JP2006263612A - Absorbent material of carbonic acid gas and method for treating gas containing carbonic acid gas - Google Patents

Absorbent material of carbonic acid gas and method for treating gas containing carbonic acid gas Download PDF

Info

Publication number
JP2006263612A
JP2006263612A JP2005086639A JP2005086639A JP2006263612A JP 2006263612 A JP2006263612 A JP 2006263612A JP 2005086639 A JP2005086639 A JP 2005086639A JP 2005086639 A JP2005086639 A JP 2005086639A JP 2006263612 A JP2006263612 A JP 2006263612A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
hole
absorbent
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005086639A
Other languages
Japanese (ja)
Inventor
Toshihiro Imada
敏弘 今田
Masanori Kato
雅礼 加藤
Kenji Koshizaki
健司 越崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005086639A priority Critical patent/JP2006263612A/en
Publication of JP2006263612A publication Critical patent/JP2006263612A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a absorbent material of a carbonic acid gas showing high absorption performance of carbonic acid gas even after repeating absorption of carbonic acid gas and regeneration after a reduction in adsorption capability of a carbonic acid gas for a long period of time. <P>SOLUTION: The carbonic acid gas absorbent material comprises a porous particulate material having a through-hole and containing lithium silicate as a main component, wherein a wall thickness between an inner surface of the through-hole and an exterior surface is not larger than 3 mm in a cross section vertically crossing the through-hole. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭化水素を主成分とする燃料を利用するエネルギープラントや化学プラント、自動車などから発生するガス(被処理ガス)中の炭酸ガスを分離回収、または燃料供給部における炭酸ガスの分離回収に利用される炭酸ガス吸収材および炭酸ガスを含む被処理ガスの処理方法に関する。   The present invention separates and recovers carbon dioxide in a gas (treated gas) generated from an energy plant, chemical plant, automobile, etc. that uses a fuel whose main component is hydrocarbon, or separates and recovers carbon dioxide in a fuel supply unit. The present invention relates to a carbon dioxide absorber and a method for treating a gas to be treated containing carbon dioxide.

発動機等の炭化水素を主成分とする燃料を燃焼させる装置においては、炭酸ガスの回収に適した場所である排気ガス放出部分の温度が300℃以上の高温になることが多い。炭酸ガスの分離方法としては、従来、酢酸セルロースを用いる方法、アルカノールアミン系溶媒による化学吸収法等が知られている。しかしながら、これらの分離方法はいずれも導入ガス温度を200℃以下に抑える必要がある。したがって、高温度でのリサイクルが要求される排気ガス中の炭酸ガスを分離するには、排気ガスを一旦熱交換器等により200℃以下に冷却する必要があり、結果的に炭酸ガス分離のためのエネルギー消費量が多くなるという問題があった。   In an apparatus such as an engine that burns fuel mainly composed of hydrocarbons, the temperature of an exhaust gas discharge portion, which is a place suitable for the recovery of carbon dioxide gas, often reaches a high temperature of 300 ° C. or higher. Conventionally known methods for separating carbon dioxide include a method using cellulose acetate, a chemical absorption method using an alkanolamine solvent, and the like. However, any of these separation methods needs to suppress the introduced gas temperature to 200 ° C. or lower. Therefore, in order to separate the carbon dioxide in the exhaust gas that is required to be recycled at a high temperature, it is necessary to cool the exhaust gas to 200 ° C. or less once with a heat exchanger or the like. There was a problem that the amount of energy consumption increased.

特許文献1および特許文献2には、500℃を超える温度域の炭酸ガスを含む高温ガスから冷却工程を経ずにその中の炭酸ガスと反応するリチウム複合酸化物を用いた炭酸ガス分離方法が開示されている。これらのリチウム複合酸化物は炭酸ガスと反応し、酸化物と炭酸リチウムとに分解することで、炭酸ガスの吸収がなされる。また、これらのリチウム複合酸化物と炭酸ガスとの反応により生成された酸化物と炭酸リチウムは、より高温下で逆反応が生じるため、リチウム複合酸化物として再生することが可能である。特許文献2には、酸化物として二酸化珪素を用いたリチウムシリケートが他のリチウム複合酸化物に較べて軽量に合成でき、かつ吸収速度が速いという利点があることが開示され、リチウムシリケートの炭酸ガス吸収材としての利用が注目されている。   In Patent Document 1 and Patent Document 2, a carbon dioxide gas separation method using a lithium composite oxide that reacts with carbon dioxide therein without undergoing a cooling step from a high temperature gas containing carbon dioxide in a temperature range exceeding 500 ° C. It is disclosed. These lithium composite oxides react with carbon dioxide gas and decompose into oxides and lithium carbonate, thereby absorbing carbon dioxide. In addition, the oxide and lithium carbonate generated by the reaction between the lithium composite oxide and carbon dioxide gas can be regenerated as a lithium composite oxide because a reverse reaction occurs at a higher temperature. Patent Document 2 discloses that lithium silicate using silicon dioxide as an oxide can be synthesized in a lighter weight than other lithium composite oxides and has an advantage of high absorption rate. Carbon dioxide of lithium silicate is disclosed. The use as an absorbent material has attracted attention.

一方、特許文献3には円柱状、ハニカム状の炭酸ガス吸収材が、特許文献4には組み立てブロック状炭酸ガス吸収材が、それぞれ開示されている。これらの炭酸ガス吸収材の中で、円柱状のものが取り扱いの点から望まれている。しかしながら、円柱状のリチウムシリケートを炭酸ガス吸収材として用い、炭酸ガスの吸収反応および放出反応(再生反応)を長期間に亘って繰り返すと、次第に炭酸ガス吸収性能が減少し、高い炭酸ガス吸収性能を維持することが困難になる問題があった。
特開平9−99214号公報 特開2000−262890 特開平11−262632号公報 特開2001−232148
On the other hand, Patent Document 3 discloses a columnar and honeycomb-shaped carbon dioxide absorbent, and Patent Document 4 discloses an assembled block-shaped carbon dioxide absorbent. Among these carbon dioxide gas absorbents, cylindrical ones are desired from the viewpoint of handling. However, if cylindrical lithium silicate is used as a carbon dioxide absorbent, and the carbon dioxide absorption and release reactions (regeneration reactions) are repeated over a long period of time, the carbon dioxide absorption performance will gradually decrease and the high carbon dioxide absorption performance There was a problem that it was difficult to maintain.
JP-A-9-99214 JP 2000-262890 A JP 11-262632 A JP 2001-232148 A

上述したように、従来の炭酸ガス吸収材では炭酸ガスの吸収反応および放出反応を長期に亘って繰り返すと、次第に炭酸ガスの吸収量が減少して高い炭酸ガス吸収性能を維持することが困難になる問題があった。
本発明は、炭酸ガスの吸収および吸収能力の低下後の再生を長期間に亘って繰り返しても、高い炭酸ガス吸収性能が得られる炭酸ガス吸収材を提供することを目的とする。
As described above, in the conventional carbon dioxide absorbent, if the carbon dioxide absorption and release reactions are repeated over a long period of time, the amount of carbon dioxide absorbed gradually decreases, making it difficult to maintain high carbon dioxide absorption performance. There was a problem.
An object of the present invention is to provide a carbon dioxide absorbing material that can obtain high carbon dioxide absorbing performance even when carbon dioxide absorption and regeneration after a decrease in absorption capacity are repeated over a long period of time.

本発明は、被処理ガス中の炭酸ガスを炭酸ガス吸収材による炭酸ガス吸収と炭酸ガス吸収材の再生を繰返して除去するに際し、炭酸ガス吸収材の再生を長期間に亘って繰り返した後においても炭酸ガスを効率的に吸収し得る炭酸ガスを含む被処理ガスの処理方法を提供することを目的とする。   In the present invention, when carbon dioxide in the gas to be treated is repeatedly removed by carbon dioxide absorption by the carbon dioxide absorbent and regeneration of the carbon dioxide absorbent, the regeneration of the carbon dioxide absorbent is repeated for a long period of time. Another object of the present invention is to provide a method for treating a gas to be treated containing carbon dioxide that can efficiently absorb carbon dioxide.

本発明によると、リチウムシリケートを主成分とし、貫通孔を有する粒状の多孔質体であって、前記貫通孔を垂直に横切る断面において前記貫通孔と外面との間の肉厚が3mm以下であることを特徴とする炭酸ガス吸収材が提供される。   According to the present invention, a granular porous body having lithium silicate as a main component and having a through hole, the thickness between the through hole and the outer surface in a cross section perpendicularly crossing the through hole is 3 mm or less. A carbon dioxide absorbent characterized by the above is provided.

また本発明によると、リチウムシリケートを主成分とし、厚さが3mm以下の角形平板状の多孔質体であることを特徴とする炭酸ガス吸収材が提供される。   Further, according to the present invention, there is provided a carbon dioxide gas absorbent characterized by being a rectangular flat plate-shaped porous body mainly composed of lithium silicate and having a thickness of 3 mm or less.

