JP2006263659A - Manufacturing method and manufacturing device of inorganic microcrystal - Google Patents

Manufacturing method and manufacturing device of inorganic microcrystal Download PDF

Info

Publication number
JP2006263659A
JP2006263659A JP2005088831A JP2005088831A JP2006263659A JP 2006263659 A JP2006263659 A JP 2006263659A JP 2005088831 A JP2005088831 A JP 2005088831A JP 2005088831 A JP2005088831 A JP 2005088831A JP 2006263659 A JP2006263659 A JP 2006263659A
Authority
JP
Japan
Prior art keywords
temperature
solution
slurry
crystal
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005088831A
Other languages
Japanese (ja)
Other versions
JP5017787B2 (en
Inventor
Takaro Kitagawa
高郎 北川
Mitsumasa Saito
光正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2005088831A priority Critical patent/JP5017787B2/en
Publication of JP2006263659A publication Critical patent/JP2006263659A/en
Application granted granted Critical
Publication of JP5017787B2 publication Critical patent/JP5017787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method and manufacturing device of inorganic microcrystals capable of easily controlling the deposition condition and growth condition of the inorganic microcrystals and optimizing the manufacture condition of the inorganic microcrystals as a result by facilitating temperature control in a process of depositing a crystal nucleus and a crystal growth process of growing the crystal on the basis of the crystal nucleus, etc., at the time of continuously manufacturing the inorganic microcrystals. <P>SOLUTION: In the manufacturing method of the inorganic microcrystals, a solution or slurry to be the raw material of the inorganic microcrystals is held at a temperature (1), then, the solution or slurry held at the temperature (1) is held at a temperature (2) different from the temperature (1) to deposit the crystal nucleus, and then the crystal growth of the crystal nucleus in the solution or slurry is performed at a temperature (3). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無機微結晶の製造方法及び製造装置に関し、特に、水熱合成法により無機微結晶を連続して製造する際に、水熱合成反応の形態に応じて無機微結晶の析出条件を適宜調製することにより、無機微結晶の製造条件の最適化が可能な無機微結晶の製造方法及び製造装置に関するものである。   The present invention relates to a method and an apparatus for producing inorganic microcrystals, and in particular, when inorganic microcrystals are continuously produced by a hydrothermal synthesis method, the precipitation conditions of inorganic microcrystals are determined according to the form of hydrothermal synthesis reaction. The present invention relates to an inorganic microcrystal manufacturing method and a manufacturing apparatus that can optimize the manufacturing conditions of inorganic microcrystals by appropriate preparation.

従来、広く一般的に知られている無機微粒子の合成方法に水熱合成法があり、この水熱合成法が適用された装置としては、バッチ式の水熱合成装置や連続式の水熱合成装置が提案され、それぞれの特徴を生かして様々な方面の分野で広範に利用されている。
水熱合成法により無機微粒子を合成する場合、合成反応の過程においては、結晶核の生成、結晶核生成後の更なる結晶析出、結晶の溶解析出による結晶性向上等の各段階では、材料、反応様式に応じて温度条件を制御する必要がある。
Conventionally, there is a hydrothermal synthesis method as a widely known method for synthesizing inorganic fine particles. As a device to which this hydrothermal synthesis method is applied, a batch type hydrothermal synthesis device or a continuous hydrothermal synthesis method is used. Devices have been proposed and widely used in various fields by taking advantage of their characteristics.
In the case of synthesizing inorganic fine particles by hydrothermal synthesis method, in the process of synthesis reaction, in each stage such as generation of crystal nuclei, further crystal precipitation after crystal nucleation, improvement of crystallinity by dissolution and precipitation of crystals, It is necessary to control the temperature conditions depending on the reaction mode.

例えば、上記のバッチ式の水熱合成装置は、無機微粒子の原料を装置内にセットした後、この原料の温度、圧力のいずれか一方または双方を変化させ、目的の温度や圧力になった時点で一定時間保持して無機微粒子を合成するものであるから、原料、温度や圧力等の合成条件等を適宜変更することにより、目的に合った様々な無機微粒子を適宜合成することができる。
一方、連続式の水熱合成装置は、無機微粒子の合成の効率を高め、かつ、その製造コストを低減することに主眼をおいて開発されたもので、上記のバッチ式の水熱合成装置を単に大型化したもの、バッチ式の合成装置や条件を単に連続化したもの等が大半であり、例えば、無機微粒子の原料が長尺の配管内を通過する間に水熱反応を行う装置等が提案されている(特許文献1参照)。
特開平8−40723号公報
For example, the batch-type hydrothermal synthesizer described above is the time when an inorganic fine particle raw material is set in the apparatus, and then either or both of the temperature and pressure of the raw material are changed to reach the target temperature or pressure. In this case, the inorganic fine particles are synthesized by holding for a certain period of time, so that various inorganic fine particles suitable for the purpose can be appropriately synthesized by appropriately changing the synthesis conditions such as raw materials, temperature and pressure.
On the other hand, the continuous hydrothermal synthesizer was developed with a focus on increasing the efficiency of the synthesis of inorganic fine particles and reducing the production cost. Most of them are simply enlarged, batch-type synthesizers or simply continuous conditions, for example, devices that perform a hydrothermal reaction while inorganic fine particles pass through a long pipe. It has been proposed (see Patent Document 1).
JP-A-8-40723

ところで、従来のバッチ式の水熱合成装置では、結晶核の生成、結晶成長等の各段階に合わせて温度の昇降温を速やかに行うことが困難であるという問題点があった。また、微粒子を得るまでに長時間を要するという問題点があった。また、バッチ式であるために、1回の操作で得られる無機微粒子の量には自ずと限界があり、一定量以上の無機微粒子を低コストで得ることが難しいという問題点があった。   By the way, the conventional batch type hydrothermal synthesizer has a problem that it is difficult to quickly raise and lower the temperature in accordance with each stage such as generation of crystal nuclei and crystal growth. In addition, there is a problem that it takes a long time to obtain fine particles. Moreover, since it is a batch type, the amount of inorganic fine particles obtained by one operation is naturally limited, and there is a problem that it is difficult to obtain a certain amount or more of inorganic fine particles at a low cost.

また、連続式の水熱合成装置では、無機微粒子の原料が配管内を通過する間に水熱反応を行っているために、水熱反応の反応時間が長くなるとともに配管の総延長が長くなり、したがって、微妙な温度制御を行うことが難しいという問題点があった。また、原料となる溶液やスラリーの送り込みや配管各部の温度制御、配管内にて溶液やスラリーを攪拌する際に困難が生じるという問題点があった。
このように、水熱合成反応を連続化することによって、原料の溶液やスラリー、あるいは反応、合成後の溶液やスラリーの温度制御を容易に行うことが可能になるものの、結晶核の生成、結晶成長等、水熱合成における各段階の温度管理を精密に制御することができないのが現状である。
Moreover, in the continuous hydrothermal synthesizer, the hydrothermal reaction is carried out while the inorganic fine particle raw material passes through the pipe, so the reaction time of the hydrothermal reaction becomes longer and the total length of the pipe becomes longer. Therefore, there is a problem that it is difficult to perform delicate temperature control. In addition, there are problems in that the solution or slurry as a raw material is fed in, the temperature of each part of the piping is controlled, and the solution or slurry is stirred in the piping.
In this way, by continuing the hydrothermal synthesis reaction, it becomes possible to easily control the temperature of the raw material solution or slurry, or the reaction or synthesis solution or slurry, but the generation of crystal nuclei and crystals At present, temperature control at each stage in hydrothermal synthesis such as growth cannot be precisely controlled.

本発明は、上記の課題を解決するためになされたものであって、無機微結晶を連続して製造する際に、結晶核の析出過程、結晶核を基に結晶成長させる結晶成長過程等における温度制御を容易にすることにより、無機微結晶の析出条件や成長条件を容易に制御することが可能であり、その結果、無機微結晶の製造条件の最適化が可能な無機微結晶の製造方法及び製造装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. In the continuous production of inorganic microcrystals, in the process of precipitation of crystal nuclei, the process of crystal growth of growing crystals based on the crystal nuclei, etc. By making the temperature control easy, it is possible to easily control the deposition conditions and growth conditions of inorganic microcrystals, and as a result, it is possible to optimize the manufacturing conditions of inorganic microcrystals. And it aims at providing a manufacturing apparatus.

