JP2006262662A - Dc power supply device - Google Patents

Dc power supply device Download PDF

Info

Publication number
JP2006262662A
JP2006262662A JP2005078897A JP2005078897A JP2006262662A JP 2006262662 A JP2006262662 A JP 2006262662A JP 2005078897 A JP2005078897 A JP 2005078897A JP 2005078897 A JP2005078897 A JP 2005078897A JP 2006262662 A JP2006262662 A JP 2006262662A
Authority
JP
Japan
Prior art keywords
phase
voltage
power supply
control signal
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005078897A
Other languages
Japanese (ja)
Inventor
Tomohiro Kawasaki
智広 川崎
Yoshihiko Takeda
芳彦 武田
Shiro Maeda
志朗 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005078897A priority Critical patent/JP2006262662A/en
Publication of JP2006262662A publication Critical patent/JP2006262662A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC power supply device for adjusting the unbalanced voltage of a three phase AC power supply and having input power factor improvement effects. <P>SOLUTION: The device is provided with a bridge rectifying circuit 3, a smoothing capacitor 4, a reactor 2 connected to the three phase AC power supply 1, a capacitor 7 connected between AC input terminals and DC output terminals of respective phases in the bridge rectifying circuit 3 via a bidirectional switch 6, a zero-cross detection means 8 detecting the zero point of the voltage in the three phase AC power supply 1, a DC voltage detection means 9 detecting DC voltages at both ends of the smoothing capacitor 4, a phase voltage detection means 11 detecting the voltage values of the respective phases of the three-phase AC power supply 1, a control signal correction means 12 adjusting the control signal, based on the output of the phase voltage detection means 11 and a bidirectional switch control means 10 driving the bidirectional switch 6. The phase voltage detection means 11 detects the voltage value of the three-phase AC power supply 1, the control signal correction means 12 decides the optimum control signal, according to the value, and the unbalance voltage can be adjusted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ブリッジ整流回路を利用した整流方式を用い、装置、システム等に高力率、低ひずみで電力を供給する直流電源装置に関するものである。   The present invention relates to a DC power supply device that uses a rectification method using a bridge rectifier circuit and supplies power to a device, a system, or the like with high power factor and low distortion.

従来、高調波電流低減と入力力率改善を目的として三相交流電源の電流を正弦波状に保ちつつ直流に変換する直流電源装置においては、スイッチング素子を数kHzから十数kHzで駆動してスイッチング素子を流れる電流を高速制御し、目標となる基準正弦波形に追従させる方式が取られていた。しかしながら、このようにスイッチング素子を高周波駆動すると損失が増大する、ノイズの発生レベルが高くなるなどの課題があった。このため、近年では数kW程度の容量の直流電源装置では商用周波数の半周期に1回ないしは数回スイッチング素子を駆動することによって高調波電流低減と入力力率を改善する方式が取られるようになってきている。   Conventionally, in a DC power supply device that converts the current of a three-phase AC power supply to DC while keeping the current of a three-phase AC power supply in a sine wave shape for the purpose of reducing harmonic current and improving input power factor, switching is performed by driving the switching element from several kHz to several tens kHz A method has been adopted in which the current flowing through the element is controlled at high speed to follow the target reference sine waveform. However, when the switching element is driven at a high frequency in this way, there are problems such as an increase in loss and an increase in noise generation level. For this reason, in recent years, a DC power supply having a capacity of about several kW has been adapted to reduce the harmonic current and improve the input power factor by driving the switching element once or several times in a half cycle of the commercial frequency. It has become to.

例えば従来の直流電源装置としては、三相交流電源の各相に接続される3つのリアクトルと、6つのダイオードからなるブリッジ整流回路と、ブリッジ整流回路の出力側に2直列として接続された容量の等しい2つの平滑用コンデンサと、それら平滑コンデンサの中点と3つのリアクトルとの間に接続された3つの双方向性スイッチとを組み合わせたもの(例えば特許文献1参照)がある。   For example, as a conventional DC power supply device, there are three reactors connected to each phase of a three-phase AC power supply, a bridge rectifier circuit composed of six diodes, and a capacitor connected in series on the output side of the bridge rectifier circuit. There is a combination of two equal smoothing capacitors and three bidirectional switches connected between the middle point of the smoothing capacitors and three reactors (see, for example, Patent Document 1).

以下、図面を参照しながら従来の直流電源装置について図9から図12を用いて説明する。図9は特許文献1の三相交流電源対応の実施例として記載されている直流電源装置のブロック図を示しており、図10は従来の直流電源装置の各部波形である。   A conventional DC power supply device will be described below with reference to FIGS. 9 to 12 with reference to the drawings. FIG. 9 shows a block diagram of a DC power supply device described as an embodiment corresponding to the three-phase AC power supply in Patent Document 1, and FIG. 10 shows waveforms of respective parts of the conventional DC power supply device.

図9において三相交流電源1は商用の交流電源であり、リアクトル2u、2v、2wを介して6つのダイオードからなるブリッジ整流回路3と接続されている。ブリッジ整流回路3の出力側には2直列とされた容量の等しい平滑用コンデンサ100、101が接続されており、これらの中点とリアクトル2u、2v、2wとの間に双方向性スイッチ6u、6v、6wが接続されている。また、制御部103は、三相交流電源1の相電圧を検出し、相電圧ゼロクロスに基づいて、所定のタイミングで双方向スイッチ6u、6v、6wをオンさせるべく制御信号を出力する。次いで、図10に示す各部の波形を参照しながら動作を説明する。   In FIG. 9, a three-phase AC power source 1 is a commercial AC power source, and is connected to a bridge rectifier circuit 3 composed of six diodes via reactors 2u, 2v, and 2w. On the output side of the bridge rectifier circuit 3 are connected two series-smoothing capacitors 100, 101 having the same capacity, and a bidirectional switch 6u between these midpoints and the reactors 2u, 2v, 2w, 6v and 6w are connected. The control unit 103 detects the phase voltage of the three-phase AC power supply 1 and outputs a control signal to turn on the bidirectional switches 6u, 6v, 6w at a predetermined timing based on the phase voltage zero cross. Next, the operation will be described with reference to the waveforms of the respective parts shown in FIG.