さらに本発明によると、リチウムシリケートを主成分とし、貫通孔を有する粒状の多孔質体であって、前記貫通孔を垂直に横切る断面において前記貫通孔と外面との間の肉厚が3mm以下である炭酸ガス吸収材に炭酸ガスを含む被処理ガスを接触させて炭酸ガスを吸収する工程と、
炭酸ガスを吸収した後の前記炭酸ガス吸収材を加熱して吸収した炭酸ガスを放出し、前記炭酸ガス吸収材を再生する工程と
を含むことを特徴とする炭酸ガスを含む被処理ガスの処理方法が提供される。
Further, according to the present invention, the porous porous body is mainly composed of lithium silicate and has a through hole, and the thickness between the through hole and the outer surface is 3 mm or less in a cross section perpendicularly crossing the through hole. A step of contacting a gas to be treated containing carbon dioxide with a carbon dioxide absorbent to absorb the carbon dioxide;
Treating the treated gas containing carbon dioxide, comprising: heating the carbon dioxide absorbent after absorbing the carbon dioxide, releasing the absorbed carbon dioxide, and regenerating the carbon dioxide absorbent A method is provided.

本発明によれば、炭酸ガス吸収および再生を長期間に亘って繰り返しても、吸収性能低下を抑制して高い炭酸ガス吸収性能を維持することが可能な炭酸ガス吸収材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it repeats carbon dioxide absorption and reproduction | regeneration over a long period of time, the carbon dioxide absorption material which can suppress absorption performance fall and can maintain high carbon dioxide absorption performance can be provided. .

また、本発明によれば被処理ガス中の炭酸ガスを炭酸ガス吸収材による炭酸ガス吸収と炭酸ガス吸収材の再生を繰返して除去するに際し、炭酸ガス吸収材の再生を長期間に亘って繰り返した後においても炭酸ガスを効率的に吸収し得る炭酸ガスを含む被処理ガスの処理方法を提供することはできる。   Further, according to the present invention, when carbon dioxide in the gas to be treated is repeatedly removed by carbon dioxide absorption by the carbon dioxide absorbent and regeneration of the carbon dioxide absorbent, the regeneration of the carbon dioxide absorbent is repeated over a long period of time. In addition, it is possible to provide a method for treating a gas to be treated containing carbon dioxide that can efficiently absorb carbon dioxide even after.

以下、本発明に係る炭酸ガス吸収材および炭酸ガスを含む被処理ガスの処理方法を詳細に説明する。   Hereinafter, the processing method of the to-be-processed gas containing the carbon dioxide absorber and carbon dioxide which concerns on this invention is demonstrated in detail.

(第1実施形態)
この第1実施形態に係る炭酸ガス吸収材は、リチウムシリケートを主成分とし、貫通孔を有する粒状の多孔質体であって、前記貫通孔を垂直に横切る断面において前記貫通孔と外面との間の肉厚が3mm以下である。
(First embodiment)
The carbon dioxide absorbent according to the first embodiment is a granular porous body mainly composed of lithium silicate and having a through hole, and the gap between the through hole and the outer surface is perpendicular to the through hole. The wall thickness is 3 mm or less.

ここで『貫通孔』とは、粒状の多孔質体の中心を実質的に通るものを意味する。ただし、貫通孔は粒状の多孔質体の中心から多少外れて通ることを許容する。
『多孔質体の貫通孔を垂直に横切る断面』とは、その断面の中で最も面積の大きな断面を意味する。すなわち、粒状の多孔質体が円柱、角柱で、その軸方向に貫通孔を有する形態では貫通孔を垂直に横切る断面はどの箇所も同じ面積になる。これに対し、多孔質体が球体、楕円体で、その中心点を通る貫通孔を有する形態では貫通孔をその中心点で垂直に横切る断面が最も大きな面積を持ち、中心点から離れた貫通孔を垂直に横切る断面ほど面積が小さくなる。つまり、貫通孔を垂直に横切る断面の面積はその貫通孔位置によって変化し、貫通孔と外面の間の肉厚も変動する。このような球体、楕円体では貫通孔を垂直に横切る断面を最も面積の大きな断面(前記肉厚が最も大きくなる断面)で前記肉厚を決める。
『断面において貫通孔と外面の間の肉厚』とは、断面において貫通孔(外周面)と外面の間(距離)の最も大きな箇所を肉厚と定義する。すなわち、例えば円柱体のような多孔質体に貫通孔を軸方向に形成した形態において、貫通孔の多少の偏在、貫通孔の形状等により前記貫通孔と外面の間(距離)が異なる場合は、最も大きな距離の箇所を肉厚と定義する。
前記リチウムシリケートは、リチウムオルトシリケート(Li4SiO4)を用いることが好ましい。リチウムオルトシリケートが炭酸ガスを吸収する反応を下記式(1)に、再生する反応を下記式(2)に、それぞれ示す。
Here, the “through hole” means one that substantially passes through the center of the granular porous body. However, the through-hole is allowed to pass slightly off from the center of the granular porous body.
The “cross section perpendicularly crossing the through hole of the porous body” means a cross section having the largest area among the cross sections. In other words, in a form in which the granular porous body is a cylinder or a prism and has a through hole in the axial direction, the cross section perpendicularly crossing the through hole has the same area at any location. On the other hand, in a form in which the porous body is a sphere or an ellipsoid and has a through-hole passing through the center point, the cross-section perpendicularly crossing the through-hole at the center point has the largest area, and the through-hole separated from the center point As the cross section crosses perpendicularly, the area becomes smaller. That is, the area of the cross section perpendicularly crossing the through hole varies depending on the position of the through hole, and the thickness between the through hole and the outer surface also varies. In such spheres and ellipsoids, the thickness is determined by the cross section perpendicular to the through-hole and having the largest area (the cross section where the thickness is the largest).
The “thickness between the through hole and the outer surface in the cross section” is defined as the thickest portion in the cross section between the through hole (outer peripheral surface) and the outer surface (distance). That is, for example, in the form in which the through hole is formed in the axial direction in a porous body such as a cylindrical body, when the through hole and the outer surface (distance) are different due to some uneven distribution of the through hole, the shape of the through hole, etc. The point of the largest distance is defined as the wall thickness.
The lithium silicate is preferably lithium orthosilicate (Li 4 SiO 4 ). The reaction in which lithium orthosilicate absorbs carbon dioxide is shown in the following formula (1), and the regenerating reaction is shown in the following formula (2).

吸収:Li4SiO4+CO2→Li2SiO3+Li2CO3 …(1)
再生:Li2SiO3+Li2CO3→Li4SiO4+CO2 …(2)
すなわち、リチウムオルトシリケートは例えば室温〜700℃程度の温度域(第1温度域)で炭酸ガスと接触すると、前記式(1)に従って反応し、炭酸ガスを吸収してリチウムメタシリケート(Li2SiO3)と炭酸リチウム(Li2CO3)とを生成する。この炭酸ガスを吸収した炭酸ガス吸収材は、前記第1温度域を超える例えば720℃以上の温度域(第2温度域)に加熱されると、前記式(2)に従って反応し、炭酸ガスを放出して元のリチウムオルトシリケートに再生される。このような炭酸ガス吸収材の炭酸ガス吸収と炭酸ガス吸収材への再生の反応は、繰り返し行うことができる。なお、炭酸ガスの吸収温度域は、反応雰囲気下における炭酸ガス濃度に依存して変化し、炭酸ガス濃度が高くなるに従い吸収温度域の上限温度は高くなる。炭酸ガスの吸収反応により生じた炭酸リチウムの融点は720℃付近であるため、720℃以上の温度で炭酸ガス吸収材を加熱して炭酸ガスを放出させる場合には、炭酸リチウムは溶融状態になる。
Absorption: Li 4 SiO 4 + CO 2 → Li 2 SiO 3 + Li 2 CO 3 (1)
Regeneration: Li 2 SiO 3 + Li 2 CO 3 → Li 4 SiO 4 + CO 2 (2)
That is, when lithium orthosilicate comes into contact with carbon dioxide in a temperature range (first temperature range) of, for example, room temperature to about 700 ° C., it reacts according to the above formula (1), absorbs the carbon dioxide and absorbs lithium metasilicate (Li 2 SiO 2 3 ) and lithium carbonate (Li 2 CO 3 ). When the carbon dioxide absorbing material that has absorbed carbon dioxide is heated to a temperature range (second temperature range) of 720 ° C. or higher that exceeds the first temperature range, the carbon dioxide absorbent reacts according to the formula (2), Released and regenerated to the original lithium orthosilicate. Such carbon dioxide absorption of the carbon dioxide absorbent and regeneration reaction to the carbon dioxide absorbent can be repeated. The absorption temperature range of carbon dioxide gas varies depending on the carbon dioxide concentration in the reaction atmosphere, and the upper limit temperature of the absorption temperature region increases as the carbon dioxide concentration increases. Since the melting point of lithium carbonate produced by the carbon dioxide absorption reaction is around 720 ° C., when the carbon dioxide absorbent is heated at a temperature of 720 ° C. or higher to release carbon dioxide, the lithium carbonate is in a molten state. .