本発明者等は、無機微結晶を水熱合成法により連続して製造する方法及び装置について鋭意検討した結果、無機微結晶の原料となる溶液またはスラリーを一旦所定の温度にて保持し、次いで、この溶液またはスラリーを昇温または冷却させるという2段階の温度制御により結晶核を析出させることで、無機微結晶の析出条件を適宜調製することが容易になり、また、この溶液またはスラリー中の結晶核を所望の温度にて結晶成長させることで、無機微結晶の成長条件を適宜調製することが容易になり、その結果、無機微結晶の製造条件の最適化が可能になることを見出し、本発明を完成するに至った。   As a result of intensive studies on a method and an apparatus for continuously producing inorganic microcrystals by a hydrothermal synthesis method, the present inventors once held a solution or slurry as a raw material for inorganic microcrystals at a predetermined temperature, and then By precipitating crystal nuclei by two-stage temperature control of heating or cooling the solution or slurry, it becomes easy to appropriately adjust the precipitation conditions of inorganic microcrystals. By growing the crystal nucleus at a desired temperature, it becomes easy to appropriately adjust the growth conditions of the inorganic microcrystals, and as a result, it has been found that the manufacturing conditions of the inorganic microcrystals can be optimized. The present invention has been completed.

すなわち、本発明の無機微結晶の製造方法は、無機微結晶を連続して製造する方法であって、無機微結晶の原料となる溶液またはスラリーを温度(1)にて保持し、次いで、この温度(1)に保持された溶液またはスラリーを前記温度(1)と異なる温度(2)に保持して結晶核を析出させ、次いで、この溶液またはスラリー中の結晶核を温度(3)にて結晶成長させることを特徴とする。   That is, the method for producing inorganic microcrystals of the present invention is a method for continuously producing inorganic microcrystals, in which a solution or slurry as a raw material for inorganic microcrystals is held at temperature (1), and then The solution or slurry held at the temperature (1) is held at a temperature (2) different from the temperature (1) to precipitate crystal nuclei, and then the crystal nuclei in the solution or slurry are heated at the temperature (3). It is characterized by crystal growth.

この無機微結晶の製造方法では、無機微結晶の原料となる溶液またはスラリーを温度(1)にて保持し、次いで、この温度(1)に保持された溶液またはスラリーを前記温度(1)と異なる温度(2)に保持して結晶核を析出させるというように、結晶核析出過程の温度制御を2段階で行うことになり、無機微結晶の結晶核の析出過程における温度制御が容易になり、結晶子の溶解および析出過程を通じて生成した結晶子の結晶性が向上する。これにより、無機微結晶の結晶核の析出条件を容易に制御することが可能になる。   In this method for producing inorganic microcrystals, a solution or slurry as a raw material for inorganic microcrystals is held at temperature (1), and then the solution or slurry held at this temperature (1) is heated to the temperature (1). The temperature control of the crystal nucleus precipitation process is performed in two stages, such as holding the crystal nucleus at different temperatures (2), and the temperature control in the crystal nucleus precipitation process of the inorganic microcrystal becomes easy. The crystallinity of the crystallites generated through the crystallite dissolution and precipitation process is improved. This makes it possible to easily control the precipitation conditions of the crystal nuclei of the inorganic microcrystal.

本発明の無機微結晶の製造方法は、さらに、前記結晶核を含む溶液またはスラリーを、前記温度(2)と異なる温度(4)にて保持した後、この溶液またはスラリー中の結晶核を温度(3)にて結晶成長させることとしてもよい。
この無機微結晶の製造方法では、前記結晶核を含む溶液またはスラリーを、前記温度(2)と異なる温度(4)にて保持した後、この溶液またはスラリー中の結晶核を温度(3)にて結晶成長させることにより、結晶核を含む溶液またはスラリーの温度制御を2段階で行うことになり、無機微結晶の結晶成長過程における温度制御が容易になる。これにより、無機微結晶の結晶成長条件を容易に制御することが可能になる。
In the method for producing inorganic microcrystals of the present invention, the solution or slurry containing the crystal nuclei is held at a temperature (4) different from the temperature (2), and then the crystal nuclei in the solution or slurry are heated to a temperature. Crystal growth may be performed in (3).
In this method for producing inorganic microcrystals, the solution or slurry containing the crystal nuclei is held at a temperature (4) different from the temperature (2), and then the crystal nuclei in the solution or slurry are brought to a temperature (3). By crystal growth, the temperature control of the solution or slurry containing crystal nuclei is performed in two stages, and the temperature control in the crystal growth process of the inorganic microcrystal becomes easy. This makes it possible to easily control the crystal growth conditions of the inorganic microcrystal.

本発明の無機微結晶の製造方法は、さらに、前記温度(1)を−80℃以上かつ300℃以下、前記温度(2)を前記温度(1)より高くかつ室温以上かつ800℃以下、前記温度(3)を−80℃以上かつ前記温度(2)以下とすることが好ましい。
温度(1)〜(3)を上記の様に制御することにより、無機微結晶の結晶核の析出過程における温度制御、及び結晶成長過程における温度制御が容易になる。これにより、無機微結晶の結晶核の析出条件及び結晶成長の成長条件を容易に制御することが可能になる。
特に、温度(1)と温度(2)との間の温度変化を急峻にすれば、無機微結晶の結晶核生成段階での微結晶の生成が可能になる。
In the method for producing inorganic microcrystals of the present invention, the temperature (1) is −80 ° C. or more and 300 ° C. or less, the temperature (2) is higher than the temperature (1) and is room temperature or more and 800 ° C. or less, It is preferable that the temperature (3) is −80 ° C. or higher and the temperature (2) or lower.
By controlling the temperatures (1) to (3) as described above, the temperature control in the precipitation process of the crystal nuclei of the inorganic microcrystal and the temperature control in the crystal growth process are facilitated. This makes it possible to easily control the crystal nucleus precipitation conditions and crystal growth conditions of the inorganic microcrystal.
In particular, if the temperature change between the temperature (1) and the temperature (2) is made steep, it is possible to produce microcrystals at the crystal nucleus generation stage of the inorganic microcrystals.

本発明の無機微結晶の製造方法は、前記温度(1)を室温以上かつ800℃以下、前記温度(2)を前記温度(1)より低くかつ−80℃以上かつ300℃以下、前記温度(3)を−80℃以上かつ前記温度(1)以下としてもよい。
温度(1)〜(3)を上記の様に制御することにより、無機微結晶の結晶核の析出過程における温度制御、及び結晶成長過程における温度制御が容易になる。これにより、無機微結晶の結晶核の析出条件及び結晶成長の成長条件を容易に制御することが可能になる。
特に、温度(1)と温度(2)との間の温度変化を急峻にすれば、無機微結晶の結晶核生成段階での微結晶の生成が可能になる。
In the method for producing an inorganic microcrystal of the present invention, the temperature (1) is not less than room temperature and not more than 800 ° C., the temperature (2) is lower than the temperature (1) and is not less than −80 ° C. and not more than 300 ° C., 3) may be set to −80 ° C. or higher and the temperature (1) or lower.
By controlling the temperatures (1) to (3) as described above, the temperature control in the precipitation process of the crystal nuclei of the inorganic microcrystal and the temperature control in the crystal growth process are facilitated. This makes it possible to easily control the crystal nucleus precipitation conditions and crystal growth conditions of the inorganic microcrystal.
In particular, if the temperature change between the temperature (1) and the temperature (2) is made steep, it is possible to produce microcrystals at the crystal nucleus generation stage of the inorganic microcrystals.

