JP2006258725A - Micro coulter counter - Google Patents

Micro coulter counter Download PDF

Info

Publication number
JP2006258725A
JP2006258725A JP2005079554A JP2005079554A JP2006258725A JP 2006258725 A JP2006258725 A JP 2006258725A JP 2005079554 A JP2005079554 A JP 2005079554A JP 2005079554 A JP2005079554 A JP 2005079554A JP 2006258725 A JP2006258725 A JP 2006258725A
Authority
JP
Japan
Prior art keywords
electrodes
coulter counter
flow
aperture
sample liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005079554A
Other languages
Japanese (ja)
Other versions
JP4366327B2 (en
Inventor
Kazuhiro Miyamura
和宏 宮村
Takehiko Kitamori
武彦 北森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Kanagawa Academy of Science and Technology
Original Assignee
Horiba Ltd
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Kanagawa Academy of Science and Technology filed Critical Horiba Ltd
Priority to JP2005079554A priority Critical patent/JP4366327B2/en
Publication of JP2006258725A publication Critical patent/JP2006258725A/en
Application granted granted Critical
Publication of JP4366327B2 publication Critical patent/JP4366327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a current density from being distributed in the depth direction of a flow path, drastically suppress a fluctuation in an output value, and achieve a significant improvement in the measurement accuracy as a distance between electrodes is reduced and the large output value is ensured. <P>SOLUTION: The electrodes 9A, 9B are provided in both flow path sections 3A, 3b of an aperture 8, have a height across a depth of the flow path, are long in the predetermined flow direction of a specimen liquid (a), and formed with three-dimensional steric structure comprising an assembly of a plurality of conductive plates 9a, 9b provided in parallel so as to prevent the specimen liquid (a) from being interrupted in the predetermined flow direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば粒度分布の測定や粒子量の計測、あるいは、血液中の赤血球、白血球、血小板などの血球の個数や容積の検出等に用いられるマイクロコールターカウンタに関する。詳しくは、測定用流路の途中にアパーチャが形成され、このアパーチャの両側流路部にそれぞれ電極が設けられ、一方の流路部側に導入した粒子含有検体液が前記アパーチャを経て他方の流路部側に流動するときで、その検体液が前記アパーチャを通過する際に生じるインピーダンス(電気抵抗)変化を前記両電極によって検出するように構成されているマイクロコールターカウンタに関するものである。   The present invention relates to a micro Coulter counter used for measuring particle size distribution, measuring the amount of particles, or detecting the number and volume of blood cells such as red blood cells, white blood cells, and platelets in blood. Specifically, an aperture is formed in the middle of the measurement flow channel, electrodes are provided on both flow channel portions of the aperture, and the particle-containing specimen liquid introduced into one flow channel side passes through the aperture and flows into the other flow channel. The present invention relates to a micro coulter counter configured to detect an impedance (electric resistance) change that occurs when the specimen liquid passes through the aperture when flowing toward the path side.

電気抵抗法(コールター法)を利用したこの種のコールターカウンタは、近年においてマイクロ化が進められており、電気抵抗法に則して長さ10mm、厚さ1mm、幅5mm程度の大きさのチップ状のマイクロコールターカウンタが開発されるに至っている。   In recent years, this type of Coulter counter using the electric resistance method (Coulter method) has been miniaturized, and a chip having a length of about 10 mm, a thickness of 1 mm, and a width of about 5 mm in accordance with the electric resistance method. -Shaped micro coulter counter has been developed.

ところで、このようなチップ状のマイクロコールターカウンタにおいて、アパーチャの両側流路部に設けられる電極として、従来では、流路部の底面もしくは最上面に薄膜状に形成された平面状電極が用いられていた(例えば、特許文献1参照)。   By the way, in such a chip-shaped micro Coulter counter, a flat electrode formed in a thin film shape on the bottom surface or the uppermost surface of the flow channel portion is conventionally used as the electrode provided on the flow channel portions on both sides of the aperture. (For example, see Patent Document 1).