前記リチウムシリケートを主成分とする粒状の多孔質体からなる炭酸ガス吸収材において、炭酸ガスの吸収反応および放出反応を多数回繰返すと、次第に炭酸ガスの吸収性能が低下する。本発明者らが炭酸ガス吸収材の炭酸ガス吸収性能の低下について鋭意検討した結果、吸収性能が低下した吸収材の中心部には炭酸リチウムが蓄積されており、その影響で吸収性能が低下していることが明らかになった。炭酸リチウムが吸収材内部に蓄積するのは、以下の理由によるものと考えられる。炭酸ガス吸収材は、炭酸ガスの吸収・放出を行う毎に粒成長が起こり、粒状の多孔質体からなる炭酸ガス吸収材はその気孔が徐々に減少する。気孔が減少すると、炭酸ガスの吸収時に生成した溶融炭酸リチウムで気孔を埋める確率が高くなり、ガスパスが縮小する。再生反応(炭酸ガス放出反応)は、吸収材の外面から中心部に向かって順次起こるなるため、前記ガスパスの縮小に起因して外面から離れるほど再生反応が起こり難くなり、吸収材の中心部に炭酸リチウムが蓄積されると考えられる。事実、吸収性能が低下した炭酸ガス吸収材では炭酸リチウムは外面から3mmを超える内部に蓄積されていることが確認された。   In the carbon dioxide absorbent comprising a granular porous body containing lithium silicate as a main component, the carbon dioxide absorption performance is gradually lowered when the carbon dioxide absorption and release reactions are repeated many times. As a result of intensive studies on the decrease in carbon dioxide absorption performance of the carbon dioxide absorbent by the present inventors, lithium carbonate is accumulated in the central portion of the absorbent where the absorption performance has been reduced. It became clear that. The accumulation of lithium carbonate inside the absorbent is thought to be due to the following reasons. In the carbon dioxide absorbent, grain growth occurs every time carbon dioxide is absorbed and released, and the pores of the carbon dioxide absorbent comprising a granular porous body gradually decrease. When the pores are reduced, the probability of filling the pores with molten lithium carbonate generated when carbon dioxide is absorbed increases, and the gas path is reduced. Since the regeneration reaction (carbon dioxide gas release reaction) occurs sequentially from the outer surface of the absorbent toward the center, the regenerative reaction is less likely to occur as the distance from the outer surface is reduced due to the reduction of the gas path. It is thought that lithium carbonate accumulates. In fact, it was confirmed that lithium carbonate was accumulated in the interior of more than 3 mm from the outer surface in the carbon dioxide absorbing material having reduced absorption performance.

炭酸ガス吸収材に炭酸リチウムが蓄積されることは、前述した式(2)で表される再生反応が完全になされなくなることを意味する。このため、炭酸ガスと反応するリチウムオルトシリケート量が減少し、結果として炭酸ガスの吸収量が減少する。また、溶融炭酸リチウムが存在した状態では、前述した式(1)で表されるリチウムオルトシリケートと炭酸ガスの反応を阻害するため、さらに炭酸ガス吸収反応が起こり難くなる。したがって、再生反応時に炭酸リチウムが炭酸ガス吸収材内部に残存して蓄積するのを防止することによって、炭酸ガスの吸収・再生を長期間に亘って繰り返しても、安定した高い炭酸ガスの吸収性能が得られるという知見を見出した。   Accumulation of lithium carbonate in the carbon dioxide absorbing material means that the regeneration reaction represented by the above-described formula (2) is not completed. For this reason, the amount of lithium orthosilicate that reacts with carbon dioxide decreases, and as a result, the amount of carbon dioxide absorbed decreases. Further, in the state where molten lithium carbonate is present, the reaction between the lithium orthosilicate represented by the above-described formula (1) and the carbon dioxide gas is inhibited, so that the carbon dioxide absorption reaction is further difficult to occur. Therefore, by preventing lithium carbonate from remaining and accumulating inside the carbon dioxide absorber during the regeneration reaction, stable and high carbon dioxide absorption performance even if carbon dioxide absorption / regeneration is repeated over a long period of time. We found the knowledge that can be obtained.

このような知見に基づいて、前述したように貫通孔を有し、この貫通孔を垂直に横切る断面において貫通孔と外面の間の肉厚を3mm以下にしたリチウムシリケートを主成分とする粒状の多孔質体から炭酸ガス吸収材を構成することによって、再生時に炭酸リチウムが吸収材に残留、蓄積されることなく、ほぼ全吸収材を前述の式(2)のように炭酸ガスを放出してリチウムシリケートに変換できる。その結果、炭酸ガスの吸収・再生を長期間に亘って繰り返しても、安定した高い炭酸ガスの吸収性能を発現することが可能になる。
前記多孔質体の貫通孔を垂直に横切る断面において貫通孔と外面の間の肉厚が3mmを超えると、炭酸ガス吸収・放出(再生)後において、吸収材内部に前述した式(1)に示す炭酸リチウムが蓄積するようになって長期間に亘る吸収・再生の繰り返し時、高い炭酸ガスの吸収性能を維持することが困難になる。
前記貫通孔の大きさは、特に限定されないが、その直径が0.5mm以上であることが好ましい。貫通孔の直径を0.5mm未満にすると、炭酸ガスの吸収時に生じる溶融炭酸リチウムにより貫通孔が塞がれて、再生時に炭酸ガスの放出反応を効率的に遂行することが困難になる。
前記貫通孔を有する粒状の多孔質体は、例えば円形、四角形のような多角形の貫通孔を有する円柱体、もしくは四角柱体、六角柱体のような多角柱体、または球体、楕円体等を挙げることができる。この貫通孔は、柱体ではその中心点を軸方向に沿うように通って形成され、球体、楕円体ではその中心点を通って形成される。
具体的な形態としては、図1の(A)に示す円柱状貫通孔1が中心点を軸方向に沿うように形成された円柱状の多孔質体2、つまり円筒状の多孔質体が挙げられる。この円形貫通孔1を有する円柱状の多孔質体2は、貫通孔1を垂直に横切る断面(図1の(B))において円柱状の多孔質体2の直径をL、貫通孔1の直径をL1、貫通孔1と外周面との間の肉厚をL2,L3とすると、L2,L3(いずれも等しい)が3mm以下である。特に好ましい前記肉厚は、L/4mm以上、3mm以下である。
Based on such knowledge, as described above, there is a through hole, and in the cross section perpendicularly crossing the through hole, a granular material mainly composed of lithium silicate having a thickness between the through hole and the outer surface of 3 mm or less is used. By constituting the carbon dioxide absorbent from the porous body, almost all the absorbent is released as shown in the above formula (2) without the lithium carbonate remaining and accumulated in the absorbent during the regeneration. Can be converted to lithium silicate. As a result, even if carbon dioxide absorption / regeneration is repeated over a long period of time, stable and high carbon dioxide absorption performance can be achieved.
When the wall thickness between the through hole and the outer surface exceeds 3 mm in a cross section perpendicularly crossing the through hole of the porous body, after absorbing and releasing (regenerating) carbon dioxide gas, the above-described formula (1) is formed inside the absorbent material. It becomes difficult to maintain high carbon dioxide gas absorption performance when the lithium carbonate shown accumulates and is repeatedly absorbed and regenerated over a long period of time.
The size of the through hole is not particularly limited, but the diameter is preferably 0.5 mm or more. When the diameter of the through hole is less than 0.5 mm, the through hole is blocked by molten lithium carbonate generated when carbon dioxide is absorbed, making it difficult to efficiently perform the carbon dioxide gas release reaction during regeneration.
The granular porous body having the through-hole is, for example, a cylinder having a polygonal through-hole such as a circle or a quadrangle, a polygonal cylinder such as a quadrangular cylinder or a hexagonal cylinder, or a sphere or an ellipsoid. Can be mentioned. This through-hole is formed so as to pass along the center point of the column body along the axial direction, and is formed through the center point of a sphere or ellipsoid.
As a specific form, a cylindrical porous body 2 in which the cylindrical through-hole 1 shown in FIG. 1A is formed so that the center point is along the axial direction, that is, a cylindrical porous body is given. It is done. The cylindrical porous body 2 having the circular through-hole 1 has a diameter L of the cylindrical porous body 2 and a diameter of the through-hole 1 in a cross section perpendicular to the through-hole 1 (FIG. 1B). Is L1, and the thickness between the through hole 1 and the outer peripheral surface is L2 and L3, L2 and L3 (both are equal) are 3 mm or less. The particularly preferable thickness is not less than L / 4 mm and not more than 3 mm.