本発明の無機微結晶の製造装置は、無機微結晶を連続して製造する装置であって、無機微結晶の原料となる溶液またはスラリーを供給する供給手段と、この供給手段により供給される前記溶液またはスラリーを温度(1)に保持する温度保持部と、この温度保持部から送り出される前記溶液またはスラリーを前記温度(1)と異なる温度(2)に保持して結晶核を析出させる結晶核析出部と、この結晶核析出部から送り出される結晶核を含む溶液またはスラリーを温度(3)に保持して前記結晶核を結晶成長させる結晶成長部とを備えてなることを特徴とする。   The apparatus for producing inorganic microcrystals of the present invention is an apparatus for continuously producing inorganic microcrystals, the supply means for supplying a solution or slurry as a raw material for inorganic microcrystals, and the supply means supplied by the supply means A temperature holding unit for holding the solution or slurry at a temperature (1), and a crystal nucleus for precipitating a crystal nucleus by holding the solution or slurry fed from the temperature holding unit at a temperature (2) different from the temperature (1) It is characterized by comprising a precipitation part and a crystal growth part for crystal growth of the crystal nucleus by maintaining a solution or slurry containing the crystal nucleus delivered from the crystal nucleus precipitation part at a temperature (3).

この無機微結晶の製造装置では、温度保持部にて、供給手段により供給される溶液またはスラリーを温度(1)に保持した後、結晶核析出部にて、この温度保持部から送り出される溶液またはスラリーを前記温度(1)と異なる温度(2)に保持して結晶核を析出させることにより、結晶核析出過程の温度制御を2段階で行うことが可能になり、無機微結晶の結晶核の析出過程における温度制御が容易になる。これにより、無機微結晶の結晶核の形状や大きさを容易に制御することが可能になる。   In this inorganic microcrystal manufacturing apparatus, after the solution or slurry supplied by the supply means is held at the temperature (1) in the temperature holding unit, the solution sent out from the temperature holding unit or By keeping the slurry at a temperature (2) different from the temperature (1) and precipitating crystal nuclei, it becomes possible to control the temperature of the crystal nucleation process in two stages. Temperature control during the precipitation process is facilitated. This makes it possible to easily control the shape and size of the crystal nucleus of the inorganic microcrystal.

また、結晶成長部にて、この結晶核析出部から送り出される結晶核を含む溶液またはスラリーを温度(3)に保持して前記結晶核を結晶成長させることにより、形状や大きさが制御された結晶核を基に結晶成長することとなり、形状や大きさが制御された無機微結晶を連続して製造することが可能になる。   In addition, the shape and size of the crystal growth part were controlled by maintaining the solution or slurry containing the crystal nucleus delivered from the crystal nucleus precipitation part at the temperature (3) and growing the crystal nucleus in the crystal growth part. Crystal growth is performed based on the crystal nucleus, and inorganic microcrystals having a controlled shape and size can be continuously produced.

本発明の無機微結晶の製造装置は、前記結晶核析出部から送り出される結晶核を含む溶液またはスラリーを前記温度(2)と異なる温度(4)に保持する第2の温度保持部を備え、この第2の温度保持部から送り出される結晶核を含む溶液またはスラリーを前記結晶成長部に送り込むこととしてもよい。   The apparatus for producing inorganic microcrystals of the present invention includes a second temperature holding unit that holds a solution or slurry containing crystal nuclei sent out from the crystal nucleus precipitation unit at a temperature (4) different from the temperature (2), A solution or slurry containing crystal nuclei sent out from the second temperature holding unit may be sent into the crystal growth unit.

この無機微結晶の製造装置では、第2の温度保持部にて、結晶核を含む溶液またはスラリーを前記温度(2)と異なる温度(4)に保持した後、結晶成長部にて、この第2の温度保持部から送り出される結晶核を含む溶液またはスラリーを温度(3)に保持して結晶核を析出させることにより、結晶成長過程の温度制御を2段階で行うことが可能になり、無機微結晶の結晶成長過程における温度制御が容易になる。これにより、無機微結晶の形状や大きさを容易に制御することが可能になる。   In this inorganic microcrystal manufacturing apparatus, the second temperature holding unit holds a solution or slurry containing crystal nuclei at a temperature (4) different from the temperature (2), and then the crystal growth unit By keeping the solution or slurry containing crystal nuclei sent out from the temperature holding part 2 at the temperature (3) and precipitating the crystal nuclei, it becomes possible to control the temperature of the crystal growth process in two stages Temperature control in the crystal growth process of the microcrystal becomes easy. This makes it possible to easily control the shape and size of the inorganic microcrystal.

本発明の無機微結晶の製造装置は、さらに、前記温度(1)を−80℃以上かつ300℃以下、前記温度(2)を前記温度(1)より高くかつ室温以上かつ800℃以下、前記温度(3)を−80℃以上かつ前記温度(2)以下とすることが好ましい。   The apparatus for producing inorganic microcrystals of the present invention further includes the temperature (1) of −80 ° C. or more and 300 ° C. or less, the temperature (2) higher than the temperature (1), the room temperature or more and 800 ° C. or less, It is preferable that the temperature (3) is −80 ° C. or higher and the temperature (2) or lower.

温度(1)〜(3)を上記の様に制御することにより、無機微結晶の結晶核の析出過程における温度制御、及び結晶成長過程における温度制御が容易になる。これにより、無機微結晶の結晶核の析出条件及び結晶成長の成長条件を容易に制御することが可能になる。   By controlling the temperatures (1) to (3) as described above, the temperature control in the precipitation process of the crystal nuclei of the inorganic microcrystal and the temperature control in the crystal growth process are facilitated. This makes it possible to easily control the crystal nucleus precipitation conditions and crystal growth conditions of the inorganic microcrystal.

本発明の無機微結晶の製造装置は、前記温度(1)を室温以上かつ800℃以下、前記温度(2)を前記温度(1)より低くかつ−80℃以上かつ300℃以下、前記温度(3)を−80℃以上かつ前記温度(1)以下としてもよい。   In the apparatus for producing inorganic microcrystals of the present invention, the temperature (1) is not less than room temperature and not more than 800 ° C., the temperature (2) is lower than the temperature (1), not less than −80 ° C. and not more than 300 ° C., and the temperature ( 3) may be set to −80 ° C. or higher and the temperature (1) or lower.

温度(1)〜(3)を上記の様に制御することにより、無機微結晶の結晶核の析出過程における温度制御、及び結晶成長過程における温度制御が容易になる。これにより、無機微結晶の結晶核の析出条件及び結晶成長の成長条件を容易に制御することが可能になる。   By controlling the temperatures (1) to (3) as described above, the temperature control in the precipitation process of the crystal nuclei of the inorganic microcrystal and the temperature control in the crystal growth process are facilitated. This makes it possible to easily control the crystal nucleus precipitation conditions and crystal growth conditions of the inorganic microcrystal.

本発明の無機微結晶の製造装置は、さらに、前記結晶成長部に、この結晶成長部の内部の圧力を制御する圧力制御手段を設けた構成としてもよい。
この無機微結晶の製造装置では、前記結晶成長部に、この結晶成長部の内部の圧力を制御する圧力制御手段を設けたことにより、結晶成長過程における圧力制御が容易になる。これにより、無機微結晶の結晶成長の成長条件を容易に制御することが可能になる。
The apparatus for producing inorganic microcrystals of the present invention may further comprise a pressure control means for controlling the pressure inside the crystal growth part in the crystal growth part.
In this apparatus for producing an inorganic microcrystal, pressure control in the crystal growth process is facilitated by providing the crystal growth part with a pressure control means for controlling the pressure inside the crystal growth part. This makes it possible to easily control the growth conditions for crystal growth of the inorganic microcrystal.

