JP2006262921A - Highly efficient container for microwave oven - Google Patents

Highly efficient container for microwave oven Download PDF

Info

Publication number
JP2006262921A
JP2006262921A JP2005080894A JP2005080894A JP2006262921A JP 2006262921 A JP2006262921 A JP 2006262921A JP 2005080894 A JP2005080894 A JP 2005080894A JP 2005080894 A JP2005080894 A JP 2005080894A JP 2006262921 A JP2006262921 A JP 2006262921A
Authority
JP
Japan
Prior art keywords
container
microwave
heated
matter
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005080894A
Other languages
Japanese (ja)
Inventor
Takeshi Oshima
武之 尾嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005080894A priority Critical patent/JP2006262921A/en
Publication of JP2006262921A publication Critical patent/JP2006262921A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase the heat generation of a matter to be heated in a container without heating the container by increasing the dielectric constant of the container 1 to be used for heating in a microwave oven, thereby improving the impeadance matching with an incident microwave 6. <P>SOLUTION: The dielectric constant of the container 1 can be increased by dispersing and mixing metallic powder 2, which is not an electromagnetic wave absorber, in the material of the container 1 by a proper ratio and molding the mixture, thereby improving the matching of the incident microwaves 6 with the matter to be heated. Consequently, the reflection of the microwaves 6 on the container 1 is reduced, and microwave intensity in the matter in the container is increased to increase the heat generation of the matter.. Thus, the mert of the microwave oven, which heats the matter directly without heating the container, is made multipliable. Thius, the heating efficiency of the matter is improved, and also a heating period is shortened, energy is saved and the service life of a microwave generator is extended. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、電子レンジなどのようにマイクロ波の電力を利用して、飲料や食材等の加熱や調理を行うために使用される食器または容器等の加熱能率を改善する技術に関するものである。 The present invention relates to a technique for improving the heating efficiency of tableware or containers used for heating or cooking beverages, foods, and the like using microwave power, such as a microwave oven.

電子レンジのマイクロ波による加熱では、その容器では無く、食品等の被加熱物が直接加熱されるのが特長である。しかし、マイクロ波は電磁波であるから、被加熱物からの無反射条件であるインピーダンス整合が悪いと、被加熱物の内部に進入する電力より容器等で反射される電力割合が大きくなり、電子レンジ内で極めて多数回の多重反射をする結果となる。そのため、不必要に電子レンジ自体を加熱し、かつ被加熱物の加熱時間を必要以上に要する。 The feature of microwave microwave heating is that the object to be heated, such as food, is directly heated rather than the container. However, since the microwave is an electromagnetic wave, if the impedance matching, which is a non-reflective condition from the object to be heated, is poor, the ratio of the power reflected by the container or the like becomes larger than the power entering the inside of the object to be heated. As a result, multiple reflections are made extremely many times. For this reason, the microwave oven itself is unnecessarily heated, and the heating time of the object to be heated is longer than necessary.

具体的には、従来から広く使用されてきたガラス、プスチックや陶磁器の場合、容器自体の比誘電率は3.0から6.0程度である。これに対し、容器内の被加熱物は通常水分を多く含み、その比誘電率は含水量によって約10.0から80.0の間にあり、その値と変動幅も極めて大きいため、マイクロ波の整合を取ることが困難であった。 Specifically, in the case of glass, plastics and ceramics that have been widely used conventionally, the relative dielectric constant of the container itself is about 3.0 to 6.0. On the other hand, the object to be heated in the container usually contains a lot of moisture, and its relative dielectric constant is between about 10.0 and 80.0 depending on the water content. It was difficult.

例えば、主たる成分が水の場合の比誘電率を仮に72.0とすると、電子レンジのマイクロ波が完全整合(無反射)するには、理想的には比誘電率が8.8 に近く、かつ厚さが10.2 mm程度の容器が必要である。マイクロ波の吸収が小さくかつこのように大きい比誘電率の材質が安価で容易に得がたいこともあり、もっぱら容器の厚さを大きくすることによってマイクロ波整合の改善が図られてきた。しかし、この厚さも実用的観点から限界があり、あまり大きな改善効果は得られない。しかも、このように不整合による反射が大きいとマイクロ波発生器の寿命を短くする等の欠点もある。 For example, if the relative dielectric constant is 72.0 when the main component is water, the relative dielectric constant is ideally close to 8.8 and the thickness is ideal for perfect microwave microwave matching (non-reflection). A container of about 10.2 mm is required. Microwave absorption is small and a material having such a high relative dielectric constant is inexpensive and difficult to obtain, and microwave matching has been improved by increasing the thickness of the container exclusively. However, this thickness also has a limit from a practical viewpoint, and a great improvement effect cannot be obtained. In addition, if the reflection due to mismatching is large, there is a drawback that the life of the microwave generator is shortened.

