JP2006262556A - Power system stabilizer - Google Patents

Power system stabilizer Download PDF

Info

Publication number
JP2006262556A
JP2006262556A JP2005073035A JP2005073035A JP2006262556A JP 2006262556 A JP2006262556 A JP 2006262556A JP 2005073035 A JP2005073035 A JP 2005073035A JP 2005073035 A JP2005073035 A JP 2005073035A JP 2006262556 A JP2006262556 A JP 2006262556A
Authority
JP
Japan
Prior art keywords
voltage
distribution line
phase
svr
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005073035A
Other languages
Japanese (ja)
Inventor
Yuji Matsuo
勇次 松尾
Kazuhiro Murata
和弘 村田
Nobutada Kamikita
信忠 上北
Toshiaki Kusama
利晃 草間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2005073035A priority Critical patent/JP2006262556A/en
Publication of JP2006262556A publication Critical patent/JP2006262556A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power system stabilizer that prevents misoperations of ground fault protection relays. <P>SOLUTION: There is arranged in the power system stabilizer a Y-connected SVR 11 (step-type voltage regulator), that performs voltage adjustment in a high-voltage distribution line (6 kV, for example) that is large in ground capacitance and long in route length. All of taps of windings of three phases (A phase, B phase and C phase) are switched in the Y-connected SVR 11. In other words, voltage adjustment is performed, by boosting or stepping down all the voltages of the three phases. In this case, the neutral point of a voltage vector is not moved. According to this, residual voltage, generated at the high-voltage distribution line at the voltage adjustment, is suppressed as compared with those of a prior art that have used a V-connected SVR, and accordingly, misoperations of the ground fault protection relay are prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は電力系統安定化装置に関し、特に、高圧配電線の電圧調整および地絡保護を行なう電力系統安定化装置に関する。   The present invention relates to a power system stabilizing device, and more particularly, to a power system stabilizing device that performs voltage adjustment and ground fault protection of a high-voltage distribution line.

図6は、従来の電力系統安定化装置の要部の構成を示す図である。図6を参照して、この電力系統安定化装置は、SVR(ステップ型自動電圧調整器)31、残留電圧検出器222、地絡保護継電器23および遮断部24を備える。   FIG. 6 is a diagram illustrating a configuration of a main part of a conventional power system stabilizing device. Referring to FIG. 6, the power system stabilizing device includes an SVR (step type automatic voltage regulator) 31, a residual voltage detector 222, a ground fault protection relay 23, and a cutoff unit 24.

SVR31は、電圧降下が大きい高圧配電線に設けられ、内部の変圧器のタップを自動的に切換えることによって配電線電圧を調整する。通常、高圧配電線(たとえば、6KV)系統には、V結線のSVRが用いられる。V結線のSVRでは、3相(A相,B相,C相)のうちの2相(たとえば、A相,C相)の巻線のタップを切換える。これにより、2相の相電圧が昇圧または降圧されて、電圧調整が行なわれる。   The SVR 31 is provided in a high-voltage distribution line with a large voltage drop, and adjusts the distribution line voltage by automatically switching the tap of the internal transformer. Usually, a V-connection SVR is used for a high-voltage distribution line (for example, 6 KV) system. In the V-connection SVR, the winding taps of two phases (for example, A phase, C phase) of three phases (A phase, B phase, C phase) are switched. As a result, the two-phase phase voltage is boosted or lowered to perform voltage adjustment.