前記図1に示す円柱状の多孔質体2の外径寸法は、直径Lが3〜10mm、高さHが3〜10mmであることが好ましい。多孔質体2の直径を3mm未満にすると、炭酸ガスを含む被処理ガスを吸収材の充填部に流通させた場合に圧力損失が増大し、エネルギー効率が低下する虞がある。一方、多孔質体2の直径が10mmを超えると、炭酸ガスと反応する吸収材部分が限られ、炭酸ガスと反応しない箇所が生じて炭酸ガスを吸収材で有効に吸収させることが困難になる。多孔質体2の貫通孔1は、その直径L1が0.5mm以上であることが好ましい。
別の具体的な形態としては、図2の(A)に示す円柱状貫通孔1が中心点を通って形成された球状の多孔質体3が挙げられる。この円形貫通孔1を有する球状の多孔質体3は、貫通孔1の中心点を垂直に横切る断面(図2の(B))において球状の多孔質体3の直径をL、貫通孔1の直径をL1、貫通孔1と外周面との間の肉厚をL2,L3とすると、L2,L3(いずれも等しい)が3mm以下である。特に好ましい前記肉厚は、L/4mm以上、3mm以下である。球状の多孔質体3の外径寸法は、前述した円柱状の場合同様な理由から直径Lが3〜10mmであることが好ましい。さらに、球状の多孔質体3の貫通孔1の大きさは特に限定されないが、その直径L1を0.5mm以上にすることが好ましい。
前記粒状の多孔質体は、30%以上、より好ましくは35%以上、最も好ましくは40〜60%の気孔率を有することが望ましい。なお、この気孔率は貫通孔を含まない。前記多孔質体の気孔率を30%未満にすると、二酸化炭素の吸収によって生成した炭酸リチウムを存在させる空間が不足して二酸化炭素の吸収性能が低下する虞がある。
前記粒状の多孔質体は、炭酸ガスの吸収速度を向上させるために、炭酸カリウムや炭酸ナトリウムのようなアルカリ炭酸塩をさらに含むことを許容する。リチウムシリケートが炭酸ガスの吸収により生じた炭酸リチウムは、このようなアルカリ炭酸塩と反応して共晶塩を形成し、材料の融点が低下し、溶融状態になる。その結果、リチウムが移動しやすくなり炭酸ガスの吸収速度が促進される。
The outer diameter of the cylindrical porous body 2 shown in FIG. 1 is preferably 3 to 10 mm in diameter L and 3 to 10 mm in height H. If the diameter of the porous body 2 is less than 3 mm, when the gas to be treated containing carbon dioxide gas is circulated through the filling portion of the absorbent material, the pressure loss increases and the energy efficiency may be reduced. On the other hand, when the diameter of the porous body 2 exceeds 10 mm, the absorbent material portion that reacts with carbon dioxide gas is limited, and there are portions that do not react with carbon dioxide gas, making it difficult to effectively absorb carbon dioxide gas with the absorbent material. . The through hole 1 of the porous body 2 preferably has a diameter L1 of 0.5 mm or more.
Another specific form is a spherical porous body 3 in which the cylindrical through-hole 1 shown in FIG. 2A is formed through the center point. The spherical porous body 3 having the circular through-hole 1 has a diameter L of the spherical porous body 3 in the cross section perpendicular to the center point of the through-hole 1 (FIG. 2B) and the through-hole 1. When the diameter is L1, and the thickness between the through hole 1 and the outer peripheral surface is L2 and L3, L2 and L3 (both are equal) are 3 mm or less. The particularly preferable thickness is not less than L / 4 mm and not more than 3 mm. The outer diameter of the spherical porous body 3 is preferably 3 to 10 mm in diameter L for the same reason in the case of the cylindrical shape described above. Further, the size of the through-hole 1 of the spherical porous body 3 is not particularly limited, but the diameter L1 is preferably 0.5 mm or more.
The granular porous body desirably has a porosity of 30% or more, more preferably 35% or more, and most preferably 40 to 60%. This porosity does not include through holes. If the porosity of the porous body is less than 30%, there is a risk that the space for allowing the lithium carbonate produced by the absorption of carbon dioxide to exist is insufficient and the carbon dioxide absorption performance is lowered.
The granular porous body is allowed to further contain an alkali carbonate such as potassium carbonate or sodium carbonate in order to improve the absorption rate of carbon dioxide gas. Lithium carbonate produced by the absorption of carbon dioxide by the lithium silicate reacts with such an alkali carbonate to form a eutectic salt, and the melting point of the material is lowered to a molten state. As a result, lithium easily moves and the absorption rate of carbon dioxide gas is promoted.

次に、第1実施形態に係る炭酸ガス吸収材の製造方法を詳細に説明する。   Next, the manufacturing method of the carbon dioxide absorbent according to the first embodiment will be described in detail.

炭酸リチウムと二酸化珪素をLi2CO3:SiO2のモル比が2:1になるように混合してリチウムオルトシリケートの原料粉末を調製する。この原料粉末を例えば電気炉にて600〜1200℃に加熱することにより前述した式(2)で示す反応が生じてリチウムシリケート(例えばリチウムオルトシリケート)を合成する。このとき、炭酸ガスの吸収速度を促進させるために、例えば炭酸カリウム、炭酸ナトリウムのようなアルカリ炭酸塩を原料粉末の段階またはリチウムシリケートの合成後に添加することを許容する。アルカリ炭酸塩の添加量は、リチウムシリケートに対して40mol%以下にすることが好ましい。添加量が40mol%を超えると、炭酸ガスの吸収反応の促進効果が飽和し、吸収材の全体量に対する炭酸ガス吸収反応を関与するリチウムシリケートの割合が低減されるため、逆に炭酸ガス吸収性能が低下する虞がある。 Lithium carbonate and silicon dioxide are mixed so that the molar ratio of Li 2 CO 3 : SiO 2 is 2: 1 to prepare a lithium orthosilicate raw material powder. When this raw material powder is heated to 600 to 1200 ° C. in an electric furnace, for example, the reaction represented by the above-described formula (2) occurs to synthesize lithium silicate (for example, lithium orthosilicate). At this time, in order to accelerate the absorption rate of carbon dioxide, it is allowed to add an alkali carbonate such as potassium carbonate or sodium carbonate after the raw material powder or after the synthesis of lithium silicate. The amount of alkali carbonate added is preferably 40 mol% or less with respect to lithium silicate. If the amount added exceeds 40 mol%, the carbon dioxide absorption reaction is accelerated, and the proportion of lithium silicate involved in the carbon dioxide absorption reaction with respect to the total amount of the absorbent is reduced. May decrease.

次いで、前記リチウムシリケート粉末および必要に応じてアルカリ炭酸塩が添加された粉末を例えば押出し成形により貫通孔を有する円柱状、球状、角柱状のような粒状の多孔質体とし、炭酸ガス吸収材を製造する。
なお、炭酸ガス吸収材の製造において原料粉末の焼成、成形の順番に行う場合に限らず、原料粉末の成形後に焼成してもよい。
Next, the lithium silicate powder and, if necessary, a powder to which an alkali carbonate is added are formed into a porous body having a cylindrical shape, a spherical shape, a prismatic shape having through-holes by, for example, extrusion molding, and a carbon dioxide absorbent is used. To manufacture.
In the production of the carbon dioxide absorbent, the material powder is not necessarily fired and fired in this order, and may be fired after the raw material powder is formed.

前記成形工程では、粉末を結合させるためのバインダを用いることができる。このバインダは、無機系、有機系の材料のいずれも用いることができる。無機系材料としては、例えば粘土、鉱物、石灰乳などが挙げられる。有機系材料としては、例えば澱粉、メチルセルロース、ポリビニルアルコール、パラフィンなどが挙げられる。バインダの添加量は、リチウムシリケート粉末に対して0.1〜20重量%にするのが好ましい。バインダは、適当な溶媒に分散または溶解した状態で添加することができる。溶媒は、水あるいは有機溶媒なども用いることができる。   In the molding step, a binder for binding powder can be used. As the binder, both inorganic and organic materials can be used. Examples of the inorganic material include clay, mineral, and lime milk. Examples of the organic material include starch, methyl cellulose, polyvinyl alcohol, and paraffin. The addition amount of the binder is preferably 0.1 to 20% by weight with respect to the lithium silicate powder. The binder can be added in a state dispersed or dissolved in an appropriate solvent. As the solvent, water or an organic solvent can also be used.

次に、前述した炭酸ガス吸収材による炭酸ガスを含む被処理ガスの処理方法を説明する。
リチウムシリケートを主成分とし、貫通孔を有する粒状の多孔質体であって、前記貫通孔を垂直に横切る断面において前記貫通孔と外面との間の肉厚が3mm以下である炭酸ガス吸収材に炭酸ガスを含む被処理ガスを炭酸ガスの吸収を可能にする温度にて接触させることによって、前記吸収材が被処理ガス中の炭酸ガスと前述した式(1)に従って反応して炭酸ガスが吸収(除去)される。
Next, the processing method of the to-be-processed gas containing the carbon dioxide gas by the carbon dioxide absorber mentioned above is demonstrated.
A carbonaceous gas absorbent comprising a lithium silicate as a main component and having a through-hole, and having a wall thickness of 3 mm or less between the through-hole and an outer surface in a cross section perpendicular to the through-hole. By contacting the gas to be treated containing carbon dioxide at a temperature that enables the carbon dioxide to be absorbed, the absorbent reacts with the carbon dioxide in the gas to be treated according to the above-described formula (1), and the carbon dioxide is absorbed. (Removed).

前記被処理ガスとしては、例えば炭化水素を主成分とする燃料を利用するエネルギープラントや化学プラントから排出される排ガス、自動車などから発生する排ガスを挙げることができる。
前記炭酸ガスの吸収を可能にする温度は、例えば500〜700℃である。
Examples of the gas to be treated include exhaust gas discharged from energy plants and chemical plants that use fuels mainly composed of hydrocarbons, and exhaust gas generated from automobiles.
The temperature that enables absorption of the carbon dioxide gas is, for example, 500 to 700 ° C.

次いで、前記炭酸ガス吸収材が被処理ガス中の炭酸ガスと反応して、その吸収能力が低下したとき、前記炭酸ガスの吸収を可能にする温度より高い温度に加熱することによって、炭酸ガスを吸収した吸収材が前述した式(2)に従って反応して再生される。   Next, when the carbon dioxide absorbent reacts with the carbon dioxide in the gas to be treated and its absorption capacity is reduced, the carbon dioxide is heated to a temperature higher than the temperature that allows the carbon dioxide to be absorbed. The absorbed absorbent material reacts and is regenerated according to the above-described equation (2).

前記再生時の温度は、例えば720℃以上である。   The temperature during the regeneration is, for example, 720 ° C. or higher.

