JP2006261291A - Electron beam lithography device - Google Patents

Electron beam lithography device Download PDF

Info

Publication number
JP2006261291A
JP2006261291A JP2005074778A JP2005074778A JP2006261291A JP 2006261291 A JP2006261291 A JP 2006261291A JP 2005074778 A JP2005074778 A JP 2005074778A JP 2005074778 A JP2005074778 A JP 2005074778A JP 2006261291 A JP2006261291 A JP 2006261291A
Authority
JP
Japan
Prior art keywords
electron beam
shaping
variable
variable shaped
drawing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005074778A
Other languages
Japanese (ja)
Other versions
JP4481851B2 (en
Inventor
Hiroyuki Ito
博之 伊藤
Hirozumi Ando
宏純 安藤
Yasuko Aoki
康子 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005074778A priority Critical patent/JP4481851B2/en
Publication of JP2006261291A publication Critical patent/JP2006261291A/en
Application granted granted Critical
Publication of JP4481851B2 publication Critical patent/JP4481851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive electron beam lithography device capable of correcting nonlinearity in changing a beam size of a variable formation type electron beam lithography device for rapid and precise lithography. <P>SOLUTION: The electron beam lithography device is equipped with a sensing means for detecting the reflection or transmission current of a variable formed electron beam for calibrating the electron beam by the detection of the sensing means. Data of a plurality of beam sizes are specified in a formation deflection DAC circuit to detect nonlinear components of the detected value by the sensing means and correct a beam irradiation time by a blanking means so that the detected value is linear. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体微細加工分野において、可変成形型電子ビーム描画装置の高精度なビーム制御および描画方法に関するものである。   The present invention relates to a highly accurate beam control and drawing method of a variable shaping type electron beam drawing apparatus in the field of semiconductor fine processing.

電子ビーム描画装置は電子ビームでマスク基板、ウェハ等に微細パターンを高精度に描画する装置である。近年は電子源を電子レンズで微細に絞るポイントビームに加え、ビーム形状を描画パターンに応じて高速に制御する可変成形方式が実用化されている。   An electron beam drawing apparatus is an apparatus that draws a fine pattern on a mask substrate, a wafer, or the like with an electron beam with high accuracy. In recent years, in addition to a point beam that finely narrows the electron source with an electron lens, a variable shaping method that controls the beam shape at high speed according to the drawing pattern has been put into practical use.

すなわち可変成形方式は、成形偏向器で上段の成形絞り像を下段の成形絞り上で移動させビーム形状、寸法を可変させ、場合によりこれらを複数段で制御してビーム形状を高度に制御する方式である。   In other words, the variable shaping method is a method in which the upper shaping aperture image is moved on the lower shaping aperture with a shaping deflector to change the beam shape and dimensions, and in some cases, these are controlled in multiple stages to highly control the beam shape. It is.

近年は微細化が進み数10nmの描画パターンを高精度に露光する必要が出てきている。そのため特に電子ビーム描画装置の寸法設定分解能として、1nm以下が要求されている。ポイントビームではビームを微細に絞り露光量で制御することが一般的であるが、露光時間が増加してしまう。   In recent years, miniaturization has progressed, and it has become necessary to expose a drawing pattern of several tens of nm with high accuracy. Therefore, in particular, 1 nm or less is required as the dimension setting resolution of the electron beam drawing apparatus. In a point beam, it is common to finely control the beam by the aperture exposure amount, but the exposure time increases.

可変成形方式ではビーム寸法をDAC(Digital to Analog Converter)で制御している。そのためDAC分解能を上げれば良いが、分解能に応じて所定の出力値に対する回路整定時間が増加しスループットを悪化させる。   In the variable shaping method, the beam size is controlled by a DAC (Digital to Analog Converter). Therefore, it is sufficient to increase the DAC resolution, but the circuit settling time for a predetermined output value is increased according to the resolution, and the throughput is deteriorated.