残留電圧検出器22は、高圧配電線から3相(A相,B相,C相)の電圧を受け、残留電圧(零相電圧)を検出する。この残留電圧は、絶縁劣化や絶縁不良などにより高圧配電線と地面との間に電流が流れる地絡事故が起きた場合に発生する。地絡保護継電器23は、検出された残留電圧のレベルに基づいて、遮断部24の動作を制御する制御信号を出力する。遮断部24は、各相の配電線に対応した複数の遮断器CBを含み、地絡保護継電器23からの制御信号に応答して、配電線系統を遮断する。これにより、地絡事故発生時における停電範囲の拡大や公衆災害が防止される。   The residual voltage detector 22 receives a three-phase (A phase, B phase, C phase) voltage from the high-voltage distribution line and detects a residual voltage (zero phase voltage). This residual voltage occurs when a ground fault occurs in which a current flows between the high-voltage distribution line and the ground due to insulation deterioration or insulation failure. The ground fault protection relay 23 outputs a control signal for controlling the operation of the interruption unit 24 based on the detected level of the residual voltage. The interruption unit 24 includes a plurality of circuit breakers CB corresponding to the distribution lines of each phase, and interrupts the distribution line system in response to a control signal from the ground fault protection relay 23. This prevents the expansion of the power outage range and public disasters when a ground fault occurs.

図7は、図6に示したV結線のSVR31の各相の電圧ベクトルを示す図である。図7において、A相およびC相の相電圧Ea,Ecが昇圧された場合のベクトル軌跡を示す。ここで、昇圧前における相電圧Ea,Eb,Ecが3相平衡であった場合、昇圧前の中性点の電圧ベクトルEo↑(ただし、矢印↑はベクトルを示す)は、以下の数式(1)で示される。   FIG. 7 is a diagram showing voltage vectors of each phase of the SVR 31 of the V connection shown in FIG. FIG. 7 shows vector trajectories when the phase voltages Ea and Ec of the A phase and the C phase are boosted. Here, when the phase voltages Ea, Eb, and Ec before boosting are three-phase balanced, the voltage vector Eo ↑ (where arrow ↑ indicates a vector) at the neutral point before boosting is expressed by the following formula (1 ).

Eo↑=(Ea↑+Eb↑+Ec↑)/3=0↑ …(1)
また、SVR31の変圧比をnとすると、昇圧後における相電圧Eaa,Ebb,Eccの電圧ベクトルは、それぞれ以下の数式(2)〜(4)で示される。
Eo ↑ = (Ea ↑ + Eb ↑ + Ec ↑) / 3 = 0 ↑ (1)
Further, assuming that the transformation ratio of SVR 31 is n, the voltage vectors of phase voltages Eaa, Ebb, Ecc after boosting are respectively expressed by the following formulas (2) to (4).

Eaa↑=Ea↑+n(Ea↑−Eb↑) …(2)
Ebb↑=Eb↑ …(3)
Ecc↑=Eb↑+n(Ec↑−Eb↑) …(4)
したがって、昇圧後の中性点の電圧ベクトルEoo↑は、以下の数式(5)で示される。
Eaa ↑ = Ea ↑ + n (Ea ↑ −Eb ↑) (2)
Ebb ↑ = Eb ↑ (3)
Ecc ↑ = Eb ↑ + n (Ec ↑ −Eb ↑) (4)
Therefore, the voltage vector Eoo ↑ at the neutral point after boosting is expressed by the following formula (5).

Eoo↑=(Eaa↑+Ebb↑+Ecc↑)/3
={(0↑)+n(Ea↑+Ec↑−2Eb↑)}/3
={(0↑)+n(0↑−3Eb↑)}/3
=−nEb↑ …(5)
これより、昇圧後の中性点はB相の電圧ベクトルEb↑の負方向にずれてしまうことが分かる。このように、V結線のSVRでは、タップ切換えによる電圧調整時に中性点が移動し、3相電圧が不平衡となるため残留電圧が発生してしまう。
Eoo ↑ = (Eaa ↑ + Ebb ↑ + Ecc ↑) / 3
= {(0 ↑) + n (Ea ↑ + Ec ↑ -2Eb ↑)} / 3
= {(0 ↑) + n (0 ↑ -3Eb ↑)} / 3
= -NEb ↑ (5)
From this, it can be seen that the neutral point after boosting is shifted in the negative direction of the B-phase voltage vector Eb ↑. As described above, in the V-connection SVR, the neutral point moves during voltage adjustment by tap switching, and the three-phase voltage becomes unbalanced, so that a residual voltage is generated.