本発明の無機微結晶の製造方法によれば、無機微結晶の原料となる溶液またはスラリーを温度(1)にて保持し、次いで、この温度(1)に保持された溶液またはスラリーを前記温度(1)と異なる温度(2)に保持して結晶核を析出させ、次いで、この溶液またはスラリー中の結晶核を温度(3)にて結晶成長させるので、結晶核析出過程の温度制御を2段階で行うことができ、無機微結晶の結晶核の析出過程における温度制御を容易に行うことができる。したがって、無機微結晶の結晶核の析出条件を容易に制御することができ、その結果、無機微結晶の結晶成長を均一化することができ、無機微結晶の形状や大きさを容易に制御することができる。   According to the method for producing inorganic microcrystals of the present invention, a solution or slurry that is a raw material for inorganic microcrystals is held at temperature (1), and then the solution or slurry held at this temperature (1) is heated to the temperature. Crystal nuclei are precipitated by maintaining the temperature (2) different from (1), and then the crystal nuclei in this solution or slurry are grown at temperature (3). It can be carried out in stages, and temperature control in the precipitation process of crystal nuclei of inorganic microcrystals can be easily performed. Therefore, it is possible to easily control the crystal nucleus precipitation conditions of the inorganic microcrystal, and as a result, the crystal growth of the inorganic microcrystal can be made uniform, and the shape and size of the inorganic microcrystal can be easily controlled. be able to.

本発明の無機微結晶の製造装置によれば、無機微結晶の原料となる溶液またはスラリーを供給する供給手段と、この供給手段により供給される前記溶液またはスラリーを温度(1)に保持する温度保持部と、この温度保持部から送り出される前記溶液またはスラリーを前記温度(1)と異なる温度(2)に保持して結晶核を析出させる結晶核析出部と、この結晶核析出部から送り出される結晶核を含む溶液またはスラリーを温度(3)に保持して前記結晶核を結晶成長させる結晶成長部とを備えたので、形状や大きさが制御された無機微結晶を連続して製造することができる。   According to the apparatus for producing inorganic microcrystals of the present invention, a supply means for supplying a solution or slurry as a raw material for inorganic microcrystals, and a temperature at which the solution or slurry supplied by the supply means is maintained at temperature (1). A holding part, a crystal nucleus precipitation part for precipitating crystal nuclei by holding the solution or slurry delivered from the temperature holding part at a temperature (2) different from the temperature (1), and a crystal nucleus precipitation part. Since a crystal growth part for crystal growth of the crystal nuclei by holding the solution or slurry containing the crystal nuclei at temperature (3) is provided, it is possible to continuously produce inorganic microcrystals having a controlled shape and size. Can do.

本発明の無機微結晶の製造方法及び製造装置の各実施の形態について説明する。
なお、これらの形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
Embodiments of the method and apparatus for producing inorganic microcrystals of the present invention will be described.
These forms are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified.

「第1の実施形態」
図1は、本発明の第1の実施形態の無機微結晶の製造装置を示す概略構成図であり、形状や大きさが制御された無機微結晶を連続して製造する装置である。
図において、1は無機微結晶の原料となる溶液(またはスラリー)Sを貯留する原料タンク(貯留槽)、2は溶液(またはスラリー)Sを搬送する配管、3は配管2に設けられて原料タンク1に貯留される溶液(またはスラリー)Sを供給するポンプであり、これら原料タンク1、配管2及びポンプ3により原料供給部(供給手段)4が構成されている。
“First Embodiment”
FIG. 1 is a schematic configuration diagram showing an inorganic microcrystal manufacturing apparatus according to a first embodiment of the present invention, which is an apparatus for continuously manufacturing inorganic microcrystals whose shape and size are controlled.
In the figure, 1 is a raw material tank (storage tank) for storing a solution (or slurry) S as a raw material for inorganic microcrystals, 2 is a pipe for conveying the solution (or slurry) S, 3 is a raw material provided in the pipe 2 The pump supplies a solution (or slurry) S stored in the tank 1, and the raw material supply section (supply means) 4 is configured by the raw material tank 1, the pipe 2 and the pump 3.

また、5はポンプ3の出口側に接続された配管、6はポンプ3から送り出されて配管5内を流動する溶液(またはスラリー)Sを温度(1)、例えば−80℃以上かつ300℃以下の温度に保持する低温部(温度保持部)、7は低温部6から送り出される溶液(またはスラリー)Sを温度(1)と異なる温度(2)、例えば、温度(1)より高くかつ室温以上かつ800℃以下の高温に保持して結晶核を析出させる結晶核析出部であり、低温部6と結晶核析出部7により配管5内に温度勾配が形成されることで、配管5内を流動する溶液(またはスラリー)Sが急激に温度変化することにより、溶液(またはスラリー)Sが化学反応して結晶核を生成する様になっている。   Also, 5 is a pipe connected to the outlet side of the pump 3, and 6 is a temperature (1) of a solution (or slurry) S sent from the pump 3 and flowing in the pipe 5, for example, −80 ° C. or more and 300 ° C. or less. A low temperature part (temperature holding part) for holding at a temperature of 7 is a temperature (2) different from the temperature (1) for the solution (or slurry) S sent from the low temperature part 6, for example, higher than the temperature (1) and above room temperature In addition, it is a crystal nucleus precipitation portion that precipitates crystal nuclei while maintaining a high temperature of 800 ° C. or less, and a temperature gradient is formed in the pipe 5 by the low temperature portion 6 and the crystal nucleus precipitation portion 7, thereby flowing in the pipe 5. When the temperature of the solution (or slurry) S to be changed rapidly changes, the solution (or slurry) S chemically reacts to generate crystal nuclei.

また、8は結晶核析出部7から送り出される結晶核を含む溶液(またはスラリー)S’を温度(3)、例えば−80℃以上かつ温度(2)以下に保持し、結晶核を所定の大きさ及び形状の結晶に成長させるオートクレーブ容器等からなる密閉式の反応槽である。
この反応槽8には、結晶核を含む溶液(またはスラリー)S’を攪拌する攪拌機11、結晶核を含む溶液(またはスラリー)S’を温度(3)に加熱し保持するヒーター12、反応槽8内を所定の圧力のアルゴン(Ar)ガス雰囲気にするためのArボンベ13及びArガスの圧力を測定するための圧力計14が設けられている。
Reference numeral 8 denotes a solution (or slurry) S ′ containing crystal nuclei sent out from the crystal nucleation precipitation unit 7 at a temperature (3), for example, −80 ° C. or higher and temperature (2) or lower, so It is a sealed reaction tank composed of an autoclave vessel or the like that grows into crystals of a uniform shape.
The reaction vessel 8 includes a stirrer 11 for stirring a solution (or slurry) S ′ containing crystal nuclei, a heater 12 for heating and holding the solution (or slurry) S ′ containing crystal nuclei at a temperature (3), and a reaction vessel. An Ar cylinder 13 for making the inside of an argon (Ar) gas atmosphere at a predetermined pressure inside 8 and a pressure gauge 14 for measuring the pressure of Ar gas are provided.

また、21は反応槽8により所定の大きさ及び形状に成長した無機微結晶を含む溶液(またはスラリー)S”を搬送するための配管、22は配管21に設けられた逆止弁、23は背圧弁、24は配管21、逆止弁22及び背圧弁23を経由して流出する無機微結晶を含む溶液(またはスラリー)S”を回収するための容器、25は配管21に連通される配管26の端部に設けられ純水を貯留する水槽、27はポンプである。
この製造装置では、これら原料タンク1からポンプ27に至るそれぞれの作動は、図示しない制御装置により制御されている。
この製造装置は、溶液(またはスラリー)が原料タンク1から送り出された後、配管2、5、反応槽8、配管21を経由して容器24にて回収されるまで、外部の雰囲気から隔離された閉鎖型の反応系となっている。
Further, 21 is a pipe for transporting a solution (or slurry) S ″ containing inorganic microcrystals grown to a predetermined size and shape in the reaction tank 8, 22 is a check valve provided in the pipe 21, and 23 is Back pressure valve 24 is a pipe 21, a container for collecting a solution (or slurry) S ″ containing inorganic microcrystals flowing out via check valve 22 and back pressure valve 23, and 25 is a pipe communicating with pipe 21 A water tank 27 is provided at the end of 26 to store pure water, and 27 is a pump.
In this manufacturing apparatus, each operation from the raw material tank 1 to the pump 27 is controlled by a control device (not shown).
This manufacturing apparatus is isolated from the external atmosphere until the solution (or slurry) is sent out from the raw material tank 1 and then collected in the container 24 via the pipes 2 and 5, the reaction tank 8 and the pipe 21. It is a closed reaction system.