三相交流電源1の電源電圧は図10中(a)に示すように変化する。そして、制御部103は、各相電圧のゼロクロスを検出して図10中(b)に示すように該当する相の双方向スイッチをオンさせるべく制御信号を出力する。そして、ブリッジ整流回路3の各入力端子における相電圧は、図10中(c)に示すように、双方向スイッチがオンの期間に対応してゼロになり、この期間を挟んでV0/2、−V0/2を反復するように変化する。   The power supply voltage of the three-phase AC power supply 1 changes as shown in FIG. Then, the control unit 103 detects a zero cross of each phase voltage and outputs a control signal to turn on the bidirectional switch of the corresponding phase as shown in FIG. Then, as shown in FIG. 10C, the phase voltage at each input terminal of the bridge rectifier circuit 3 becomes zero corresponding to the period when the bidirectional switch is on, and V0 / 2, Change to repeat V0 / 2.

なお、V0は直流電圧である。したがって、ブリッジ整流回路3の各入力端子における線間電圧は、図10中(d)に示すように、V0、V0/2、0、−V0/2、−V0の5つのレベルの振幅を持つ、1周期に8ステップの波形になる。そして、電源電圧の中性点に対するブリッジ整流回路3の各入力端子における電圧は、図10中(e)に示すように、2V0/3、V0/2、V0/3、0、−V0/3、−V0/2、−2V0/3の7つのレベルの振幅を持つ、1周期に12ステップの波形になる。   V0 is a DC voltage. Therefore, the line voltage at each input terminal of the bridge rectifier circuit 3 has amplitudes of five levels of V0, V0 / 2, 0, −V0 / 2, and −V0, as shown in FIG. A waveform with 8 steps per cycle. The voltage at each input terminal of the bridge rectifier circuit 3 with respect to the neutral point of the power supply voltage is 2V0 / 3, V0 / 2, V0 / 3, 0, −V0 / 3 as shown in FIG. , −V0 / 2 and −2V0 / 3 have amplitudes of seven levels and become a waveform of 12 steps in one cycle.

このように、ブリッジ整流回路3の各入力端子における電圧を12ステップの電圧波形
にすることができるので、図10中(f)に示すように、入力電流はほぼ正弦波状の波形になり、三相12パルス整流回路方式以上の高調波電流低減効果を達成することができる。
Thus, since the voltage at each input terminal of the bridge rectifier circuit 3 can be made into a voltage waveform of 12 steps, as shown in (f) of FIG. The harmonic current reduction effect more than the phase 12 pulse rectifier circuit system can be achieved.

なお、従来例のブロック図9には相電圧のゼロクロス点を検出するためのゼロクロス検出手段は省略されているが、通常は図11に示すように三相変圧器104によって各相電圧を降圧して検出し、3つのゼロクロスコンパレータ105u、105v、105wによって各相の相電圧ゼロクロスを検出する構成となっている。また、小型化、軽量化のために三相のうちいずれか一相の相電圧のゼロクロス点を検出し、他の二相の相電圧のゼロクロス点を演算によって求める図12に示されるようなゼロクロス検出回路も考案されている。以下、図12を用いて各相の相電圧ゼロクロスを検出する方法について説明する。   Although the zero cross detection means for detecting the zero cross point of the phase voltage is omitted in the block diagram 9 of the conventional example, the phase voltage is normally stepped down by the three-phase transformer 104 as shown in FIG. The phase voltage zero cross of each phase is detected by three zero cross comparators 105u, 105v, 105w. Further, in order to reduce the size and weight, the zero cross point of the phase voltage of any one of the three phases is detected, and the zero cross point of the other two phase voltages is obtained by calculation. The zero cross as shown in FIG. A detection circuit has also been devised. Hereinafter, a method of detecting the phase voltage zero cross of each phase will be described with reference to FIG.

一相電圧ゼロクロス検出手段106は、三相交流電源1の各線から仮想中性点を得るための分圧抵抗107u、107v、107wと、分圧抵抗107uに1次側を直列に接続されて分圧抵抗107uに所定電流以上の電流が流れた場合に2次側のトランジスタをオンすることでu相電圧のゼロクロス点を中心とするゼロクロスパルスを発生するフォトカプラ108と、プルアップ抵抗109と、ゼロクロスパルスの電圧立ち上がり変化のタイミングがゼロクロス点に一致するよう所定の時間遅延させて伝達する遅延回路110とから成っている。そして、二相電圧ゼロクロス演算手段111は一相電圧ゼロクロス検出手段106により検出されたu相のゼロクロス点の周期から三相交流電源1の周波数を算出し、そこから位相角120°に相当する時間Δts1を算出する。そして、u相電圧のゼロクロス点からΔts1だけ遅れたパルスの立ち上がりをv相のゼロクロス点とし、さらにΔts1だけ遅れたパルスの立ち上がりをw相のゼロクロス点として出力する。なお、図12に示した一相電圧ゼロクロス検出手段106は入力形式が三相三線式に対応させるためのものであり、中性点を持つ三相四線式の場合は直接相電圧を検出できることから分圧抵抗107v、107wは不要となる。
特開平10−174442号公報
The one-phase voltage zero-cross detection means 106 is connected to the voltage dividing resistors 107u, 107v, and 107w for obtaining a virtual neutral point from each line of the three-phase AC power supply 1, and the voltage dividing resistor 107u on the primary side in series. A photocoupler 108 that generates a zero-cross pulse centered on the zero-cross point of the u-phase voltage by turning on the secondary-side transistor when a current greater than or equal to a predetermined current flows through the voltage resistor 107u; a pull-up resistor 109; The delay circuit 110 includes a delay circuit 110 that delays a predetermined time so that the timing of the voltage rise change of the zero cross pulse coincides with the zero cross point. Then, the two-phase voltage zero-cross calculating means 111 calculates the frequency of the three-phase AC power source 1 from the period of the u-phase zero-cross point detected by the one-phase voltage zero-cross detecting means 106, and from this, a time corresponding to a phase angle of 120 ° Δts1 is calculated. Then, the rising edge of the pulse delayed by Δts1 from the zero-cross point of the u-phase voltage is set as the v-phase zero-crossing point, and the rising edge of the pulse delayed by Δts1 is output as the w-phase zero-crossing point. The one-phase voltage zero-cross detection means 106 shown in FIG. 12 is for making the input format correspond to a three-phase three-wire system, and in the case of a three-phase four-wire system having a neutral point, a direct phase voltage can be detected directly. Therefore, the voltage dividing resistors 107v and 107w are not necessary.
Japanese Patent Laid-Open No. 10-174442

しかしながら、前記のような従来の直流電源装置では、三相交流電源がなんらかの要因で不平衡電圧となっても、直流電圧検出回路によって検出された出力に応じてスイッチを駆動して動作を持続する。つまり、三相交流電源が不平衡のまま動作を継続して、それを調整することができないという課題を有していた。   However, in the conventional DC power supply device as described above, even if the three-phase AC power supply becomes an unbalanced voltage due to some factor, the operation is continued by driving the switch according to the output detected by the DC voltage detection circuit. . That is, the three-phase AC power supply has a problem that it cannot continue to operate without being unbalanced and cannot be adjusted.

本発明の直流電源装置は、前記のような従来の課題を解決するものであり、三相交流電源の不平衡電圧の調整を可能とした、入力力率改善効果を備えた直流電源装置を提供することを目的とする。   The DC power supply device of the present invention solves the conventional problems as described above, and provides a DC power supply device having an input power factor improvement effect that enables adjustment of an unbalanced voltage of a three-phase AC power supply. The purpose is to do.

前記従来の課題を解決するために、本発明の直流電源装置は、6つのダイオードからなるブリッジ整流回路と、各相ごとに接続される3つのリアクタと、3つの双方向性スイッチと、双方向性スイッチにそれぞれ接続される3つのコンデンサと、ゼロクロス検出手段と、直流電圧検出手段と、相電圧検出手段と、制御信号補正手段を備え、三相交流電源が不平衡電圧となった場合に相電圧を検出してその値に応じて最適な制御信号を制御信号補正手段によって決定することにより、三相交流電源の不平衡電圧を調整する。   In order to solve the above-mentioned conventional problems, a DC power supply device of the present invention includes a bridge rectifier circuit composed of six diodes, three reactors connected for each phase, three bidirectional switches, Three capacitors each connected to the directional switch, zero cross detection means, DC voltage detection means, phase voltage detection means, and control signal correction means. When the three-phase AC power supply becomes an unbalanced voltage, The unbalanced voltage of the three-phase AC power supply is adjusted by detecting the voltage and determining the optimum control signal according to the value by the control signal correcting means.

本発明の直流電源装置は、三相交流電源の相電圧を検出することで、その検出値に応じた最適な制御信号を決定することが可能となるので、三相交流電源の不平衡電圧を調整す
ることが可能となる。
Since the DC power supply device of the present invention can determine the optimum control signal according to the detected value by detecting the phase voltage of the three-phase AC power supply, the unbalanced voltage of the three-phase AC power supply can be determined. It becomes possible to adjust.

第1の発明は、三相交流電源と、前記三相交流電源からの交流を全波整流する6個のダイオードで形成されたブリッジ整流回路と、前記ブリッジ整流回路の出力を平滑する平滑コンデンサと、前記三相交流電源と前記ブリッジ整流回路の各相の交流入力端子との間に接続されたリアクタと、前記ブリッジ整流回路の各相の交流入力端子と直流出力端子との間に双方向スイッチを介して接続されたコンデンサと、前記三相交流電源の電圧のゼロ点を検出するゼロクロス検出手段と、前記平滑コンデンサの両端の電圧を検出する直流電圧検出手段と、前記三相交流電源の各相の電圧値を検出する相電圧検出手段と、前記相電圧検出手段の出力に基づき制御信号を調整する制御信号補正手段と、前記ゼロクロス検出手段の出力と前記直流電圧検出手段及び前記制御信号補正手段の出力に基づき前記双方向スイッチを駆動する双方向性スイッチ制御手段とを備えたことにより、前記三相交流電源の相電圧を検出してその値に応じて最適な制御信号を決定することで、前記三相交流電源の不平衡電圧を調整することができる。   According to a first aspect of the present invention, there is provided a three-phase AC power source, a bridge rectifier circuit formed by six diodes for full-wave rectification of the AC from the three-phase AC power source, and a smoothing capacitor for smoothing the output of the bridge rectifier circuit. A bi-directional switch between a reactor connected between the three-phase AC power source and an AC input terminal of each phase of the bridge rectifier circuit; and an AC input terminal and a DC output terminal of each phase of the bridge rectifier circuit Each of each of the three-phase AC power supply, a capacitor connected via a zero-cross detection means for detecting a zero point of the voltage of the three-phase AC power supply, a DC voltage detection means for detecting the voltage across the smoothing capacitor, and Phase voltage detecting means for detecting a phase voltage value, control signal correcting means for adjusting a control signal based on an output of the phase voltage detecting means, an output of the zero-cross detecting means, and the DC voltage detecting means And bi-directional switch control means for driving the bi-directional switch based on the output of the control signal correction means, thereby detecting the phase voltage of the three-phase AC power source and performing optimal control according to the value By determining the signal, the unbalanced voltage of the three-phase AC power supply can be adjusted.