したがって、V結線のSVR31を高圧配電線に設けた場合、SVR31による電圧調整時に発生する残留電圧の影響によって、地絡保護継電器23が誤動作するという問題があった。地絡保護継電器23が誤動作することにより遮断部24が遮断動作を行なうと、不必要に停電を引き起こしてしまう。   Therefore, when the SVR 31 of V connection is provided in the high-voltage distribution line, there is a problem that the ground fault protection relay 23 malfunctions due to the influence of the residual voltage generated when adjusting the voltage by the SVR 31. If the interruption | blocking part 24 performs interruption | blocking operation | movement by malfunctioning the ground fault protection relay 23, it will cause a power failure unnecessarily.

配電線に設置されるSVR31の台数が多いほど、電圧調整時に発生する残留電圧は高くなるため、地絡保護継電器23が誤動作する恐れが大きくなる。また、ケーブル長が長い配電線(地中線の多い配電線)は対地静電容量が大きく、対地静電容量が大きいほどSVR31による電圧調整時に発生する残留電圧が高くなる。   The greater the number of SVRs 31 installed in the distribution line, the higher the residual voltage generated during voltage adjustment, and thus the greater the risk that the ground fault protection relay 23 will malfunction. In addition, a distribution line having a long cable length (distribution line with many underground lines) has a large capacitance to ground, and the larger the ground capacitance, the higher the residual voltage generated during voltage adjustment by the SVR 31.

ここで、SVR31の電源側の対地静電容量をC1、負荷側の対地静電容量をC2とした場合、SVR31によって発生する残留電圧Vは、簡易的に以下の数式(6)で表わされる。   Here, when the ground capacitance on the power source side of the SVR 31 is C1 and the ground capacitance on the load side is C2, the residual voltage V generated by the SVR 31 is simply expressed by the following formula (6).

V=(nEb×C2)/(C1+C2) …(6)
したがって、発生する残留電圧Vは、負荷側の対地静電容量C2が大きいほどが大きくなることが分かる。
V = (nEb × C2) / (C1 + C2) (6)
Therefore, it can be seen that the generated residual voltage V increases as the load side ground capacitance C2 increases.

一方、地絡保護継電器23は、残留電圧が整定値以上の場合に動作するが、対地静電容量の大きな配電線では地絡事故時に発生する残留電圧が低いため整定値が小さな値に設定される。すなわち、SVRによる電圧調整時に発生する残留電圧に応答して地絡保護継電器23が誤動作する可能性が高くなる。したがって、設置されるSVR31の台数が多く、対地静電容量が大きい配電線では、地絡保護継電器23が誤動作する可能性が高い。   On the other hand, the ground fault protection relay 23 operates when the residual voltage is equal to or higher than the set value. However, in the distribution line having a large ground capacitance, the set value is set to a small value because the residual voltage generated at the time of the ground fault is low. The That is, there is a high possibility that the ground fault protection relay 23 malfunctions in response to the residual voltage generated during voltage adjustment by SVR. Therefore, there is a high possibility that the ground fault protection relay 23 malfunctions in a distribution line having a large number of installed SVRs 31 and a large ground capacitance.

下記の特許文献1には、配電線のループ接続時に発生する残留電流により地絡保護継電器が誤動作することを未然に防止し得る配電線地絡電流増幅装置が開示されている。
特開2003−134659号公報
Patent Document 1 below discloses a distribution line ground fault current amplifying device that can prevent a ground fault protection relay from malfunctioning due to a residual current generated when a distribution line is loop-connected.
JP 2003-134659 A

以上のように、V結線のSVR31が設置された配電線において、対地静電容量が大きい場合、SVR31による電圧調整時に配電線に現れる残留電圧の影響を受けて地絡保護継電器23が誤動作を起こす可能性が高かった。   As described above, in the distribution line in which the V-connection SVR 31 is installed, when the ground capacitance is large, the ground fault protection relay 23 malfunctions due to the influence of the residual voltage appearing on the distribution line during voltage adjustment by the SVR 31. The possibility was high.

それゆえに、この発明の主たる目的は、地絡保護継電器の誤動作を防止する電力系統安定化装置を提供することである。   Therefore, a main object of the present invention is to provide a power system stabilizing device that prevents malfunction of a ground fault protection relay.