この無機微結晶の製造装置では、低温部6は、溶液(またはスラリー)Sを温度(1)に保持することができるものであればよく、例えば、二重管の外周に加熱用のヒーターが巻回された管型反応器が好ましい。ヒーター付きの二重管とすることで、溶液(またはスラリー)Sを広い温度範囲で温度制御することが容易になる。この低温部6の温度としては、特に限定するものではないが、下限の温度は、ドライアイス及びエタノールからなる寒剤が到達可能な温度である−80℃とし、上限の温度は、一般的に伝熱媒体として用いられる有機溶剤の耐熱温度である300℃とするのが好ましい。   In this apparatus for producing inorganic microcrystals, the low temperature part 6 only needs to be able to maintain the solution (or slurry) S at the temperature (1). For example, a heater for heating is provided on the outer periphery of the double tube. A wound tubular reactor is preferred. By using a double tube with a heater, it becomes easy to control the temperature of the solution (or slurry) S in a wide temperature range. The temperature of the low temperature part 6 is not particularly limited, but the lower limit temperature is −80 ° C., which is a temperature that can be reached by a cryogen composed of dry ice and ethanol, and the upper limit temperature is generally transmitted. It is preferable to set it as 300 degreeC which is the heat-resistant temperature of the organic solvent used as a heat medium.

また、低温部6と結晶核析出部7は隣接させることが好ましい。また、低温部6と結晶核析出部7を連通する配管5の径が十分細い場合には、冷却あるいは加熱が容易であり、配管5を流れる溶液(またはスラリー)Sに対して容易に温度勾配を形成し、また温度勾配を容易に変更することが可能であるから、結晶核の生成段階で急激な温度変化に伴う微結晶の生成が可能になる。   The low temperature part 6 and the crystal nucleus precipitation part 7 are preferably adjacent to each other. In addition, when the diameter of the pipe 5 that communicates the low temperature part 6 and the crystal nucleus precipitation part 7 is sufficiently thin, cooling or heating is easy, and the temperature gradient with respect to the solution (or slurry) S flowing through the pipe 5 is easily achieved. In addition, it is possible to easily change the temperature gradient, so that it is possible to generate microcrystals accompanying a rapid temperature change in the crystal nucleus generation stage.

また、結晶核析出部7の温度範囲については、結晶核を析出させることのできる温度範囲であればよく、低温部6と同様、特に限定するものではないが、温度の制御の容易さ等から、室温(25℃)からステンレスの耐熱温度の上限である800℃までの範囲が好適である。
また、反応槽8の温度範囲についても、結晶核を所定の大きさ及び形状の結晶に成長させることのできる温度範囲であればよく、低温部6及び結晶核析出部7と同様、特に限定するものではないが、加熱、冷却のいずれかの方法を採用することにより、−80℃から800℃まで設定することが可能である。
Further, the temperature range of the crystal nucleus precipitation part 7 is not particularly limited as long as it is a temperature range in which crystal nuclei can be precipitated. A range from room temperature (25 ° C.) to 800 ° C. which is the upper limit of the heat resistant temperature of stainless steel is preferable.
Further, the temperature range of the reaction vessel 8 may be a temperature range in which crystal nuclei can be grown into crystals having a predetermined size and shape, and is specifically limited as in the low temperature portion 6 and the crystal nucleus precipitation portion 7. Although it is not a thing, it can set from -80 degreeC to 800 degreeC by employ | adopting either the method of heating and cooling.

次に、この無機微結晶の製造装置を用いて無機微結晶を製造する方法について説明する。
まず、無機微結晶の原料となる溶液(またはスラリー)Sを調製し、原料タンク1に貯留する。
次いで、この溶液(またはスラリー)Sを配管2及びポンプ3を介して低温部6に定量供給し、温度(1)、例えば−80℃以上かつ300℃以下の温度に保持する。
Next, a method for producing inorganic fine crystals using this inorganic fine crystal production apparatus will be described.
First, a solution (or slurry) S to be a raw material for inorganic microcrystals is prepared and stored in the raw material tank 1.
Next, this solution (or slurry) S is quantitatively supplied to the low temperature part 6 through the pipe 2 and the pump 3, and maintained at a temperature (1), for example, a temperature of −80 ° C. or higher and 300 ° C. or lower.

ここで、溶液(またはスラリー)Sをドライアイス及びエタノールからなる寒剤を用いて冷却すれば、−80℃、あるいはその近辺にまで冷却可能である。また、溶液(またはスラリー)Sをヒーターにより加熱すれば、有機溶剤の耐熱温度である300℃まで加熱可能である。   Here, if the solution (or slurry) S is cooled using a cryogen comprising dry ice and ethanol, it can be cooled to −80 ° C. or its vicinity. Moreover, if the solution (or slurry) S is heated with a heater, it can be heated to 300 ° C., which is the heat resistant temperature of the organic solvent.

次いで、低温部6から送り出された溶液(またはスラリー)Sを結晶核析出部7に移動させ、温度(1)と異なる温度(2)、例えば、温度(1)より高くかつ室温以上かつ800℃以下の高温に保持して溶液(またはスラリー)Sに化学反応を生じさせ、溶液(またはスラリー)S内に無機微結晶の核となる結晶核を析出させる。
低温部6と結晶核析出部7との間に急峻な温度勾配があるので、ここを通過する溶液(またはスラリー)Sは急激な温度変化による急激な化学反応により、極めて微小な結晶核を瞬時にしかも多量に生成することとなる。
Next, the solution (or slurry) S sent out from the low temperature part 6 is moved to the crystal nucleus precipitation part 7, and a temperature (2) different from the temperature (1), for example, higher than the temperature (1) and above room temperature and 800 ° C. The solution (or slurry) S is maintained at the following high temperature to cause a chemical reaction, and crystal nuclei serving as nuclei of inorganic microcrystals are precipitated in the solution (or slurry) S.
Since there is a steep temperature gradient between the low temperature part 6 and the crystal nucleus precipitation part 7, the solution (or slurry) S passing through it has instantaneously formed very small crystal nuclei due to a rapid chemical reaction due to a rapid temperature change. In addition, a large amount is generated.

この様にして発生した微小な結晶核を含む溶液(またはスラリー)S’は、反応槽8に送り込まれる。この反応槽8は、内部がArボンベ13及び圧力計14により所定の圧力のArガス雰囲気とされているので、溶液(またはスラリー)S’は、酸化等により変質する虞がない。   The solution (or slurry) S ′ containing fine crystal nuclei generated in this way is sent into the reaction vessel 8. Since the inside of the reaction vessel 8 is set to an Ar gas atmosphere at a predetermined pressure by the Ar cylinder 13 and the pressure gauge 14, the solution (or slurry) S 'is not likely to be altered by oxidation or the like.

この溶液(またはスラリー)S’は、攪拌機11により攪拌されると同時にヒーター12により温度(3)、例えば−80℃以上かつ前記温度(2)以下に加熱され保持される。
同時に、Arボンベ13及び圧力計14により反応槽8内部の雰囲気が、例えば、0.1〜30MPaのAr雰囲気に保たれる。
ここでは、微小な結晶核を基に、均一な大きさ及び形状の無機微結晶に徐々に結晶成長させる必要があるので、温度(3)は温度(2)以下であることが好ましい。
The solution (or slurry) S ′ is stirred by the stirrer 11 and simultaneously heated and held at a temperature (3), for example, −80 ° C. or more and the temperature (2) or less by the heater 12.
At the same time, the atmosphere inside the reaction vessel 8 is maintained in an Ar atmosphere of, for example, 0.1 to 30 MPa by the Ar cylinder 13 and the pressure gauge 14.
Here, the temperature (3) is preferably equal to or lower than the temperature (2) because it is necessary to gradually grow the crystal to a uniform size and shape on the basis of the minute crystal nucleus.

この結晶核を含む溶液(またはスラリー)S’を反応槽8内で所定時間熟成することにより、結晶核が結晶成長し、所定の大きさ及び形状の無機微結晶となる。
ここでは、熟成の際の温度、雰囲気及び圧力を一定に保持しているので、微小な結晶核を基に無機微結晶を容易かつ大量に、しかも連続的に生成することができる。
By aging the solution (or slurry) S ′ containing the crystal nuclei in the reaction vessel 8 for a predetermined time, the crystal nuclei grow into crystals and become inorganic microcrystals having a predetermined size and shape.
Here, since the temperature, atmosphere and pressure during ripening are kept constant, inorganic microcrystals can be produced easily, in large quantities, and continuously based on minute crystal nuclei.