第2の発明は、特に第1の発明において、制御信号補正手段が、相電圧検出手段によって検出した電圧値に応じて双方向スイッチの駆動パルスの位相を調整するように構成した直流電源装置であり、三相交流電源の不平衡電圧を調整することが可能である。   A second invention is a direct current power supply device according to the first invention, in which the control signal correction means adjusts the phase of the drive pulse of the bidirectional switch according to the voltage value detected by the phase voltage detection means. Yes, it is possible to adjust the unbalanced voltage of the three-phase AC power supply.

第3の発明は、特に第1の発明において、制御信号補正手段が、相電圧検出手段によって検出した電圧値に応じて双方向スイッチの駆動パルスのパルス幅と位相を調整するように構成した直流電源装置であり、三相交流電源の不平衡電圧を調整することが可能である。   In a third aspect of the present invention, in particular, in the first aspect, the control signal correction unit is configured to adjust the pulse width and phase of the drive pulse of the bidirectional switch according to the voltage value detected by the phase voltage detection unit. It is a power supply device, and it is possible to adjust the unbalanced voltage of the three-phase AC power supply.

第4の発明は、特に第1から第3のいずれかに記載の発明において、三相交流電源の投入時に相電圧検出手段から検出された各相の電圧値の差に応じて補正値を決定するように構成した直流電源装置であり、三相交流電源の不平衡電圧を調整することが可能である。   According to a fourth aspect of the invention, in particular, in the invention according to any one of the first to third aspects, the correction value is determined in accordance with a difference in voltage value of each phase detected from the phase voltage detecting means when the three-phase AC power supply is turned on. The DC power supply device configured as described above can adjust the unbalanced voltage of the three-phase AC power supply.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における直流電源装置のブロック図である。図1において、三相交流電源1のu、v、wの各相はリアクトル2u、2v、2wを介してダイオード3u、3v、3w、3x、3y、3zより構成されるブリッジ整流回路3の入力端子に接続される。そして、電解コンデンサ4はブリッジ整流回路3の正極出力と負極出力の間に接続され、負荷5は電解コンデンサ4に並列に接続される。双方向性スイッチ6u、6v、6wは一端を一括してブリッジ整流回路3の負極出力と接続され、他方の端子はそれぞれコンデンサ7u、7v、7wと接続される。
(Embodiment 1)
FIG. 1 is a block diagram of a DC power supply device according to a first embodiment of the present invention. In FIG. 1, each phase of u, v, and w of the three-phase AC power supply 1 is input to a bridge rectifier circuit 3 configured by diodes 3u, 3v, 3w, 3x, 3y, and 3z via reactors 2u, 2v, and 2w. Connected to the terminal. The electrolytic capacitor 4 is connected between the positive electrode output and the negative electrode output of the bridge rectifier circuit 3, and the load 5 is connected in parallel to the electrolytic capacitor 4. The bidirectional switches 6u, 6v, 6w are connected together at one end to the negative output of the bridge rectifier circuit 3, and the other terminals are connected to capacitors 7u, 7v, 7w, respectively.

そして、これらコンデンサ7u、7v、7wの他方の端子はおのおのブリッジ整流回路3の交流入力端に接続される。また、ゼロクロス検出手段8は三相交流電源1のu相の電圧のゼロクロス点を検出し、u相のゼロクロス点からv相とw相のゼロクロス点を算出するものであり、双方向性スイッチ制御手段10はその各相のゼロクロス点に応じて双方向性スイッチ6u、6v、6wを駆動制御するためのものである。そして、直流電圧検出手段10は平滑コンデンサ4の両端の電圧を検出するものであり、相電圧検出手段11はu、v、w相の相電圧を検出するものであり、制御信号補正手段12は前記相電圧検出手段11によって検出された電圧値に応じて最適な制御信号を決定するためのものである。   The other terminals of these capacitors 7 u, 7 v, 7 w are connected to the AC input terminals of the bridge rectifier circuit 3. The zero-cross detection means 8 detects the zero-cross point of the u-phase voltage of the three-phase AC power source 1 and calculates the zero-cross point of the v-phase and the w-phase from the u-phase zero-cross point. The means 10 is for driving and controlling the bidirectional switches 6u, 6v, 6w in accordance with the zero cross point of each phase. The DC voltage detecting means 10 detects the voltage across the smoothing capacitor 4, the phase voltage detecting means 11 detects the u, v, and w phase voltages, and the control signal correcting means 12 This is for determining an optimum control signal according to the voltage value detected by the phase voltage detecting means 11.

以上の構成において、まず通常の直流電源装置全体の動作について図2から図6を用いて説明する。ここで説明を容易とするためにコンデンサ7u、7v、7wはゼロボルトから所定の電圧Vdc1までの充放電を繰り返すこととし、コンデンサ7u、7vの初期電圧値はゼロボルト、コンデンサ7wの初期電圧値はVdc1として三相交流電源1の初期位相はu相の電圧ゼロクロスの位相としてu相電流を中心に説明する。   In the above configuration, first, the operation of the entire normal DC power supply apparatus will be described with reference to FIGS. For ease of explanation, the capacitors 7u, 7v, 7w are repeatedly charged and discharged from zero volts to a predetermined voltage Vdc1, the initial voltage value of the capacitors 7u, 7v is zero volts, and the initial voltage value of the capacitor 7w is Vdc1. The initial phase of the three-phase AC power supply 1 will be described focusing on the u-phase current as the phase of the u-phase voltage zero cross.

まず、ゼロクロス検出手段8によって三相交流電源1のu相の電圧のゼロクロス点を検出して双方向性スイッチ制御手段9はこのu相の電圧ゼロクロス点から駆動時間指令Δtの間だけ対応する双方向性スイッチ6uを駆動する。そして、このとき図2の矢印で示すようにコンデンサ7uの充電電流の流れは三相交流電源1のu相からリアクトル2uを通り、コンデンサ7uを充電した後、ダイオード3yとリアクトル2vを通して三相交流電源1のv相に戻ることとなる。次に、駆動時間指令Δt後にコンデンサ7uがVdc1まで充電されて、双方向性スイッチ6uがオフした場合にはリアクトル2u、2vに流れている電流は連続しようとするため、図3の矢印に示すようにu相からリアクトル2u、ダイオード3uを通して電解コンデンサ4を充電した後にダイオード3y、リアクトル2vを通してv相に戻ることとなる。   First, a zero-cross point of the u-phase voltage of the three-phase AC power supply 1 is detected by the zero-cross detection means 8, and the bidirectional switch control means 9 responds only during the drive time command Δt from this u-phase voltage zero-cross point. The directional switch 6u is driven. At this time, as indicated by an arrow in FIG. 2, the flow of the charging current of the capacitor 7u passes from the u phase of the three-phase AC power source 1 through the reactor 2u, charges the capacitor 7u, and then passes through the diode 3y and the reactor 2v to thereby change the three-phase AC. It will return to the v phase of the power supply 1. Next, when the capacitor 7u is charged up to Vdc1 after the drive time command Δt and the bidirectional switch 6u is turned off, the current flowing through the reactors 2u and 2v tends to be continuous, and is shown by the arrow in FIG. Thus, after charging the electrolytic capacitor 4 from the u phase through the reactor 2u and the diode 3u, the phase returns to the v phase through the diode 3y and the reactor 2v.

その後、ゼロクロス検出手段8はw相の電圧ゼロクロス点を算出し、双方向性スイッチ制御手段9はこのw相の電圧ゼロクロス点から駆動時間指令Δtの間だけ対応する双方向性スイッチ6wを駆動する。このとき、図4のu相に流れる電流は矢印に示すようにVdc1に充電されていたコンデンサ7wからリアクトル2wを通して三相交流電源1のu相からリアクトル2u、ダイオード3uを通して電解コンデンサ4へと放電する放電電流が加算されることとなり、この期間のu相を流れる電流は増加を続ける。   Thereafter, the zero-cross detection means 8 calculates the w-phase voltage zero-cross point, and the bidirectional switch control means 9 drives the corresponding bidirectional switch 6w from the w-phase voltage zero-cross point only during the drive time command Δt. . At this time, the current flowing in the u-phase in FIG. 4 is discharged from the capacitor 7w charged to Vdc1 through the reactor 2w to the electrolytic capacitor 4 through the reactor 2u and the diode 3u from the u-phase of the three-phase AC power source 1 as indicated by the arrow. The discharge current to be added is added, and the current flowing through the u phase during this period continues to increase.

そして、駆動指令時間Δt後にコンデンサ7Wの電圧がゼロボルトとなり双方向性スイッチ6wがオフすると、図5の矢印で示すようにv相を流れる電流とw相が流れる電流がu相電流と逆極性の期間は、それまでリアクトル2uを流れていた電流はダイオード3uを通して電解コンデンサ4を充電してダイオード3yとリアクトル2v、ダイオード3zとリアクトル2wとに分流して、三相交流電源1を介してリアクトル2uに戻るように流れる。その後、v相の電流がu相電流と同極性となれば、図6に示すようにリアクトル2uを流れる電流は、ダイオード3uを介して電解コンデンサ4を充電し、ダイオード3zとリアクトル2wを通し、三相交流電源1を介してリアクトル2uに戻るように流れて電流値がゼロとなるまで単調に減少を続ける。   When the voltage of the capacitor 7W becomes zero volts after the drive command time Δt and the bidirectional switch 6w is turned off, the current flowing through the v phase and the current flowing through the w phase are opposite in polarity to the u phase current, as shown by the arrows in FIG. During the period, the current that had previously flowed through the reactor 2u charged the electrolytic capacitor 4 through the diode 3u, and was divided into the diode 3y and the reactor 2v, the diode 3z and the reactor 2w, and the reactor 2u via the three-phase AC power supply 1 Flowing back to Thereafter, if the v-phase current has the same polarity as the u-phase current, the current flowing through the reactor 2u as shown in FIG. 6 charges the electrolytic capacitor 4 through the diode 3u, passes through the diode 3z and the reactor 2w, The current flows back to the reactor 2u via the three-phase AC power source 1, and continues to decrease monotonically until the current value becomes zero.

以上のように、u相の電流に注目してその動作を説明したが、その他の相の電流の挙動も同様であり、各相の電流は各相の電圧のゼロクロス点から流れ始め、各相の電圧がピーク値となるまで増加を続け、その後各相の電圧低下とともに減少することにより、その各相の電流波形は各相の電圧波形と位相が等しい正弦波状となり、入力力率の改善が可能となる。   As described above, the operation has been described by focusing on the u-phase current, but the behavior of the currents of the other phases is the same, and the current of each phase starts to flow from the zero-cross point of the voltage of each phase. The voltage of each phase continues to increase until it reaches its peak value, and then decreases with the voltage drop of each phase, so that the current waveform of each phase becomes a sine wave with the same phase as the voltage waveform of each phase, and the input power factor is improved. It becomes possible.

図7に三相交流電源1のu相電圧のゼロ位相からの一周期における各相電圧と双方向性スイッチ制御手段9の双方向性スイッチ6u、6v、6wを駆動するための出力gu、gv、gwの発生タイミングを示す。なお、以上の説明では双方向性スイッチ制御手段9の駆動時間指令Δtの決定の方法については触れていないが、通常は電解コンデンサ4の両端電圧が直流電圧目標値に一致するよう決定するが、負荷5に流れる電流を検出する負荷電流検出手段を設けて負荷電流の大きさから駆動時間指令Δtを決定してもよく、あるいは入力電流検出手段を設けて入力電流の大きさから駆動時間指令Δtを決定してもよい。   FIG. 7 shows outputs gu and gv for driving the bidirectional switches 6u, 6v and 6w of the bidirectional switch control means 9 in one cycle from the zero phase of the u-phase voltage of the three-phase AC power supply 1. , Gw generation timing is shown. In the above description, the method for determining the drive time command Δt of the bidirectional switch control means 9 is not mentioned. Usually, the voltage across the electrolytic capacitor 4 is determined to match the DC voltage target value. Load current detection means for detecting the current flowing through the load 5 may be provided to determine the drive time command Δt from the magnitude of the load current, or input current detection means may be provided to determine the drive time command Δt from the magnitude of the input current. May be determined.