この発明に係る電力系統安定化装置は、対地静電容量の大きな長い亘長の高圧配電線の電圧調整および地絡保護を行なう電力系統安定化装置であって、高圧配電線の所定位置に設けられたY結線の3相変圧器を含み、高圧配電線の電圧調整を行なう自動電圧調整器と、高圧配電線に介挿され、地絡事故から電力系統を保護するスイッチと、高圧配電線に発生する残留電圧を検出し、予め定められたレベルの残留電圧が検出されたことに応じてスイッチを遮断制御する地絡保護制御手段とを備えたものである。   A power system stabilization device according to the present invention is a power system stabilization device that performs voltage adjustment and ground fault protection for a long high voltage distribution line having a large ground capacitance, and is provided at a predetermined position of the high voltage distribution line. An automatic voltage regulator that adjusts the voltage of the high-voltage distribution line, a switch that is inserted in the high-voltage distribution line and protects the power system from a ground fault, and a high-voltage distribution line. And a ground fault protection control means for detecting a generated residual voltage and controlling the switch to be cut off in response to detection of a predetermined level of the residual voltage.

この発明に係る電力系統安定化装置では、高圧配電線の所定位置に設けられたY結線の3相変圧器を含み、高圧配電線の電圧調整を行なう自動電圧調整器と、高圧配電線に介挿され、地絡事故から電力系統を保護するスイッチと、高圧配電線に発生する残留電圧を検出し、予め定められたレベルの残留電圧が検出されたことに応じてスイッチを遮断制御する地絡保護制御手段とが設けられる。したがって、自動電圧調整器による電圧調整時において高圧配電線に残留電圧が発生しない。このため、地絡保護制御手段が誤動作するのが防止される。   The power system stabilizing device according to the present invention includes a Y-connected three-phase transformer provided at a predetermined position of the high-voltage distribution line, an automatic voltage regulator for adjusting the voltage of the high-voltage distribution line, and a high-voltage distribution line. A switch that protects the power system from a ground fault and a ground fault that detects residual voltage generated in the high-voltage distribution line and shuts off the switch when a predetermined level of residual voltage is detected. Protection control means. Therefore, no residual voltage is generated in the high-voltage distribution line during voltage adjustment by the automatic voltage regulator. For this reason, it is prevented that a ground fault protection control means malfunctions.

図1は、この発明の一実施の形態による小水力発電所の連系系統の一部を示すブロック図である。図1において、発電所1は、2900kWの電源容量を有する発電機(G)21、残留電圧検出器22、地絡保護継電器23および遮断部24を含む。発電所2は、7400kWの電源容量を有する発電機25、残留電圧検出器26、地絡保護継電器27および遮断部28を含む。変電所3は、発電所2および他の配電線系統に接続され、接続された配電線電圧の調整、系統の切換え、電力潮流の制御、事故処理などを行なう。   FIG. 1 is a block diagram showing a part of an interconnection system of a small hydroelectric power plant according to an embodiment of the present invention. In FIG. 1, the power plant 1 includes a generator (G) 21 having a power supply capacity of 2900 kW, a residual voltage detector 22, a ground fault protection relay 23, and a cutoff unit 24. The power plant 2 includes a generator 25 having a power capacity of 7400 kW, a residual voltage detector 26, a ground fault protection relay 27, and a cutoff unit 28. The substation 3 is connected to the power plant 2 and other distribution line systems, and performs adjustment of the connected distribution line voltage, system switching, power flow control, accident handling, and the like.

発電所1,2間は、長い亘長(たとえば、25km)の高圧配電線(たとえば、6kV)で接続される。また、この高圧配電線は、長い地中線(たとえば、13km)を含む。この発電所1,2間の高圧配電線には、電圧調整のためのY結線のSVR11が複数台(たとえば、6台)設けられる。SVR11は、電圧降下が大きい高圧配電線の途中に取付けられ、内部の変圧器のタップを自動的に切換えることによって配電線電圧を調整する。   The power plants 1 and 2 are connected by a high-voltage distribution line (for example, 6 kV) having a long length (for example, 25 km). The high-voltage distribution line includes a long underground line (for example, 13 km). The high-voltage distribution line between the power plants 1 and 2 is provided with a plurality of (for example, six) Y-connected SVRs 11 for voltage adjustment. The SVR 11 is attached in the middle of a high-voltage distribution line having a large voltage drop, and adjusts the distribution line voltage by automatically switching the taps of the internal transformer.

残留電圧検出器22は、発電所1の高圧配電線から残留電圧を検出する。地絡保護継電器23は、検出された残留電圧のレベルに基づいて、遮断部24の動作を制御する制御信号を出力する。遮断部24は、地絡保護継電器23からの制御信号に応答して、配電線系統を遮断する。残留電圧検出器26は、発電所2の高圧配電線から残留電圧を検出する。地絡保護継電器27は、検出された残留電圧のレベルに基づいて、遮断部28の動作を制御する制御信号を出力する。遮断部28は、地絡保護継電器27からの制御信号に応答して、配電線系統を遮断する。これにより、地絡事故発生時における停電範囲の拡大や公衆災害が防止される。   The residual voltage detector 22 detects the residual voltage from the high voltage distribution line of the power plant 1. The ground fault protection relay 23 outputs a control signal for controlling the operation of the interruption unit 24 based on the detected level of the residual voltage. The interruption | blocking part 24 interrupts | blocks a distribution line system in response to the control signal from the ground fault protection relay 23. FIG. The residual voltage detector 26 detects a residual voltage from the high voltage distribution line of the power plant 2. The ground fault protection relay 27 outputs a control signal for controlling the operation of the blocking unit 28 based on the detected level of the residual voltage. In response to the control signal from the ground fault protection relay 27, the interrupting unit 28 interrupts the distribution line system. This prevents the expansion of the power outage range and public disasters when a ground fault occurs.

ここで、Y結線のSVR11の代わりに、図6に示したV結線のSVR31を発電所1,2間の高圧配電線に設けると、タップ切換えによる電圧調整時に残留電圧が発生してしまう。高圧配電線に設置するSVRの台数は6台と多いため、電圧調整時に発生する残留電圧は高い。また、この高圧配電線は亘長が長く、地中線が長いため対地静電容量が大きい。このため、SVR31による電圧調整時に発生する残留電圧は非常に高くなる。さらに、対地静電容量が大きいため、地絡保護継電器の整定値は小さな値に設定される。したがって、この高圧配電線に従来のV結線のSVR31を設けた場合、地絡保護継電器23,27が誤動作する可能性が高い。   If the V-connection SVR 31 shown in FIG. 6 is provided in the high-voltage distribution line between the power plants 1 and 2 instead of the Y-connection SVR 11, a residual voltage is generated during voltage adjustment by tap switching. Since the number of SVRs installed on the high-voltage distribution line is as large as six, the residual voltage generated during voltage adjustment is high. In addition, this high-voltage distribution line has a long span and a long underground line, so that the ground capacitance is large. For this reason, the residual voltage generated at the time of voltage adjustment by the SVR 31 becomes very high. Furthermore, since the ground capacitance is large, the settling value of the ground fault protection relay is set to a small value. Therefore, when the conventional V-connection SVR 31 is provided on the high-voltage distribution line, the ground fault protection relays 23 and 27 are likely to malfunction.

図2は、従来のV結線のSVR31を配電線に設けた場合に発電所1付近で発生する残留電圧の算出結果を示す図である。図2を参照して、このデータはEMTP(Electro Magnetic Transients Program)を用いて、様々な負荷形態および発電機の出力電力レベルのパターンを想定して残留電圧の予測を行なった結果を示す。   FIG. 2 is a diagram illustrating a calculation result of a residual voltage generated in the vicinity of the power plant 1 when a conventional V-connection SVR 31 is provided in the distribution line. Referring to FIG. 2, this data shows the result of prediction of residual voltage using EMTP (Electro Magnetic Transients Program) assuming various load forms and generator output power level patterns.

点線で囲まれた三角形の内側の領域は、地絡保護継電器23が誤動作しない領域である。点線で囲まれた三角形の外側の領域は、A相の電圧ベクトル方向に発生した残留電圧に応じて地絡保護継電器23が誤動作するA相動作領域、B相の電圧ベクトル方向に発生した残留電圧に応じて地絡保護継電器23が誤動作するB相動作領域、およびC相の電圧ベクトル方向に発生した残留電圧に応じて地絡保護継電器13が誤動作するC相動作領域から成る。この場合、A相動作領域において最大約3.7Vの残留電圧が発生することが予測される(丸線で囲まれた部分)ため、発電所1付近に設けられた地絡保護継電器23が誤動作する恐れがある。なお、A相動作領域に残留電圧が多く発生するのは、発電所1に最も近いSVR31によってA相動作領域に残留電圧が発生するためと考えられる。   A region inside the triangle surrounded by a dotted line is a region where the ground fault protection relay 23 does not malfunction. A region outside the triangle surrounded by a dotted line is an A-phase operation region where the ground fault protection relay 23 malfunctions according to a residual voltage generated in the A-phase voltage vector direction, and a residual voltage generated in the B-phase voltage vector direction. Accordingly, the ground fault protection relay 23 malfunctions, and the B phase operation area malfunctions in response to the residual voltage generated in the direction of the C phase voltage vector. In this case, it is predicted that a maximum residual voltage of about 3.7 V is generated in the A-phase operation region (the portion surrounded by a round line), so that the ground fault protection relay 23 provided near the power plant 1 malfunctions. There is a fear. The reason why a large amount of residual voltage is generated in the A-phase operation region is considered to be that a residual voltage is generated in the A-phase operation region by the SVR 31 closest to the power plant 1.

図3は、従来のV結線のSVR31を配電線に設けた場合に発電所2付近で発生する残留電圧の算出結果を示す図である。図3を参照して、このデータは図2の場合と同様にEMTPを用いて、様々な負荷形態および発電機の出力電力レベルのパターンを想定して残留電圧の予測を行なった結果を示す。この場合、B相動作領域およびC相動作領域の両方において最大約2.7Vの残留電圧が発生することが予測される(丸線で囲まれた部分)ため、発電所2付近に設けられた地絡保護継電器27が誤動作する恐れがある。なお、B相動作領域およびC相動作領域の両方に残留電圧が多く発生するのは、発電所3に最も近いSVR31によってB相動作領域に残留電圧が発生し、発電所3に2番目に近いSVR31によってC相動作領域に残留電圧が発生するためと考えられる。また、図2および図3を参照して、発生する残留電圧が異なるのは、発電所1と発電所2とでは電源側の対地静電容量と負荷側の対地静電容量とが異なるためと考えられる。   FIG. 3 is a diagram showing a calculation result of a residual voltage generated in the vicinity of the power plant 2 when a conventional V-connection SVR 31 is provided on the distribution line. Referring to FIG. 3, this data shows the result of prediction of residual voltage using EMTP in the same manner as in FIG. 2, assuming various load forms and generator output power level patterns. In this case, it is predicted that a maximum residual voltage of about 2.7 V is generated in both the B-phase operation region and the C-phase operation region (the portion surrounded by a round line). There is a possibility that the ground fault protection relay 27 may malfunction. The reason why a large amount of residual voltage is generated in both the B-phase operation region and the C-phase operation region is that the SVR 31 closest to the power plant 3 generates a residual voltage in the B-phase operation region and is the second closest to the power plant 3. This is probably because a residual voltage is generated in the C-phase operation region by SVR31. In addition, referring to FIGS. 2 and 3, the generated residual voltage is different because the ground capacitance on the power source side and the ground capacitance on the load side are different between power plant 1 and power plant 2. Conceivable.

そこで、この一実施の形態では、従来のV結線のSVR31に代わってY結線のSVR11を用いる。すなわち、図1に示した発電所1,2間の高圧配電線にY結線のSVR11を6台設置する。   Therefore, in this embodiment, instead of the conventional V-connection SVR 31, the Y-connection SVR 11 is used. In other words, six Y-connected SVRs 11 are installed on the high-voltage distribution line between the power plants 1 and 2 shown in FIG.

図4は、この発明の一実施の形態による電力系統安定化装置の要部の構成を示す図であって、図6と対比される図である。図4の電力系統安定化装置を参照して、図6の電力系統安定化装置と異なる点は、V結線のSVR31がY結線のSVR11で置換されている点である。Y結線のSVR11では、3相(A相,B相,C相)の巻線のタップをすべて切換える。これにより、3相の電圧がすべて昇圧または降圧されて、電圧調整が行なわれる。   FIG. 4 is a diagram showing a configuration of a main part of the power system stabilizing device according to one embodiment of the present invention, and is compared with FIG. Referring to the power system stabilizing device of FIG. 4, the difference from the power system stabilizing device of FIG. 6 is that the V-connection SVR 31 is replaced with the Y-connection SVR 11. In the Y-connection SVR 11, all the taps of the windings of the three phases (A phase, B phase, C phase) are switched. As a result, all three-phase voltages are boosted or stepped down, and voltage adjustment is performed.

図5は、図4に示したY結線のSVR11の各相の電圧ベクトルを示す図である。図5において、A相、B相およびC相の相電圧Ea,Eb,Ecが昇圧された場合のベクトル軌跡を示す。この場合、昇圧前および昇圧後において電圧ベクトルの中性点は移動しない。このように、中性点が移動しないため、高圧配電線に残留電圧は発生しない。   FIG. 5 is a diagram showing voltage vectors of the respective phases of the SVR 11 of the Y connection shown in FIG. FIG. 5 shows vector trajectories when the phase voltages Ea, Eb, and Ec of the A phase, B phase, and C phase are boosted. In this case, the neutral point of the voltage vector does not move before and after boosting. Thus, since the neutral point does not move, no residual voltage is generated in the high-voltage distribution line.

以上のように、この一実施の形態では、設置されるSVRの台数が多く、対地静電容量が大きい高圧配電線において、Y結線のSVRを用いる。このため、SVRによる電圧調整時において、高圧配電線に残留電圧は発生しない。したがって、地絡保護継電器が誤動作するのが防止される。   As described above, in this embodiment, a Y-connected SVR is used in a high-voltage distribution line with a large number of SVRs installed and a large ground capacitance. For this reason, no residual voltage is generated in the high-voltage distribution line at the time of voltage adjustment by SVR. Therefore, it is possible to prevent the ground fault protection relay from malfunctioning.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の一実施の形態による小水力発電所の連系系統の一部を示すブロック図である。It is a block diagram which shows a part of interconnection system of the small hydropower station by one Embodiment of this invention. 従来のV結線のSVRを配電線に設けた場合に発電所1付近で発生する残留電圧の算出結果を示す図である。It is a figure which shows the calculation result of the residual voltage which generate | occur | produces near the power station 1, when providing SVR of the conventional V connection in a distribution line. 従来のV結線のSVRを配電線に設けた場合に発電所2付近で発生する残留電圧の算出結果を示す図である。It is a figure which shows the calculation result of the residual voltage which generate | occur | produces near the power station 2, when SVR of the conventional V connection is provided in the distribution line. この発明の一実施の形態による電力系統安定化装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the electric power grid stabilization apparatus by one Embodiment of this invention. 図4に示したY結線のSVRの各相の電圧ベクトルを示す図である。FIG. 5 is a diagram illustrating a voltage vector of each phase of SVR of Y connection shown in FIG. 4. 従来の電力系統安定化装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the conventional electric power system stabilization apparatus. 図6に示したV結線のSVRの各相の電圧ベクトルを示す図である。It is a figure which shows the voltage vector of each phase of SVR of the V connection shown in FIG.

符号の説明Explanation of symbols

1,2 発電所、3 変電所、11,31 SVR、21,25 発電機、22,26 残留電圧検出器、23,27 地絡保護継電器、24,28 遮断部。   1, 2 power plant, 3 substation, 11, 31 SVR, 21, 25 generator, 22, 26 residual voltage detector, 23, 27 ground fault protection relay, 24, 28 breaker.

Claims (1)

対地静電容量の大きな長い亘長の高圧配電線の電圧調整および地絡保護を行なう電力系統安定化装置であって、
前記高圧配電線の所定位置に設けられたY結線の3相変圧器を含み、前記高圧配電線の電圧調整を行なう自動電圧調整器、
前記高圧配電線に介挿され、地絡事故から電力系統を保護するスイッチ、および
前記高圧配電線に発生する残留電圧を検出し、予め定められたレベルの残留電圧が検出されたことに応じて前記スイッチを遮断制御する地絡保護制御手段を備える、電力系統安定化装置。
A power system stabilizing device that performs voltage regulation and ground fault protection for a long high voltage distribution line with a large capacitance to ground,
An automatic voltage regulator that includes a Y-connected three-phase transformer provided at a predetermined position of the high-voltage distribution line, and performs voltage adjustment of the high-voltage distribution line;
A switch inserted in the high-voltage distribution line to protect the power system from a ground fault, and a residual voltage generated in the high-voltage distribution line is detected, and a predetermined level of residual voltage is detected. An electric power system stabilization device comprising a ground fault protection control means for controlling the cutoff of the switch.
JP2005073035A 2005-03-15 2005-03-15 Power system stabilizer Pending JP2006262556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073035A JP2006262556A (en) 2005-03-15 2005-03-15 Power system stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073035A JP2006262556A (en) 2005-03-15 2005-03-15 Power system stabilizer

Publications (1)

Publication Number Publication Date
JP2006262556A true JP2006262556A (en) 2006-09-28

Family

ID=37101174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073035A Pending JP2006262556A (en) 2005-03-15 2005-03-15 Power system stabilizer

Country Status (1)

Country Link
JP (1) JP2006262556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001645A1 (en) * 2010-06-30 2012-01-05 Abb Technology Ag Combined electrical variable detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001645A1 (en) * 2010-06-30 2012-01-05 Abb Technology Ag Combined electrical variable detection device

Similar Documents

Publication Publication Date Title
US9634490B2 (en) Dynamic voltage restoration system and method
US20130193766A1 (en) Control and protection of a dc power grid
US7535686B2 (en) Control of circuit breakers in a multi-phase power system
EP3363092B1 (en) Method and arrangement for facilitating clearing of a pole fault and isolation of a faulted pole in a power transmission system
KR20150035277A (en) fault clearing system and its method for microgrid
JP5094062B2 (en) Short-circuit current reduction system and short-circuit current reduction method for power transmission and distribution system
KR102128442B1 (en) Apparatus for protecting OLTC of main transformer
JP2017510234A (en) Power system connection point for distribution system, regulation transformer for power system connection point, and method for operating power system connection point
KR100883502B1 (en) Apparatus for controlling harmonic wave automatically
Kletsel et al. Construction of resource-saving differential protections for converter units with transformers with 2N secondary windings and 2N rectifiers
JP2011097797A (en) Protection system of loop system
JP2018157710A (en) Automatic voltage regulator and semiconductor protection method therefor
JP2006262556A (en) Power system stabilizer
JP2009005528A (en) Current-limiting device
JP6029993B2 (en) Static frequency conversion power supply
JP5399284B2 (en) Voltage stabilization device and voltage stabilization method
JP2018014835A (en) Overcurrent protector and power supply unit
JP5058009B2 (en) Distribution line compensation reactor system and distribution line compensation reactor setting method
JP2012157133A (en) Rejection control apparatus, rejection control program and rejection control method
JP2007060797A (en) Generator protective relay device
RU2654208C1 (en) Current protection device of electric motors
KR20210124183A (en) Fault protection configuration of resettable transformer protectors
RU2176123C1 (en) Method and device for differential current protection of three-phase transformer
JP5137226B2 (en) Circuit breaker
JP2020167774A (en) Protection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309