特開平10−27749(特許文献1)に示された寸法補正法は寸法を変えてビーム電流を測定し、微小領域の関係曲線から再現良く微細パターンを描画する方法を開示している。特公平7−107893(特許文献2)にはやはりビーム電流値を寸法の1次関数で近似して補正する手段を開示している。   Japanese Laid-Open Patent Publication No. 10-27749 (Patent Document 1) discloses a method for measuring a beam current by changing dimensions and drawing a fine pattern with good reproducibility from a relation curve of a minute region. Japanese Examined Patent Publication No. 7-107893 (Patent Document 2) also discloses a means for correcting the beam current value by approximating it with a linear function of dimensions.

しかし、これらの技術ではやはりDACの分解能が設定寸法精度を制限してしまう問題が残存する。高ビットDAC化は測定信頼性の低下や、回路系が複雑となりコスト増となる問題がある。特に半導体ゲート層や磁気ヘッド加工では、位置制御よりも一般に高い寸法制御性が要求されており、大きな課題となっている。   However, these techniques still have the problem that the resolution of the DAC limits the set dimensional accuracy. The high bit DAC has problems such as a decrease in measurement reliability and a complicated circuit system resulting in an increase in cost. Particularly in the processing of semiconductor gate layers and magnetic heads, higher dimensional controllability is generally required than position control, which is a major issue.

特開平10−27749公報JP-A-10-27749 特公平7−107893公報Japanese Patent Publication No. 7-107893

本発明は、上記の問題に鑑み、可変成形方式電子ビーム描画装置のビーム寸法変化時の非直線性を補正し、高速かつ高精度な描画を可能とする安価な電子ビーム描画装置を提供することを目的とする。   In view of the above problems, the present invention provides an inexpensive electron beam drawing apparatus that corrects non-linearity at the time of beam dimension change of a variable shaping type electron beam drawing apparatus and enables high-speed and high-precision drawing. With the goal.

本発明は、可変成形電子ビームの反射または透過電流を検知する検知手段を設け、前記検知手段の検知により可変成形電子ビームの校正を行う電子ビーム描画装置において、成形偏向DAC回路に複数の前記ビーム寸法のデータを設定して検知手段の検知値の非直線性成分を検知し、前記検知値が直線性になるようにブランキング手段によりビーム照射時間を補正することを特徴する。   The present invention provides an electron beam drawing apparatus that includes a detection unit that detects a reflection or transmission current of a variable shaped electron beam, and calibrates the variable shaped electron beam by detection of the detection unit. Dimension data is set to detect a non-linear component of the detection value of the detection means, and the beam irradiation time is corrected by the blanking means so that the detection value becomes linear.

これにより、寸法設定の高分解能化が実現し、高精度の寸法補正ができる電子ビーム描画装置を提供できる。   Thereby, it is possible to provide an electron beam drawing apparatus that realizes high resolution of dimension setting and enables highly accurate dimension correction.

一般にビーム制御の高分解能化には成形偏向DAC回路そのものを高分解能化する方法と、主成形偏向DAC回路に補正DAC回路を加える方法がある。本発明では、問題となるDAC分解能または非直線性誤差をビーム電流として測定し、ブランキング制御にフィードバックしてビーム照射時間補正として行う。   In general, there are two methods for increasing the resolution of beam control: a method of increasing the resolution of the shaping deflection DAC circuit itself and a method of adding a correction DAC circuit to the main shaping deflection DAC circuit. In the present invention, the problematic DAC resolution or non-linearity error is measured as a beam current, and is fed back to blanking control for beam irradiation time correction.

すなわち、寸法設定すなわち成形偏向DAC回路に連続したデータを設定し、発生する可変成形電子ビームの電流または反射電流量を実測して直線性を評価する。成形偏向DAC回路の非直線性を直接に成形ビーム電流値の誤差として測定するため高信頼化が測れ、成形偏向DAC回路の出力の測定系が不要となりコストダウンが可能である。   That is, continuous data is set in the dimension setting, that is, the shaping deflection DAC circuit, and the linearity is evaluated by measuring the current of the generated variable shaping electron beam or the amount of reflected current. Since the non-linearity of the shaping deflection DAC circuit is directly measured as an error of the shaping beam current value, high reliability can be measured, and the output measuring system of the shaping deflection DAC circuit is not necessary, and the cost can be reduced.