なお、本実施の形態では双方向性スイッチ6u、6v、6wの一線を一括してブリッジ整流回路3の負極出力に接続したが、正極出力に接続しても同様の動作となる。   In the present embodiment, one line of the bidirectional switches 6u, 6v, 6w is connected to the negative output of the bridge rectifier circuit 3 in a lump, but the same operation is performed even when connected to the positive output.

また、本実施の形態では各相の電圧のゼロクロス点から双方向性スイッチ6u、6v、6wの駆動を開始しているが、リアクトル2u、2v、2wのインダクタンスが大きい場合や高負荷時に各相の電流が遅れ力率となる場合があり、この場合は双方向性スイッチ6u、6v、6wがオンした際にゼロ電流スイッチングとならない問題が発生することがあるため、それを回避するために電圧のゼロクロス点から所定の時間だけ遅延させて双方向性スイッチ6u、6v、6wを駆動するよう双方向性スイッチ制御手段9を構成して良い。   In the present embodiment, the bidirectional switches 6u, 6v, 6w are driven from the zero-cross point of the voltage of each phase. However, when the inductance of the reactors 2u, 2v, 2w is large or when each phase is high, In this case, when the bidirectional switches 6u, 6v, 6w are turned on, there may occur a problem that zero current switching does not occur. The bidirectional switch control means 9 may be configured to drive the bidirectional switches 6u, 6v, 6w with a predetermined time delay from the zero cross point.

次に、制御信号補正手段12の駆動パルスの補正の方法について説明する。他負荷などの何らかの要因が加わりu相の受電端電圧が低くなり三相交流電源1が不平衡になったことを考え、u相電圧が10V低くなり三相交流電源1が不平衡になったときのu相の入力電圧と入力電流の波形を図8に示す。双方向スイッチ6uの駆動パルスのパルス幅のみ狭めてやることで、図8に示すようにVucの面積が小さくなる。そのため、コンデンサ7uの充放電電圧が減少してu相電流が減少するので、u相の受電端電圧は増加することができるので、三相交流電源1の平衡を保つことができる。   Next, a method of correcting the drive pulse of the control signal correction unit 12 will be described. Considering the fact that some other factors such as other loads are applied and the u-phase receiving end voltage is lowered and the three-phase AC power supply 1 is unbalanced, the u-phase voltage is lowered by 10 V and the three-phase AC power supply 1 is unbalanced. FIG. 8 shows the waveforms of the u-phase input voltage and input current at that time. By reducing only the pulse width of the driving pulse of the bidirectional switch 6u, the area of Vuc is reduced as shown in FIG. Therefore, the charging / discharging voltage of the capacitor 7u is decreased and the u-phase current is decreased, so that the u-phase power receiving end voltage can be increased, so that the balance of the three-phase AC power source 1 can be maintained.

本実施の形態においては、各相電圧を相電圧検出手段11によって検出し、その検出値に基づいて制御信号補正手段12によって各相の駆動パルスのパルス幅を補正して双方向性スイッチ制御手段が双方向スイッチ6u、6v、6wを駆動するように構成されている。   In the present embodiment, each phase voltage is detected by the phase voltage detection means 11, and based on the detected value, the pulse width of the drive pulse of each phase is corrected by the control signal correction means 12, and the bidirectional switch control means. Is configured to drive the bidirectional switches 6u, 6v, 6w.

以上のように双方向性スイッチの駆動パルスのパルス幅を調整する構成とすることにより、三相交流電源1の不平衡電圧を調整することができる。   As described above, the unbalanced voltage of the three-phase AC power supply 1 can be adjusted by adjusting the pulse width of the drive pulse of the bidirectional switch.

(実施の形態2)
実施の形態2では、実施の形態1における双方向スイッチ6u、6v、6wの駆動パルスの位相を調整するように構成されている。図8に示すように駆動パルスの位相tdをずらすことでVucの面積の大小を変えることができるので、相電圧検出手段11の検出値に応じて各相の駆動パルスの位相を調整することにより、各相電流のバランスを保って動作を継続し、高力率を維持する。
(Embodiment 2)
The second embodiment is configured to adjust the phase of the drive pulses of the bidirectional switches 6u, 6v, 6w in the first embodiment. As shown in FIG. 8, the size of the area of Vuc can be changed by shifting the phase td of the drive pulse. Therefore, by adjusting the phase of the drive pulse of each phase according to the detection value of the phase voltage detection means 11 , Keep the balance of each phase current, keep the operation and maintain high power factor.

以上のように双方向性スイッチの駆動パルスの位相を調整する構成とすることにより、三相交流電源1の不平衡電圧を調整することができる。   As described above, by adopting a configuration that adjusts the phase of the driving pulse of the bidirectional switch, the unbalanced voltage of the three-phase AC power supply 1 can be adjusted.

(実施の形態3)
実施の形態3では、実施の形態1における双方向スイッチ6u、6v、6wの駆動パルスのパルス幅と位相を調整するように構成されている。パルス幅と位相を同時に調整することによって制御信号補正手段12の制御性が向上し、三相交流電源1の不平衡電圧を調整することができる。
(Embodiment 3)
The third embodiment is configured to adjust the pulse width and phase of the drive pulses of the bidirectional switches 6u, 6v, 6w in the first embodiment. By simultaneously adjusting the pulse width and phase, the controllability of the control signal correction means 12 is improved, and the unbalanced voltage of the three-phase AC power source 1 can be adjusted.

(実施の形態4)
実施の形態4では、実施の形態1における双方向スイッチ6u、6v、6wの駆動パルスを三相交流電源1の投入時に相電圧検出手段11から検出された各相の電圧値の差に応じて駆動パルスの補正値を決定するように構成されている。三相交流電源1の各相電圧の電圧差を1V以下の単位で細かく設定し、その設定値に応じた各相の補正値のデータテーブルを制御信号補正手段12に定めておく。三相交流電源1投入時の相電圧検出手段11の検出値に応じた補正値をデータテーブルから読み出して、双方向性スイッチ制御手段10に反映させて、双方向スイッチ6u、6v、6wを駆動するように構成されている。
(Embodiment 4)
In the fourth embodiment, the drive pulses of the bidirectional switches 6u, 6v, 6w in the first embodiment are changed according to the voltage value difference of each phase detected from the phase voltage detecting means 11 when the three-phase AC power supply 1 is turned on. The driving pulse correction value is determined. The voltage difference of each phase voltage of the three-phase AC power supply 1 is set finely in units of 1 V or less, and a data table of correction values for each phase corresponding to the set value is determined in the control signal correction means 12. A correction value corresponding to the detection value of the phase voltage detection means 11 when the three-phase AC power supply 1 is turned on is read from the data table and reflected in the bidirectional switch control means 10 to drive the bidirectional switches 6u, 6v, 6w. Is configured to do.

以上のように双方向性スイッチの駆動パルスの補正値のデータテーブルを用意しておき、三相交流電源1の投入時に相電圧検出手段から検出された各相の電圧値の差の応じて補正値を決定することにより、三相交流電源1の不平衡電圧を調整することができる。   As described above, the data table of the correction value of the driving pulse of the bidirectional switch is prepared, and the correction is performed according to the difference in the voltage value of each phase detected from the phase voltage detecting means when the three-phase AC power supply 1 is turned on. By determining the value, the unbalanced voltage of the three-phase AC power source 1 can be adjusted.

以上のように、本発明にかかる直流電源装置は、入力力率を改善することができる直流電源装置において三相交流電源の不平衡を調整することができ、可変電圧直流電源装置やメッキ用の整流器、エアコンや冷蔵庫などのインバータ装置の入力段回路として利用できる。   As described above, the DC power supply device according to the present invention can adjust the unbalance of the three-phase AC power supply in the DC power supply device that can improve the input power factor. It can be used as an input stage circuit for inverter devices such as rectifiers, air conditioners and refrigerators.

本発明の実施の形態1における直流電源装置のブロック図1 is a block diagram of a DC power supply device according to Embodiment 1 of the present invention. 本発明の実施の形態1のコンデンサ7u充電開始時の説明図Explanatory drawing at the start of capacitor 7u charging according to Embodiment 1 of the present invention 本発明の実施の形態1のコンデンサ7u充電完了後の説明図Explanatory drawing after completion of capacitor 7u charging in Embodiment 1 of the present invention 本発明の実施の形態1のコンデンサ7w放電開始時の説明図Explanatory drawing when capacitor 7w discharge starts according to Embodiment 1 of the present invention 本発明の実施の形態1のコンデンサ7w放電完了時の説明図Explanatory drawing of capacitor 7w discharge completion according to the first embodiment of the present invention 本発明の実施の形態1のコンデンサ7w放電完了後v相電流転流時の説明図Explanatory drawing at the time of v-phase current commutation after completion of capacitor 7w discharge of Embodiment 1 of the present invention 本発明の実施の形態1の各相電圧と双方向性スイッチ駆動のタイミング図Timing diagram of each phase voltage and bidirectional switch driving of embodiment 1 of the present invention 本発明の実施の形態1の三相交流電源が不平衡電圧時のu相電圧とu相電流波形図U-phase voltage and u-phase current waveform diagram when the three-phase AC power supply of Embodiment 1 of the present invention is unbalanced 従来の直流電源装置のブロック図Block diagram of a conventional DC power supply 従来の直流電源装置の各部波形図Waveform diagram of each part of conventional DC power supply 三相変圧器を用いたゼロクロス検出手段の構成図Configuration diagram of zero-cross detection means using a three-phase transformer 一相電圧ゼロクロス検出手段を用いたゼロクロス検出手段の構成図Configuration diagram of zero-cross detection means using one-phase voltage zero-cross detection means

符号の説明Explanation of symbols

1 三相交流電源
2u,2v,2w リアクトル
3 ブリッジ整流回路
3u,3v,3w,3x,3y,3z ダイオード
4 電解コンデンサ
5 負荷
6u,6v,6w 双方向性スイッチ
7u,7v,7w コンデンサ
8 ゼロクロス検出手段
9 直流電圧検出手段
10 双方向性スイッチ制御手段
11 相電圧検出手段
12 制御信号補正手段
DESCRIPTION OF SYMBOLS 1 Three-phase alternating current power supply 2u, 2v, 2w Reactor 3 Bridge rectifier circuit 3u, 3v, 3w, 3x, 3y, 3z Diode 4 Electrolytic capacitor 5 Load 6u, 6v, 6w Bidirectional switch 7u, 7v, 7w Capacitor 8 Zero cross detection Means 9 DC voltage detection means 10 Bidirectional switch control means 11 Phase voltage detection means 12 Control signal correction means

Claims (4)

三相交流電源と、前記三相交流電源からの交流を全波整流する6個のダイオードで形成されたブリッジ整流回路と、前記ブリッジ整流回路の出力を平滑する平滑コンデンサと、前記三相交流電源と前記ブリッジ整流回路の各相の交流入力端子との間に接続されたリアクタと、前記ブリッジ整流回路の各相の交流入力端子と直流出力端子との間に双方向スイッチを介して接続されたコンデンサと、前記三相交流電源の電圧のゼロ点を検出するゼロクロス検出手段と、前記平滑コンデンサの両端の電圧を検出する直流電圧検出手段と、前記三相交流電源の各相の電圧値を検出する相電圧検出手段と、前記相電圧検出手段の出力に基づき制御信号を調整する制御信号補正手段と、前記ゼロクロス検出手段の出力と前記直流電圧検出手段及び前記制御信号補正手段の出力に基づき前記双方向スイッチを駆動する双方向性スイッチ制御手段とを備えたことを特徴とする直流電源装置。 A three-phase AC power source, a bridge rectifier circuit formed by six diodes for full-wave rectification of the AC from the three-phase AC power source, a smoothing capacitor for smoothing the output of the bridge rectifier circuit, and the three-phase AC power source And a reactor connected between the AC input terminal of each phase of the bridge rectifier circuit, and an AC input terminal and a DC output terminal of each phase of the bridge rectifier circuit connected via a bidirectional switch A capacitor, a zero cross detecting means for detecting a zero point of the voltage of the three-phase AC power supply, a DC voltage detecting means for detecting a voltage at both ends of the smoothing capacitor, and detecting a voltage value of each phase of the three-phase AC power supply Phase voltage detection means, control signal correction means for adjusting a control signal based on the output of the phase voltage detection means, output of the zero cross detection means, the DC voltage detection means, and the control DC power supply device being characterized in that a bidirectional switch control means for driving the bidirectional switch based on the output of the No. correction means. 制御信号補正手段は、双方向スイッチの駆動パルスの位相を調整することを特徴とする請求項1に記載の直流電源装置。 2. The DC power supply device according to claim 1, wherein the control signal correction means adjusts the phase of the drive pulse of the bidirectional switch. 制御信号補正手段は、双方向スイッチの駆動パルスのパルス幅と位相を調整することを特徴とする請求項1に記載の直流電源装置。 2. The DC power supply device according to claim 1, wherein the control signal correcting means adjusts a pulse width and a phase of a driving pulse of the bidirectional switch. 制御信号補正手段は、三相交流電源の投入時に前記相電圧検出手段から検出された各相の電圧値の差に応じて補正値を決定するように構成されたことを特徴とする請求項1から3のいずれかに記載の直流電源装置。 2. The control signal correcting unit is configured to determine a correction value according to a difference in voltage value of each phase detected from the phase voltage detecting unit when a three-phase AC power supply is turned on. 4. The DC power supply device according to any one of items 1 to 3.
JP2005078897A 2005-03-18 2005-03-18 Dc power supply device Pending JP2006262662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078897A JP2006262662A (en) 2005-03-18 2005-03-18 Dc power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078897A JP2006262662A (en) 2005-03-18 2005-03-18 Dc power supply device

Publications (1)

Publication Number Publication Date
JP2006262662A true JP2006262662A (en) 2006-09-28

Family

ID=37101268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078897A Pending JP2006262662A (en) 2005-03-18 2005-03-18 Dc power supply device

Country Status (1)

Country Link
JP (1) JP2006262662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201045A1 (en) 2011-02-22 2012-08-23 Kyosan Electric Mfg. Co., Ltd. Method for controlling the power factor of a three-phase converter, method for controlling the reactive power of three-phase converters and control device for three-phase converters

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201045A1 (en) 2011-02-22 2012-08-23 Kyosan Electric Mfg. Co., Ltd. Method for controlling the power factor of a three-phase converter, method for controlling the reactive power of three-phase converters and control device for three-phase converters
JP2012175834A (en) * 2011-02-22 2012-09-10 Kyosan Electric Mfg Co Ltd Power factor control method for three-phase converter, reactive power control method for three-phase converter, and controller for three-phase converter
US8797003B2 (en) 2011-02-22 2014-08-05 Kyosan Electric Mfg. Co., Ltd. Method for controlling power factor of three-phase converter, method for controlling reactive power of three-phase converter, and controller of three-phase converter
TWI485960B (en) * 2011-02-22 2015-05-21 Kyosan Electric Mfg Method for controlling power factor of three-phase converter, method for controlling reactive power of three-phase converter, and controller of three-phase converter
DE102012201045B4 (en) * 2011-02-22 2016-06-23 Kyosan Electric Mfg. Co., Ltd. Method for controlling the power factor of a three-phase converter, method for controlling the reactive power of three-phase converters and control device for three-phase converters

Similar Documents

Publication Publication Date Title
TWI750780B (en) Isolated dc/dc converters for wide output voltage range and control methods thereof
KR100823922B1 (en) Apparatus and method for supplying dc power source
US7532491B2 (en) Apparatus and method for supplying DC power source
JP5428480B2 (en) Power converter
US8385085B2 (en) PWM signal generator, and inverter equipped with this PWM signal generator
JP6206502B2 (en) Power conversion device and power conversion method
JP6062058B2 (en) Power converter
WO2017049250A1 (en) Pwm scheme based on space vector modulation for three-phase rectifier converters
EP3203626B1 (en) Power conversion device
JP4706349B2 (en) DC power supply device and compressor drive device
JP2004312990A (en) Inverter controller for driving motor, and air conditioner
JP5523508B2 (en) Power converter
AU2008236293B2 (en) Power supply device
JP2007104859A (en) Dc power supply device
JP2008193815A (en) Power supply system
JP6361539B2 (en) Conversion device
KR101035464B1 (en) Power supply circuit and pam control method thereof
JP2006262662A (en) Dc power supply device
JP6505261B2 (en) Power converter
JP5169679B2 (en) Resonant power converter
JP2704519B2 (en) DC power supply
JP2006006046A (en) Converter control method and its device, as well as air conditioner, its control method and device
JPWO2006064742A1 (en) Self-excited reactive power compensator
KR20010010415A (en) Power factor correcting apparatus and method of inverter
JP2006174642A (en) Dc power supply unit