この無機微結晶を含む溶液(またはスラリー)S”は、配管21、逆止弁22を経由した後に、水槽25から送られる純水と混合され、背圧弁23を経由して容器24にて回収される。背圧弁23を絞ることにより、配管2から配管22に至る反応系全体の圧力を任意に制御することができる。   The solution (or slurry) S ″ containing inorganic microcrystals is mixed with pure water sent from the water tank 25 after passing through the pipe 21 and the check valve 22, and recovered in the container 24 via the back pressure valve 23. By restricting the back pressure valve 23, the pressure of the entire reaction system from the pipe 2 to the pipe 22 can be arbitrarily controlled.

この無機微結晶を含む溶液(またはスラリー)S”は、そのままの状態で使用してもよく、また、無機微結晶単体を用いる場合には、限外濾過法等により無機微結晶を溶液(またはスラリー)S”から分離し、その後、真空乾燥等により乾燥させればよい。
以上により、微小な無機微結晶、あるいは微小な無機微結晶を含む溶液(またはスラリー)S”を連続して製造することができる。
しかも、装置構成が簡単であり、しかも安価であるから、製造コストを大幅に削減することができる。
The solution (or slurry) S ″ containing the inorganic microcrystals may be used as it is, and when the inorganic microcrystals are used alone, the inorganic microcrystals can be used as a solution (or by ultrafiltration) or the like. The slurry may be separated from S ″ and then dried by vacuum drying or the like.
As described above, fine inorganic microcrystals or a solution (or slurry) S ″ containing fine inorganic microcrystals can be continuously produced.
Moreover, since the apparatus configuration is simple and inexpensive, the manufacturing cost can be greatly reduced.

本実施形態によれば、従来の水熱合成反応による粉末合成において成し得なかった結晶核の生成段階における温度条件と、結晶核の成長段階における温度条件とを、互いに独立して設定することができる。したがって、従来と比較して、得られた無機微結晶の結晶子径及び結晶性制御が多様となり、大きさ及び形状が制御された無機微結晶を大量かつ容易に製造することができる。
本実施形態の溶液(またはスラリー)Sを原料とする粉末合成は、各種金属酸化物、リン酸化合物、シュウ酸化合物、水酸化物等の粉末を合成する水熱合成に適用可能である。
According to this embodiment, the temperature condition in the crystal nucleus generation stage and the temperature condition in the crystal nucleus growth stage, which could not be achieved in the powder synthesis by the conventional hydrothermal synthesis reaction, and the temperature condition in the crystal nucleus growth stage are set independently of each other. Can do. Therefore, the crystallite size and crystallinity control of the obtained inorganic microcrystals are diversified as compared with the prior art, and a large amount of inorganic microcrystals controlled in size and shape can be easily produced.
Powder synthesis using the solution (or slurry) S of this embodiment as a raw material is applicable to hydrothermal synthesis for synthesizing powders of various metal oxides, phosphoric acid compounds, oxalic acid compounds, hydroxides and the like.

「第2の実施形態」
図2は、本発明の第2の実施形態の無機微結晶の製造装置を示す概略構成図であり、本実施形態の製造装置が上述した第1の実施形態の製造装置と異なる点は、第1の実施形態の製造装置では、結晶核析出部7の後に反応槽8を設けたのに対し、本実施形態の製造装置では、結晶核析出部7と反応槽8との間に、結晶核析出部7から送り出される結晶核を含む溶液(またはスラリー)S’を温度(2)と異なる温度(4)に保持する低温部(第2の温度保持部)31を設けた点である。
“Second Embodiment”
FIG. 2 is a schematic configuration diagram showing an inorganic microcrystal manufacturing apparatus according to a second embodiment of the present invention. The manufacturing apparatus according to the present embodiment is different from the manufacturing apparatus according to the first embodiment described above. In the manufacturing apparatus of the first embodiment, the reaction tank 8 is provided after the crystal nucleus precipitation part 7, whereas in the manufacturing apparatus of this embodiment, the crystal nucleus is between the crystal nucleus precipitation part 7 and the reaction tank 8. This is the point that a low temperature part (second temperature holding part) 31 for holding the solution (or slurry) S ′ containing crystal nuclei sent out from the precipitation part 7 at a temperature (4) different from the temperature (2) is provided.

低温部31の温度(4)は、生成する結晶核の種類や大きさにより適宜設定すれば良く、温度(2)と異なる温度であればよい。例えば、低温部6の温度(1)と同じであってもよく、異なってもよい。
この製造装置では、低温部31の温度(4)を結晶核析出部7の温度(2)以下とすることにより、微小な結晶核を含む溶液(またはスラリー)S’が低温部31にて一旦冷却され、成長過程の結晶核の成長が一旦停止するので、極めて微小な結晶核を含む溶液(またはスラリー)S’が反応槽8に送り込まれることになる。したがって、反応槽8では、極めて微小な結晶核を含む溶液(またはスラリー)S’を熟成することになるので、単分散性に優れた無機微結晶を容易に生成することができる。
The temperature (4) of the low temperature part 31 may be set as appropriate depending on the type and size of crystal nuclei to be generated, and may be a temperature different from the temperature (2). For example, it may be the same as or different from the temperature (1) of the low temperature part 6.
In this manufacturing apparatus, by setting the temperature (4) of the low temperature part 31 to be equal to or lower than the temperature (2) of the crystal nucleus precipitation part 7, the solution (or slurry) S ′ containing minute crystal nuclei is once in the low temperature part 31. After cooling, the growth of crystal nuclei in the growth process is temporarily stopped, so that a solution (or slurry) S ′ containing very fine crystal nuclei is fed into the reaction vessel 8. Therefore, in the reaction vessel 8, since the solution (or slurry) S ′ containing extremely fine crystal nuclei is aged, inorganic microcrystals excellent in monodispersity can be easily generated.

「第3の実施形態」
図3は、本発明の第3の実施形態の無機微結晶の製造装置を示す概略構成図であり、本実施形態の製造装置が上述した第1の実施形態の製造装置と異なる点は、第1の実施形態の製造装置では、溶液(またはスラリー)Sを温度(1)に保持する低温部6の後に、溶液(またはスラリー)Sを温度(1)より高い温度に保持して結晶核を析出させる結晶核析出部7を設けたのに対し、本実施形態の製造装置では、溶液(またはスラリー)Sを加熱し高温の温度(1)に保持する高温部(温度保持部)41の後に、溶液(またはスラリー)Sを温度(1)より低い温度(2)に冷却して結晶核を析出させる結晶核析出部42を設けた点である。
“Third Embodiment”
FIG. 3 is a schematic configuration diagram showing an inorganic microcrystal manufacturing apparatus according to the third embodiment of the present invention. The manufacturing apparatus according to the present embodiment is different from the manufacturing apparatus according to the first embodiment described above. In the manufacturing apparatus of one embodiment, after the low temperature part 6 that holds the solution (or slurry) S at the temperature (1), the solution (or slurry) S is held at a temperature higher than the temperature (1) to form crystal nuclei. Whereas the crystal nucleus precipitation part 7 for precipitation is provided, in the manufacturing apparatus of this embodiment, the solution (or slurry) S is heated after the high temperature part (temperature holding part) 41 that holds the high temperature (1). The crystal nucleus precipitation part 42 for cooling the solution (or slurry) S to a temperature (2) lower than the temperature (1) to precipitate crystal nuclei is provided.

この製造装置では、高温部41にて溶液(またはスラリー)Sをヒーター等の加熱装置により室温(25℃)以上かつ800℃以下の温度(1)に加熱し保持することにより、溶液(またはスラリー)Sを溶解させる。次いで、結晶核析出部42にて、この溶液(またはスラリー)Sを空冷、水冷等により、温度(1)より低くかつ−80℃以上かつ300℃以下の温度(2)に冷却することにより、結晶核を析出させる。
この様に、高温部41と結晶核析出部42との間に急峻な温度勾配があるので、ここを通過する溶液(またはスラリー)Sは急激な温度変化による急激な化学反応の停止により、極めて微小な結晶核を瞬時にしかも多量に生成することとなる。
この製造装置においても、単分散性に優れた無機微結晶を容易に生成することができる。
In this manufacturing apparatus, the solution (or slurry) S is heated and held at a temperature (1) not lower than room temperature (25 ° C.) and not higher than 800 ° C. by a heating device such as a heater in the high-temperature part 41. ) Dissolve S. Next, by cooling the solution (or slurry) S to a temperature (2) lower than the temperature (1) and not lower than −80 ° C. and not higher than 300 ° C. by air cooling, water cooling, etc. in the crystal nucleus precipitation part 42, Crystal nuclei are precipitated.
As described above, since there is a steep temperature gradient between the high temperature portion 41 and the crystal nucleus precipitation portion 42, the solution (or slurry) S passing through the high temperature portion 41 and the crystal nucleus precipitation portion 42 is extremely affected by a sudden chemical reaction stop due to a sudden temperature change. A small amount of crystal nuclei are generated instantaneously and in large quantities.
Also in this manufacturing apparatus, inorganic microcrystals excellent in monodispersity can be easily generated.

「第4の実施形態」
図4は、本発明の第4の実施形態の無機微結晶の製造装置を示す概略構成図であり、本実施形態の製造装置が上述した第3の実施形態の製造装置と異なる点は、第3の実施形態の製造装置では、結晶核析出部42の後に反応槽8を設けたのに対し、本実施形態の製造装置では、結晶核析出部42と反応槽8との間に、結晶核析出部42から送り出される結晶核を含む溶液(またはスラリー)S’を温度(2)と異なる温度(4)に保持する高温部(第2の温度保持部)51を設けた点である。
“Fourth Embodiment”
FIG. 4 is a schematic configuration diagram showing an inorganic microcrystal manufacturing apparatus according to the fourth embodiment of the present invention. The manufacturing apparatus according to the present embodiment is different from the manufacturing apparatus according to the third embodiment described above. In the manufacturing apparatus of the third embodiment, the reaction tank 8 is provided after the crystal nucleus precipitation part 42, whereas in the manufacturing apparatus of the present embodiment, the crystal nucleus is between the crystal nucleus precipitation part 42 and the reaction tank 8. The high temperature part (second temperature holding part) 51 for holding the solution (or slurry) S ′ containing crystal nuclei sent out from the precipitation part 42 at a temperature (4) different from the temperature (2) is provided.

高温部51の温度(4)は、生成する結晶核の種類や大きさにより適宜設定すれば良く、温度(2)と異なる温度であればよい。例えば、高温部41の温度(1)と同じであってもよく、異なってもよい。
この製造装置では、高温部51の温度(4)を結晶核析出部42の温度(2)以上とすることにより、微小な結晶核を含む溶液(またはスラリー)S’が高温部51にて再度加熱され、微小な結晶核の更なる成長を抑制したままの状態で反応槽8に送り込まれることになる。したがって、反応槽8では、微小な結晶核を含む溶液(またはスラリー)S’を熟成することになるので、結晶性が高くしかも単分散性に優れた無機微結晶を容易に生成することができる。
The temperature (4) of the high temperature part 51 may be appropriately set depending on the type and size of the crystal nucleus to be generated, and may be a temperature different from the temperature (2). For example, it may be the same as or different from the temperature (1) of the high temperature part 41.
In this manufacturing apparatus, the temperature (4) of the high temperature part 51 is set to be equal to or higher than the temperature (2) of the crystal nucleus precipitation part 42, so that the solution (or slurry) S ′ containing minute crystal nuclei is again in the high temperature part 51. It is heated and sent to the reaction vessel 8 while suppressing further growth of fine crystal nuclei. Accordingly, since the solution (or slurry) S ′ containing minute crystal nuclei is aged in the reaction vessel 8, inorganic crystallites having high crystallinity and excellent monodispersibility can be easily generated. .

本発明の無機微結晶の製造方法及び製造装置は、結晶核の析出過程、結晶核を基に結晶成長させる結晶成長過程等における温度制御を容易にすることにより、無機微結晶の析出条件や成長条件を容易に制御することが可能であるから、水熱合成法が適用される様々な無機微結晶の合成に適用可能であり、その工業的価値は極めて大きなものである。   The method and apparatus for producing an inorganic microcrystal of the present invention facilitates temperature control in a crystal nucleus precipitation process, a crystal growth process for crystal growth based on the crystal nucleus, etc. Since the conditions can be easily controlled, it can be applied to the synthesis of various inorganic microcrystals to which the hydrothermal synthesis method is applied, and its industrial value is extremely large.

本発明の第1の実施形態の無機微結晶の製造装置を示す概略構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the inorganic microcrystal of the 1st Embodiment of this invention. 本発明の第2の実施形態の無機微結晶の製造装置を示す概略構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the inorganic microcrystal of the 2nd Embodiment of this invention. 本発明の第3の実施形態の無機微結晶の製造装置を示す概略構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the inorganic microcrystal of the 3rd Embodiment of this invention. 本発明の第4の実施形態の無機微結晶の製造装置を示す概略構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the inorganic microcrystal of the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1 原料タンク
2 配管
3 ポンプ
4 原料供給部
5 配管
6 低温部
7 結晶核析出部
8 反応槽
11 攪拌機
12 ヒーター
13 Arボンベ
14 圧力計
21 配管
22 逆止弁
23 背圧弁
24 容器
25 水槽
26 配管
27 ポンプ
31 低温部
41 高温部
42 結晶核析出部
51 高温部
DESCRIPTION OF SYMBOLS 1 Raw material tank 2 Piping 3 Pump 4 Raw material supply part 5 Piping 6 Low temperature part 7 Crystal nucleus precipitation part 8 Reaction tank 11 Stirrer 12 Heater 13 Ar cylinder 14 Pressure gauge 21 Piping 22 Check valve 23 Back pressure valve 24 Container 25 Water tank 26 Piping 27 Pump 31 Low temperature part 41 High temperature part 42 Crystal nucleus precipitation part 51 High temperature part

Claims (9)