前記再生時に窒素ガスのような不活性ガスを炭酸ガスを吸収した吸収材に流通させてもよい。
このように炭酸ガスの吸収後の吸収材を再生することにより、吸収材を繰り返し被処理ガスの炭酸ガスの吸収・除去に利用することが可能になる。
An inert gas such as nitrogen gas may be circulated through the absorbent material that has absorbed carbon dioxide gas during the regeneration.
Thus, by regenerating the absorbent after absorption of carbon dioxide, it becomes possible to repeatedly use the absorbent for absorption / removal of carbon dioxide in the gas to be treated.

前述した炭酸ガスを含む被処理ガスの処理は、例えば図3に示す反応器が用いられる。この反応器11は、両端にフランジ12a,12bを有する円筒状本体13と、この本体13の一端(上端)のフランジ12aに当接され、ガス導入管14を有する上部円板状蓋体15と、前記本体13の他端(下端)のフランジ12bに当接され、ガス排出管16を有する下部円板状蓋体17とを備えている。前記円筒状本体13のフランジ12a,12bには、複数のボルト挿通穴(図示せず)が開口され、前記各円板状蓋体15、17にもこれら挿通穴に対応してボルト挿通穴(図示せず)が開口され、円筒状本体13上端のフランジ12aと上部円板状蓋体15の合致したボルト挿通穴、および円筒状本体13下端のフランジ12bと下部円板状蓋体17の合致したボルト挿通穴にボルトをそれぞれ挿入し、ナットで締め付けることによって、各円板状蓋体15、17が円筒状本体13に固定される。前記上部円板状蓋体15におけるガス導入管14の開口部および前記下部円板状蓋体17におけるガス排出管16の開口部には、メッシュ18,19がそれぞれ取り付けられている。
このような図3に示す反応器11において、上部円板状蓋体15を円筒状本体13から外して、下部円板状蓋体17を有する円筒状本体13内にリチウムシリケートを主成分とし、例えば円柱状貫通孔を有する円筒状多孔質体で、この貫通孔を垂直に横切る断面において貫通孔と外面との間の肉厚が3mm以下である炭酸ガス吸収材リチウム20を充填した後、再び上部円板状蓋体15を円筒状本体13に取り付ける。つづいて、炭酸ガスを含む被処理ガスを上部円板状蓋体15のガス導入管14を通して円筒状本体13内に充填された炭酸ガス吸収材20を流通、接触させる。このとき、500〜700℃に加熱された被処理ガスを用いるか、例えば反応器11の外周に配置した図示しないヒータにより反応器11内の吸収材20を500〜700℃に加熱することにより、吸収材20が被処理ガス中の炭酸ガスと前述した式(1)に従って反応し、炭酸ガスが吸収(除去)される。吸収材20と反応させた後の被処理ガスは、下部円板状蓋体17のガス排出管16を通して排出される。
一方、前記炭酸ガス吸収材20が被処理ガス中の炭酸ガスと反応して、その吸収能力が低下したとき、被処理ガスの供給を停止し、例えば反応器11の外周に配置した図示しないヒータにより前記反応器11内の炭酸ガスを吸収した吸収材を例えば720℃以上に加熱することによって、炭酸ガスを吸収した吸収材が前述した式(2)に従って反応して再生される。この再生処理で反応器11内に発生された炭酸ガスはガス排出管16を通して排出、回収される。
(第2実施形態)
この第2実施形態に係る炭酸ガス吸収材は、リチウムシリケートを主成分とし、厚さが3mm以下の角形平板状の多孔質体である。
For example, the reactor shown in FIG. 3 is used for the treatment of the gas to be treated containing carbon dioxide. The reactor 11 includes a cylindrical main body 13 having flanges 12a and 12b at both ends, an upper disk-shaped lid 15 having a gas introduction pipe 14 in contact with a flange 12a at one end (upper end) of the main body 13. And a lower disc-shaped lid 17 having a gas discharge pipe 16 in contact with the flange 12b at the other end (lower end) of the main body 13. A plurality of bolt insertion holes (not shown) are opened in the flanges 12a and 12b of the cylindrical main body 13, and the disc-like lid bodies 15 and 17 also have bolt insertion holes (corresponding to these insertion holes). (Not shown) is opened, and the bolt 12 insertion hole of the upper end of the cylindrical body 13 and the upper disk-shaped lid 15 is matched, and the lower end of the cylindrical body 13 is aligned with the lower disk-shaped lid 17 of the flange 12b. The disc-shaped lids 15 and 17 are fixed to the cylindrical body 13 by inserting bolts into the bolt insertion holes and tightening them with nuts. Meshes 18 and 19 are respectively attached to the opening of the gas introduction pipe 14 in the upper disk-shaped lid 15 and the opening of the gas discharge pipe 16 in the lower disk-shaped lid 17.
In such a reactor 11 shown in FIG. 3, the upper disk-shaped lid body 15 is removed from the cylindrical main body 13, and lithium silicate is mainly contained in the cylindrical main body 13 having the lower disk-shaped lid body 17. For example, in a cylindrical porous body having a columnar through hole, the carbon dioxide absorbent lithium 20 having a thickness of 3 mm or less between the through hole and the outer surface in a cross section perpendicular to the through hole is filled, and then again. The upper disk-shaped lid 15 is attached to the cylindrical main body 13. Subsequently, the carbon dioxide absorbing material 20 filled in the cylindrical main body 13 is passed through and brought into contact with the gas to be treated containing carbon dioxide through the gas introduction pipe 14 of the upper disk-shaped lid 15. At this time, by using the gas to be treated heated to 500 to 700 ° C., or by heating the absorbent 20 in the reactor 11 to 500 to 700 ° C. with a heater (not shown) arranged on the outer periphery of the reactor 11, for example. The absorbent 20 reacts with the carbon dioxide in the gas to be treated according to the above-described formula (1), and the carbon dioxide is absorbed (removed). The gas to be treated after reacting with the absorbent 20 is discharged through the gas discharge pipe 16 of the lower disk-shaped lid 17.
On the other hand, when the carbon dioxide absorbent 20 reacts with the carbon dioxide in the gas to be treated and the absorption capacity thereof is reduced, the supply of the gas to be treated is stopped and, for example, a heater (not shown) disposed on the outer periphery of the reactor 11 By heating the absorbent that has absorbed the carbon dioxide gas in the reactor 11 to, for example, 720 ° C. or higher, the absorbent that has absorbed the carbon dioxide reacts and is regenerated according to the above-described equation (2). The carbon dioxide gas generated in the reactor 11 by this regeneration process is discharged and collected through the gas discharge pipe 16.
(Second Embodiment)
The carbon dioxide absorbing material according to the second embodiment is a rectangular flat plate-shaped porous body mainly composed of lithium silicate and having a thickness of 3 mm or less.

前記リチウムシリケートは、リチウムオルトシリケート(Li4SiO4)を用いることが好ましい。このリチウムオルトシリケートは、炭酸ガスと前述した式(1)に従って反応して吸収し、下記式(2)に従って反応し、再生する。 The lithium silicate is preferably lithium orthosilicate (Li 4 SiO 4 ). This lithium orthosilicate reacts with carbon dioxide according to the above formula (1) and absorbs, reacts according to the following formula (2), and is regenerated.

前記多孔質体の厚さが3mmを超えると、炭酸ガス吸収・放出(再生)後において、吸収材内部に前述した式(1)に示す炭酸リチウムが蓄積するようになって長期間に亘る吸収・再生の繰り返し時、高い炭酸ガスの吸収性能を維持することが困難になる。
前記多孔質体は、例えば三角形平板状、矩形平板状、六角平板状等をなす。
具体的な形態としては、図4に示す厚さ(T)が3mm以下である矩形平板状多孔質体21が挙げられる。この矩形平板状多孔質体21は、幅(W),長さ(L)がそれぞれ3〜10mmであることが好ましい。
前記多孔質体は、30%以上、より好ましくは35%以上、最も好ましくは40〜60%の気孔率を有することが望ましい。前記多孔質体の気孔率を30%未満にすると、二酸化炭素の吸収によって生成した炭酸リチウムを存在させる空間が不足して二酸化炭素の吸収性能が低下する虞がある。
前記多孔質体は、炭酸ガスの吸収速度を向上させるために、炭酸カリウムや炭酸ナトリウムのようなアルカリ炭酸塩をさらに含むことを許容する。リチウムシリケートが炭酸ガスの吸収により生じた炭酸リチウムは、このようなアルカリ炭酸塩と反応して共晶塩を形成し、材料の融点が低下し、溶融状態になる。その結果、リチウムが移動しやすくなり炭酸ガスの吸収速度が促進される。
When the thickness of the porous body exceeds 3 mm, after the carbon dioxide absorption / release (regeneration), the lithium carbonate represented by the above formula (1) accumulates in the absorbent material and absorbs over a long period of time. -It becomes difficult to maintain a high carbon dioxide absorption performance during repeated regeneration.
The porous body has, for example, a triangular flat plate shape, a rectangular flat plate shape, a hexagonal flat plate shape, or the like.
As a specific form, a rectangular flat plate-like porous body 21 having a thickness (T) shown in FIG. The rectangular flat porous body 21 preferably has a width (W) and a length (L) of 3 to 10 mm, respectively.
It is desirable that the porous body has a porosity of 30% or more, more preferably 35% or more, and most preferably 40 to 60%. If the porosity of the porous body is less than 30%, there is a risk that the space for allowing the lithium carbonate produced by the absorption of carbon dioxide to exist is insufficient and the carbon dioxide absorption performance is lowered.
The porous body may further contain an alkali carbonate such as potassium carbonate or sodium carbonate in order to improve the absorption rate of carbon dioxide gas. Lithium carbonate produced by the absorption of carbon dioxide by the lithium silicate reacts with such an alkali carbonate to form a eutectic salt, and the melting point of the material is lowered to a molten state. As a result, lithium easily moves and the absorption rate of carbon dioxide gas is promoted.