ここで得られた電流の非直線的変化はブランキング回路にフィードバックしてビーム照射で補正する。これにより、低分解能の成形偏向DAC回路を用いて高速に高精度の寸法制御が可能である。特に可変成形ビーム幅がビームボケ幅より小さい微小寸法では、ブランキング手段による照射時間制御はDACの設定に比べて高い分解能と再現性を提供できる。   The non-linear change of the current obtained here is fed back to the blanking circuit and corrected by beam irradiation. Accordingly, high-precision dimensional control can be performed at high speed using a low-deflection shaped deflection DAC circuit. In particular, when the variable shaped beam width is smaller than the beam blur width, the irradiation time control by the blanking means can provide higher resolution and reproducibility than the DAC setting.

本発明によれば、ビーム寸法変化時の非直線性を補正し、高速かつ高精度な描画を可能とする安価な電子ビーム描画装置を提供することを目的とする。   An object of the present invention is to provide an inexpensive electron beam drawing apparatus that corrects nonlinearity at the time of beam dimension change and enables high-speed and high-precision drawing.

図1には、一般的な2段の成形絞りを用いた可変成形型電子光学系を示す。電子源1より発した電子ビームは、第一成形絞り2を透過し、第一成形レンズ3および第二成形レンズ5により第二成形絞り6上に結像される。成形偏向器4はこの第一成形絞り像7の位置を制御し、第二成形絞り6を透過した電子が可変成形ビーム11となる。成形ビーム11は縮小レンズ9で縮小され、対物レンズ12と対物偏向器13で、試料面に結像および位置決めされる。   FIG. 1 shows a variable shaping type electron optical system using a general two-stage shaping diaphragm. The electron beam emitted from the electron source 1 passes through the first molded diaphragm 2 and is imaged on the second molded diaphragm 6 by the first molded lens 3 and the second molded lens 5. The shaping deflector 4 controls the position of the first shaped diaphragm image 7, and the electrons transmitted through the second shaped diaphragm 6 become the variable shaped beam 11. The shaped beam 11 is reduced by the reduction lens 9 and imaged and positioned on the sample surface by the objective lens 12 and the objective deflector 13.

ここで移動ステージ16は描画試料に加えてビーム電流計15を搭載し、反射電子検出器14は移動ステージ上の校正マークを検知する。またブランキング手段のブランキング電極8はビーム偏向整定時中にビームを離軸させブランキング絞り10でオフし、露光時間を制御している。   Here, the moving stage 16 includes a beam ammeter 15 in addition to the drawing sample, and the backscattered electron detector 14 detects a calibration mark on the moving stage. The blanking electrode 8 of the blanking means separates the beam during beam deflection settling and is turned off by the blanking diaphragm 10 to control the exposure time.

制御計算機22は描画データを矩形ショットの寸法データや露光座標に分割する。また制御計算機22はビーム寸法誤差から補正量を計算し成形偏向DAC回路17に設定する。これらの一連のビーム寸法設定と同期してビーム照射位置を対物偏向制御回路20に設定する。   The control computer 22 divides the drawing data into rectangular shot size data and exposure coordinates. The control computer 22 calculates a correction amount from the beam size error and sets it in the shaping deflection DAC circuit 17. The beam irradiation position is set in the objective deflection control circuit 20 in synchronization with the series of beam dimension settings.

これらの回路動作後に、ブランキング手段のブランキング制御回路19がブランキング電極8動作をオフし、所望の露光時間でビームオンする。実際の成形偏向DAC回路17の誤差を含めたビーム寸法誤差を検証するためのファラディーカップ電流計15と電流検出回路21が設けられている。この電流計15は均一な反射面からの反射電子強度を計測する反射電子検出器14で代用することも可能である。   After these circuit operations, the blanking control circuit 19 of the blanking means turns off the blanking electrode 8 and turns on the beam for a desired exposure time. A Faraday cup ammeter 15 and a current detection circuit 21 for verifying beam size errors including errors of the actual shaping deflection DAC circuit 17 are provided. The ammeter 15 can be replaced by a backscattered electron detector 14 that measures the backscattered electron intensity from a uniform reflecting surface.

図1の構成で以下に示すとおり、実際に成形偏向DAC回路17を駆動し、電流計15で電流変化率を測定し解析することで高精度のビーム寸法設定が可能である。ビーム寸法は2次元量であるが、以下は簡略化のため1次元量として議論する。   As shown below in the configuration of FIG. 1, the shaping deflection DAC circuit 17 is actually driven, and the current change rate is measured and analyzed by the ammeter 15, so that the beam size can be set with high accuracy. The beam dimension is a two-dimensional quantity, but the following will be discussed as a one-dimensional quantity for simplicity.