また、被加熱物の加熱性を改善するために、容器自体に電磁波を吸収する炭素成分やフェライトなどの電磁波吸収体を混入することによって、容器自体を加熱する試みなどもされている(下記の特許文献1および2)。しかし、これは容器自体を加熱するため、被加熱物自体が発熱する電子レンジの特長と比べ、被加熱物に対する熱的効率としては劣る上、金属では無くかつ発熱する容器の温度制御が極めて難しい。また、これらはマイクロ波の整合については考慮されていない。
特開平7−116058 特開2004−35105
In addition, in order to improve the heatability of the object to be heated, attempts have been made to heat the container itself by mixing an electromagnetic wave absorber such as a carbon component or ferrite that absorbs electromagnetic waves into the container itself (the following). Patent Documents 1 and 2). However, since this heats the container itself, it is inferior in thermal efficiency to the object to be heated compared to the characteristics of the microwave oven that generates heat, and it is extremely difficult to control the temperature of the container that is not metal and generates heat. . Also, they do not take into account microwave matching.
JP 7-1116058 A JP 2004-35105 A

この発明の課題は、従来の容器の素材をあまり変更すること無く、かつその容器をマイクロ波で加熱させることが無いようにして容器の比誘電率を向上させる手段を提供することで、それによってマイクロ波と被加熱物とのインピーダンス整合を図ることである。 The object of the present invention is to provide means for improving the relative dielectric constant of a container without changing the material of the conventional container so much and without heating the container with microwaves, thereby This is to achieve impedance matching between the microwave and the object to be heated.

この課題を解決する本発明の手段は、図1に示した実施例の容器1の断面図に示すように、電磁波吸収体で無い金属粉2を容器1の素材中に分散・混合させて成型することである。金属粉2を混合する前の容器素材の比誘電率に対して、3種類の体積割合で金属粉2を混合した場合に得られる比誘電率を図2に示した。この図2は、例えば比誘電率が4.0の容器素材に、金属粉2を体積比で約26%混入して成型すれば、9.0以上の比誘電率が得られることを示している。 As shown in the sectional view of the container 1 of the embodiment shown in FIG. 1, the means of the present invention for solving this problem is formed by dispersing and mixing metal powder 2 that is not an electromagnetic wave absorber in the material of the container 1. It is to be. The relative permittivity obtained when the metal powder 2 is mixed in three volume ratios with respect to the relative permittivity of the container material before the metal powder 2 is mixed is shown in FIG. FIG. 2 shows that a relative dielectric constant of 9.0 or more can be obtained, for example, by mixing about 26% of the metal powder 2 by volume with a container material having a relative dielectric constant of 4.0.

このように、容器1の素材中に金属粉2を混入させる割合によって容器の比誘電率を制御することができるので、マイクロ波と被加熱物とのインピーダンス整合が可能で、マイクロ波電力を被加熱物に最大限吸収させることができる。また、この方法は電磁波吸収体では無い金属粉2を使用するため、これがマイクロ波を吸収することも無く、容器1自体を発熱させることも無い。 In this way, since the relative dielectric constant of the container can be controlled by the ratio of mixing the metal powder 2 into the material of the container 1, impedance matching between the microwave and the object to be heated is possible, and the microwave power is applied. It can be absorbed to the maximum extent by the heated object. Further, since this method uses metal powder 2 that is not an electromagnetic wave absorber, it does not absorb microwaves and does not cause the container 1 itself to generate heat.

図3には、断面積が等しい円形と矩形のコップの厚さを10 mmとしてその比誘電率を変化させた場合について、被加熱物(比誘電率が72で損失率が0.06と仮定)の相対的発熱量をシュミレーションした結果を示した。この図3から、比誘電率が4.0前後の従来の容器の場合に比べ、容器の比誘電率を8.0から12.0程度の値にすると、被加熱物の発熱量が倍程度に増加することが判る。 Fig. 3 shows the condition of the object to be heated (assuming that the relative permittivity is 72 and the loss factor is 0.06) when the thickness of the circular and rectangular cups with the same cross-sectional area is 10 mm and the relative permittivity is changed. The result of simulating the relative calorific value was shown. From FIG. 3, it can be seen that when the relative dielectric constant of the container is set to a value of about 8.0 to 12.0, the heating value of the object to be heated is doubled compared to the case of the conventional container having a relative dielectric constant of around 4.0. .

