経て、座標変換した固有ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成し、FEM解析を行い、溶接変形等を算出して溶接変形等を推定する新たな手法を構築するので、従来よりもより一層精度の高い溶接変形等を推定することができる。 Of the local coordinate system of the element, through the steps of converting at least one coordinate system, creates a FEM analysis data given as loading conditions of the inherent strain was coordinate transformation into individual elements, performed FEM analysis, welding since calculates the deformation to build a new method to estimate the welding deformation can be estimated even more accurate welding deformation than conventional.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明に係る溶接構造物の解析方法および溶接構造物の解析装置の実施形態を示すブロック図。 Block diagram illustrating an embodiment of FIG. 1 analyzer analyzing method and welded structure of welded structure according to the present invention.
【図2】図1で示した各ステップの内容を説明する概念手順図。 Figure 2 is a conceptual procedure diagrams for explaining the contents of respective steps shown in FIG.
【図3】図1および図2で示したステップ2の内容を説明する図で、(a)は実溶接構造物の溶接部を示す図、(b)はモデル化した溶接構造物のメッシュ分割した溶接部の節点を示す図、(c)はモデル化した溶接構造物のメッシュ分割した溶接部の要素を示す図。 In view for explaining the contents of step 2 shown in FIG. 3 FIG. 1 and FIG. 2, (a) shows the welded portion of the actual welded structures, (b) a mesh division of welded structures modeled shows figure, (c) a mesh dividing elements welds of welded structure that models indicating the nodes of the weld.
【図4】図1および図2で示したステップ3の内容を説明する図で、(a)はモデル化した溶接構造物をメッシュ分割した溶接部の溶接線要素を示す図、(b)はモデル化した溶接構造物をメッシュ分割した溶接部の溶接線要素と節点との組を示すブロック図。 [Figure 4] a view for explaining the content of step 3 shown in FIGS. 1 and FIG. 2, (a) shows a welding wire elements welded portion obtained by dividing mesh welded structure modeled, (b) is block diagram illustrating a set of the weld line elements and nodes of the welded structure obtained by modeling mesh divided weld.
【図5】図1および図2で示したステップ4の内容を説明する図で、(a)は溶接部の節点を示す図、(b)は溶接部の溶接線要素の組を示すブロック図、(c)は組みた溶接線要素のうち、第1溶接線要素の溶接軸方向、溶接幅方向、溶接深さ方向を示すベクトル線図、(d)は組みた溶接線要素のうち、第2溶接線要素の溶接軸方向、溶接幅方向、溶接深さ方向を示すベクトル線図。 [5] a view for explaining the content of step 4 shown in FIGS. 1 and FIG. 2, (a) shows the nodes of the weld FIG, (b) is a block diagram showing a set of weld line elements of the weld , (c) among the weld line elements assembled, welded axial direction of the first weld line element, the welding width, vector diagram illustrating the welding depth direction, (d) of the weld line element set, the welding axis direction of second welding wire element, weld width direction, a vector diagram showing a welding depth.
【図6】図1および図2で示したステップ4のうち、溶接線要素の方向決定を説明するブロック図。 [6] Figure 1 and of Step 4 shown in FIG. 2, a block diagram illustrating a direction determination of the weld line elements.
【図7】図1および図2で示したステップ5の内容を説明するフロー図。 Figure 7 a flow diagram for explaining the content of step 5 shown in FIGS.
【図8】図1および図2で示したステップ6の内容を説明する図。 8 is a diagram for explaining the content of step 6 shown in FIGS.
【図9】図1および図2で示したステップ7の内容を説明する図で、(a)は要素座標系における要素の溶接軸方向、溶接幅方向、溶接深さ方向を示すベクトル線図、(b)は溶接構造物の全体座標系に合わせる要素の溶接軸方向、溶接幅方向、溶接深さ方向を示すベクトル図。 [9] a view for explaining the content of step 7 shown in FIGS. 1 and FIG. 2, (a) the welding axis of the elements in the element coordinate system, the welding width, vector diagram illustrating the welding depth direction, (b) a vector diagram showing the welding axis of the element to match the global coordinate system of the welded structure, weld width direction, welded to the depth direction.
【図10】図1および図2で示したステップ8の内容を説明する図で、(a)は蒸気タービンノズルダイヤフラムを一例に採った全体座標系を示す図、(b)は(a)のメッシュ分割から取り出した板状の分割要素の局所座標系を示す図。 [10] a view for explaining the content of step 8 shown in FIGS. 1 and FIG. 2, (a) shows the entire coordinate system taken as an example of the steam turbine nozzle diaphragms, the (b) is (a) shows the local coordinate system of the plate-shaped dividing elements taken out from the mesh division.

Claims (7)

  1. 溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向を指定する一方、この溶接線の溶接の種類、溶接温度の入熱条件を設定する溶接施工条件設定ステップと、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割するステップと、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、前記有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて定まる固有ひずみ分布を算出するステップと、算出した個々の要素の固有ひずみを前記溶接構造物の全体座標系および要素の局所座標系のうち、少なくともいずれか一方の座標系に変換するステップと、座標変換し Based on the meshing of the finite element model of the welded structure, the position of the weld line, while specifying the direction of the weld line, the type of welding of the welding line, welding condition setting step of setting a heat input condition of the welding temperature If, dividing the welding line element comprising a weld line which is set from the element unit of the FEM model to determine the direction of the divided welding line elements, element and the weld lines constituting a finite element model of the welded structure while calculating the distance and direction of the elements, the individual elements constituting the finite element model, calculating a specific strain distribution determined according to the distance from the welding wire and the type of welding heat input was calculated of the global coordinate system and elements of the local coordinate system of the inherent strain of the welded structure of the individual elements, and converting at least one coordinate system, coordinate transformation 固有ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成するステップを有することを特徴とする溶接構造物の解析方法。 The method of analysis welded structure characterized by having a step of creating a FEM analysis data given as loading conditions inherent strain into individual elements.
  2. 溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素を指定して行うことを特徴とする請求項1記載の溶接構造物の解析方法。 Position of the welding line, the specification of the direction of the weld line, the method of analysis according to claim 1 welded structure, wherein the performing by specifying the model mesh refinement elements of welded structures.
  3. 溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素内の節点を指定して行うことを特徴とする請求項1記載の溶接構造物の解析方法。 Position of the welding line, the specification of the direction of the weld line, the method of analysis according to claim 1 welded structure, wherein the performing by specifying the nodes in the model was the mesh division elements of welded structures.
  4. 溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素と、この要素内の節点とを組み合わせたものを指定して行うことを特徴とする請求項1記載の溶接構造物の解析方法。 Position of the welding line, the specification of the direction of the weld line, and elements model has a mesh division of welded structures, according to claim 1, characterized in that by specifying a combination of a node in the element the method of analysis welded structure.
  5. 溶接線の位置、溶接線の方向の指定は、CRT画面に写した溶接構造物のモデルにおいて、ペンポインター、マウス、ナンバーキーのうち、いずれかを用い、少なくとも要素、節点、直線、曲線、弧のいずれか1つ以上を指定して行うことを特徴とする請求項1記載の溶接構造物の解析方法。 Position of the welding line, the specification of the direction of the weld line, in a model of a welded structure in the burst to the CRT screen, pen pointer, a mouse, of number keys, using either at least elements, nodes, lines, curves, arcs the method of analysis according to claim 1 welded structure, wherein the performing by specifying any one or more.
  6. 溶接施工条件のステップは、溶接の種類、溶接温度の入熱条件を固有ひずみデータベースから選択して溶接構造物のモデルをメッシュ分割した要素、節点およびこれらの組み合わせのうち、少なくともいずれか一方に与えることを特徴とする請求項1記載の溶接構造物の解析方法。 Step of welding conditions, the type of welding, the model mesh refinement elements of welded structures selected from inherent strain database heat input condition of the welding temperature, of the nodes and combinations thereof, providing in at least one the method of analysis according to claim 1 welded structure, wherein a.
  7. 溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向とを指定する一方、該溶接線の溶接の種類、溶接温度の入熱条件を指定する、溶接施工条件設定する手段と、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割する手段と、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、溶接構造物の有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて決められる固有ひずみ分布を算出する手段と、算出した個々の要素の固有ひずみを溶接構造物全体座標系および要素の局所座標系のうち、少なくともいずれか一方の座標系に変換する手段と、座標変換した固 Based on the meshing of the finite element model of the welded structure, the position of the weld line, while specifying the direction of the weld line, the type of welding of the solution tangent, designates the heat input condition of the welding temperature, welding conditions means for setting, means for dividing the welding line element comprising a weld line which is set from the element unit of the FEM model, the elements determining the direction of the divided welding line elements constitute the finite element model of the welded structure while calculating the distance and direction between the welding wire element, for each of elements constituting the finite element model of the welded structure, the inherent strain distribution determined according to the distance from the welding wire and the type of welding heat input means for calculating, among the individual elements of the specific strain welded structure global coordinate system and elements of the local coordinate system calculated, means for converting at least one coordinate system, the solid was coordinate transformation ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成する手段を有することを特徴とする溶接構造物の解析装置。 Analyzer of welded structures, characterized in that it comprises means for creating a FEM analysis data given as loading conditions of the strain to the individual elements.
JP2003125673A 2003-04-30 2003-04-30 Analysis method for welded structure and analysis device for welded structure Pending JP2004330212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125673A JP2004330212A (en) 2003-04-30 2003-04-30 Analysis method for welded structure and analysis device for welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125673A JP2004330212A (en) 2003-04-30 2003-04-30 Analysis method for welded structure and analysis device for welded structure

Publications (1)

Publication Number Publication Date
JP2004330212A true true JP2004330212A (en) 2004-11-25

Family

ID=33502866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125673A Pending JP2004330212A (en) 2003-04-30 2003-04-30 Analysis method for welded structure and analysis device for welded structure

Country Status (1)

Country Link
JP (1) JP2004330212A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247746A (en) * 2005-02-10 2006-09-21 Toyota Central Res & Dev Lab Inc Welding analysis method
KR100693996B1 (en) 2005-12-30 2007-03-06 삼성중공업 주식회사 A built-up material design apparatus and method
JP2008033528A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Numerical analysis data production device, numerical analysis data production method and program for making computer achieving its production method
KR100809531B1 (en) 2006-10-09 2008-03-04 삼성중공업 주식회사 Method and system welding deformation analysis for panel lines
KR100903904B1 (en) 2007-04-30 2009-06-19 삼성중공업 주식회사 Method for designing of automatic curved built up by using 1 dimensional equivalent thermal expansion coefficients
EP2363819A1 (en) 2010-02-03 2011-09-07 Hitachi Ltd. Method for simulation of welding distortion
KR101099697B1 (en) 2008-06-23 2011-12-28 삼성중공업 주식회사 Automatic design system for welding margin sub-assembly part and method of thereof and record media recorded program for realizing the same
KR101110841B1 (en) 2010-04-09 2012-02-27 삼성중공업 주식회사 System for welding margin sub-assembly part and method of thereof
US8155933B2 (en) 2009-05-26 2012-04-10 King Fahd University Of Petroleum & Minerals Method of modeling residual stresses during laser cutting
US8160846B2 (en) 2009-05-18 2012-04-17 King Fahd University Of Petroleum & Minerals Method of modeling phase changes due to laser pulse heating
JP2012252470A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Connection line information automatic creation system
JP2013246830A (en) * 2012-05-29 2013-12-09 Livermore Software Technology Corp Numerical simulation of structure having heat-affected zone using finite element analysis model
CN103551712A (en) * 2013-10-29 2014-02-05 中国电子科技集团公司第三十八研究所 Method for predicting welding deformation of large radar structural part
KR101533682B1 (en) * 2009-01-14 2015-07-03 대우조선해양 주식회사 Design method and system on Inverse welding variation of ship plate parts for welding distortion control
KR101549159B1 (en) 2013-12-05 2015-09-02 삼성중공업 주식회사 System and method for setting welding margin
CN106513992A (en) * 2016-11-18 2017-03-22 中车青岛四方机车车辆股份有限公司 Process method for improving welding seam quality of lap laser welding

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247746A (en) * 2005-02-10 2006-09-21 Toyota Central Res & Dev Lab Inc Welding analysis method
KR100693996B1 (en) 2005-12-30 2007-03-06 삼성중공업 주식회사 A built-up material design apparatus and method
JP2008033528A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Numerical analysis data production device, numerical analysis data production method and program for making computer achieving its production method
KR100809531B1 (en) 2006-10-09 2008-03-04 삼성중공업 주식회사 Method and system welding deformation analysis for panel lines
KR100903904B1 (en) 2007-04-30 2009-06-19 삼성중공업 주식회사 Method for designing of automatic curved built up by using 1 dimensional equivalent thermal expansion coefficients
KR101099697B1 (en) 2008-06-23 2011-12-28 삼성중공업 주식회사 Automatic design system for welding margin sub-assembly part and method of thereof and record media recorded program for realizing the same
KR101533682B1 (en) * 2009-01-14 2015-07-03 대우조선해양 주식회사 Design method and system on Inverse welding variation of ship plate parts for welding distortion control
US8160846B2 (en) 2009-05-18 2012-04-17 King Fahd University Of Petroleum & Minerals Method of modeling phase changes due to laser pulse heating
US8155933B2 (en) 2009-05-26 2012-04-10 King Fahd University Of Petroleum & Minerals Method of modeling residual stresses during laser cutting
EP2363819A1 (en) 2010-02-03 2011-09-07 Hitachi Ltd. Method for simulation of welding distortion
KR101110841B1 (en) 2010-04-09 2012-02-27 삼성중공업 주식회사 System for welding margin sub-assembly part and method of thereof
JP2012252470A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Connection line information automatic creation system
JP2013246830A (en) * 2012-05-29 2013-12-09 Livermore Software Technology Corp Numerical simulation of structure having heat-affected zone using finite element analysis model
CN103551712A (en) * 2013-10-29 2014-02-05 中国电子科技集团公司第三十八研究所 Method for predicting welding deformation of large radar structural part
KR101549159B1 (en) 2013-12-05 2015-09-02 삼성중공업 주식회사 System and method for setting welding margin
CN106513992A (en) * 2016-11-18 2017-03-22 中车青岛四方机车车辆股份有限公司 Process method for improving welding seam quality of lap laser welding

Similar Documents

Publication Publication Date Title
Coupez et al. Parallel meshing and remeshing
Béchet et al. Improved implementation and robustness study of the X‐FEM for stress analysis around cracks
Dwight et al. Effect of approximations of the discrete adjoint on gradient-based optimization
Wei et al. A study on X-FEM in continuum structural optimization using a level set model
US6947879B2 (en) Mesh generation system, design support system, analysis system, analysis method, mesh generation method, and storage medium and program transmission apparatus therefor
US20030058259A1 (en) Morphing method for structure shape, its computer program, and computer-readable storage medium
Cirak et al. Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision
Cheng Automatic adaptive remeshing for finite element simulation of forming processes
Bletzinger et al. Efficient modeling in shape optimal design
Shu et al. Least-squares-based lattice Boltzmann method: a meshless approach for simulation of flows with complex geometry
US6618694B1 (en) Method, apparatus and computer program product for forming data to be analyzed by finite element method and calculation method based on finite element method
Kagan et al. Integrated mechanically based CAE system using B-Spline finite elements
JP2003118328A (en) Method for predicting rolling resistance of tire
Sridhar et al. Wave propagation analysis in anisotropic and inhomogeneous uncracked and cracked structures using pseudospectral finite element method
Bremberg et al. Automatic crack-insertion for arbitrary crack growth
Chowdhury et al. Assessment of high dimensional model representation techniques for reliability analysis
US20080208540A1 (en) Method for designing a composite material part with a curved surface
Aslam et al. Extensions to DSD theory: Analysis of PBX 9502 rate stick data
Sarraga Modifying CAD/CAM surfaces according to displacements prescribed at a finite set of points
Toro Riemann solvers with evolved initial conditions
JPH07210586A (en) Optimizing device for probe path for three-dimensional coordinate measuring instrument
Fleury Shape optimal design by the convex linearization method
JP2003141192A (en) Method and system for assisting in designing machine structure
Allen et al. An experimental design criterion for minimizing meta‐model prediction errors applied to die casting process design
Wang et al. Quality-driven sequence planning and line configuration selection for compliant structure assemblies