図2に成形偏向DAC回路に誤差がある場合のビーム電流測定結果の例を示す。すなわち、図2はDACの分解能1ビット相当で設定データWを増加させた場合に測定した電流値Iである。 FIG. 2 shows an example of a beam current measurement result when there is an error in the shaping deflection DAC circuit. That is, FIG. 2 is a current value I n, measured in the case of increasing the set data W n with a resolution 1-bit equivalent of the DAC.

図2(a)はDACの分解能が荒い場合でステップ上に変化する。図2(b)は分解能1ビット相当の出力LSB(Least Significat Bit)の1/2の誤差がある場合である。   FIG. 2A shows a case where the resolution of the DAC is rough and changes in steps. FIG. 2B shows a case where there is an error of 1/2 of the output LSB (Least Significat Bit) corresponding to 1-bit resolution.

問題は電流計測の誤差であるが通常の高分解能型であれば10−4レベル、すなわちビーム寸法が1umレンジで0.1nmの分解能を得ることができる。また成形偏向器の回転があると測定誤差となるが一様な直線成分であるが、図3の様に移動する絞り側を固定側の絞り上に重ねることで、DAC非直線性評価への影響を更に無くすことが可能である。 Problem error a is but 10-4 levels would normally high resolution type of current measurement, that is, beam size to obtain a resolution of 0.1nm at 1um range. Also, if the shaping deflector rotates, a measurement error occurs, but it is a uniform linear component. However, by superposing the moving diaphragm side on the stationary diaphragm as shown in FIG. The influence can be further eliminated.

具体的な補正フロー例を図4に示す。成形偏向DACの可変範囲に沿って順次データWを設定し、そのビーム電流Iを測定する。ここで測定はDAC直線性であるから、電流計測の精度を維持するため、大電流寸法側にオフセットを加えることも可能である。 A specific correction flow example is shown in FIG. Sequentially sets the data W n along the variable range of the shaping deflection DAC, to measure the beam current I n. Since the measurement is DAC linearity, an offset can be added to the large current dimension side in order to maintain the accuracy of current measurement.

得られた結果からビーム電流Iと寸法Wに、
I=AW+B (1)
の直線関係を仮定し、I、Wを代入して最小二乗法により係数A、Bを算出する。ここでAは直線性係数、Bはオフセット係数である。
From the obtained results, the beam current I and the dimension W are
I = AW + B (1)
The coefficients A and B are calculated by the method of least squares by substituting I n and W n . Here, A is a linearity coefficient, and B is an offset coefficient.

本式から、成形偏向DAC回路のLSB値Rに対して、小さな値ΔWnだけ寸法増加する場合を考える。露光時間Tで寸法Wに仕上がり、寸法値と露光時間が微小な範囲で比例するとすれば、図2(a)の例では、
R=Wn+1−W
として単純に内挿補間をする内挿計算により、
=T(1+ΔW/R) (2)
となる。
Consider a case where the dimension increases by a small value ΔWn with respect to the LSB value R of the shaping deflection DAC circuit. If the exposure time T is finished to the dimension W, and the dimension value and the exposure time are proportional to each other in a minute range, in the example of FIG.
R = W n + 1 −W n
As an interpolation calculation that simply performs interpolation,
T n = T (1 + ΔW n / R) (2)
It becomes.

図2(b)の場合は、更に個別のWに対して補正を、
=T(1+ΔI/I)(1+ΔW/R) (3)
により、DAC非直線性補正項を加えればよい。ただしΔIは(1)式で計算したIからの差分量で、
ΔI=I−I
である。
In the case of FIG. 2 (b), correction is further performed on individual W n .
T n = T (1 + ΔI n / I) (1 + ΔW n / R) (3)
Therefore, a DAC nonlinearity correction term may be added. However [Delta] I n the amount of difference from the I calculated in (1),
ΔI n = I n −I
It is.