次に、第2実施形態に係る炭酸ガス吸収材の製造方法を詳細に説明する。   Next, the manufacturing method of the carbon dioxide absorbent according to the second embodiment will be described in detail.

前述した第1実施形態と同様な方法でリチウムシリケート(例えばリチウムオルトシリケート)を合成し、このリチウムシリケート粉末および必要に応じてアルカリ炭酸塩が添加された粉末を例えば押出し成形により角形平板状の多孔質体とし、炭酸ガス吸収材を製造する。
なお、炭酸ガス吸収材の製造において原料粉末の焼成、成形の順番に行う場合に限らず、原料粉末の成形後に焼成してもよい。
Lithium silicate (for example, lithium orthosilicate) is synthesized by the same method as in the first embodiment described above, and this lithium silicate powder and a powder to which an alkali carbonate is added as required are, for example, extruded to form a rectangular flat plate-like porous material. A carbon dioxide gas absorbent is manufactured as a material.
In the production of the carbon dioxide absorbent, the material powder is not necessarily fired and fired in this order, and may be fired after the raw material powder is formed.

前記成形工程では、第1実施形態で説明したように粉末を結合させるためのバインダを用いることを許容する。
次に、前述した炭酸ガス吸収材による炭酸ガスを含む被処理ガスの処理方法を説明する。
リチウムシリケートを主成分とし、厚さが3mm以下の角形平板状の多孔質体である炭酸ガス吸収材に炭酸ガスを含む被処理ガスを炭酸ガスの吸収を可能にする温度(例えば500〜700℃)にて接触させることによって、前記吸収材が被処理ガス中の炭酸ガスと前述した式(1)に従って反応して炭酸ガスが吸収(除去)される。
In the molding step, as described in the first embodiment, it is allowed to use a binder for binding powder.
Next, the processing method of the to-be-processed gas containing the carbon dioxide gas by the carbon dioxide absorber mentioned above is demonstrated.
A temperature (for example, 500 to 700 ° C.) that makes it possible to absorb a gas to be treated containing carbon dioxide in a carbon dioxide absorbent that is a rectangular flat porous body having a thickness of 3 mm or less, the main component of which is lithium silicate. ), The absorbent reacts with the carbon dioxide in the gas to be treated in accordance with the above-described formula (1) to absorb (remove) the carbon dioxide.

前記被処理ガスとしては、例えば炭化水素を主成分とする燃料を利用するエネルギープラントや化学プラントから排出される排ガス、自動車などから発生する排ガスを挙げることができる。
次いで、前記炭酸ガス吸収材が被処理ガス中の炭酸ガスと反応して、その吸収能力が低下したとき、前記炭酸ガスの吸収を可能にする温度より高い温度(例えば720℃以上)に加熱することによって、炭酸ガスを吸収した吸収材が前述した式(2)に従って反応して再生される。
Examples of the gas to be treated include exhaust gas discharged from energy plants and chemical plants that use fuels mainly composed of hydrocarbons, and exhaust gas generated from automobiles.
Next, when the carbon dioxide absorbing material reacts with the carbon dioxide in the gas to be treated and the absorption capacity thereof decreases, the carbon dioxide absorbent is heated to a temperature higher than the temperature at which the carbon dioxide can be absorbed (for example, 720 ° C. or higher). Thus, the absorbent that has absorbed the carbon dioxide gas reacts and is regenerated in accordance with the above-described equation (2).

前記再生時に窒素ガスのような不活性ガスを炭酸ガスを吸収した吸収材に流通させてもよい。
前述した炭酸ガスを含む被処理ガスの処理は、第1実施形態と同様に例えば図3に示す反応器を用いて実施することが可能である。
An inert gas such as nitrogen gas may be circulated through the absorbent material that has absorbed carbon dioxide gas during the regeneration.
The above-described treatment of the gas to be treated containing carbon dioxide gas can be performed using, for example, the reactor shown in FIG. 3 as in the first embodiment.

このように炭酸ガスの吸収後の吸収材を再生することにより、吸収材を繰り返し被処理ガスの炭酸ガスの吸収・除去に利用することが可能になる。   Thus, by regenerating the absorbent after absorption of carbon dioxide, it becomes possible to repeatedly use the absorbent for absorption / removal of carbon dioxide in the gas to be treated.

以上、第2実施形態によればリチウムシリケートを主成分とし、厚さが3mm以下の角形平板状の多孔質体から炭酸ガス吸収材を構成することによって、再生時に炭酸リチウムが吸収材に残留、蓄積されることなく、ほぼ全吸収材を前述の式(2)のように炭酸ガスを放出してリチウムシリケートに変換できる。その結果、炭酸ガスの吸収・再生を長期間に亘って繰り返しても、安定した高い炭酸ガスの吸収性能を発現することが可能になる。
以下、本発明の実施例を詳細に説明する。
As described above, according to the second embodiment, the carbon dioxide gas absorbent is composed of a rectangular flat plate-shaped porous body mainly composed of lithium silicate and having a thickness of 3 mm or less, so that lithium carbonate remains in the absorbent during regeneration. Without accumulating, almost all of the absorbent can be converted to lithium silicate by releasing carbon dioxide as shown in Equation (2) above. As a result, even if carbon dioxide absorption / regeneration is repeated over a long period of time, stable and high carbon dioxide absorption performance can be achieved.
Hereinafter, embodiments of the present invention will be described in detail.

(実施例1)
平均粒径10μmの二酸化珪素粉末と平均粒径1μmの炭酸リチウム粉末とを二酸化珪素:炭酸リチウムのモル比が1:2となるように混合した。得られた混合原料粉末を箱型電気炉にて大気中、1000℃で8時間焼成してリチウムオルトシリケート粉末を得た。このリチウムオルトシリケート粉末を押し出し機内に投入し、押し出し法により中空円筒状多孔質体からなる炭酸ガス吸収材を製造した。この中空円筒状多孔質体は、外径8mm、高さ8mmで、3mm径の円柱状貫通孔がその中心点を軸方向に沿うように形成されている。また、中空円筒状多孔質体は水銀吸着法による気孔率(貫通孔を除く)が40%で、貫通孔を垂直に横切る断面において貫通孔と外面の間の肉厚が2.5mmであった。
Example 1
Silicon dioxide powder having an average particle diameter of 10 μm and lithium carbonate powder having an average particle diameter of 1 μm were mixed so that the molar ratio of silicon dioxide: lithium carbonate was 1: 2. The obtained mixed raw material powder was fired at 1000 ° C. for 8 hours in the air in a box-type electric furnace to obtain a lithium orthosilicate powder. This lithium orthosilicate powder was put into an extruder, and a carbon dioxide absorbing material comprising a hollow cylindrical porous body was produced by an extrusion method. This hollow cylindrical porous body has an outer diameter of 8 mm, a height of 8 mm, and a 3 mm diameter cylindrical through hole formed so that its center point is along the axial direction. The hollow cylindrical porous body had a porosity of 40% by mercury adsorption method (excluding the through hole), and the thickness between the through hole and the outer surface was 2.5 mm in a cross section perpendicular to the through hole. .

(実施例2)
実施例1と同様なリチウムオルトシリケート粉末を押し出し機内に投入し、押し出し法により中空円筒状多孔質体からなる炭酸ガス吸収材を製造した。この中空円筒状多孔質体は、外径8mm、高さ8mmで、2mm径の円柱状貫通孔がその中心点を軸方向に沿うように形成されている。また、前記中空円筒状多孔質体は水銀吸着法による気孔率(貫通孔を除く)が40%で、貫通孔をその貫通孔に対して垂直に横切る断面において貫通孔と外面の間の肉厚が3mmであった。
(Example 2)
The same lithium orthosilicate powder as in Example 1 was put into an extruder, and a carbon dioxide gas absorbent comprising a hollow cylindrical porous body was produced by an extrusion method. This hollow cylindrical porous body has an outer diameter of 8 mm, a height of 8 mm, and a 2 mm diameter cylindrical through hole formed so that its center point is along the axial direction. The hollow cylindrical porous body has a porosity (excluding through holes) of 40% by the mercury adsorption method, and the thickness between the through hole and the outer surface in a cross section perpendicular to the through hole. Was 3 mm.

(比較例1)
実施例1と同様なリチウムオルトシリケート粉末を押し出し機内に投入し、押し出し法により中空円筒状多孔質体からなる炭酸ガス吸収材を製造した。この中空円筒状多孔質体は、外径8mm、高さ8mmで、1mm径の円柱状貫通孔がその中心点を軸方向に沿うように形成されている。また、前記中空円筒状多孔質体は水銀吸着法による気孔率(貫通孔を除く)が40%で、貫通孔をその貫通孔に対して垂直に横切る断面において貫通孔と外面の間の肉厚が3.5mmであった。
(Comparative Example 1)
The same lithium orthosilicate powder as in Example 1 was put into an extruder, and a carbon dioxide gas absorbent comprising a hollow cylindrical porous body was produced by an extrusion method. This hollow cylindrical porous body has an outer diameter of 8 mm, a height of 8 mm, and a 1 mm diameter cylindrical through hole formed so that its center point is along the axial direction. The hollow cylindrical porous body has a porosity (excluding through holes) of 40% by the mercury adsorption method, and the thickness between the through hole and the outer surface in a cross section perpendicular to the through hole. Was 3.5 mm.

(比較例2)
実施例1と同様なリチウムオルトシリケート粉末を押し出し機内に投入し、押し出し法により外径8mm、高さ8mmで、水銀吸着法による気孔率40%の円柱状多孔質体からなる炭酸ガス吸収材を製造した。
(Comparative Example 2)
The same lithium orthosilicate powder as in Example 1 was put into an extruder, and a carbon dioxide gas absorbent composed of a cylindrical porous body having an outer diameter of 8 mm and a height of 8 mm by an extrusion method and a porosity of 40% by a mercury adsorption method was used. Manufactured.

得られた実施例1,2および比較例1,2の炭酸ガス吸収材について、炭酸ガス吸収および放出の繰り返し性能を評価した。すなわち、炭酸ガス吸収材50gをアルミナ製のこう鉢に入れ、このこう鉢を電気炉に設置した。炭酸ガスと空気の混合ガス(炭酸ガス:空気が体積比で20:80)を前記こう鉢内に流しながら、電気炉の加熱により600℃で1時間保持して炭酸ガス吸収材に炭酸ガスを吸収させた後、炭酸ガス吸収材の重量を測定した。次いで、電気炉を850℃まで昇温し、その温度で1時間保持して炭酸ガス吸収材から炭酸ガスを放出させ、放出後の炭酸ガス吸収材の重量を測定した。1回目の吸収性能を、吸収後の重量変化率(wt%)により算出した。   With respect to the carbon dioxide gas absorbents of Examples 1 and 2 and Comparative Examples 1 and 2 thus obtained, the carbon dioxide absorption and release repetition performance was evaluated. That is, 50 g of the carbon dioxide absorbent was placed in an alumina mortar, and this mortar was installed in an electric furnace. While flowing a mixed gas of carbon dioxide and air (carbon dioxide: air in a volume ratio of 20:80) into the mortar, the carbon dioxide is absorbed in the carbon dioxide absorbent by holding at 600 ° C. for 1 hour by heating in an electric furnace. After absorption, the weight of the carbon dioxide absorbent was measured. Next, the temperature of the electric furnace was raised to 850 ° C. and maintained at that temperature for 1 hour to release carbon dioxide from the carbon dioxide absorbent, and the weight of the carbon dioxide absorbent after release was measured. The first absorption performance was calculated from the weight change rate (wt%) after absorption.

同様な条件で炭酸ガスの吸収・放出を100回繰り返して、1回目の場合と同様の手法により100回目における吸収性能を求めた。同様な条件で炭酸ガスの吸収・放出を200回繰り返して、1回目の場合と同様の手法により200回目における吸収性能を求めた。   Under the same conditions, absorption and release of carbon dioxide gas were repeated 100 times, and the absorption performance at the 100th time was obtained by the same method as in the first time. Absorption / release of carbon dioxide gas was repeated 200 times under the same conditions, and the absorption performance at the 200th time was determined by the same method as in the first time.

得られた100回目、200回目における吸収性能を下記式(3)、(4)に代入してそれぞれの回数の吸収性能維持率を求めた。
(100回後の吸収性能/1回後の吸収性能)×100(%)…(3)
(200回後の吸収性能/1回後の吸収性能)×100(%)…(4)
それらの結果を下記表1に示す。

Figure 2006263612
The obtained absorption performance at the 100th time and the 200th time was substituted into the following formulas (3) and (4) to obtain the absorption performance maintenance ratio of each number.
(Absorption performance after 100 times / Absorption performance after 1 time) × 100 (%) (3)
(Absorption performance after 200 times / Absorption performance after 1 time) × 100 (%) (4)
The results are shown in Table 1 below.
Figure 2006263612

前記表1から明らかなように肉厚が3mm以下の中空円筒状多孔質体からなる実施例1,2の炭酸ガス吸収材は、肉厚が3mmを超える中空円筒状多孔質体からなる比較例1の炭酸ガス吸収材、肉厚が3mmを超える円柱状多孔質体からなる比較例2の炭酸ガス吸収材に比べて炭酸ガスの吸収・放出を100回繰り返し後の吸収性能維持率が高いのみならず、さらに炭酸ガスの吸収・放出を200回繰り返し後の吸収性能維持率も高く、長期間の炭酸ガスの吸収・放出の繰り返しにおいても優れた炭酸ガス吸収性能を維持することが可能であることがわかる。
なお、平均粒径10μmの二酸化珪素粉末と平均粒径1μmの炭酸リチウム粉末と平均粒径1μmの炭酸カリウム粉末を二酸化珪素:炭酸リチウム:炭酸カリウムのモル比が1:2:0.1となるように混合した混合原料粉末を箱型電気炉にて大気中、1000℃で8時間焼成して炭酸カリウムを含むリチウムオルトシリケート粉末を調製し、このリチウムオルトシリケート粉末を実施例1、2と同様な方法で製造した中空円筒状多孔質体からなる炭酸ガス吸収材は、前述した炭酸ガス吸収および放出の繰り返し性能を評価において同様な優れた炭酸ガス吸収性能を維持することが可能であった。
As apparent from Table 1, the carbon dioxide absorbents of Examples 1 and 2 comprising a hollow cylindrical porous body having a thickness of 3 mm or less are comparative examples comprising a hollow cylindrical porous body having a thickness exceeding 3 mm. Compared with the carbon dioxide gas absorbent material of Comparative Example 2 consisting of a carbon dioxide gas absorbent material of 1 and a cylindrical porous body having a wall thickness exceeding 3 mm, the absorption performance maintenance rate after repeating 100 times of absorption and release of carbon dioxide gas is only high. Furthermore, the absorption performance maintenance rate after repeating absorption / release of carbon dioxide 200 times is also high, and it is possible to maintain excellent carbon dioxide absorption performance even in repeated absorption / release of carbon dioxide for a long time. I understand that.
Note that a silicon dioxide powder having an average particle diameter of 10 μm, a lithium carbonate powder having an average particle diameter of 1 μm, and a potassium carbonate powder having an average particle diameter of 1 μm have a molar ratio of silicon dioxide: lithium carbonate: potassium carbonate of 1: 2: 0.1. The mixed raw material powder was calcined in a box-type electric furnace at 1000 ° C. for 8 hours in the air to prepare lithium orthosilicate powder containing potassium carbonate. This lithium orthosilicate powder was the same as in Examples 1 and 2. The carbon dioxide absorbing material comprising a hollow cylindrical porous body manufactured by a simple method was able to maintain the same excellent carbon dioxide absorbing performance in evaluating the repeated performance of carbon dioxide absorption and release described above.

(実施例3)
平均粒径10μmの二酸化珪素粉末と平均粒径1μmの炭酸リチウム粉末とを二酸化珪素:炭酸リチウムのモル比が1:2となるように混合した。得られた混合原料粉末を箱型電気炉にて大気中、1000℃で8時間焼成してリチウムオルトシリケート粉末を得た。このリチウムオルトシリケート粉末を押し出し機内に投入し、押し出し法により厚さ2mm、幅4mm、長さ4mmの矩形平板状多孔質体からなる炭酸ガス吸収材を製造した。この矩形平板状多孔質体は、水銀吸着法による気孔率が40%であった。
(Example 3)
Silicon dioxide powder having an average particle diameter of 10 μm and lithium carbonate powder having an average particle diameter of 1 μm were mixed so that the molar ratio of silicon dioxide: lithium carbonate was 1: 2. The obtained mixed raw material powder was fired at 1000 ° C. for 8 hours in the air in a box-type electric furnace to obtain a lithium orthosilicate powder. This lithium orthosilicate powder was put into an extruder, and a carbon dioxide absorbing material made of a rectangular flat porous body having a thickness of 2 mm, a width of 4 mm, and a length of 4 mm was produced by an extrusion method. This rectangular flat porous body had a porosity of 40% by the mercury adsorption method.

(実施例4)
実施例3と同様なリチウムオルトシリケート粉末を押し出し機内に投入し、押し出し法により厚さ3mm、幅4mm、長さ4mmの矩形平板状多孔質体からなる炭酸ガス吸収材を製造した。この矩形平板状多孔質体は、水銀吸着法による気孔率が40%であった。
Example 4
The same lithium orthosilicate powder as in Example 3 was put into an extruder, and a carbon dioxide gas absorbing material composed of a rectangular flat porous body having a thickness of 3 mm, a width of 4 mm, and a length of 4 mm was produced by an extrusion method. This rectangular flat porous body had a porosity of 40% by the mercury adsorption method.

(比較例3)
実施例3と同様なリチウムオルトシリケート粉末を押し出し機内に投入し、押し出し法により厚さ3.5mm、幅4mm、長さ4mmの矩形平板状多孔質体からなる炭酸ガス吸収材を製造した。この矩形平板状多孔質体は、水銀吸着法による気孔率が40%であった。
(Comparative Example 3)
The same lithium orthosilicate powder as in Example 3 was put into an extruder, and a carbon dioxide absorbent comprising a rectangular flat porous body having a thickness of 3.5 mm, a width of 4 mm, and a length of 4 mm was produced by an extrusion method. This rectangular flat porous body had a porosity of 40% by the mercury adsorption method.

得られた実施例3,4および比較例3の炭酸ガス吸収材について、前述したのと同様な方法で炭酸ガス吸収および放出の繰り返し性能、つまり100回目、200回目における吸収性能維持率を評価した。その結果を下記表2に示す。

Figure 2006263612
With respect to the obtained carbon dioxide absorbents of Examples 3 and 4 and Comparative Example 3, the carbon dioxide absorption and release repeatability, that is, the absorption performance maintenance rate at the 100th and 200th evaluations was evaluated in the same manner as described above. . The results are shown in Table 2 below.
Figure 2006263612

前記表2から明らかなように厚さが3mm以下の矩形平板状多孔質体からなる実施例3,4の炭酸ガス吸収材は、肉厚が3mmを超える矩形平板状多孔質体からなる比較例3の炭酸ガス吸収材に比べて炭酸ガスの吸収・放出を100回繰り返し後の吸収性能維持率が高いのみならず、さらに炭酸ガスの吸収・放出を200回繰り返し後の吸収性能維持率も高く、長期間の炭酸ガスの吸収・放出の繰り返しにおいても優れた炭酸ガス吸収性能を維持することが可能であることがわかる。   As apparent from Table 2, the carbon dioxide absorbents of Examples 3 and 4 comprising a rectangular flat porous body having a thickness of 3 mm or less are comparative examples comprising a rectangular flat porous body having a thickness exceeding 3 mm. Compared to the carbon dioxide absorbent material 3, the absorption performance maintenance rate after 100 times of carbon dioxide absorption / release is high, and the absorption performance maintenance rate after 200 times of carbon dioxide absorption / release is also high. It can be seen that excellent carbon dioxide absorption performance can be maintained even during repeated absorption and release of carbon dioxide for a long period of time.

第1実施形態に係る円筒状多孔質体(炭酸ガス吸収材)を示す図。The figure which shows the cylindrical porous body (carbon dioxide gas absorber) which concerns on 1st Embodiment. 第1実施形態に係る球状多孔質体(炭酸ガス吸収材)を示す図。The figure which shows the spherical porous body (carbon dioxide gas absorber) which concerns on 1st Embodiment. 第1実施形態に係る炭酸ガスを含む被処理ガスの処理方法に用いられる反応器を示す断面図。Sectional drawing which shows the reactor used for the processing method of the to-be-processed gas containing the carbon dioxide gas which concerns on 1st Embodiment. 第2実施形態に係る矩形平板状多孔質体(炭酸ガス吸収材)を示す斜視図。The perspective view which shows the rectangular flat plate-shaped porous body (carbon dioxide gas absorber) which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

1…円柱状貫通孔、2…円筒状多孔質体(炭酸ガス吸収材)、3…球状多孔質体(炭酸ガス吸収材)、11…反応器、13…円筒状本体、14…ガス導入管、16…ガス排気管、20…炭酸ガス吸収材、21…矩形平板状多孔質体(炭酸ガス吸収材)。   DESCRIPTION OF SYMBOLS 1 ... Cylindrical through-hole, 2 ... Cylindrical porous body (carbon dioxide absorbing material), 3 ... Spherical porous body (carbon dioxide absorbing material), 11 ... Reactor, 13 ... Cylindrical main body, 14 ... Gas introduction pipe , 16 ... gas exhaust pipe, 20 ... carbon dioxide absorbent, 21 ... rectangular flat plate porous body (carbon dioxide absorbent).

Claims (5)

リチウムシリケートを主成分とし、貫通孔を有する粒状の多孔質体であって、前記貫通孔を垂直に横切る断面において前記貫通孔と外面との間の肉厚が3mm以下であることを特徴とする炭酸ガス吸収材。   A granular porous body mainly composed of lithium silicate and having a through hole, wherein a thickness between the through hole and the outer surface is 3 mm or less in a cross section perpendicularly crossing the through hole. Carbon dioxide absorber. 前記粒状の多孔質体は、直径3〜10mm、長さ3〜10mmの円筒状であることを特徴とする請求項1記載の炭酸ガス吸収材。   2. The carbon dioxide absorbent according to claim 1, wherein the granular porous body has a cylindrical shape with a diameter of 3 to 10 mm and a length of 3 to 10 mm. 前記粒状の多孔質体は、直径3〜10mmの球状であることを特徴とする請求項1記載の炭酸ガス吸収材。   2. The carbon dioxide absorbent according to claim 1, wherein the granular porous body is spherical with a diameter of 3 to 10 mm. リチウムシリケートを主成分とし、厚さが3mm以下の角形平板状の多孔質体であることを特徴とする炭酸ガス吸収材。   A carbon dioxide gas absorbent, characterized by being a rectangular flat plate-shaped porous body containing lithium silicate as a main component and having a thickness of 3 mm or less. リチウムシリケートを主成分とし、貫通孔を有する粒状の多孔質体であって、前記貫通孔を垂直に横切る断面において前記貫通孔と外面との間の肉厚が3mm以下である炭酸ガス吸収材に炭酸ガスを含む被処理ガスを接触させて炭酸ガスを吸収する工程と、
炭酸ガスを吸収した後の前記炭酸ガス吸収材を加熱して吸収した炭酸ガスを放出し、前記炭酸ガス吸収材を再生する工程と
を含むことを特徴とする炭酸ガスを含む被処理ガスの処理方法。
A carbonaceous gas absorbent comprising a lithium silicate as a main component and having a through-hole, and having a wall thickness of 3 mm or less between the through-hole and an outer surface in a cross section perpendicular to the through-hole. A step of contacting a gas to be treated containing carbon dioxide gas to absorb the carbon dioxide gas;
Treating the treated gas containing carbon dioxide, comprising: heating the carbon dioxide absorbent after absorbing the carbon dioxide, releasing the absorbed carbon dioxide, and regenerating the carbon dioxide absorbent Method.
JP2005086639A 2005-03-24 2005-03-24 Absorbent material of carbonic acid gas and method for treating gas containing carbonic acid gas Pending JP2006263612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086639A JP2006263612A (en) 2005-03-24 2005-03-24 Absorbent material of carbonic acid gas and method for treating gas containing carbonic acid gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086639A JP2006263612A (en) 2005-03-24 2005-03-24 Absorbent material of carbonic acid gas and method for treating gas containing carbonic acid gas

Publications (1)

Publication Number Publication Date
JP2006263612A true JP2006263612A (en) 2006-10-05

Family

ID=37200133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086639A Pending JP2006263612A (en) 2005-03-24 2005-03-24 Absorbent material of carbonic acid gas and method for treating gas containing carbonic acid gas

Country Status (1)

Country Link
JP (1) JP2006263612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257686A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat-storage system
WO2012141207A1 (en) * 2011-04-12 2012-10-18 三井金属鉱業株式会社 Method for producing lithium sulfide for lithium ion cell solid electrolyte material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257686A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat-storage system
WO2012141207A1 (en) * 2011-04-12 2012-10-18 三井金属鉱業株式会社 Method for producing lithium sulfide for lithium ion cell solid electrolyte material

Similar Documents

Publication Publication Date Title
Li et al. Preparation of spherical Li4SiO4 pellets by novel agar method for high-temperature CO2 capture
JP3591724B2 (en) Carbon dioxide absorber and carbon dioxide separator
US20120222555A1 (en) Gas Purification Process Utilizing Engineered Small Particle Adsorbents
JP2007090208A (en) Carbon dioxide absorber and apparatus for separating carbon dioxide
WO2003082771A1 (en) Porous material and method for production thereof
CN105555738A (en) Cordierite ceramic honeycomb structure and production method therefor
US20060019820A1 (en) Anion absorbent and production method thereof, and water treatment method
US7588630B2 (en) Carbon dioxide absorbent, carbon dioxide separating apparatus, and reformer
JP2003326159A (en) Carbon dioxide absorber, its manufacturing method, and its regeneration method
CA2728295A1 (en) Method for making porous acicular mullite bodies
JP4199150B2 (en) Chemical reaction materials
JP2007044674A (en) Porous structure filter and its production method
JP2006263612A (en) Absorbent material of carbonic acid gas and method for treating gas containing carbonic acid gas
JP4746457B2 (en) Carbon dioxide absorber, carbon dioxide separator and reformer
KR20170136590A (en) Stabilized microporous crystalline material, method for making same, and use for selective catalytic reduction of NOx
JP2008505831A (en) Purification method of nitrogen trifluoride gas using zeolite ion exchanged and impregnated with alkaline earth metal
KR20140110145A (en) Complex adsorbent and manufacuring method of complex adsorbent
JP5469335B2 (en) Silicon carbide based porous material and method for producing the same
JP5499816B2 (en) Halogen gas removal method
CN102688746A (en) Granular adsorbing material as well as preparation method and application thereof
EP2889269A2 (en) Method for manufacturing cha-zeolite and honeycomb catalyst
JP3857667B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device
JP3552207B2 (en) Method for producing carbon dioxide absorber
AU2018299887B2 (en) A catalyst and method of use thereof
JP3850843B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617