特開2002−277380号公報JP 2002-277380 A

しかし、上記したような平面状電極が用いられていた従来のマイクロコールターカウンタにおいては、検体液に含有されている粒子が流路深さ方向のどこの位置を通過するかによって電流密度が異なり、そのような流路深さ方向での電流密度分布の発生に起因して、同一径の粒子を測定対象とする場合であっても、出力値にばらつき(誤差)が生じて精度の高い測定が望めない。以下、流路深さ方向での粒子の通過位置の違いによる出力値のばらつきについて、図5を参照しながら詳細に説明する。   However, in the conventional micro Coulter counter in which the planar electrode as described above is used, the current density differs depending on where the particles contained in the sample liquid pass in the flow path depth direction, Due to the occurrence of the current density distribution in the channel depth direction, even when particles of the same diameter are measured, the output value varies (error), and high-precision measurement is possible. I can't hope. Hereinafter, the variation in the output value due to the difference in the passage position of the particles in the flow path depth direction will be described in detail with reference to FIG.

コールターカウンタにおける出力値は、電流密度と粒子体積とに依存するものであり、同一径の粒子を測定対象とする場合には、電流密度の強さに依存する。この電流密度は、両電極間の距離の2乗に反比例することから、出力値のばらつきを表す電流密度比ΔJについては、次の(1)式が成り立つ。
ΔJ=J1 /J2 =r1 2 /r2 2 …(1)
ここで、ΔJ:電流密度比
1:図5のA地点の電流密度
2:図5のB地点の電流密度
1:流路Fの上部におけるA地点から上流側電極E1の端部までの距離( 電極との最短距離)
2:流路Fの底部におけるB地点から上流側電極E1の端部までの距離( 電極との最長距離)
d:流路深さ
The output value of the Coulter counter depends on the current density and the particle volume. When particles having the same diameter are to be measured, the output value depends on the strength of the current density. Since this current density is inversely proportional to the square of the distance between both electrodes, the following equation (1) holds for the current density ratio ΔJ representing the variation in output value.
ΔJ = J 1 / J 2 = r 1 2 / r 2 2 (1)
Where ΔJ: current density ratio
J 1 : Current density at point A in FIG.
J 2 : Current density at point B in FIG.
r 1 : Distance from the point A in the upper part of the flow path F to the end of the upstream electrode E1 (shortest distance to the electrode)
r 2 : Distance from the point B at the bottom of the flow path F to the end of the upstream electrode E1 (the longest distance to the electrode)
d: Channel depth

図6は、流路深さdが種々異なる流路に検体液を流して、上記(1)式に基づいて検出した電流密度比(ΔJ)のばらつき(誤差率)と電極距離r1との相関関係を示す。また、図7は、電極距離r1と出力値比ΔV(ただし、r1 が200μmでの出力値を1とする。)との比較を示すものであり、これら図6,図7からも明らかなように、平面状電極を用いた従来のマイクロコールターカウンタでは、電極距離r1がある値以下に小さくなると、出力値比ΔVが指数的に大きくなる反面、出力値のばらつきΔJも指数的に大きくなる。因みに、電極距離r1を200μmから50μmに変化させると、出力値比ΔVは約16倍になるが、出力値のばらつきΔJが約64%と許容誤差範囲(通常、5%以下、好ましくは、1〜2%程度)を逸脱して非常に大きくなり、コールターカウンタとして要請される測定精度を確保することができないという問題があった。 FIG. 6 shows the difference between the variation (error rate) in the current density ratio (ΔJ) detected based on the above equation (1) and the electrode distance r 1 when the sample liquid is caused to flow through channels having different channel depths d. Show correlation. FIG. 7 shows a comparison between the electrode distance r 1 and the output value ratio ΔV (where the output value is 1 when r 1 is 200 μm), which is also apparent from FIGS. 6 and 7. As described above, in the conventional micro Coulter counter using planar electrodes, when the electrode distance r 1 becomes smaller than a certain value, the output value ratio ΔV increases exponentially, but the output value variation ΔJ also increases exponentially. growing. Incidentally, when the electrode distance r 1 is changed from 200 μm to 50 μm, the output value ratio ΔV is about 16 times, but the output value variation ΔJ is about 64% and an allowable error range (usually 5% or less, preferably There is a problem that the measurement accuracy required for a Coulter counter cannot be ensured.

本発明は上述の実情に鑑みてなされたもので、その目的は、出力値を大きく確保できるように電極距離を小さくしたとしても、出力値のばらつきを低減して測定精度の著しい向上を実現することができるマイクロコールターカウンタを提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to realize a significant improvement in measurement accuracy by reducing variations in output values even when the electrode distance is reduced so that a large output value can be secured. It is to provide a micro coulter counter that can.

上記目的を達成するために、本発明に係るマイクロコールターカウンタは、測定用流路の途中にアパーチャが形成され、このアパーチャの両側流路部にそれぞれ電極が設けられ、一方の流路部側に導入した粒子含有検体液が前記アパーチャを経て他方の流路部側に流動するときで、その検体液が前記アパーチャを通過する際に生じるインピーダンス変化を前記両電極によって検出するように構成されているマイクロコールターカウンタにおいて、前記両電極が、前記両側流路部の深さ方向を縦断し、かつ、検体液の所定方向への流れを遮断しないような三次元の立体構造に形成されていることを特徴としている。   In order to achieve the above object, in the micro coulter counter according to the present invention, an aperture is formed in the middle of the measurement channel, electrodes are provided on both sides of the aperture, and one channel is provided on the side of the channel. When the introduced particle-containing sample liquid flows through the aperture toward the other channel, the impedance change generated when the sample liquid passes through the aperture is detected by the electrodes. In the micro Coulter counter, both the electrodes are formed in a three-dimensional structure that vertically cuts in the depth direction of the both-side flow passage portions and does not block the flow of the sample liquid in a predetermined direction. It is a feature.

本発明において、前記両電極を三次元の立体構造とする手段としては、請求項2に記載のように、両側流路部の深さ方向を縦断する高さを有するとともに、検体液の所定の流れ方向に沿って長く、かつ、流路幅方向に間隔を隔てて互いに平行状に並設された複数の導電性平板の集合により形成する手段、または、請求項3に記載のように、前記両側流路部の深さ方向を縦断する高さを有し、かつ、検体液の所定の流れ方向及び流路幅方向に間隔を隔てて林立された複数本の導電性柱状体の集合により形成する手段の採用が好ましいが、これら以外にも、両側流路部の深さ方向を縦断する高さを有し、かつ、検体液の所定方向への流れを遮断しないような形態、より好ましくは、検体液が所定方向に抵抗少なく流れる形態のものであれば、どのような形状の導電性部材を用いても、それら導電性部材をどのように集合させたものであってもよい。   In the present invention, as the means for making the both electrodes into a three-dimensional solid structure, as described in claim 2, the electrode has a height that vertically cuts the depth direction of the both-side flow passage portions, The means formed by an assembly of a plurality of conductive flat plates that are long in the flow direction and are arranged in parallel to each other at intervals in the flow path width direction, or Formed by an assembly of a plurality of conductive columnar bodies that have a height that runs vertically in the depth direction of the flow passages on both sides and are spaced in the predetermined flow direction and flow passage width direction of the sample liquid. In addition to these, it is preferable to adopt a configuration that has a height that vertically cuts the depth direction of the both-side flow passage portions, and that does not block the flow of the sample liquid in a predetermined direction. Any sample fluid can be used as long as it flows in the specified direction with little resistance. UNA even using a conductive member in the form, or may be obtained by collectively how their conductive member.

上記構成を有する本発明に係るマイクロコールターカウンタによれば、両電極が測定用流路の深さ方向を縦断する三次元の立体構造に形成されているために、検体液に含有されている粒子が流路深さ方向のどこの位置を通過したとしても、その深さ方向での電流密度に差を生じることなく、一定またはほぼ一定の電流密度が得られる。つまり、流路深さ方向での粒子の通過位置にかかわらず、電流密度に分布が発生せず、同一径の粒子を測定対象とした場合の出力値のばらつきを無くする、または、非常に小さくすることができる。また、電流密度の強さに依存する出力値の絶対値を大きくするために、両電極間の距離を小さくしても、上述の(1)式からも明らかなように、出力値のばらつきを非常に小さくすることができる。したがって、電極間距離を小さくして出力値を大きく確保することによる検出感度の向上が図れることと、出力値のばらつきが非常に小さいこととの両立を達成でき、所定の測定精度の顕著な向上を実現することができるという効果を奏する。   According to the micro Coulter counter according to the present invention having the above-described configuration, since both electrodes are formed in a three-dimensional structure that vertically cuts the depth direction of the measurement channel, the particles contained in the sample liquid Regardless of the position in the flow path depth direction, a constant or substantially constant current density can be obtained without causing a difference in current density in the depth direction. In other words, regardless of the passage position of the particles in the flow path depth direction, there is no distribution in the current density, eliminating variations in output values when particles of the same diameter are measured, or very small can do. Even if the distance between the two electrodes is decreased in order to increase the absolute value of the output value depending on the strength of the current density, the variation in the output value is not apparent from the above equation (1). Can be very small. Therefore, it is possible to achieve both the improvement of detection sensitivity by reducing the distance between the electrodes and ensuring a large output value and the extremely small variation of the output value, and a marked improvement in the predetermined measurement accuracy. There is an effect that can be realized.