具体的な補正はビーム照射時間比テーブルである露光時間比補正テーブル18をあらかじめ設けて設定し、露光時に当該寸法とに応じて参照すればよい。通常は高い寸法設定分解能は微小寸法パターンで問題となる。式(2)、(3)からも分かるとおり、補正比は電流が小さいほど影響が大きくなる。   For specific correction, an exposure time ratio correction table 18 that is a beam irradiation time ratio table is set in advance and referred to in accordance with the dimensions at the time of exposure. Usually, a high dimension setting resolution is a problem with a minute dimension pattern. As can be seen from the equations (2) and (3), the effect of the correction ratio increases as the current decreases.

したがってある閾値を設けてその値以下で露光時間比補正テーブル18のメモリ量を節約することも可能である。   Therefore, it is possible to save a memory amount of the exposure time ratio correction table 18 by setting a certain threshold value and lowering the threshold value.

ここで、測定するビーム寸法にオフセットを加え、測定電流範囲を可変する機能を具備することで透過電流または反射電子量を測定器の最適レンジに合わせると高精度の測定が可能である。またビーム寸法変化時に移動する上段の成形絞りを、下段の成形絞りより大として寸法変化方向と垂直方向にオーバーラップするように位置にオフセットを加えれば、電流測定時に垂直方向にビームがカットされる影響を防止できる。   Here, by adding an offset to the beam size to be measured and providing a function for varying the measurement current range, high-precision measurement is possible by adjusting the transmitted current or the amount of reflected electrons to the optimum range of the measuring instrument. Also, if the upper shaping diaphragm that moves when the beam dimension changes is made larger than the lower shaping diaphragm and an offset is added so that it overlaps in the direction perpendicular to the dimension change direction, the beam is cut in the vertical direction during current measurement. The effect can be prevented.

本発明によれば、実パターン描画の寸法設定分解能を実効的に再現よく改善し、微細なパターン描画を実現する。電流計測はビーム走査や微分処理時間が不要で高速化や高精度化のための多数点測定が可能である。コスト的に高価な高分解能成形偏向DAC回路や複雑な補正DAC回路を必要とせず安価に実現できる。   According to the present invention, the dimension setting resolution of actual pattern drawing is effectively improved with good reproducibility, and fine pattern drawing is realized. Current measurement does not require beam scanning or differential processing time, and can measure multiple points for high speed and high accuracy. A high-resolution shaping deflection DAC circuit and a complicated correction DAC circuit that are expensive in cost and a complicated correction DAC circuit are not required and can be realized at low cost.

本発明の実施例に係わるもので、電子ビーム描画装置の概要を示す図。The figure which concerns on the Example of this invention and shows the outline | summary of an electron beam drawing apparatus. 本発明の実施例に係わるもので、ビーム電流の測定範囲を示す図。The figure which concerns on the Example of this invention and shows the measurement range of beam current. 本発明の実施例に係わるもので、回転誤差を回避するための成形絞り配置例を示す図。The figure which concerns on the Example of this invention and shows the example of a shaping | molding drawing arrangement | positioning for avoiding a rotation error. 本発明の実施例に係わるもので、測定フローチャート図。The measurement flowchart figure concerning the Example of this invention.

符号の説明Explanation of symbols

1…電子源、2…第一成形絞り、3…第一成形レンズ、4…成形偏向器、5…第二成形レンズ、6…第二成形絞り、7…第一成形絞り像、8…ブランキング電極、9…縮小レンズ、10…ブランキング絞り、11…成形ビーム、12…対物レンズ、13…対物偏向器、14…反射電子検出器、15…電流計、16…移動ステージ、17…成形偏向DAC回路、18…露光時間比補正テーブル、19…ブランキング制御回路、20…対物偏向回路、21…電流測定回路、22…制御計算機。   DESCRIPTION OF SYMBOLS 1 ... Electron source, 2 ... 1st shaping | molding aperture_diaphragm | restriction, 3 ... 1st shaping | molding lens, 4 ... Molding deflector, 5 ... 2nd shaping | molding lens, 6 ... 2nd shaping | molding aperture, 7 ... 1st shaping aperture image, 8 ... Ranking electrode, 9 ... reduction lens, 10 ... blanking stop, 11 ... shaped beam, 12 ... objective lens, 13 ... objective deflector, 14 ... backscattered electron detector, 15 ... ammeter, 16 ... moving stage, 17 ... shaping Deflection DAC circuit, 18 ... exposure time ratio correction table, 19 ... Blanking control circuit, 20 ... Objective deflection circuit, 21 ... Current measurement circuit, 22 ... Control computer.

Claims (5)

電子ビームを通過させてビーム形状またはビーム寸法が可変なる可変成形電子ビームを成形する上下段の成形絞りと、上段の前記成形絞りを通過し、下段の前記成形絞りに向かう前記電子ビームの方向を偏向する偏向器と、前記可変成形電子ビームの描画に用いられる描画データに応じて成形偏向器に設定するアナログ出力を発生する成形偏向DAC回路と、前記可変成形電子ビームの照射時間を制御するブランキング手段と、前記可変成形電子ビームを試料の面上に偏向して照射位置決めを行う対物偏向手段と、前記試料を載置して前記可変成形電子ビームの照射位置に試料が位置するように移動する移動ステージと、前記可変成形電子ビームの反射または透過電流を検知する検知手段とを有し、前記検知手段の検知により前記可変成形電子ビームの校正を行う電子ビーム描画装置において、前記成形偏向DAC回路に複数の前記ビーム寸法のデータを設定して前記検知手段の検知値の非直線性成分を検知し、前記検知値が直線性になるように前記ブランキング手段によりビーム照射時間を補正することを特徴する電子ビーム描画装置。   The upper and lower shaping apertures for shaping the variable shaped electron beam that passes through the electron beam to change the beam shape or beam size, and the direction of the electron beam passing through the upper shaping aperture and going to the lower shaping aperture. A deflector that deflects, a shaping deflection DAC circuit that generates an analog output to be set in the shaping deflector in accordance with the drawing data used for drawing the variable shaped electron beam, and a block that controls the irradiation time of the variable shaped electron beam. Ranking means, objective deflection means for irradiating and positioning the variable shaped electron beam on the surface of the sample, and placing the sample so that the sample is positioned at the irradiation position of the variable shaped electron beam And a detecting means for detecting a reflected or transmitted current of the variable shaped electron beam, and the variable shaping electric current is detected by the detecting means. In an electron beam lithography apparatus that calibrates a beam, a plurality of beam size data are set in the shaping deflection DAC circuit to detect a non-linear component of a detection value of the detection means, and the detection value becomes linear. An electron beam drawing apparatus, wherein the beam irradiation time is corrected by the blanking means. 請求項1記載の電子ビーム描画装置において、前記成形偏向DAC回路の各成形DACデータ毎に、前記ブランキング手段のブランキング制御回路に連動するビーム照射時間比テーブルを具備し、非直線性を補正する特徴とする電子ビーム描画装置。   2. The electron beam drawing apparatus according to claim 1, further comprising: a beam irradiation time ratio table linked to a blanking control circuit of the blanking means for each shaping DAC data of the shaping deflection DAC circuit to correct non-linearity. An electron beam lithography apparatus characterized by 請求項1または2記載の電子ビーム描画装置において、各成形DACデータ間の非直線性の誤差を内挿補間により補正することを特徴とする電子ビーム描画装置。   3. The electron beam drawing apparatus according to claim 1, wherein a non-linearity error between each shaping DAC data is corrected by interpolation. 請求項1記載の電子ビーム描画装置において、前記検知手段で測定する前記ビーム寸法にオフセットを加え、測定電流範囲を可変する機能を具備することを特徴とする電子ビーム描画装置。   2. The electron beam drawing apparatus according to claim 1, further comprising: a function of changing a measurement current range by adding an offset to the beam size measured by the detecting means. 請求項1記載の電子ビーム描画装置において、前記ビーム寸法を変化させる変化時に移動する上段の前記成形絞りを、下段の前記成形絞りより大として寸法変化方向と垂直方向にオーバーラップするように位置にオフセットを加え、測定電流範囲を設定することを特徴とする電子ビーム描画装置。   2. The electron beam drawing apparatus according to claim 1, wherein the upper forming diaphragm that moves at the time of changing the beam size is larger than the lower forming diaphragm and is positioned so as to overlap the direction of dimension change. An electron beam lithography apparatus characterized by adding an offset and setting a measurement current range.
JP2005074778A 2005-03-16 2005-03-16 Electron beam drawing device Active JP4481851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074778A JP4481851B2 (en) 2005-03-16 2005-03-16 Electron beam drawing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074778A JP4481851B2 (en) 2005-03-16 2005-03-16 Electron beam drawing device

Publications (2)

Publication Number Publication Date
JP2006261291A true JP2006261291A (en) 2006-09-28
JP4481851B2 JP4481851B2 (en) 2010-06-16

Family

ID=37100216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074778A Active JP4481851B2 (en) 2005-03-16 2005-03-16 Electron beam drawing device

Country Status (1)

Country Link
JP (1) JP4481851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462187B1 (en) 2012-03-29 2014-11-14 가부시키가이샤 뉴플레어 테크놀로지 Forming offset adjusting method and charged particle beam writing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237526A (en) * 1987-03-26 1988-10-04 Toshiba Corp Charged particle beam lithography
JPH03173119A (en) * 1989-12-01 1991-07-26 Hitachi Ltd Electron beam drawing apparatus
JPH04142024A (en) * 1990-10-02 1992-05-15 Jeol Ltd Charged particle beam lithography
JPH04278516A (en) * 1991-03-07 1992-10-05 Nec Corp Electron beam aligner
JP2001255662A (en) * 2000-03-13 2001-09-21 Matsushita Electric Ind Co Ltd Charged particle beam exposure device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237526A (en) * 1987-03-26 1988-10-04 Toshiba Corp Charged particle beam lithography
JPH03173119A (en) * 1989-12-01 1991-07-26 Hitachi Ltd Electron beam drawing apparatus
JPH04142024A (en) * 1990-10-02 1992-05-15 Jeol Ltd Charged particle beam lithography
JPH04278516A (en) * 1991-03-07 1992-10-05 Nec Corp Electron beam aligner
JP2001255662A (en) * 2000-03-13 2001-09-21 Matsushita Electric Ind Co Ltd Charged particle beam exposure device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462187B1 (en) 2012-03-29 2014-11-14 가부시키가이샤 뉴플레어 테크놀로지 Forming offset adjusting method and charged particle beam writing apparatus

Also Published As

Publication number Publication date
JP4481851B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4708856B2 (en) Electron beam calibration method and electron beam apparatus
US10109458B2 (en) Multi charged-particle beam writing apparatus and adjustment method for the same
JP5406551B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
US9230775B2 (en) Charged particle instrument
CN109585246A (en) More charged particle beam drawing apparatus and more charged particle beam plotting methods
KR102154534B1 (en) Multi charged-particle beam writing apparatus and multi charged-particle beam writing method
KR20200120512A (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JPH11149893A (en) Drawing device electron beam, its method and semiconductor device
JP4481851B2 (en) Electron beam drawing device
JP2007188671A (en) Beam intensity distribution measuring method of charged particle beam, and beam resolution capacity measuring method of charged particle beam
JP4011642B2 (en) Electron beam drawing method and apparatus
JP2006339404A (en) Electron-beam graphics drawing apparatus
JP2007234263A (en) Beam intensity distribution measurement method of charged particle beam, and charged particle beam device
JP3244633B2 (en) Electron beam drawing method and electron beam drawing apparatus
JPH04269613A (en) Method for focusing charged beam
JP2006324569A (en) Electronic beam current measuring technology and electronic beam application device using it
JP2786660B2 (en) Charged beam drawing method
JP5563801B2 (en) Charged particle beam resolution measuring method and charged particle beam drawing apparatus
JP4627467B2 (en) Electron beam detector, electron beam measurement method, and electron beam drawing apparatus
JP3710422B2 (en) Gain calibration method for sub-deflector of proximity exposure type electron beam exposure apparatus
JP2786661B2 (en) Charged beam drawing method
JP2008042173A (en) Charged-particle beam drawing method, charged-particle beam drawing device, and program
JP2786662B2 (en) Charged beam drawing method
JPH03173119A (en) Electron beam drawing apparatus
JP2005340345A (en) Electron beam apparatus, method for measuring distortion in deflection position of electron beam, method for correcting deflection position of electron beam

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20090625

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090831

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Effective date: 20100104

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100316

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130326

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150