上記の図3では、コップ内の被加熱物が水のように高い比誘電率の場合であった。実際の電子レンジ等では、様々な食材が利用される。そこで、比誘電率が10.0で厚さを10 mmとしたコップの場合について、この容器1内の被加熱物の比誘電率を変えた時の被加熱物の発熱量を計算すると、いずれの場合も従来の容器(比誘電率3.6)より増加することが確認された。 In FIG. 3 described above, the object to be heated in the cup has a high relative dielectric constant like water. Various ingredients are used in an actual microwave oven or the like. Therefore, when the relative permittivity is 10.0 and the thickness is 10 mm, the calorific value of the object to be heated when the relative permittivity of the object to be heated in this container 1 is changed is calculated in either case. It was also confirmed that it increased from the conventional container (relative dielectric constant 3.6).

図4には、図1で横から入射するマイクロ波6の強度の基準値を1.0として、その矩形コップの中心を通る線上におけるマイクロ波強度の分布を示した。この図4から、入射したマイクロ波6はコップで一部反射されるため、その前面で強度の定在波(波打つ強度の最大と最小の比)が立っているのが見て取れるが、従来のコップに比べこの発明のコップでは反射が小さいため、その定在波も小さいことが判る。また、コップ内の被加熱物では、逆に従来の倍以上のマイクロ波強度を有することも判る。これはこの発明のコップ内の被加熱物の発熱量が倍以上になることを示している。 FIG. 4 shows the distribution of the microwave intensity on the line passing through the center of the rectangular cup, with the reference value of the intensity of the microwave 6 incident from the side in FIG. 1 being 1.0. From FIG. 4, it can be seen that the incident microwave 6 is partially reflected by the cup, so that a standing wave of intensity (maximum and minimum ratio of undulating intensity) stands in front of it. It can be seen that the standing wave is small because the reflection is small in the cup of the present invention. Moreover, it turns out that the to-be-heated object in a cup has a microwave intensity more than twice the conventional one. This indicates that the heating value of the object to be heated in the cup of the present invention is more than doubled.

容器1の上方から入射するマイクロ波6に対しては、空気層5を考慮して厚さ2.0から4.0 mmの蓋4をする。この蓋4の素材中にも金属粉2を重量比で10%から20%程度混入して、比誘電率を増加させる。この考えは容器1の形状には関係なく適用できる。また、空気層5の厚さの変動に対しては、蓋4を容器1の中に入ってしまう落とし蓋にして、空気層5を実質的に無くすることも可能である。この落とし蓋の場合の金属粉の混合割合は、横からマイクロ波が入射する場合と同様である。 The microwave 6 incident from above the container 1 is covered with a lid 4 having a thickness of 2.0 to 4.0 mm in consideration of the air layer 5. The metal powder 2 is also mixed into the material of the lid 4 by about 10% to 20% by weight to increase the relative dielectric constant. This idea can be applied regardless of the shape of the container 1. Further, with respect to the variation in the thickness of the air layer 5, the air layer 5 can be substantially eliminated by making the lid 4 a drop lid that enters the container 1. The mixing ratio of the metal powder in the case of this drop lid is the same as that when the microwave is incident from the side.

この発明による容器の誘電率の向上方法は、従来の安価なガラス、プラスチックや陶磁器などの容器素材と安価な金属粉を使用できることで、化学反応を伴うことがないため、工程的コストも小さく、被加熱物の加熱能率の向上に加え、加熱時間の短縮、省エネルギー、さらにマイクロ波発生器の長寿命化を図ることができ、その経済的効果は非常に高い。 The method for improving the dielectric constant of the container according to the present invention can use conventional inexpensive glass, plastic or ceramic container materials and inexpensive metal powder, and does not involve a chemical reaction. In addition to improving the heating efficiency of the object to be heated, the heating time can be shortened, the energy can be saved, and the life of the microwave generator can be extended. The economic effect is very high.

この発明の最良の実施形態は、容器の形状や大きさによって多少異なるが、図1のように横から入射するマイクロ波6の場合は、厚さが8 mmから12 mmで、比誘電率が10.0前後のものが、多くの種類の被加熱物に対して、良いインピーダンス整合が得られ、その被加熱物によるマイクロ波消費電力(つまり発熱量)を最大近くにすることができる。 The best embodiment of the present invention is slightly different depending on the shape and size of the container. However, in the case of the microwave 6 incident from the side as shown in FIG. 1, the thickness is 8 mm to 12 mm and the relative dielectric constant is The thing around 10.0 can obtain good impedance matching for many types of objects to be heated, and the microwave power consumption (that is, the amount of generated heat) by the objects to be heated can be made the maximum.