特に、両電極を三次元の立体構造とする手段として、請求項2または請求項3に記載のような手段を採用する場合は、電極面積の拡大による検出感度の向上も図れて、測定精度をより一層向上することができる。   In particular, when the means as described in claim 2 or claim 3 is used as a means for forming both electrodes in a three-dimensional structure, the detection sensitivity can be improved by increasing the electrode area, and the measurement accuracy can be improved. This can be further improved.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明に係るマイクロコールターカウンタの第1実施例を示す縦断側面図、図2は要部の概略斜視図である。このマイクロコールターカウンタ1は、例えば厚さが500μm、長さ10mm、幅5mm程度の大きさのシリコン基板2の上面に、例えばエッチングなどのマイクロマシニング加工技術を用いて適宜深さの測定用流路3が形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal side view showing a first embodiment of a micro coulter counter according to the present invention, and FIG. 2 is a schematic perspective view of an essential part. The micro coulter counter 1 has a measurement channel having an appropriate depth on the upper surface of a silicon substrate 2 having a thickness of, for example, about 500 μm, a length of 10 mm, and a width of about 5 mm, using a micromachining technique such as etching. 3 is formed.

前記測定用流路3の両端近くには、粒子を含有する検体液aを前記流路3に導入する導入孔4及び測定が完了した検体液aを外部に排出する導出孔5が形成されているとともに、これら導入孔4と導出孔5とのほぼ中間位置に相当する流路3の途中には流路幅が狭くなった狭隘部6が形成され、この狭隘部6の両側に前記導入孔4に接続された幅広の流路部3Aと前記導出孔5に接続された幅広の流路部3Bとが形成されている。なお、前記導入孔4及び導出孔5は、図示省略するが、検体液導入管及び導出管が着脱自在に接続されるように構成されている。   Near the both ends of the measurement channel 3, there are formed an introduction hole 4 for introducing the sample liquid a containing particles into the channel 3 and a lead-out hole 5 for discharging the sample liquid a after measurement to the outside. In addition, a narrow portion 6 having a narrow channel width is formed in the middle of the flow channel 3 corresponding to a substantially intermediate position between the introduction hole 4 and the lead-out hole 5, and the introduction holes are formed on both sides of the narrow portion 6. A wide channel portion 3A connected to 4 and a wide channel portion 3B connected to the outlet hole 5 are formed. Although the introduction hole 4 and the lead-out hole 5 are not shown, the sample liquid introduction pipe and the lead-out pipe are configured to be detachably connected.

前記シリコン基板2上には、該シリコン基板2とほぼ同一サイズの透明ガラス板7が、例えば陽極接合等の手段により接合されており、これによって、前記流路3の各部3A,6,3Bが外部と遮断された状態に閉塞され、かつ、前記狭隘部6は、ガラス板7の下面と共働してアパーチャ8を構成している。 On the silicon substrate 2, a transparent glass plate 7 having substantially the same size as that of the silicon substrate 2 is bonded by means such as anodic bonding, so that the portions 3A, 6 and 3B of the flow path 3 are connected to each other. The narrow portion 6 is closed in a state of being cut off from the outside, and constitutes an aperture 8 in cooperation with the lower surface of the glass plate 7.

前記アパーチャ8両側の幅広流路部3A,3Bには、検体液aが該アパーチャ8を通過する際に生じるインピーダンス変化を検出する電極9A,9Bが設けられている。これら電極9A,9Bは、図2に明示するように、両側の幅広流路部3A,3Bの深さ方向を縦断する高さtを有するとともに、検体液aの所定の流れ方向に沿って長く、かつ、流路幅方向に適宜間隔を隔てて互いに平行状に並設された複数の導電性平板9a,9bの集合により、検体液aの所定方向への流れを遮断せず、かつ、所定方向へ抵抗少なく流れるような三次元の立体構造に形成されている。   The wide flow path portions 3A and 3B on both sides of the aperture 8 are provided with electrodes 9A and 9B for detecting a change in impedance generated when the sample liquid a passes through the aperture 8. As clearly shown in FIG. 2, these electrodes 9A and 9B have a height t that longitudinally cuts the depth direction of the wide channel portions 3A and 3B on both sides, and are long along a predetermined flow direction of the sample liquid a. In addition, the flow of the sample liquid a in the predetermined direction is not blocked by the assembly of the plurality of conductive flat plates 9a and 9b arranged in parallel with each other at an appropriate interval in the flow path width direction. It is formed in a three-dimensional structure that flows with less resistance in the direction.