無機微結晶を連続して製造する方法であって、
無機微結晶の原料となる溶液またはスラリーを温度(1)にて保持し、次いで、この温度(1)に保持された溶液またはスラリーを前記温度(1)と異なる温度(2)に保持して結晶核を析出させ、次いで、この溶液またはスラリー中の結晶核を温度(3)にて結晶成長させることを特徴とする無機微結晶の製造方法。
A method for continuously producing inorganic microcrystals,
The solution or slurry that is the raw material of the inorganic microcrystal is held at the temperature (1), and then the solution or slurry held at this temperature (1) is held at a temperature (2) different from the temperature (1). A method for producing inorganic microcrystals, characterized in that crystal nuclei are precipitated and then crystal nuclei in this solution or slurry are grown at a temperature (3).
前記結晶核を含む溶液またはスラリーを、前記温度(2)と異なる温度(4)にて保持した後、この溶液またはスラリー中の結晶核を前記温度(3)にて結晶成長させることを特徴とする請求項1記載の無機微結晶の製造方法。   The solution or slurry containing the crystal nuclei is maintained at a temperature (4) different from the temperature (2), and then the crystal nuclei in the solution or slurry are grown at the temperature (3). The method for producing inorganic microcrystals according to claim 1. 前記温度(1)は−80℃以上かつ300℃以下、前記温度(2)は前記温度(1)より高くかつ室温以上かつ800℃以下、前記温度(3)は−80℃以上かつ前記温度(2)以下であることを特徴とする請求項1または2記載の無機微結晶の製造方法。   The temperature (1) is −80 ° C. or more and 300 ° C. or less, the temperature (2) is higher than the temperature (1) and is room temperature or more and 800 ° C. or less, the temperature (3) is −80 ° C. or more and the temperature ( 2) The method for producing inorganic microcrystals according to claim 1 or 2, wherein: 前記温度(1)は室温以上かつ800℃以下、前記温度(2)は前記温度(1)より低くかつ−80℃以上かつ300℃以下、前記温度(3)は−80℃以上かつ前記温度(1)以下であることを特徴とする請求項1または2記載の無機微結晶の製造方法。   The temperature (1) is not less than room temperature and not more than 800 ° C., the temperature (2) is lower than the temperature (1) and is not less than −80 ° C. and not more than 300 ° C., the temperature (3) is not less than −80 ° C. and the temperature ( 1) The method for producing inorganic microcrystals according to claim 1 or 2, wherein: 無機微結晶を連続して製造する装置であって、
無機微結晶の原料となる溶液またはスラリーを供給する供給手段と、この供給手段により供給される前記溶液またはスラリーを温度(1)に保持する温度保持部と、この温度保持部から送り出される前記溶液またはスラリーを前記温度(1)と異なる温度(2)に保持して結晶核を析出させる結晶核析出部と、この結晶核析出部から送り出される結晶核を含む溶液またはスラリーを温度(3)に保持して前記結晶核を結晶成長させる結晶成長部とを備えてなることを特徴とする無機微結晶の製造装置。
An apparatus for continuously producing inorganic microcrystals,
Supply means for supplying a solution or slurry as a raw material for inorganic microcrystals, a temperature holding section for holding the solution or slurry supplied by the supply means at a temperature (1), and the solution fed from the temperature holding section Alternatively, a solution or slurry containing a crystal nucleus precipitation part for precipitating crystal nuclei by holding the slurry at a temperature (2) different from the temperature (1) and a crystal nucleus sent out from the crystal nucleus precipitation part at temperature (3) An apparatus for producing inorganic microcrystals, comprising: a crystal growth unit that holds and grows the crystal nucleus.
前記結晶核析出部から送り出される結晶核を含む溶液またはスラリーを前記温度(2)と異なる温度(4)に保持する第2の温度保持部を備え、
この第2の温度保持部から送り出される結晶核を含む溶液またはスラリーを前記結晶成長部に送り込むことを特徴とする請求項5記載の無機微結晶の製造装置。
A second temperature holding unit that holds a solution or slurry containing crystal nuclei delivered from the crystal nucleus precipitation unit at a temperature (4) different from the temperature (2);
6. The inorganic microcrystal manufacturing apparatus according to claim 5, wherein a solution or slurry containing crystal nuclei sent out from the second temperature holding unit is fed into the crystal growth unit.
前記温度(1)は−80℃以上かつ300℃以下、前記温度(2)は前記温度(1)より高くかつ室温以上かつ800℃以下、前記温度(3)は−80℃以上かつ前記温度(2)以下であることを特徴とする請求項5または6記載の無機微結晶の製造装置。   The temperature (1) is −80 ° C. or more and 300 ° C. or less, the temperature (2) is higher than the temperature (1) and is room temperature or more and 800 ° C. or less, the temperature (3) is −80 ° C. or more and the temperature ( 2) The apparatus for producing inorganic microcrystals according to claim 5 or 6, wherein: 前記温度(1)は室温以上かつ800℃以下、前記温度(2)は前記温度(1)より低くかつ−80℃以上かつ300℃以下、前記温度(3)は−80℃以上かつ前記温度(1)以下であることを特徴とする請求項5または6記載の無機微結晶の製造装置。   The temperature (1) is not less than room temperature and not more than 800 ° C., the temperature (2) is lower than the temperature (1) and is not less than −80 ° C. and not more than 300 ° C., the temperature (3) is not less than −80 ° C. and the temperature ( 1) The apparatus for producing inorganic microcrystals according to claim 5 or 6, wherein: 前記結晶成長部に、この結晶成長部の内部の圧力を制御する圧力制御手段を設けてなることを特徴とする請求項5ないし8のいずれか1項記載の無機微結晶の製造装置。   The apparatus for producing inorganic microcrystals according to any one of claims 5 to 8, wherein the crystal growth part is provided with pressure control means for controlling the pressure inside the crystal growth part.
JP2005088831A 2005-03-25 2005-03-25 Inorganic microcrystal production equipment Expired - Fee Related JP5017787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088831A JP5017787B2 (en) 2005-03-25 2005-03-25 Inorganic microcrystal production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088831A JP5017787B2 (en) 2005-03-25 2005-03-25 Inorganic microcrystal production equipment

Publications (2)

Publication Number Publication Date
JP2006263659A true JP2006263659A (en) 2006-10-05
JP5017787B2 JP5017787B2 (en) 2012-09-05

Family

ID=37200180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088831A Expired - Fee Related JP5017787B2 (en) 2005-03-25 2005-03-25 Inorganic microcrystal production equipment

Country Status (1)

Country Link
JP (1) JP5017787B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011873A (en) * 2007-06-29 2009-01-22 Mitsubishi Chemicals Corp Decontamination method and decontamination apparatus
JP2010168253A (en) * 2009-01-23 2010-08-05 Kanto Denka Kogyo Co Ltd Method and apparatus for producing fine inorganic particle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568359B (en) * 2016-01-27 2017-10-31 济南晶艺光电技术有限公司 The integrated growth furnace of water-soluble liquid crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126101A (en) * 1991-01-25 1994-05-10 Bicron Corp Method and device for multistage recrystallization
JP2005021724A (en) * 2003-06-30 2005-01-27 Itec Co Ltd Method and apparatus for manufacturing fine particle by using high-temperature high-pressure water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126101A (en) * 1991-01-25 1994-05-10 Bicron Corp Method and device for multistage recrystallization
JP2005021724A (en) * 2003-06-30 2005-01-27 Itec Co Ltd Method and apparatus for manufacturing fine particle by using high-temperature high-pressure water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011873A (en) * 2007-06-29 2009-01-22 Mitsubishi Chemicals Corp Decontamination method and decontamination apparatus
JP2010168253A (en) * 2009-01-23 2010-08-05 Kanto Denka Kogyo Co Ltd Method and apparatus for producing fine inorganic particle

Also Published As

Publication number Publication date
JP5017787B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
CN100535200C (en) Apparatus for production of crystal of group iii element nitride and process for producing crystal of group III element nitride
Liu et al. One-minute synthesis of crystalline microporous aluminophosphate (AlPO 4-5) by combining fast heating with a seed-assisted method
JP5709122B2 (en) Ammonothermal method and nitride crystals
US8415546B2 (en) Single crystalline metal nanoplate and the fabrication method thereof
JP5017787B2 (en) Inorganic microcrystal production equipment
Panasyuk et al. Preparation of fine-grained corundum powders with given properties: crystal size and habit control
JP4869629B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, and lithium battery
JP6445283B2 (en) Method for producing gallium nitride crystal
JP2011153055A (en) Method for producing nitride single crystal
JP4259819B2 (en) Crystallization method and crystallizer
JP5428706B2 (en) Method for producing SiC single crystal
CN105314680A (en) Preparing method for nanometer lanthanum chromate
CN105195187B (en) The method for preparing the metal co-doped anatase titanium dioxide microwafer of carbon of exposure high activity { 001 } crystal face
JPH0557166A (en) Production of coated fine particle
CN109136806B (en) Preparation method of NiTi monocrystal in solid state by cyclic heat treatment
CN105645464B (en) A kind of size uniform In2O3The preparation method of octahedron nanometer particle
JP2009078949A (en) Manufacturing method and manufacturing apparatus for sio powder
JPH04342421A (en) Production of fine powdery tetragonal zirconia of ceria solid solution
WO2006137181A1 (en) Apparatus for producing semiconductor single crystal
JPS593092A (en) Growing device for crystal
Yang Nanomaterial Development with Liquid‐Phase Epitaxy
KR100770691B1 (en) Methods of producing barium ferrite in a consecutive way and decomposing carbon dioxide using the barium ferrite
Zhang et al. Synthesis of GaN crystals through the reaction of gallium with lithium amide
CN116121859A (en) Preparation method and device of single crystal nanotube
CN116949570A (en) Preparation method of black phosphorus single crystal and highly oriented massive polycrystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5017787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees