JP2006258744A - Fluorescence measurement method - Google Patents

Fluorescence measurement method Download PDF

Info

Publication number
JP2006258744A
JP2006258744A JP2005079821A JP2005079821A JP2006258744A JP 2006258744 A JP2006258744 A JP 2006258744A JP 2005079821 A JP2005079821 A JP 2005079821A JP 2005079821 A JP2005079821 A JP 2005079821A JP 2006258744 A JP2006258744 A JP 2006258744A
Authority
JP
Japan
Prior art keywords
fluorescence
measurement
sample
solution
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005079821A
Other languages
Japanese (ja)
Inventor
Kohei Maruyama
浩平 丸山
Toshiaki Nagai
利明 永井
Tadashi Matsunaga
是 松永
Haruko Takeyama
春子 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2005079821A priority Critical patent/JP2006258744A/en
Publication of JP2006258744A publication Critical patent/JP2006258744A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of preventing easily an S/N ratio from getting unstable with the lapse of time, without lowering detection sensitivity for fluorescence detection, when measuring a fluorescent substance in a liquid sample using a fluorometric measuring instrument. <P>SOLUTION: This fluorescence measurement method is provided with a means for reducing a concave face curvature radius of a sample liquid face, or for preventing the concave face curvature radius from being changed with the lapse of time, when making excitation light get incident from an upper side of the liquid sample in a measuring container to carrying out the fluorometry, using the fluorometric measuring instrument for detecting fluorescence generated by the excitation light. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液体試料からの蛍光を安定して検出測定する方法に関する。   The present invention relates to a method for stably detecting and measuring fluorescence from a liquid sample.

従来から、生化学分野におけるアッセイにおいて、蛍光試薬を反応させて生じた蛍光を測定して定量分析や定性分析を行う蛍光分析が知られている。一般に、斯かる蛍光分析においては、測定容器に注入された蛍光物質含有溶液に対して、励起ランプあるいはレーザー光等の励起光を照射し、照射した励起光の波長とは異なる波長の発光が観察される現象を利用して、測定対象物中の目的成分を検出する蛍光測定装置が用いられる。   Conventionally, in assays in the biochemical field, fluorescence analysis is known in which quantitative analysis and qualitative analysis are performed by measuring fluorescence generated by reacting a fluorescent reagent. In general, in such a fluorescence analysis, an excitation light such as an excitation lamp or a laser beam is irradiated to a fluorescent substance-containing solution injected into a measurement container, and light emission having a wavelength different from the wavelength of the irradiated excitation light is observed. A fluorescence measurement device that detects a target component in a measurement object by using the phenomenon is used.

この測定においては非常に微弱な光を検出する必要があることから、励起光による容器からの反射光を抑えるよう黒い容器に測定対象試料が入れられることが多く、通常上方から励起光を照射し、上方から蛍光検出される。この励起光による反射光の影響は、蛍光測定の検出感度、S/N比(SignalとNoiseの比率)を下げる原因となっている。これに対しては、例えば、一般的な蛍光物質が励起光に対する蛍光発光の時間差が生じることを利用して、チョッパーによって検出部の光路の時間的遮断が図られている(特許文献1参照)。   Since it is necessary to detect very weak light in this measurement, the sample to be measured is often placed in a black container so as to suppress the reflected light from the container due to the excitation light, and usually the excitation light is irradiated from above. The fluorescence is detected from above. The influence of the reflected light due to the excitation light is a cause of lowering the detection sensitivity and S / N ratio (the ratio between Signal and Noise) in fluorescence measurement. In response to this, for example, by utilizing the fact that a general fluorescent substance generates a time difference in fluorescence emission with respect to excitation light, the optical path of the detection unit is temporally blocked by a chopper (see Patent Document 1). .

また蛍光測定は、通行券やテレフォンカードなどの各種プリペイドカードに設けた蛍光物質によって形成されたバーコードや文字を検出する場合にも行なわれているが、この場合にも励起光の反射の影響を受け、蛍光が発生していないにも関わらずそれを蛍光と誤認する虞があった。この問題に対しては、例えば、励起光と位相の異なる成分のみを取り出すことで反射光の影響を除去する方法が提案されている(特許文献2参照)。   Fluorescence measurement is also performed when detecting barcodes and characters formed by fluorescent materials on various prepaid cards such as pass tickets and telephone cards. In this case as well, the influence of reflection of excitation light is detected. In spite of this, there is a possibility that it may be mistaken for fluorescence even though fluorescence is not generated. For this problem, for example, a method has been proposed in which only the component having a phase different from that of the excitation light is extracted to remove the influence of the reflected light (see Patent Document 2).

しかしながら、これらの措置を講じた蛍光測定装置は高価になるばかりではなく、問題の応急的な対策でしかない。また、測定対象試料の注入からの時間経過にしたがってS/N比が経時的に変化してしまうこともあった。従って、生化学分野における蛍光測定・分析においては、データの経時的誤差を無くすため、濃度既知のコントロール試料についても反応や分離の処理を同時に行い、これに対する未知試料の濃度を比較・分析していた。
特開2003−207453号公報 特開平7−302300号公報
However, a fluorescence measuring apparatus that takes these measures is not only expensive, but also an emergency measure. In addition, the S / N ratio may change over time as time elapses from the injection of the sample to be measured. Therefore, in fluorescence measurement and analysis in the biochemical field, in order to eliminate time-dependent errors in data, a control sample with a known concentration is simultaneously subjected to reaction and separation, and the concentration of an unknown sample is compared and analyzed. It was.
JP 2003-207453 A JP-A-7-302300

本発明は、蛍光測定装置を用いて液体試料中の蛍光物質を測定する場合に、蛍光検出の検出感度を低下させず、またS/N比の経時的不安定化を簡易に防止できる方法を提供することに関する。   The present invention provides a method capable of easily preventing instability of the S / N ratio over time without reducing the detection sensitivity of fluorescence detection when measuring a fluorescent substance in a liquid sample using a fluorescence measuring apparatus. About providing.

本発明者らは、測定容器中の液体試料の上方から励起光を入射して蛍光測定を行う場合の検出感度の低下やS/N比の経時的不安定化によるデータのばらつきは、溶液の液面の形状に起因する光の反射が原因であることを解明し、容器中の試料液面の形状を外部から制御することで安定に蛍光測定できることを見出した。   The present inventors have found that the dispersion of data due to a decrease in detection sensitivity or instability of the S / N ratio over time when fluorescence measurement is performed by entering excitation light from above the liquid sample in the measurement container It was clarified that the reflection of light caused by the shape of the liquid surface is the cause, and it was found that the fluorescence can be stably measured by controlling the shape of the sample liquid surface in the container from the outside.

すなわち本発明は、測定容器中の液体試料の上方から励起光を入射し、該励起光により発生する蛍光を検出する蛍光測定装置を用いて蛍光測定する場合において、試料液面の凹面曲率半径をより小さくするか又は凹面曲率半径の経時変化を防止する手段を講じることを特徴とする蛍光測定方法に係るものである。   That is, according to the present invention, in the case where fluorescence measurement is performed using a fluorescence measurement device that detects excitation fluorescence from the liquid sample in the measurement container and detects the fluorescence generated by the excitation light, the concave curvature radius of the sample liquid surface is set. The present invention relates to a fluorescence measurement method characterized in that a means for preventing the change of the concave curvature radius with time is taken.

本発明の方法によれば、時間経過による測定対象試料の検出変化が少ない安定的な蛍光検出が可能となる。   According to the method of the present invention, it is possible to perform stable fluorescence detection with little change in detection of a sample to be measured over time.

本発明の蛍光測定方法は、測定容器中の液体試料の上方から励起光を入射し、該励起光により発生する蛍光を検出する蛍光測定装置を用いて蛍光測定する場合において、試料液面の凹面曲率半径をより小さくするか又は凹面曲率半径の経時変化を防ぐ手段を講じるものである。
試料液面の凹面曲率半径をより小さくするか又は凹面曲率半径の経時変化を防ぐことにより、液面の形状(メニスカス)が補正され、励起光による強い反射光が検出部に入り込んでくることが抑えられる。
The fluorescence measurement method of the present invention is a concave surface of a sample liquid surface in the case where fluorescence measurement is performed using a fluorescence measurement device that makes excitation light incident from above a liquid sample in a measurement container and detects fluorescence generated by the excitation light. Measures are taken to make the radius of curvature smaller or prevent the concave radius of curvature from changing with time.
By making the concave curvature radius of the sample liquid surface smaller or preventing the concave curvature radius from changing with time, the shape of the liquid surface (meniscus) is corrected, and strong reflected light from the excitation light may enter the detection unit. It can be suppressed.

本発明の蛍光測定方法において用いられる蛍光測定装置は、液体試料を測定できるものであれば特に制限されるものではなく、一般に、蛍光物質や蛍光試薬を反応させて生じた蛍光化合物の溶液に、その上方から紫外線等の励起光をあてて分子軌道電子を励起し、該電子が励起状態から基準状態へ遷移するときに発する蛍光を測定して、定量分析や定性分析を行う蛍光分析装置であればよい。例えば、図1の概略構成図に示すような蛍光装置を用いればよい。   The fluorescence measuring device used in the fluorescence measuring method of the present invention is not particularly limited as long as it can measure a liquid sample, and generally, a fluorescent compound solution produced by reacting a fluorescent substance or a fluorescent reagent, Fluorescence analyzer that performs quantitative analysis and qualitative analysis by applying excitation light such as ultraviolet rays from above to excite molecular orbital electrons and measure the fluorescence emitted when the electrons transition from the excited state to the reference state. That's fine. For example, a fluorescent device as shown in the schematic configuration diagram of FIG. 1 may be used.

測定容器は、特に限定されるものではないが、例えばマイクロプレート、マイクロチューブなどのSBS規格化されている容器が用いられ、素材はポリスチレンやポリプロピレンなどの樹脂製のものを始め、いずれのものでもよい。また、微細加工技術によって作られるPDMS(polydimethylsiloxane)を材料とするマイクロチャンバや、熱伝導の良いシリコンやアルミを材料とするマイクロウェルであってもよい。   The measurement container is not particularly limited, but for example, a SBS standardized container such as a microplate or a microtube is used, and any material is used, including those made of resin such as polystyrene and polypropylene. Good. Further, it may be a micro chamber made of PDMS (polydimethylsiloxane) made by microfabrication technology, or a microwell made of silicon or aluminum having good heat conductivity.

試料液面の凹面曲率半径をより小さくするか又は凹面曲率半径の経時変化を防ぐ手段としては、例えば、1)試料の温度を一旦上昇させ、曲率半径が小さくなった後に当該温度を低下させること、2)溶液に界面活性剤を添加すること等が挙げられる。
ここで、試料液面の凹面曲率半径の経時変化とは、微妙な力関係で釣合っている測定容器内壁と溶液の接触点における表面張力のバランスが時間経過に伴って変化することを意味する(場合によって測定容器中の試料液面は凸面形状になっていることもある)。これを防ぐことによりS/N比の経時的不安定化を防止でき、これによるデータのばらつきを抑えることが出来る。
Examples of means for reducing the concave curvature radius of the sample liquid surface or preventing the change in the concave curvature radius with time include, for example, 1) increasing the temperature of the sample once, and lowering the temperature after the curvature radius decreases. 2) Adding a surfactant to the solution.
Here, the time-dependent change in the radius of curvature of the concave surface of the sample liquid surface means that the balance of the surface tension at the contact point between the inner wall of the measurement container and the solution that is balanced by a delicate force relationship changes with time. (In some cases, the sample liquid level in the measurement container may have a convex shape). By preventing this, it is possible to prevent the S / N ratio from destabilizing with time, and to suppress variations in data.

1)試料の温度調整
試料液面の凹面曲率半径は、測定容器内壁と溶液の接触点における接触角に依存して決定されるが、一般的にこの接触角は容器内壁材料が不変の場合には溶液の表面張力に依存する。従って溶液の表面張力を低下させれば、容器内壁と溶液との接触角が小さくなり、試料液面の凹面曲率半径も小さくなる。溶液が水を主成分とする場合、水の表面張力は水銀に続いて大きいことから測定容器に導入した時点では、液面は凸面形状、又は平坦形状になっているが、溶液温度を上昇させると凹面曲率半径は小さくなる。溶液を上昇させる温度は、沸点に近いほど短時間で凹面曲率半径が小さくなるが、70℃〜100℃に10秒〜10分、好ましくは90℃〜100℃に1分〜5分である。
1) Temperature adjustment of the sample The concave radius of curvature of the sample liquid surface is determined depending on the contact angle at the contact point between the inner wall of the measurement container and the solution. Generally, this contact angle is determined when the inner wall material of the container is unchanged. Depends on the surface tension of the solution. Therefore, if the surface tension of the solution is lowered, the contact angle between the inner wall of the container and the solution is reduced, and the concave curvature radius of the sample liquid surface is also reduced. When the solution contains water as the main component, the surface tension of water is high following mercury, so when introduced into the measuring vessel, the liquid level is convex or flat, but the solution temperature is increased. And the concave curvature radius becomes smaller. The temperature at which the solution is raised is such that the concave curvature radius decreases in a shorter time as the temperature approaches the boiling point, but is 10 seconds to 10 minutes at 70 ° C. to 100 ° C., preferably 1 minute to 5 minutes at 90 ° C. to 100 ° C.

一般的に蛍光物質は温度感受性が高く、より低温の方が高い感度で測定が可能であることから温度を下降させて計測することが好ましい。溶液を下降させる温度範囲は、測定時に毎回同一温度に保つことが出来ればよく、0℃〜40℃、好ましくは4℃〜25℃である。ここで温度低下に伴って溶液の表面張力は上昇してしまうが、測定容器内壁と液面との接触角には履歴効果(前進接触角と後退接触角には履歴性を持つこと)があることから、凹面曲率半径が熱処理前の状態まで大きくなることはない。また、この接触角が変化することによる凹面曲率半径の経時変化も生じない。   In general, a fluorescent substance has high temperature sensitivity, and measurement at a lower temperature is preferable because measurement can be performed with higher sensitivity. The temperature range in which the solution is lowered may be 0 ° C to 40 ° C, preferably 4 ° C to 25 ° C, as long as it can be kept at the same temperature every time measurement is performed. Here, the surface tension of the solution increases as the temperature decreases, but there is a hysteresis effect on the contact angle between the inner wall of the measurement container and the liquid surface (the advancing contact angle and the receding contact angle have hysteresis). For this reason, the concave curvature radius does not increase to the state before the heat treatment. Further, the change in the radius of curvature of the concave surface due to the change in the contact angle does not occur over time.

上記手段を実現するためには、測定容器の温度を調節するための温度調節機構を備えればよい。温度調節機構としては、測定容器の置かれた雰囲気を温風によって高温に調整することで測定容器の温度を上げ、また、高温になった空気を外に逃すことによって測定容器の温度を外気と同程度まで下げる機構があるが、好ましくは測定容器の外壁を直接ペルチェ素子等の温度調節部材によって素早く温度調節できる機構を備えるものが処理時間を短縮できることから都合が良い。   In order to realize the above means, a temperature adjustment mechanism for adjusting the temperature of the measurement container may be provided. As the temperature adjustment mechanism, the temperature of the measurement container is increased by adjusting the atmosphere in which the measurement container is placed to a high temperature with hot air, and the temperature of the measurement container is changed to the outside air by letting the hot air out. Although there is a mechanism for lowering to the same extent, a mechanism equipped with a mechanism that can quickly adjust the temperature of the outer wall of the measurement container directly by a temperature adjusting member such as a Peltier element is convenient because the processing time can be shortened.

2)界面活性剤の添加
界面活性剤の添加により、溶液の表面張力を安定的に低下できることから、液面の凹面曲率半径を小さくさせ、かつその経時変化を防ぐことができる。
使用できる界面活性剤としては、非イオン性またはイオン性のいずれでもよいが、蛍光物質の蛍光特性に及ぼす影響が小さいことから、非イオン性の界面活性剤の方が好ましく、中でも溶液の表面張力低下能に優れる親水疎水比(HLB)価が高いポリオキシエチレン付加型界面活性剤が特に好ましい。具体例としては、ポリオキシエチレン(20)ソルビタンモノラウレート(Tween20)や、ポリオキシエチレン(10)オクチルフェニルエーテル(TritonX−100)等が挙げられる。これらの界面活性剤を単独で、もしくは複数種混合して使用することができる。
2) Addition of surfactant Since the surface tension of the solution can be stably reduced by adding the surfactant, the concave curvature radius of the liquid surface can be reduced and its change with time can be prevented.
The surfactant that can be used may be either nonionic or ionic, but a nonionic surfactant is preferred because it has a small effect on the fluorescent properties of the fluorescent material. A polyoxyethylene addition type surfactant having a high hydrophilicity / hydrophobicity ratio (HLB) value which is excellent in reducing ability is particularly preferred. Specific examples include polyoxyethylene (20) sorbitan monolaurate (Tween 20) and polyoxyethylene (10) octyl phenyl ether (Triton X-100). These surfactants can be used alone or in combination.

用いられる界面活性剤の添加量は、試料溶液中にその界面活性剤の臨界ミセル濃度の1〜1000倍の濃度となるように、更には臨界ミセル濃度の5〜20倍の濃度となるように用いるのが好ましい。   The added amount of the surfactant to be used is 1 to 1000 times the critical micelle concentration of the surfactant in the sample solution, and further 5 to 20 times the critical micelle concentration. It is preferable to use it.

上記手段を実現するためには、測定容器中に界面活性剤を導入する手段を設ければよく、斯かる導入手段としては、界面活性剤の溶液を所定の測定容器の位置に所定量だけ分注するポンプ機構を備える。この分注ポンプ機構としては、プランジャーポンプ方式、ペリスタルポンプ方式、圧送・ピンチバルブ方式などの方式のいずれでもよいが、分注量を精密に制御できるプランジャーポンプ方式が好ましい。   In order to realize the above means, it is only necessary to provide means for introducing a surfactant into the measurement container. As such introduction means, a predetermined amount of the surfactant solution is dispensed at a predetermined measurement container position. A pumping mechanism is provided. As the dispensing pump mechanism, any of a plunger pump system, a peristal pump system, a pressure feed / pinch valve system, etc. may be used, but a plunger pump system capable of precisely controlling the dispensing amount is preferable.

実施例1
1.方法
PBSバッファ中で混合した0.1pmol/100μL濃度の蛍光色素Cy3(Amersham Life Science社、吸収極大波長:550nm)をマイクロプレート中に導入し、この溶液の蛍光強度をプレートリーダーにて計測した。コントロールとして、Cy3を含まないPBSバッファ(ブランク)の計測も行なった。時間経過による変化を見るため、10時間の計測を5分間おきに行なった。
Example 1
1. Method A fluorescent dye Cy3 (Amersham Life Science, absorption maximum wavelength: 550 nm) with a concentration of 0.1 pmol / 100 μL mixed in a PBS buffer was introduced into a microplate, and the fluorescence intensity of this solution was measured with a plate reader. As a control, a PBS buffer (blank) containing no Cy3 was also measured. In order to see the change over time, 10 hours were measured every 5 minutes.

2.結果
Cy3溶液およびブランクの蛍光強度は、時間経過によって共に増強をしていき、7時間を過ぎると減少して安定してくる結果となった(図2)。この結果から、液面の形状の変化による反射光が、蛍光検出に影響を与えていることが考察された。
2. Results The fluorescence intensity of the Cy3 solution and the blank increased together with the passage of time, and after 7 hours, the fluorescence intensity decreased and became stable (FIG. 2). From this result, it was considered that the reflected light due to the change in the shape of the liquid surface affects the fluorescence detection.

実施例2
1.方法
次に、マイクロプレート中に、PBSバッファ中で混合した0.1pmol/100μL濃度のCy3溶液に界面活性剤Tween20を0.1%の濃度になるように混ぜた溶液、および、測定前に95℃,3分間の後に25℃, 3分間の熱処理を行ったPBSバッファ中で混合した0.1pmol/100μL濃度のCy3溶液を、プレートリーダーにて5分間おきに10時間計測した。コントロールとして、Cy3を含まないPBSバッファ(ブランク)に対しても同様の計測も行なった。
Example 2
1. Method Next, a solution obtained by mixing 0.1 μmol / 100 μL of Cy3 solution mixed in PBS buffer with a surfactant Tween 20 in a microplate to a concentration of 0.1%, and 95% before measurement. A Cy3 solution having a concentration of 0.1 pmol / 100 μL mixed in a PBS buffer subjected to heat treatment at 25 ° C. for 3 minutes after 3 minutes at 0 ° C. was measured every 5 minutes for 10 hours with a plate reader. As a control, the same measurement was performed on a PBS buffer (blank) containing no Cy3.

2.結果
各時間におけるCy3溶液とブランクとの蛍光強度差を図3に示す。何も処理を施さない溶液においては7時間経過まで大きく蛍光強度差は変化してしまうのに対し、界面活性剤を混合した溶液、および、予め熱処理を行った溶液は、測定開始時点からずっと安定した蛍光強度差が測定された。
2. Results FIG. 3 shows the difference in fluorescence intensity between the Cy3 solution and the blank at each time. In the case where no treatment is performed, the difference in fluorescence intensity greatly changes until 7 hours, whereas the solution mixed with the surfactant and the solution subjected to the heat treatment in advance are stable from the start of the measurement. The difference in fluorescence intensity was measured.

蛍光測定装置の概念図である。It is a conceptual diagram of a fluorescence measuring device. Cy3溶液の蛍光強度の経時的変化を示す図である。It is a figure which shows the time-dependent change of the fluorescence intensity of Cy3 solution. 界面活性剤を添加したCy3溶液、および、測定前に熱処理を行ったCy3溶液の蛍光強度の経時的変化を示す図である。It is a figure which shows the time-dependent change of the fluorescence intensity of Cy3 solution which added surfactant, and Cy3 solution which heat-processed before the measurement.

符号の説明Explanation of symbols

1 測定容器保持部
2 光照射部
3 光検出部
4 制御部
5 指令部
6 データ表示部
2a 光源
2b 集光レンズ
2c 干渉フィルター
3a ディテクター
3b 集光レンズ
3c 干渉フィルター
DESCRIPTION OF SYMBOLS 1 Measurement container holding part 2 Light irradiation part 3 Light detection part 4 Control part 5 Command part 6 Data display part 2a Light source 2b Condensing lens 2c Interference filter 3a Detector 3b Condensing lens 3c Interference filter

Claims (3)

測定容器中の液体試料の上方から励起光を入射し、該励起光により発生する蛍光を検出する蛍光測定装置を用いて蛍光測定する場合において、試料液面の凹面曲率半径をより小さくするか又は凹面曲率半径の経時変化を防止する手段を講じることを特徴とする蛍光測定方法。   In the case of performing fluorescence measurement using a fluorescence measuring device that detects excitation light from above the liquid sample in the measurement container and detects fluorescence generated by the excitation light, the concave curvature radius of the sample liquid surface is made smaller or A fluorescence measuring method characterized in that a means for preventing a change with time of a concave curvature radius is taken. 凹面曲率半径を小さくする手段が、試料の温度を一旦上昇させ、曲率半径が小さくなった後に当該温度を低下させるものである請求項1記載の方法。   2. The method according to claim 1, wherein the means for reducing the concave radius of curvature raises the temperature of the sample once and lowers the temperature after the radius of curvature is reduced. 凹面曲率半径を小さくする手段が、溶液に界面活性剤を添加するものである請求項1記載の方法。   The method according to claim 1, wherein the means for reducing the concave radius of curvature is to add a surfactant to the solution.
JP2005079821A 2005-03-18 2005-03-18 Fluorescence measurement method Pending JP2006258744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079821A JP2006258744A (en) 2005-03-18 2005-03-18 Fluorescence measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079821A JP2006258744A (en) 2005-03-18 2005-03-18 Fluorescence measurement method

Publications (1)

Publication Number Publication Date
JP2006258744A true JP2006258744A (en) 2006-09-28

Family

ID=37098158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079821A Pending JP2006258744A (en) 2005-03-18 2005-03-18 Fluorescence measurement method

Country Status (1)

Country Link
JP (1) JP2006258744A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288529A (en) * 1992-04-10 1993-11-02 Nippon Telegr & Teleph Corp <Ntt> Laser interference magnetic measuring method, measuring solution adjusting method, and measuring solution
JP2617576B2 (en) * 1988-06-20 1997-06-04 ベクトン・ディッキンソン・アンド・カンパニー Instruments for enhancing fluorescence and reaction rates and uses thereof
JPH1033159A (en) * 1996-07-24 1998-02-10 Tosoh Corp Fluorescence detector
WO2003098279A2 (en) * 2002-05-17 2003-11-27 Applera Corporation Optical instrument includung excitation source
JP2004340759A (en) * 2003-05-15 2004-12-02 Tdk Corp Analyzing sample container, analyzer and analyzing method
JP2004340758A (en) * 2003-05-15 2004-12-02 Toshiba Mach Co Ltd Micro-fine flow passage, and micro chemical chip containing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2617576B2 (en) * 1988-06-20 1997-06-04 ベクトン・ディッキンソン・アンド・カンパニー Instruments for enhancing fluorescence and reaction rates and uses thereof
JPH05288529A (en) * 1992-04-10 1993-11-02 Nippon Telegr & Teleph Corp <Ntt> Laser interference magnetic measuring method, measuring solution adjusting method, and measuring solution
JPH1033159A (en) * 1996-07-24 1998-02-10 Tosoh Corp Fluorescence detector
WO2003098279A2 (en) * 2002-05-17 2003-11-27 Applera Corporation Optical instrument includung excitation source
JP2004340759A (en) * 2003-05-15 2004-12-02 Tdk Corp Analyzing sample container, analyzer and analyzing method
JP2004340758A (en) * 2003-05-15 2004-12-02 Toshiba Mach Co Ltd Micro-fine flow passage, and micro chemical chip containing the same

Similar Documents

Publication Publication Date Title
JP4718087B2 (en) Surface configuration measuring method and apparatus
JP4407271B2 (en) Chip, reaction analyzer, reaction analysis method
JP4049801B2 (en) Flow analysis system that can quantitatively or semi-quantitatively measure elements in a sample
TWI476390B (en) An article comprising a substrate assembly for use in a detector system, and a device comprising the same
US20090140170A1 (en) Microfluidic systems, devices and methods for reducing background autofluorescence and the effects thereof
JP5765722B2 (en) Microchannel chip and gas-liquid phase separation method using the same
EA014116B1 (en) Microfluidic device for identification, quantification and authentication of latent markers
EP2667182B1 (en) Automatic analysis device taking into account thermal drift
WO2013125386A1 (en) Automatic analysis device
WO2007021755A2 (en) Microfluidic systems, devices and methods for reducing noise generated by mechanical instabilities
JP6587024B2 (en) Detection method and detection apparatus
JP2010043890A (en) Detection method and system
JP2005257455A (en) Measuring apparatus and measuring unit
JP2019501365A (en) System and method for optically measuring particle stability and aggregation
EP2988111B1 (en) Analyzer and automatic analyzer
US20080179540A1 (en) Surface plasmon enhanced fluorescence sensor
JP2008107337A (en) Gas detector
EP3321688B1 (en) Detection device and detection method
WO2017082069A1 (en) Reaction method
JP5322447B2 (en) Analysis method and analyzer
JP2006258744A (en) Fluorescence measurement method
JP2003307521A (en) Water quality analyzing microreactor and water quality analyzer
JP2009098013A (en) Liquid level detector and automatic analyzer
JP6567549B2 (en) Methods and systems for point-of-care coagulation assays with optical detection
KR20180057725A (en) Acetate complex and method for quantifying acetate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712