前記三次元立体構造の電極9A,9Bを形成するところの、各導電性平板9a,9bは、図3に明示するように、前記シリコン基板2に、例えばエッチングなどのマイクロマシニング加工技術を用いて流路3を形成するとき、その流路3の深さdよりも僅かに小さい高さt1を有するとともに、検体液aの流れ方向に沿って長い複数のシリコン製の平板部2a,2bを残存させ、これら複数のシリコン製平板部2a,2bの全外表面に白金(Pt)等の貴金属膜10a,10bを被覆させて導電性を付与するとともに、前記ガラス板7の下面には複数の貴金属膜10a,10bの上面に当接する状態で白金等の偏平な貴金属薄膜11a,11bを一体に形成してなる。 As shown in FIG. 3, the conductive plates 9a and 9b for forming the electrodes 9A and 9B having the three-dimensional structure are formed on the silicon substrate 2 by using a micromachining technique such as etching. When the flow path 3 is formed, a plurality of silicon flat plate portions 2a and 2b which have a height t1 slightly smaller than the depth d of the flow path 3 and are long along the flow direction of the sample liquid a remain. Further, the noble metal films 10a and 10b such as platinum (Pt) are coated on the entire outer surfaces of the plurality of silicon flat plate portions 2a and 2b to provide conductivity, and the lower surface of the glass plate 7 has a plurality of noble metals. Flat noble metal thin films 11a and 11b such as platinum are integrally formed in contact with the upper surfaces of the films 10a and 10b.

そして、上記のような導電性平板9a,9bの集合により三次元立体構造に形成されている電極9A,9Bにおける貴金属薄膜11a,11bから側方へ引き出されたリード線12A,12Bの端部には、図2に示すように、電圧計を含むカウンタ本体(図示省略する。)に対して接続及び接続解除可能とするコネクタ13が装備されている。 Then, at the end portions of the lead wires 12A and 12B drawn sideways from the noble metal thin films 11a and 11b in the electrodes 9A and 9B formed in a three-dimensional structure by the assembly of the conductive plates 9a and 9b as described above. As shown in FIG. 2, a connector 13 that can be connected to and disconnected from a counter body (not shown) including a voltmeter is provided.

上記のように構成されたマイクロコールターカウンタ1においては、粒子を含有する検体液aが、導入孔4を通して測定用流路3の一方の幅広流路部3Aに導入される。この導入された検体液aはアパーチャ8を経て他方の幅広流路部3B側に流動したのち、導出孔5から排出されていくが、この過程のうち、検体液aがアパーチャ8を通過する際、インピーダンス変化が生じる。このようなインピーダンス変化は、アパーチヤ8の両側流路部3A,3Bに設けられた電極9A,9Bによって検出されて、その検出信号がリード線12A,12B、コネクタ13を経てカウンタ本体に入力され、インピーダンス変化に対応して生ずるパルス数を計数することにより、粒子の個数が測定し、また、パルスの高さを検出することにより、粒子径を測定する。   In the micro Coulter counter 1 configured as described above, the sample liquid a containing particles is introduced into one wide channel portion 3A of the measurement channel 3 through the introduction hole 4. The introduced sample liquid a flows through the aperture 8 toward the other wide flow channel portion 3B and then is discharged from the outlet hole 5. During this process, the sample liquid a passes through the aperture 8. An impedance change occurs. Such an impedance change is detected by the electrodes 9A and 9B provided in the flow passages 3A and 3B on both sides of the aperture 8, and the detection signal is input to the counter body via the lead wires 12A and 12B and the connector 13. By counting the number of pulses generated corresponding to the impedance change, the number of particles is measured, and the particle diameter is measured by detecting the height of the pulse.