上記の最良の容器1を実現するには、素材がガラスあるいは陶器等の場合は、ガラス・陶器の種類によってアルミニューム粉を重量比で10.0 %から26.0 %の割合で混合し成型する。銅粉の場合は、アルミニューム粉の場合より重量比でこの3倍程度の割合とする。 In order to realize the best container 1 described above, when the material is glass or ceramics, aluminum powder is mixed and molded at a weight ratio of 10.0% to 26.0% depending on the type of glass / ceramics. In the case of copper powder, the ratio by weight is about three times that of aluminum powder.

また、素材が磁器あるいは比誘電率が比較的大きい場合は、その種類によってアルミニューム粉を重量比で5.0 %から20.0 %の割合で混合し成型する。銅粉の場合は、アルミニューム粉の場合より重量比でこの3倍程度の割合とする。 If the material is porcelain or has a relatively large relative dielectric constant, aluminum powder is mixed at a weight ratio of 5.0% to 20.0% depending on the type of the material. In the case of copper powder, the ratio by weight is about three times that of aluminum powder.

図1で、マイクロ波6が容器1の上方から入射する場合は、被加熱物である水3の上の空気層5の厚さによって、10%から20%の割合でアルミニュームの金属粉2を分散させた蓋4をすることによって、同様に水3の発熱量を増加させることができる。また、落とし蓋にして空気層5を実質的に無くした場合は、マイクロ波6が横から入射する場合と同様である。 In FIG. 1, when the microwave 6 is incident from above the container 1, the aluminum metal powder 2 at a rate of 10% to 20% depending on the thickness of the air layer 5 on the water 3 to be heated. By using the lid 4 in which the water is dispersed, the heat generation amount of the water 3 can be similarly increased. Further, when the air layer 5 is substantially eliminated by using a drop lid, the same as when the microwave 6 is incident from the side.

図1はこの発明の実施例の容器1の断面図で、ガラスまたは陶器にアルミニュームの金属粉2を重量比で約26.0 %混入して10.0程度の比誘電率を得て、容器1の厚さは8.6 mmにすると、多様な被加熱物に対しても、横方向から入射するマイクロ波6の電力消費を従来容器より倍増させることができる。また,蓋4としては、空気層5を10.0 mmとして、アルミニュームの金属粉2を重量比で約14.0 %混入して、厚さを3.2 mmにする。 FIG. 1 is a cross-sectional view of a container 1 according to an embodiment of the present invention, in which about 26.0% by weight of aluminum metal powder 2 is mixed in glass or earthenware to obtain a relative dielectric constant of about 10.0, and the thickness of the container 1 When the thickness is set to 8.6 mm, the power consumption of the microwave 6 incident from the lateral direction can be doubled as compared with the conventional container even for various objects to be heated. The lid 4 has an air layer 5 of 10.0 mm and aluminum metal powder 2 mixed by about 14.0% by weight to a thickness of 3.2 mm.

この発明の容器1に対するインピーダンス整合の考えは、電子レンジ用に限ったことでは無く、一般的なマイクロ波加熱用の容器にも当てはまることである。また、この発明の素材は安価であるので経済的効果が高い。 The idea of impedance matching for the container 1 of the present invention is not limited to a microwave oven, but also applies to a general microwave heating container. Further, since the material of the present invention is inexpensive, it has a high economic effect.

この発明の実施例の水3を入れた場合のコップ容器1の断面図。Sectional drawing of the cup container 1 at the time of putting the water 3 of the Example of this invention. 容器1の素材中に金属粉2を分散させた場合に得られる比誘電率のグラフ。A graph of relative permittivity obtained when metal powder 2 is dispersed in the material of container 1. コップ容器1の比誘電率を変化させた場合のコップ内の水3の発熱量のグラフ。The graph of the calorific value of the water 3 in the cup when the relative permittivity of the cup container 1 is changed. コップ容器1の内外におけるマイクロ波強度分布の、従来コップとこの発明のコップとの比較図。The comparison figure of the conventional cup and the cup of this invention of the microwave intensity distribution in the inside and outside of the cup container 1. FIG.

符号の説明Explanation of symbols

1 容器
2 金属粉
3 被加熱物の水
4 容器の蓋
5 空気層
6 入射マイクロ波


DESCRIPTION OF SYMBOLS 1 Container 2 Metal powder 3 Water to be heated 4 Container lid 5 Air layer 6 Incident microwave


Claims (4)

マイクロ波による加熱に使用される容器等において、電磁波吸収体では無い金属あるいは金属酸化物の金属粉を、容器等の素材中に分散させて成型したことを特徴とする容器あるいはその蓋。 In a container or the like used for heating by microwaves, a container or a lid thereof, wherein metal or metal oxide metal powder that is not an electromagnetic wave absorber is dispersed and molded in a material such as a container. 請求項1において、容器等の素材が紙、ガラス,プラスチックまたは陶磁器である容器あるいはその蓋。 2. The container according to claim 1, wherein the material of the container or the like is paper, glass, plastic, or ceramic. 請求項1において、金属粉の金属がアルミニューム,金、銀、銅、黄銅、亜鉛、スズまたはそれらを含む合金、あるいはそれらの酸化物であって、その粉末の混合重量比が2%以上でかつ80%以下である請求項1あるいは請求項2の容器あるいはその蓋。 In Claim 1, the metal of the metal powder is aluminum, gold, silver, copper, brass, zinc, tin or an alloy containing them, or an oxide thereof, and the mixing weight ratio of the powder is 2% or more. And the container or its lid | cover of Claim 1 or Claim 2 which is 80% or less. 請求項1あるいは請求項2あるいは請求項3において、容器の厚さが1mm以上でかつ16mm以下である容器あるいはその蓋。


4. The container according to claim 1, wherein the container has a thickness of 1 mm or more and 16 mm or less.


JP2005080894A 2005-03-22 2005-03-22 Highly efficient container for microwave oven Pending JP2006262921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080894A JP2006262921A (en) 2005-03-22 2005-03-22 Highly efficient container for microwave oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080894A JP2006262921A (en) 2005-03-22 2005-03-22 Highly efficient container for microwave oven

Publications (1)

Publication Number Publication Date
JP2006262921A true JP2006262921A (en) 2006-10-05

Family

ID=37199496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080894A Pending JP2006262921A (en) 2005-03-22 2005-03-22 Highly efficient container for microwave oven

Country Status (1)

Country Link
JP (1) JP2006262921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083524A (en) * 2008-09-30 2010-04-15 Toyo Seikan Kaisha Ltd Container
CN106144255A (en) * 2016-07-22 2016-11-23 李文聪 A kind of food containers for microwave-oven-heating
CN115444954A (en) * 2022-09-22 2022-12-09 四川大学 Electromagnetic field distribution adjusting device, microwave heating device and heating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083524A (en) * 2008-09-30 2010-04-15 Toyo Seikan Kaisha Ltd Container
CN106144255A (en) * 2016-07-22 2016-11-23 李文聪 A kind of food containers for microwave-oven-heating
CN115444954A (en) * 2022-09-22 2022-12-09 四川大学 Electromagnetic field distribution adjusting device, microwave heating device and heating method
CN115444954B (en) * 2022-09-22 2023-10-13 四川大学 Electromagnetic field distribution adjusting device, microwave heating device and heating method

Similar Documents

Publication Publication Date Title
EP0333423B1 (en) Heat generating container for microwave oven
JP4663005B2 (en) MgCu ferrite powder for microwave absorption heating element
US9942951B2 (en) Microwave heating element
JP2012230920A (en) Cookware and heating apparatus using the same
US9538585B2 (en) Microwave heating apparatus with rotatable antenna and method thereof
JP2006262921A (en) Highly efficient container for microwave oven
CN202723634U (en) Electric oven
US20180170653A1 (en) Microwave Packaging
US20030121421A1 (en) Far infrared uniform-heating cookware
US20070084859A1 (en) Utensil for conventional heating and microwave heating
JP5081318B1 (en) Exothermic rubber
CN101744522A (en) Energy-saving electric heating cooker
JP4505390B2 (en) Food and containers in range heating containers
JPH01204386A (en) Microwave oven
KR200300250Y1 (en) Ceramic cooker
KR101611867B1 (en) Heating food container for microwave oven
JPH05205871A (en) Microwave oven
JP2004179082A (en) Auxiliary heat-transfer tool for induction heating cooker
KR940008521B1 (en) Steel containg for a range
MXPA05007116A (en) Microwave susceptor packaging material.
CN209863280U (en) Cooking utensil
JP3588943B2 (en) High frequency heating device with browning plate
JP3096684U (en) Negative ion generator for cooking ren
KR920004071B1 (en) Cooking vessel for electronic range
JP2006181307A (en) Electric heating cooker