上述のような測定が行われるマイクロコールターカウンタ1において、前記両電極9A,9Bが複数の導電性平板9a,9bの集合により三次元の立体構造に形成されているために、検体液aに含有されている粒子が流路深さ方向のどこの位置を通過したとしても、その深さ方向での電流密度は一定またはほぼ一定であって、電流密度分布が発生しない。それゆえに、同一径の粒子を含有する検体液aを測定対象とした場合、流路深さに関係なく、その出力値にはほとんどばらつきを生じることが無い。   In the micro Coulter counter 1 in which the measurement as described above is performed, since both the electrodes 9A and 9B are formed in a three-dimensional structure by an assembly of a plurality of conductive plates 9a and 9b, they are contained in the sample liquid a. Regardless of the position in the depth direction of the flow path, the current density in the depth direction is constant or almost constant, and no current density distribution is generated. Therefore, when the sample liquid a containing particles having the same diameter is used as a measurement target, the output value hardly varies regardless of the flow path depth.

また、図7に示すように、電極距離、つまりは、両電極9A,9B間の距離を小さくして電流密度の強さに依存する出力値の絶対値を大きくしたとしても、上述の(1)式からも明らかなように、出力値のばらつきは非常に小さく抑えることが可能である。 Further, as shown in FIG. 7, even if the electrode distance, that is, the distance between the two electrodes 9A and 9B is decreased and the absolute value of the output value depending on the strength of the current density is increased, the above (1 As is clear from the equation (1), the variation in the output value can be kept very small.

因みに、上述したように両電極9A,9Bが三次元の立体構造に形成されている第1実施例のマイクロコールターカウンタ1によると、図6の太実線でも明らかなように、従来のマイクロコールターカウンタが約64%であった出力値のばらつきΔJを許容誤差範囲の1%程度に低減することが可能である。 Incidentally, according to the micro coulter counter 1 of the first embodiment in which the electrodes 9A and 9B are formed in a three-dimensional three-dimensional structure as described above, as is apparent from the thick solid line in FIG. Can be reduced to about 1% of the allowable error range.

したがって、電極9A,9B間距離を小さくして出力値を大きく確保するとともに、各電極9A,9Bの面積が大きくなることによる検出感度の向上と、出力値のばらつきが非常に小さいことの相乗によって、所定の測定精度を顕著に向上することができる Therefore, the distance between the electrodes 9A and 9B is reduced to ensure a large output value, and the detection sensitivity is improved by increasing the area of each electrode 9A and 9B, and the variation of the output value is very small. , The predetermined measurement accuracy can be significantly improved

図4は、本発明に係るマイクロコールターカウンタの第2実施例を示す要部の概略斜視図であり、この第2実施例では、アパーチャ8両側の幅広流路部3A,3Bに設けられている電極9A,9Bが、両側の幅広流路部3A,3Bの深さ方向を縦断する高さtを有し、かつ、検体液aの所定の流れ方向及び流路幅方向に適宜間隔を隔てて林立された複数本の導電性柱状体9a1,9b1の集合により、検体液aの所定方向への流れを遮断せず、かつ、所定方向へ抵抗少なく流れるような三次元の立体構造に形成されたものであり、その他の構造は、第1実施例で説明したものと同一であるため、同一の部材、部位に第1実施例と同一の符号を付して、それらの詳しい説明を省略する。   FIG. 4 is a schematic perspective view of a main part showing a second embodiment of the micro coulter counter according to the present invention. In the second embodiment, the micro coulter counter is provided in the wide flow path portions 3A and 3B on both sides of the aperture 8. The electrodes 9A and 9B have a height t that vertically cuts in the depth direction of the wide channel portions 3A and 3B on both sides, and are appropriately spaced in the predetermined flow direction and the channel width direction of the sample liquid a. A set of a plurality of forested conductive columnar bodies 9a1 and 9b1 is formed into a three-dimensional three-dimensional structure that does not block the flow of the sample liquid a in a predetermined direction and flows in the predetermined direction with little resistance. Since the other structures are the same as those described in the first embodiment, the same members and parts are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.

なお、この第2実施例において、前記三次元立体構造の電極9A,9Bを形成するところの、各導電性柱状体9a1,9b1は、上記第1実施例で説明したと同様に、例えばエッチングなどのマイクロマシニング加工技術を用いて流路3を形成するとき、その流路3の深さdよりも僅かに小さい高さt1を有する状態で残存させた複数本のシリコン製の柱状部の全外表面に白金(Pt)等の貴金属膜を被覆させて導電性を付与するとともに、前記ガラス板7の下面には複数本の貴金属膜の上面に当接する状態で白金等の偏平な貴金属薄膜を一体に形成することで作製される。   In the second embodiment, the conductive columnar bodies 9a1 and 9b1 for forming the electrodes 9A and 9B having the three-dimensional structure are formed by etching, for example, as described in the first embodiment. When the flow path 3 is formed by using the micromachining technique of the above, the entire outside of the plurality of silicon columnar portions left in a state having a height t1 slightly smaller than the depth d of the flow path 3 The surface is coated with a noble metal film such as platinum (Pt) to provide conductivity, and a flat noble metal thin film such as platinum is integrally formed on the lower surface of the glass plate 7 in contact with the upper surfaces of a plurality of noble metal films. It is produced by forming.

また、上記第2実施例では、電極9A,9Bを形成する導電性柱状体9a1,9b1が円柱状に形成されているもので図示したが、角柱状に形成されたものであってもよく、さらに、その柱状体9a1,9b1の林立数は図示したものに限らず、検体液aの所定方向への流れを遮断しない、または、検体液aの所定方向への流れを遮断せず、かつ、所定方向へ抵抗少なく流れるようなピッチ間隔で林立させたものであればよい。   In the second embodiment, the conductive columnar bodies 9a1 and 9b1 forming the electrodes 9A and 9B are illustrated as being formed in a columnar shape, but may be formed in a prismatic shape, Furthermore, the number of forests of the columnar bodies 9a1 and 9b1 is not limited to that shown in the figure, and does not block the flow of the sample liquid a in a predetermined direction, or does not block the flow of the sample liquid a in a predetermined direction, and What is necessary is just to make it stand by the pitch space | interval which flows with little resistance to a predetermined direction.

さらに、上記第1実施例における導電性平板9a,9b及び第2実施例における導電性柱状体9a1,9b1の作製手段として、電鋳メッキ法を用いてもよい。   Furthermore, electroforming plating may be used as means for producing the conductive flat plates 9a and 9b in the first embodiment and the conductive columnar bodies 9a1 and 9b1 in the second embodiment.

本発明に係るマイクロコールターカウンタの第1実施例を示す縦断側面図である。It is a vertical side view which shows 1st Example of the micro coulter counter which concerns on this invention. 要部の概略斜視図である。It is a schematic perspective view of the principal part. 電極を構成する導電性平板の作製手段を説明するための要部の拡大断面図である。It is an expanded sectional view of the principal part for demonstrating the production means of the electroconductive flat plate which comprises an electrode. 本発明に係るマイクロコールターカウンタの第2実施例を示す要部の概略斜視図である。It is a schematic perspective view of the principal part which shows 2nd Example of the micro coulter counter which concerns on this invention. 従来のマイクロコールターカウンタにおける流路深さ方向での粒子の通過位置の違いによる出力値のばらつきを説明するための図である。It is a figure for demonstrating the dispersion | variation in the output value by the difference in the passage position of the particle | grains in the flow path depth direction in the conventional micro Coulter counter. 電極距離と電流密度のばらつきとの相関関係を説明する図である。It is a figure explaining the correlation with the variation of electrode distance and current density. 電極距離と出力値との相関関係を説明する図である。It is a figure explaining the correlation of electrode distance and an output value.

符号の説明Explanation of symbols

1 マイクロコールターカウンタ
3 測定用流路
3A,3B アパーチャ両側の幅広流路部
8 アパーチャ
9A,9B 電極
9a,9b 導電性平板
9a1,9b1 導電性柱状体
a 粒子含有検体液

DESCRIPTION OF SYMBOLS 1 Micro coulter counter 3 Measurement flow path 3A, 3B Wide flow path part on both sides of aperture 8 Aperture 9A, 9B Electrode 9a, 9b Conductive flat plate 9a1, 9b1 Conductive columnar body a Particle-containing specimen liquid

Claims (3)

測定用流路の途中にアパーチャが形成され、このアパーチャの両側流路部にそれぞれ電極が設けられ、一方の流路部側に導入した粒子含有検体液が前記アパーチャを経て他方の流路部側に流動するときで、その検体液が前記アパーチャを通過する際に生じるインピーダンス変化を前記両電極によって検出するように構成されているマイクロコールターカウンタにおいて、
前記両電極が、前記両側流路部の深さ方向を縦断し、かつ、検体液の所定方向への流れを遮断しないような三次元の立体構造に形成されていることを特徴とするマイクロコールターカウンタ。
An aperture is formed in the middle of the measurement channel, electrodes are provided on both side channel portions of the aperture, and the particle-containing specimen liquid introduced into one channel portion side passes through the aperture and the other channel portion side. In the micro Coulter counter configured to detect the impedance change that occurs when the sample liquid passes through the aperture when the fluid flows through the aperture,
The micro coulter characterized in that the electrodes are formed in a three-dimensional three-dimensional structure that vertically cuts the depth direction of the flow passages on both sides and does not block the flow of the sample liquid in a predetermined direction. counter.
前記両電極が、両側流路部の深さ方向を縦断する高さを有するとともに、検体液の所定の流れ方向に沿って長く、かつ、流路幅方向に間隔を隔てて互いに平行状に並設された複数の導電性平板の集合により三次元の立体構造に形成されている請求項1に記載のマイクロコールターカウンタ。   Both electrodes have a height that cuts through the depth direction of the flow passages on both sides, are long along a predetermined flow direction of the sample liquid, and are parallel to each other at intervals in the flow passage width direction. The micro coulter counter according to claim 1, wherein the micro coulter counter is formed in a three-dimensional structure by a set of a plurality of conductive plates provided. 前記両電極が、前記両側流路部の深さ方向を縦断する高さを有し、かつ、検体液の所定の流れ方向及び流路幅方向に間隔を隔てて林立された複数本の導電性柱状体の集合により三次元の立体構造に形成されている請求項1に記載のマイクロコールターカウンタ。

The two electrodes have a height that cuts through the depth direction of the flow paths on both sides, and a plurality of conductive materials that are erected at intervals in a predetermined flow direction and flow path width direction of the sample liquid. The micro coulter counter according to claim 1, wherein the micro coulter counter is formed in a three-dimensional structure by a collection of columnar bodies.

JP2005079554A 2005-03-18 2005-03-18 Micro Coulter Counter Expired - Fee Related JP4366327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079554A JP4366327B2 (en) 2005-03-18 2005-03-18 Micro Coulter Counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079554A JP4366327B2 (en) 2005-03-18 2005-03-18 Micro Coulter Counter

Publications (2)

Publication Number Publication Date
JP2006258725A true JP2006258725A (en) 2006-09-28
JP4366327B2 JP4366327B2 (en) 2009-11-18

Family

ID=37098142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079554A Expired - Fee Related JP4366327B2 (en) 2005-03-18 2005-03-18 Micro Coulter Counter

Country Status (1)

Country Link
JP (1) JP4366327B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5951527B2 (en) 2013-03-07 2016-07-13 株式会社東芝 Specimen detection apparatus and detection method
JP5904958B2 (en) 2013-03-07 2016-04-20 株式会社東芝 Semiconductor micro-analysis chip and manufacturing method thereof
JP6151128B2 (en) * 2013-08-12 2017-06-21 株式会社東芝 Semiconductor micro-analysis chip and manufacturing method thereof

Also Published As

Publication number Publication date
JP4366327B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US10222314B2 (en) Flow channel device, complex permittivity measuring apparatus, and dielectric cytometry system
WO2013136430A1 (en) Single particle analyzer and analysis method
Hassan et al. Flow metering characterization within an electrical cell counting microfluidic device
JPH0575352B2 (en)
US20140096604A1 (en) Method and Apparatus for Trapping Single Particles in Microfluidic Channels
Jagtiani et al. An impedimetric approach for accurate particle sizing using a microfluidic Coulter counter
JP5053810B2 (en) Fine particle counter and fine particle counter chip
CN108362627B (en) Resistance type micro sensor
JP4366327B2 (en) Micro Coulter Counter
JP5866652B2 (en) Single particle analysis apparatus and analysis method
JP3911259B2 (en) Fine particle counting device in liquid
JP7205056B2 (en) particle detector
JP5944118B2 (en) Particle measuring device
JP2002277380A (en) Micro hemocytocounter
JP7003640B2 (en) Particle detector and particle detection method
KR101344040B1 (en) Particle Measuring Method and Device and Manufacturing Method thereof
KR101895123B1 (en) Double nano-pore device and method of manufacturing the same
WO2021152954A1 (en) Pore device and particle measurement system
JP6831839B2 (en) Measurement of electrical signals to detect the presence or flow of electrically active species in solution
JP2009168487A (en) Particulate concentration measuring chip, measuring apparatus, and measuring method
TWM492913U (en) Improved biochip micro-porous sensor
JP7215008B2 (en) Particle detection method
US11585772B2 (en) Microfluidic method and device
WO1998033054A1 (en) Method and apparatus for counting and/or sizing particles in suspension
JP7103591B2 (en) Particle detector and particle detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees