JP2006258575A - Method and system for measuring flow velocity of river and method and system for measuring river flow rate - Google Patents

Method and system for measuring flow velocity of river and method and system for measuring river flow rate Download PDF

Info

Publication number
JP2006258575A
JP2006258575A JP2005075798A JP2005075798A JP2006258575A JP 2006258575 A JP2006258575 A JP 2006258575A JP 2005075798 A JP2005075798 A JP 2005075798A JP 2005075798 A JP2005075798 A JP 2005075798A JP 2006258575 A JP2006258575 A JP 2006258575A
Authority
JP
Japan
Prior art keywords
river
water level
flow velocity
width direction
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005075798A
Other languages
Japanese (ja)
Inventor
Makiko Okuda
満紀子 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuwa Corp
Original Assignee
Takuwa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuwa Corp filed Critical Takuwa Corp
Priority to JP2005075798A priority Critical patent/JP2006258575A/en
Publication of JP2006258575A publication Critical patent/JP2006258575A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish highly accurate methods and systems for measuring flow velocities of rivers and river flow rates. <P>SOLUTION: A water surface of the overall length of the width of a river is divided into a plurality and imaged by a plurality of imaging means 3 for remote monitoring, and the water level of the river to be imaged is measured by a water level measuring means 23. Image signals by the imaging means 3 and water level data by the water level measuring means 23 are transmitted to a control unit 17. At the control unit 17, flow velocities in an area to be measured of a plurality of previously set traverse line segments in the width direction of the river are computed by analyzing the image signals by a concentration gradient method, and the cross-sectional area of the river in the width direction of the river is computed on the basis of the water level data. On the basis of both the cross-sectional area of the river and a flow velocity value of each traverse line segment, a highly accurate total quantity of flow is computed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、河川流速計測方法、河川流量計測方法、河川流速計測システム、及び河川流量計測システムに関し、特に複数台のCCDカメラ及び画像解析処理を行うオプティカルフロー装置を設置して、それぞれの観測データを統合処理して、例えば河川幅が100m〜200m程度の中規模の河川の流速、流量を総合的に計測する河川流速計測方法、河川流量計測方法、河川流速計測システム、及び河川流量計測システムに関する。   The present invention relates to a river flow velocity measurement method, a river flow rate measurement method, a river flow velocity measurement system, and a river flow rate measurement system, and in particular, a plurality of CCD cameras and an optical flow device that performs image analysis processing are installed, and each observation data For example, a river flow rate measurement method, a river flow rate measurement method, a river flow rate measurement system, and a river flow rate measurement system for comprehensively measuring the flow rate and flow rate of a medium-sized river having a river width of about 100 m to 200 m. .

河川における水文データは、河川計画および管理の根幹となる基礎情報であり、特に洪水時の水位や流量などのデータは、様々な治水計画の基礎資料として欠かすことのできないものである。   Hydrological data in rivers is the basic information that forms the basis of river planning and management. In particular, data such as water level and discharge during flooding are indispensable as basic data for various flood control plans.

河川の水位や雨量などは、各種の計測装置による自動化およびテレメータ観測装置等による自動収集が行われ、観測の省力化・効率化が図られている。しかし、河川の流量観測にあっては、従来の観測手法では人為的な要素が多いので、洪水ピーク時の計測を取り逃がす恐れがあるなど、計測結果の信頼性に課題を残すものとなっている。   The water level and rainfall of rivers are automatically collected by various measuring devices and automatically collected by a telemeter observation device, etc., and labor saving and efficiency of observation are achieved. However, in river flow observation, there are many human factors in the conventional observation method, so there is a risk that the measurement at the flood peak may be missed, leaving problems in the reliability of the measurement results. .

例えば、従来、河川流量を測る方法としては、流域内の決めた場所に設置した流量計で計測するか、あるいは一般的に用いられる方法として、ある時点の流下断面積と平均流速を測定して両者の積で計算される。後者の場合の流速測定方法は、水中に直接投入される可搬式流速計による方式と、浮子の流れを目視観測等で計測する方法が行われている。これらの方法では、流域全体のうちの一部分を計測するに過ぎない。しかも、ある速度で川下へ流れる水流の表面には、部分ごとに渦巻きや逆行、蛇行する流れがあり、河川断面積全体の速度を把握することが難しいものであった。   For example, conventionally, as a method of measuring the river flow rate, it is measured with a flow meter installed at a predetermined place in the basin, or as a commonly used method, the flow cross-sectional area and the average flow velocity at a certain point in time are measured. Calculated as the product of both. In the latter case, the flow velocity measurement method includes a method using a portable velocimeter directly thrown into water and a method of measuring the flow of the float by visual observation or the like. These methods only measure a portion of the entire basin. Moreover, on the surface of the water flow flowing down the river at a certain speed, there are swirls, reverses, and meandering flows for each part, making it difficult to grasp the speed of the entire river cross-sectional area.

以上のように、従来の河川流量計測方法は、河川の水位や雨量などの他の水文観測手法に比べて精度の向上が容易ではないことから、新たな流量観測手法の確立が求められている。   As described above, the conventional river flow measurement method is not easy to improve the accuracy compared with other hydrological observation methods such as river water level and rainfall, so establishment of a new flow measurement method is required. .

また、従来では、河川を流れる土石流を危険現場に設置した遠隔監視カメラで捉え、河川に土石流が発生すると、即時に警報を発し、その土石流の発生を下流地域に知らせるために、前記遠隔監視カメラで捉えた映像信号を伝送して動画像レコーダに記録、蓄積し、この動画像レコーダの動画像を動画像処理パッケージ及び水流解析パッケージプログラムを用いて画像解析処理を行うことにより、土石流の発生とその速度を求める方法が開発されている(例えば、特許文献1参照)。   Conventionally, the remote monitoring camera is used to capture a debris flow that flows in a river with a remote monitoring camera installed at the danger site. The video signal captured in step 1 is recorded and stored in a video recorder, and the video of this video recorder is subjected to image analysis processing using a video processing package and a water flow analysis package program. A method for obtaining the speed has been developed (see, for example, Patent Document 1).

従来、上記の特許文献1の画像解析処理の方法を応用して、1台のCCDカメラを河川幅のある特定の場所に人為的に設置し、河川の水面の画像を解析し、流量を測定している。この測定した流量により、CCDカメラで捉えたエリアと河川幅との関係で河川幅全体の流量に換算し、この換算値を河川の総流量と見なしている。
特許第3081872号公報
Conventionally, by applying the image analysis processing method described in Patent Document 1 above, one CCD camera is artificially installed at a specific location with a river width, the image of the river surface is analyzed, and the flow rate is measured. is doing. Based on the measured flow rate, the flow rate of the entire river width is converted in relation to the area captured by the CCD camera and the river width, and this converted value is regarded as the total flow rate of the river.
Japanese Patent No. 3081872

ところで、従来の河川流量計測方法においては、特定の流域の流速計による方式や可搬式流速計及び浮子による方式はもとより、CCDカメラで捉えた画像処理による河川流量計測方法であっても、正確な流量データを得ることができないという問題点があった。   By the way, in the conventional river flow measurement method, not only the method using a velocimeter in a specific basin, the method using a portable velocimeter and a float, but also a river flow measurement method based on image processing captured by a CCD camera is accurate. There was a problem that the flow rate data could not be obtained.

この発明は上述の課題を解決するためになされたものである。   The present invention has been made to solve the above-described problems.

この発明の河川流速計測方法は、複数の遠隔監視用撮像手段により河川の幅方向全長の水面を複数に分割して撮像し、前記撮像手段による画像信号を制御装置に伝送し、この制御装置で前記画像信号を濃度勾配法で解析することによって予め設定した河川の幅方向における複数の測線分の測定エリアの流速を算出することを特徴とするものである。   In the river flow velocity measuring method of the present invention, a plurality of remote monitoring imaging means divides and captures the entire water surface in the width direction of the river and transmits an image signal from the imaging means to a control device. By analyzing the image signal by the density gradient method, the flow velocity of the measurement area for a plurality of survey lines in the river width direction set in advance is calculated.

この発明の河川流量計測方法は、複数の遠隔監視用撮像手段により河川の幅方向全長の水面を複数に分割して撮像すると共に前記撮像する河川の水位を水位計測手段で測定し、前記撮像手段による画像信号と前記水位計測手段による水位データを制御装置に伝送し、この制御装置により、前記画像信号を濃度勾配法で解析することによって予め設定した河川の幅方向における複数の測線分の測定エリアの流速を算出し、前記水位データにより前記河川の幅方向の河川断面積を算出し、この河川断面積と前記各測線毎の流速値とから総流量を算出することを特徴とするものである。   The river flow rate measuring method of the present invention is obtained by dividing and imaging the water surface of the entire length in the width direction of the river by a plurality of remote monitoring imaging means, measuring the water level of the river to be imaged by the water level measuring means, and the imaging means And the water level data by the water level measuring means are transmitted to a control device, and the control device analyzes the image signal by a concentration gradient method to measure the measurement areas for a plurality of line segments in the river width direction set in advance. The flow rate of the river is calculated, the river cross-sectional area in the width direction of the river is calculated from the water level data, and the total flow rate is calculated from the river cross-sectional area and the flow velocity value for each of the survey lines. .

この発明の河川流量計測方法は、前記河川流量計測方法において、前記水位データが予め設定した水位基準値を超えたときに前記遠隔監視用撮像手段からの画像録画を開始し、前記水位基準値より低くなったときに前記画像録画を停止することが好ましい。   The river flow measurement method according to the present invention is the river flow measurement method, wherein in the river flow measurement method, when the water level data exceeds a preset water level reference value, image recording from the remote monitoring imaging means is started, and from the water level reference value It is preferable to stop the image recording when it becomes low.

この発明の河川流速計測システムは、河川の幅方向全長の水面を複数に分割して撮像すべく複数の遠隔監視用撮像手段を河川に配設し、
前記遠隔監視用撮像手段から伝送された画像信号を濃度勾配法で解析して予め設定した河川の幅方向における複数の測線分の測定エリアの流速を算出する河川流速演算部を備えた制御装置を設けてなることを特徴とするものである。
The river flow velocity measurement system according to the present invention has a plurality of remote monitoring imaging means arranged in the river to divide the entire water surface in the width direction of the river into a plurality of images.
A control device comprising a river flow velocity calculation unit for analyzing the image signal transmitted from the remote monitoring imaging means by a concentration gradient method and calculating flow velocity in a measurement area for a plurality of measurement lines in a predetermined river width direction. It is characterized by being provided.

この発明の河川流量計測システムは、河川の幅方向全長の水面を一つ又は複数に分割して撮像すべく一つ又は複数の遠隔監視用撮像手段を河川に配設し、
前記撮像する河川の水位を測定する水位計測手段を設け、
前記遠隔監視用撮像手段から伝送された画像信号を濃度勾配法で解析して予め設定した河川の幅方向における複数の測線分の測定エリアの流速を算出する河川流速演算部と、
前記水位計測手段から伝送された水位データにより前記河川の幅方向の河川断面積を算出する河川断面積演算部と、この河川断面積演算部による河川断面積と前記河川流速演算部による各測線毎の流速値とから総流量を算出する河川流量演算部と、を備えた制御装置を設けてなることを特徴とするものである。
The river flow rate measuring system of the present invention is arranged with one or more remote monitoring imaging means in the river to divide the water surface of the entire length in the width direction of the river into one or a plurality of images,
Providing a water level measuring means for measuring the water level of the river to be imaged;
A river flow velocity calculation unit for analyzing the image signal transmitted from the remote monitoring imaging means by a concentration gradient method and calculating a flow velocity in a measurement area for a plurality of measurement lines in a predetermined river width direction;
A river cross-sectional area calculation unit for calculating a river cross-sectional area in the width direction of the river from the water level data transmitted from the water level measurement means, a river cross-sectional area by the river cross-sectional area calculation unit, and a line for each measurement line by the river flow velocity calculation unit And a river flow rate calculation unit for calculating the total flow rate from the flow velocity value of the control unit.

この発明の河川流量計測システムは、前記河川流量計測システムにおいて、前記制御装置が、前記画像信号を録画する録画手段を備え、前記水位データが予め設定した水位基準値を超えたときに録画開始する指令と、前記水位基準値より低くなったときに録画停止する指令とを前記録画手段に与える録画制御部を備えてなることが好ましい。   In the river flow measurement system according to the present invention, in the river flow measurement system, the control device includes recording means for recording the image signal, and starts recording when the water level data exceeds a preset water level reference value. It is preferable to include a recording control unit that provides the recording unit with a command and a command to stop recording when the water level becomes lower than the water level reference value.

以上のごとき課題を解決するための手段から理解されるように、この発明によれば、複数の遠隔監視用撮像手段による撮影画像を解析する非接触型計測法であり、水位、流速、流量を自動的にかつリアルタイムで監視できる。また、河川管理用に敷設された光ファイバで事務所へ伝送された遠隔監視用撮像手段の映像からも遠隔観測することができ、光ファイバ通信網の有効活用の一つとして期待できる。測定に際して、浮子を必要とせず、水中に機器を設置する必要もなく、高流速や大量の流下物があっても観測できる。また、無人観測のため、安全及び省力化を図ることができ、観測作業時のコストを低減できる。   As can be understood from the means for solving the above-described problems, according to the present invention, a non-contact measurement method for analyzing a photographed image by a plurality of remote monitoring imaging means, wherein the water level, flow velocity, and flow rate are determined. Monitor automatically and in real time. In addition, remote observation can be performed from the image of the imaging means for remote monitoring transmitted to the office by the optical fiber laid for river management, and it can be expected as one of the effective utilization of the optical fiber communication network. Measurements do not require a float, do not require installation of equipment in the water, and can be observed even with high flow rates and large quantities of falling objects. In addition, unmanned observation enables safety and labor saving, and can reduce the cost of observation work.

さらに、複雑な流速分布の解析ができ、河川の湾曲部などのように水流が整正でないような場合でも計測が可能である。しかも、録画手段による後解析・検証が可能である。また、録画手段は水位データが予め設定した水位基準値を超えたときに録画開始するので、経済的である。   Furthermore, it is possible to analyze a complex flow velocity distribution and measure even when the water flow is not correct, such as a curved portion of a river. In addition, post-analysis / verification by the recording means is possible. Further, since the recording means starts recording when the water level data exceeds a preset water level reference value, it is economical.

さらに、映像による面的な流速分布を把握できるため、1台の遠隔監視用撮像手段で広範囲に計測でき、複数台の遠隔監視用撮像手段の解析結果を統合できるので、より精度の高い観測が可能である。   In addition, since the surface flow velocity distribution can be grasped by video, it can be measured over a wide range with a single remote monitoring imaging means, and the analysis results of multiple remote monitoring imaging means can be integrated, enabling more accurate observations. Is possible.

以下、この発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1を参照するに、この実施の形態に係る河川流量計測システム1は、測定対象としての例えば河川水面あるいは砂防ダム堰堤等に遠隔監視用撮像手段としての例えばITVカメラ3(CCDカメラ)を向けて撮影するために、例えば河川の橋梁5に上記のITVカメラ3を複数台が配置される。なお、図1では1台のITVカメラ3だけが図示されているが、例えば河川幅が100m〜200m程度の中規模の河川の場合は、複数のITVカメラ3が配置される。前記複数台のITVカメラ3で撮影した流速計測エリアの映像情報は画像信号として観測所7の光成端9から光ファイバケーブル11を介して観測局舎13の光成端15に伝送される。   Referring to FIG. 1, a river flow measurement system 1 according to this embodiment is directed to, for example, an ITV camera 3 (CCD camera) as a remote monitoring imaging means, for example, on a river surface or a sabo dam as a measurement target. For example, a plurality of the ITV cameras 3 are arranged on a bridge 5 in a river, for example. Although only one ITV camera 3 is shown in FIG. 1, for example, in the case of a medium-sized river having a river width of about 100 m to 200 m, a plurality of ITV cameras 3 are arranged. Video information of the flow velocity measurement area captured by the plurality of ITV cameras 3 is transmitted as an image signal from the optical termination 9 of the observation station 7 to the optical termination 15 of the observation station 13 via the optical fiber cable 11.

上記の画像信号は制御装置17におけるITV制御装置19から画像解析処理装置としての例えばオプティカルフロー処理装置21(以下、略称して「OF処理装置」という)に伝送され、このOF処理装置21により河川の流体表面の速度分布が動画像解析処理されて算出される。ここまでのシステムは、この発明の実施の形態の河川流速計測システムでもあり、いわゆる非接触型の河川流速計測装置である。   The image signal is transmitted from the ITV control device 19 in the control device 17 to, for example, an optical flow processing device 21 (hereinafter referred to as “OF processing device” for short) as an image analysis processing device. The velocity distribution of the fluid surface is calculated by moving image analysis processing. The system so far is also a river flow velocity measuring system according to the embodiment of the present invention, which is a so-called non-contact type river flow velocity measuring apparatus.

さらに、上記の測定対象の河川に設置した水位計測手段としての例えば水位計23の水位データが観測所7の水位変換器25で信号化され、光伝送装置27により光成端9から光ファイバケーブル11を介して観測局舎13の光成端15に伝送され、光伝送装置29によりOF処理装置21へ入力される。また、河川横断測量のデータが予めOF処理装置21へ入力されている。したがって、OF処理装置21では、上記の水位データと河川横断測量のデータとから河川水面までの河川断面積を算出し、この河川断面積と河川流速計測システムによる河川幅全長にわたる測線ごとの平均流速とから河川の総流量が自動的に算出されるものである。   Further, water level data of, for example, a water level gauge 23 as a water level measuring means installed in the river to be measured is converted into a signal by the water level converter 25 of the observation station 7, and an optical fiber cable is connected from the optical termination 9 by the optical transmission device 27. 11 is transmitted to the optical termination 15 of the observation station 13 and input to the OF processing device 21 by the optical transmission device 29. Moreover, river crossing survey data is input to the OF processing device 21 in advance. Therefore, the OF processing device 21 calculates the river cross-sectional area from the above-mentioned water level data and river cross-sectional survey data to the river surface, and the average flow velocity for each survey line over the entire river width by the river cross-sectional area and the river flow velocity measurement system. The total flow of the river is automatically calculated from the above.

上記の河川流量計測システム1について、より詳しく説明する。なお、図1では1台のITVカメラ3だけが図示されているが、この実施の形態では4台のITVカメラ3を配置した場合を例として説明する。   The river flow measurement system 1 will be described in more detail. In FIG. 1, only one ITV camera 3 is shown, but in this embodiment, a case where four ITV cameras 3 are arranged will be described as an example.

図2を参照するに、計測対象の河川の幅全体の河川横断面(河床線)と水面が図示されており、河川幅を第1〜第4の流速計測エリア31A,31B,31C,31Dに4分割し、各流速計測エリア31ごとに1台のITVカメラ3で撮像できるように合計4台の第1〜第4のITVカメラ3A,3B,3C,3Dが常時配置される。   Referring to FIG. 2, a river cross section (bed line) and a water surface of the entire width of a river to be measured are illustrated, and the river width is changed to first to fourth flow velocity measurement areas 31A, 31B, 31C, and 31D. A total of four first to fourth ITV cameras 3A, 3B, 3C, and 3D are always arranged so as to be divided into four and can be imaged by one ITV camera 3 for each flow velocity measurement area 31.

各ITVカメラ3では、各流速計測エリア31が4分割されて4測線分の測定エリア33が予め設定されている。すなわち、第1のITVカメラ3Aの画像では4測線分の各測定エリア33の中央位置の流速側線q1,q2,q3,q4の流速を測定し、第2のITVカメラ3Bの画像では4測線分の各測定エリア33の中央位置の流速側線q5,q6,q7,q8の流速を測定し、以下同様に第3のITVカメラ3Cでは流速側線q9〜q12を、第4のITVカメラ3Dでは流速側線q13〜q16の流速を測定するもので、合計16測線分の流速が測定されることになる。   In each ITV camera 3, each flow velocity measurement area 31 is divided into four, and measurement areas 33 for four measurement lines are set in advance. That is, in the image of the first ITV camera 3A, the flow velocity of the flow velocity side lines q1, q2, q3, and q4 at the center position of each measurement area 33 for the four measurement lines is measured, and in the image of the second ITV camera 3B, the four measurement line segments are measured. The flow velocity side lines q5, q6, q7, and q8 at the center of each measurement area 33 are measured. Similarly, the third ITV camera 3C includes the flow velocity side lines q9 to q12, and the fourth ITV camera 3D includes the flow velocity side lines. The flow rates of q13 to q16 are measured, and the flow rates for a total of 16 survey lines are measured.

なお、第1〜第4の流速計測エリア31A,31B,31C,31Dの各測定エリア33の水面までの河川断面積は、流速側線q1〜q16に対応して、図2において左から順に、S1,S2,S3,・・・S15,S16となる。したがって、河川断面積Sは、S1〜S16の総合計の値である。   In addition, the river cross-sectional area to the water surface of each measurement area 33 of the first to fourth flow velocity measurement areas 31A, 31B, 31C, and 31D corresponds to the flow velocity side lines q1 to q16 in order from the left in FIG. , S2, S3,... S15, S16. Therefore, the river cross-sectional area S is a total value of S1 to S16.

また、上記の16測線分の平均流速が、流速側線q1〜q16に対応して、図2において左から順に、v1,v2,v3,・・・v15,v16とすると、河川の総流量Qは、流速側線q1〜q16に対応する各測定エリア33の流量Q1〜Q16の総合計の値である。すなわち、Q=Q1+Q2+・・・+Q15+Q16=(S1×v1)+(S2×v2)+・・・+(S15×v15)+(S16×v16)となる。   If the average flow velocity for the 16 survey lines is v1, v2, v3,... V15, v16 in order from the left in FIG. 2 corresponding to the flow velocity side lines q1 to q16, the total flow rate Q of the river is The total value of the flow rates Q1 to Q16 in each measurement area 33 corresponding to the flow velocity side lines q1 to q16. That is, Q = Q1 + Q2 + ... + Q15 + Q16 = (S1 * v1) + (S2 * v2) + ... + (S15 * v15) + (S16 * v16).

したがって、総流量Qは、16測線分の流速v1〜v16が測定されることにより、OF処理装置21で自動的に算出されることになる。   Accordingly, the total flow rate Q is automatically calculated by the OF processing device 21 by measuring the flow velocities v1 to v16 for 16 survey lines.

図3を併せて参照するに、上記の第1〜第4のITVカメラ3A〜3Dには河川水面を照明するための近赤外投光器35がそれぞれ2灯ずつ設置されており、第1〜第4のITVカメラ3A〜3Dは位置調整自在な旋回型であっても、定位置に設定する固定型であっても構わない。   Referring also to FIG. 3, each of the first to fourth ITV cameras 3A to 3D is provided with two near-infrared projectors 35 for illuminating the river surface. The 4 ITV cameras 3A to 3D may be a revolving type whose position is adjustable or a fixed type which is set at a fixed position.

第1〜第4のITVカメラ3A〜3D及び近赤外投光器35は、前述した図1に示されているように観測所7の光成端9に接続されており、光成端9から光ファイバケーブル11を介して観測局舎13の光成端15の端子部37に伝送される。   The first to fourth ITV cameras 3A to 3D and the near-infrared projector 35 are connected to the optical termination 9 of the observation station 7 as shown in FIG. It is transmitted to the terminal portion 37 of the optical termination 15 of the observation station 13 via the fiber cable 11.

端子部37にはITV制御装置19における映像入力部39とカメラ制御部41が接続されている。なお、前記カメラ制御部41は第1〜第4のITVカメラ3A〜3Dの撮像動作を制御する指令を与えるものである。   A video input unit 39 and a camera control unit 41 in the ITV control device 19 are connected to the terminal unit 37. The camera control unit 41 gives a command for controlling the imaging operation of the first to fourth ITV cameras 3A to 3D.

また、上記の映像入力部39では、第1〜第4のITVカメラ3A〜3Dに対応する第1〜第4の映像入力部43A〜43Dが上記の端子部37に接続され、第1〜第4の映像入力部43A〜43Dは映像分配器45に接続される。この映像分配器45からは、各第1〜第4のITVカメラ3A〜3Dの画像信号が4台の各OF処理装置21に伝送されると共に、前記各画像信号が画面4分割装置47を経てCRTなどのモニター装置49に伝送される。このモニター装置49では、画面が4分割されて第1〜第4のITVカメラ3A〜3Dの4つの画像が同時に一括表示されるので、容易に監視並びに確認することができる。   In the video input unit 39, the first to fourth video input units 43 </ b> A to 43 </ b> D corresponding to the first to fourth ITV cameras 3 </ b> A to 3 </ b> D are connected to the terminal unit 37. The four video input units 43 </ b> A to 43 </ b> D are connected to the video distributor 45. From the video distributor 45, the image signals of the first to fourth ITV cameras 3A to 3D are transmitted to the four OF processing devices 21, and the image signals pass through the screen quadrant 47. It is transmitted to a monitor device 49 such as a CRT. In this monitor device 49, since the screen is divided into four and four images of the first to fourth ITV cameras 3A to 3D are simultaneously displayed, monitoring and checking can be easily performed.

さらに、上記の映像分配器45には、第1〜第4のITVカメラ3A〜3Dに対応する録画手段としての例えば第1〜第4の録画装置51A〜51Dが接続されており、各対応する画像がビデオテープなどに録画できるように構成されている。また、第1〜第4の録画装置51A〜51Dは、録画制御部としての例えば録画制御装置53により制御されるように構成されている。例えば、録画制御装置53は、前述した水位計23による水位データが予め設定した水位基準値を超えたときに録画開始する指令と、前記水位基準値より低くなったときに録画停止する指令とを第1〜第4の録画装置51A〜51Dに与えるものである。   Further, for example, first to fourth recording devices 51A to 51D as recording means corresponding to the first to fourth ITV cameras 3A to 3D are connected to the video distributor 45, and each of them corresponds. An image can be recorded on a video tape or the like. The first to fourth recording devices 51A to 51D are configured to be controlled by, for example, a recording control device 53 as a recording control unit. For example, the recording control device 53 gives a command to start recording when the water level data by the water level gauge 23 described above exceeds a preset water level reference value and a command to stop recording when the water level data becomes lower than the water level reference value. This is given to the first to fourth recording devices 51A to 51D.

上記の各OF処理装置21は制御装置17の中央処理装置としてのCPU55に接続されており、上記のCPU55には、プログラム、データなどを表示する表示装置としての例えばCRTなどのディスプレイ57と、種々のデータやプログラムを入力する入力装置としての例えばキーボード59とマウス61が接続されている。   Each of the OF processing devices 21 is connected to a CPU 55 as a central processing unit of the control device 17, and the CPU 55 includes a display 57 such as a CRT as a display device for displaying programs, data, and the like, and various kinds of devices. For example, a keyboard 59 and a mouse 61 are connected as input devices for inputting the data and program.

さらに、上記各4台のOF処理装置21以外に流量を演算処理する別の1台のOF処理装置21は、上記の各画像信号を濃度勾配法で解析して予め設定した各測定エリア33の16測線分q1〜q16の流速v1〜v16を算出する第1〜第4の河川流速演算部63A〜63Dと、水位計23から伝送された水位データにより河川幅方向の河川断面積Sを算出する河川断面積演算部65と、この河川断面積演算部65による河川断面積Sと第1〜第4の河川流速演算部63A〜63Dによる各測線q1〜q16毎の流速値v1〜v16とを統括して総流量Qを算出する河川流量演算部67と、が備えられている。   Further, in addition to the four OF processing devices 21 described above, another OF processing device 21 for calculating the flow rate analyzes each of the image signals by the density gradient method and sets each measurement area 33 in advance. The river cross-sectional area S in the river width direction is calculated from the first to fourth river flow velocity calculation units 63A to 63D that calculate the flow velocities v1 to v16 of 16 survey lines q1 to q16 and the water level data transmitted from the water level gauge 23. The river cross-sectional area calculating unit 65, the river cross-sectional area S by the river cross-sectional area calculating unit 65, and the flow velocity values v1 to v16 for each of the survey lines q1 to q16 by the first to fourth river flow velocity calculating units 63A to 63D are integrated. And a river flow rate calculation unit 67 for calculating the total flow rate Q.

また、水位計23は、図3では中間過程を省略して図示されているが、前述した図1に示されているように水位変換器25、光伝送装置27、観測所7の光成端9を経てから光ファイバケーブル11を介して観測局舎13の光成端15に接続されている。したがって、水位データは光成端15及び光伝送装置29から水位データを保存するデータロガー69を介してOF処理装置21及び録画制御装置53へ入力される。   The water level gauge 23 is shown in FIG. 3 with the intermediate process omitted, but as shown in FIG. 1 described above, the water level converter 25, the optical transmission device 27, and the optical termination of the observation station 7 are shown. 9 is connected to the optical termination 15 of the observation station 13 via the optical fiber cable 11. Therefore, the water level data is input from the optical termination 15 and the optical transmission device 29 to the OF processing device 21 and the recording control device 53 via the data logger 69 that stores the water level data.

さらに、計測対象の河川付近には、風向風速計発信器71が設けられており、風向風速データは制御装置17の風向風速計変換器73へ伝送され、風向風速計変換器73からモデム75を介してOF処理装置21へ入力される。OF処理装置21では風向風速による河川の流速に与える影響の補正をかけることとなる。   Further, a wind direction anemometer transmitter 71 is provided in the vicinity of the river to be measured, and the wind direction anemometer data is transmitted to the wind direction anemometer converter 73 of the control device 17, and the modem 75 is transmitted from the wind direction anemometer converter 73. To the OF processing device 21. The OF processing apparatus 21 corrects the influence of the wind direction and wind speed on the river flow velocity.

次に、OF処理装置21の第1〜第4の河川流速演算部63A〜63Dにおける速度抽出原理について説明する。   Next, the speed extraction principle in the 1st-4th river flow velocity calculating part 63A-63D of the OF processing apparatus 21 is demonstrated.

図4(A),(B),(C)を参照するに、この実施の形態ではオプティカルフロー方式により速度抽出を行っており、このオプティカルフロー方式とは、動画像から各点(画素)の濃淡の空間的変化と時間的変化を調べ、各点がどちらへ、どんな速さで移動したかを求める手法である。   Referring to FIGS. 4A, 4B, and 4C, in this embodiment, speed extraction is performed by an optical flow method, and this optical flow method is a method for each point (pixel) from a moving image. It is a method to find out where and how fast each point has moved, by examining the spatial and temporal changes in shading.

例えば、図4(A)に示されているように、撮影した画像上の画素を256段階の濃淡に変換し、ある濃淡のパターン(勾配)を認識し、時刻tの画面77上における濃淡パターンが、図4(B)に示されているように、△tの時間経過後の時刻(t+△t)の連続する次の画像のどこに移動したかを求めることにより、流速を測定している。いわゆる、濃度勾配法で解析することにより流速を測定するものである。   For example, as shown in FIG. 4A, the pixels on the captured image are converted into 256 levels of shade, a certain shade pattern (gradient) is recognized, and the shade pattern on the screen 77 at time t. However, as shown in FIG. 4B, the flow velocity is measured by determining where in the next continuous image at the time (t + Δt) after the lapse of the time Δt has moved. . The flow rate is measured by analyzing the concentration gradient method.

この実施の形態のオプティカルフロー方式では、測定範囲内において、上記の一連の処理を2秒間で行って流速を求める。ここでは、その抽出原理について分かりやすくするために、画面77上における画素aの移動は単一のX方向(図のX−X’線方向)においてのみ考えることとする。その流速算出の手順は、以下の通りである。   In the optical flow method of this embodiment, the flow rate is obtained by performing the above-described series of processing in 2 seconds within the measurement range. Here, for easy understanding of the extraction principle, the movement of the pixel a on the screen 77 is considered only in a single X direction (the X-X ′ line direction in the figure). The flow rate calculation procedure is as follows.

(1)画像入力を行う。例えば、1/30秒間隔の連続画像が入力される。 (1) Perform image input. For example, continuous images at 1/30 second intervals are input.

(2)オプティカルフローによる計算を行う。つまり、上記の手順(1)で入力した画像から、連続した2画面77を抽出し、ある輝度勾配(明るさのパターン)を持った画素aの移動量が計算される。例えば、図4(A)の時刻tの画像と、図4(B)の時刻(t+△t)の画像との2画面77が抽出されると、画素aの移動は前記2画面77の画像上の差に表れてくるが、画素aの移動が単一のX方向のみであれば画像上のX方向の差と画素aの移動量が同じことになる。しかし、X方向からずれている場合は画像上の差とは異なる。 (2) Perform calculation by optical flow. That is, two continuous screens 77 are extracted from the image input in the above procedure (1), and the movement amount of the pixel a having a certain luminance gradient (brightness pattern) is calculated. For example, when the two screens 77 of the image at time t in FIG. 4A and the image at time (t + Δt) in FIG. 4B are extracted, the movement of the pixel a is the image of the two screens 77. As shown in the upper difference, if the movement of the pixel a is only in a single X direction, the difference in the X direction on the image and the movement amount of the pixel a are the same. However, when it is shifted from the X direction, it is different from the difference on the image.

そこで、画素aの移動量を求めるために、上記の2画面の画素aをX座標と輝度座標のグラフに表すことにより、図4(C)に示されているように画素aの速度ベクトルが表示される。この速度ベクトルに基づいて画素aの移動量が計算される。   Therefore, in order to obtain the movement amount of the pixel a, the velocity vector of the pixel a is obtained as shown in FIG. Is displayed. Based on this velocity vector, the amount of movement of the pixel a is calculated.

(3)速度補正を行う。上記の画素aの移動量は、予め設定された撮影距離の情報をもとに速度補正されて速度に変換される。 (3) Perform speed correction. The moving amount of the pixel a is corrected to a speed based on information on a preset shooting distance and converted into a speed.

(4)さらに、速度の大きさ、方向などの有効性を判定して、渦巻きや逆行、蛇行する流れなどの外乱による影響を除去した上で測定範囲内の平均流速が計算される。 (4) Further, the effectiveness of the magnitude and direction of the velocity is determined, and the influence of disturbances such as vortex, retrograde, and meandering flow is removed, and the average flow velocity within the measurement range is calculated.

したがって、以上の速度抽出原理に基づいて、第1〜第4の河川流速演算部63A〜63Dでは、図2に示した河川の幅方向全長にわたる16測線q1〜q16に対応する平均流速v1〜v16が自動的に算出される。   Therefore, based on the above velocity extraction principle, the first to fourth river flow velocity calculation units 63A to 63D have average flow velocity v1 to v16 corresponding to 16 survey lines q1 to q16 over the entire length in the width direction of the river shown in FIG. Is automatically calculated.

河川流量演算部67では、上記の平均流速v1〜v16と、対応する各測定エリア33の河川断面積S1〜S16とから、河川の総流量Q=Q1+Q2+・・・+Q16=(S1×v1)+(S2×v2)+・・・+(S16×v16)が自動的に算出される。   The river flow rate calculation unit 67 calculates the total river flow rate Q = Q1 + Q2 +... + Q16 = (S1 × v1) + from the average flow velocities v1 to v16 and the river cross-sectional areas S1 to S16 of the corresponding measurement areas 33. (S2 × v2) +... + (S16 × v16) is automatically calculated.

以上のように、この実施の形態の河川流量計測システム1及び河川流速計測システムは、複数のITVカメラ3による撮影画像を解析する非接触型計測法であり、水位、流速、流量を自動的にかつリアルタイムで監視することができる。測定に際して、浮子(トレーサー)を必要としないものである。また、水中に機器を挿入・設置する必要が無く、高流速や大量の流下物があっても観測が可能である。   As described above, the river flow rate measurement system 1 and the river flow velocity measurement system according to this embodiment are non-contact measurement methods for analyzing images captured by a plurality of ITV cameras 3, and automatically adjust the water level, flow velocity, and flow rate. And it can be monitored in real time. In the measurement, a float (tracer) is not required. In addition, there is no need to insert and install equipment in the water, and observation is possible even when there is a high flow rate or a large amount of falling objects.

さらに、複雑な流速分布の解析が可能であり、しかも録画装置51のビデオテープによる後解析・検証が可能である。   Furthermore, it is possible to analyze a complicated flow velocity distribution, and to perform post-analysis / verification using a video tape of the recording device 51.

また、無人観測のため、洪水時や悪天候下での観測作業の危険が解消され、安全及び省力化を図ることができ、観測作業に掛かるコストを低減できる。   In addition, because of unmanned observation, the danger of observation work during floods or in bad weather can be eliminated, safety and labor saving can be achieved, and the cost of observation work can be reduced.

さらに、映像による面的な流速分布を把握できる。例えば、1台のITVカメラ3で河川の幅方向に約50m幅までの計測が可能である。ちなみに、他の非接触で流速を計測する方式には、電波、超音波などの反射を用いるドップラー方式があるが、この方式では電波や超音波の狭い照射域における計測を行い、河川の広い横断上の1点の計測値を代表値とすることとなる。しかし、このオプティカルフロー方式の場合は、映像により面的に流速分布を捉え、1台のITVカメラ3で広範囲の計測をするので、複数台のITVカメラ3を統合して河川の幅方向全長にわたってより精度の高い観測を可能とする。   Furthermore, it is possible to grasp the surface flow velocity distribution from the video. For example, it is possible to measure up to about 50 m in the width direction of the river with one ITV camera 3. By the way, other non-contact methods for measuring flow velocity include the Doppler method that uses the reflection of radio waves and ultrasonic waves. In this method, measurement is performed in a narrow irradiation area of radio waves and ultrasonic waves, and wide crossing of rivers is performed. The measurement value at the upper point is used as a representative value. However, in the case of this optical flow method, since the flow velocity distribution is captured by the image and a wide range of measurement is performed with one ITV camera 3, a plurality of ITV cameras 3 are integrated to cover the entire length of the river in the width direction. Enables more accurate observation.

また、河川の湾曲部などのように水流が整正でないような場合でも計測が可能である。   In addition, measurement is possible even when the water flow is not regular, such as a curved portion of a river.

また、映像信号による計測手法のため、河川管理用に敷設された光ファイバケーブル11で事務所へ伝送されたITVカメラ3の映像からも遠隔観測することができ、光ファイバ通信網の有効活用の一つとして期待できる。   In addition, because of the video signal measurement method, it is possible to remotely observe the image from the ITV camera 3 transmitted to the office via the optical fiber cable 11 laid for river management, and effective use of the optical fiber communication network. One can expect.

なお、この発明は前述した実施の形態に限定されることなく、適宜な変更を行うことによりその他の態様で実施し得るものである。   In addition, this invention is not limited to embodiment mentioned above, It can implement in another aspect by making an appropriate change.

この発明の実施の形態の河川流量計測システムの概略説明図である。It is a schematic explanatory drawing of the river flow measurement system of an embodiment of this invention. 計測すべき河川の幅方向のITVカメラの設置状態を示す概略的な河川床断面図である。It is a rough river bed sectional view showing the installation state of the ITV camera in the width direction of the river to be measured. この発明の実施の形態の河川流量計測システムで用いられる制御装置の構成ブロック図である。It is a block diagram of the configuration of the control device used in the river flow rate measurement system of the embodiment of the present invention. (A)〜(C)は、OF処理装置による速度抽出原理の説明図である。(A)-(C) is explanatory drawing of the speed extraction principle by OF processing apparatus.

符号の説明Explanation of symbols

1 河川流量計測システム
3,3A〜3D ITVカメラ(遠隔監視用撮像手段)
11 光ファイバケーブル
17 制御装置
21 OF処理装置(オプティカルフロー処理装置)
23 水位計(水位計測手段)
31,31A〜31D 流速計測エリア
33 測定エリア
47 画面4分割装置
51A〜51D 第1〜第4の録画装置(録画手段)
53 録画制御装置(録画制御部)
55 CPU
63A〜63D 第1〜第4の河川流速演算部
65 河川断面積演算部
67 河川流量演算部
71 風向風速計発信器
1 River flow measurement system 3, 3A-3D ITV camera (remote monitoring imaging means)
11 Optical fiber cable 17 Control device 21 OF processing device (optical flow processing device)
23 Water level gauge (water level measuring means)
31, 31A to 31D Flow velocity measurement area 33 Measurement area 47 Screen quadrant 51A to 51D First to fourth recording devices (recording means)
53 Recording controller (recording controller)
55 CPU
63A to 63D First to fourth river flow velocity calculation unit 65 River cross-sectional area calculation unit 67 River flow rate calculation unit 71 Wind direction anemometer transmitter

Claims (6)

複数の遠隔監視用撮像手段により河川の幅方向全長の水面を複数に分割して撮像し、前記撮像手段による画像信号を制御装置に伝送し、この制御装置で前記画像信号を濃度勾配法で解析することによって予め設定した河川の幅方向における複数の測線分の測定エリアの流速を算出することを特徴とする河川流速計測方法。   A plurality of remote monitoring imaging means divides and captures the entire water surface in the width direction of the river and transmits the image signal from the imaging means to the control device, and the control device analyzes the image signal by the density gradient method. A river flow velocity measuring method, comprising: calculating flow velocity in a measurement area for a plurality of survey lines in a predetermined width direction of the river. 複数の遠隔監視用撮像手段により河川の幅方向全長の水面を複数に分割して撮像すると共に前記撮像する河川の水位を水位計測手段で測定し、前記撮像手段による画像信号と前記水位計測手段による水位データを制御装置に伝送し、この制御装置により、前記画像信号を濃度勾配法で解析することによって予め設定した河川の幅方向における複数の測線分の測定エリアの流速を算出し、前記水位データにより前記河川の幅方向の河川断面積を算出し、この河川断面積と前記各測線毎の流速値とから総流量を算出することを特徴とする河川流量計測方法。   A plurality of remote monitoring imaging means divides and captures the water surface of the entire length in the width direction of the river, measures the water level of the river to be imaged by the water level measuring means, and uses the image signal from the imaging means and the water level measuring means. The water level data is transmitted to the control device, and the control device calculates the flow velocity of the measurement area for a plurality of survey lines in the river width direction set in advance by analyzing the image signal by the concentration gradient method, and the water level data A river flow rate measuring method comprising: calculating a river cross-sectional area in the width direction of the river and calculating a total flow rate from the river cross-sectional area and a flow velocity value for each of the survey lines. 前記水位データが予め設定した水位基準値を超えたときに前記遠隔監視用撮像手段からの画像録画を開始し、前記水位基準値より低くなったときに前記画像録画を停止することを特徴とする請求項2記載の河川流量計測方法。   The image recording from the remote monitoring imaging means is started when the water level data exceeds a preset water level reference value, and the image recording is stopped when the water level data becomes lower than the water level reference value. The river flow rate measuring method according to claim 2. 河川の幅方向全長の水面を複数に分割して撮像すべく複数の遠隔監視用撮像手段を河川に配設し、
前記遠隔監視用撮像手段から伝送された画像信号を濃度勾配法で解析して予め設定した河川の幅方向における複数の測線分の測定エリアの流速を算出する河川流速演算部を備えた制御装置を設けてなることを特徴とする河川流速計測システム。
A plurality of remote monitoring imaging means are arranged in the river to divide the water surface of the entire length in the width direction of the river into a plurality of images,
A control device comprising a river flow velocity calculation unit for analyzing the image signal transmitted from the remote monitoring imaging means by a concentration gradient method and calculating flow velocity in a measurement area for a plurality of measurement lines in a predetermined river width direction. A river flow velocity measurement system characterized by being provided.
河川の幅方向全長の水面を複数に分割して撮像すべく複数の遠隔監視用撮像手段を河川に配設し、
前記撮像する河川の水位を測定する水位計測手段を設け、
前記遠隔監視用撮像手段から伝送された画像信号を濃度勾配法で解析して予め設定した河川の幅方向における複数の測線分の測定エリアの流速を算出する河川流速演算部と、
前記水位計測手段から伝送された水位データにより前記河川の幅方向の河川断面積を算出する河川断面積演算部と、この河川断面積演算部による河川断面積と前記河川流速演算部による各測線毎の流速値とから総流量を算出する河川流量演算部と、を備えた制御装置を設けてなることを特徴とする河川流量計測システム。
A plurality of remote monitoring imaging means are arranged in the river to divide the water surface of the entire length in the width direction of the river into a plurality of images,
Providing a water level measuring means for measuring the water level of the river to be imaged;
A river flow velocity calculation unit for analyzing the image signal transmitted from the remote monitoring imaging means by a concentration gradient method and calculating a flow velocity in a measurement area for a plurality of measurement lines in a predetermined river width direction;
A river cross-sectional area calculation unit for calculating a river cross-sectional area in the width direction of the river from the water level data transmitted from the water level measurement means, a river cross-sectional area by the river cross-sectional area calculation unit, and a line for each measurement line by the river flow velocity calculation unit A river flow rate measuring system comprising a control device including a river flow rate calculation unit that calculates a total flow rate from the flow velocity value of the river.
前記制御装置が、前記画像信号を録画する録画手段を備え、前記水位データが予め設定した水位基準値を超えたときに録画開始する指令と、前記水位基準値より低くなったときに録画停止する指令とを前記録画手段に与える録画制御部を備えてなることを特徴とする請求項5記載の河川流量計測システム。

The control device includes recording means for recording the image signal, and commands to start recording when the water level data exceeds a preset water level reference value and stop recording when the water level data becomes lower than the water level reference value. 6. The river flow rate measuring system according to claim 5, further comprising a recording control unit for giving a command to the recording means.

JP2005075798A 2005-03-16 2005-03-16 Method and system for measuring flow velocity of river and method and system for measuring river flow rate Pending JP2006258575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075798A JP2006258575A (en) 2005-03-16 2005-03-16 Method and system for measuring flow velocity of river and method and system for measuring river flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075798A JP2006258575A (en) 2005-03-16 2005-03-16 Method and system for measuring flow velocity of river and method and system for measuring river flow rate

Publications (1)

Publication Number Publication Date
JP2006258575A true JP2006258575A (en) 2006-09-28

Family

ID=37098010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075798A Pending JP2006258575A (en) 2005-03-16 2005-03-16 Method and system for measuring flow velocity of river and method and system for measuring river flow rate

Country Status (1)

Country Link
JP (1) JP2006258575A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147445B1 (en) 2011-12-23 2012-05-18 (주)리버앤씨 Water level data distributor
KR101978351B1 (en) * 2018-11-13 2019-05-15 주식회사 하이드로셈 System and Method for Measuring Real Time Water Discharge based on CCTV Image
WO2020071584A1 (en) * 2018-10-04 2020-04-09 대한민국(행정안전부 국립재난안전연구원장) Mobile flow rate measurement device and flow rate measurement method
KR20200072146A (en) * 2018-12-12 2020-06-22 대한민국(행정안전부 국립재난안전연구원장) Apparatus and method for sensing water level
JP2021047156A (en) * 2019-09-20 2021-03-25 株式会社日立国際電気 Surveillance system
CN112560595A (en) * 2020-11-30 2021-03-26 武汉大学 River cross section flow calculation method based on river surface flow velocity
JP2021530674A (en) * 2018-11-13 2021-11-11 ハイドロセム Real-time river water level measurement equipment and methods through positioning data filtering
JP2021531450A (en) * 2018-11-13 2021-11-18 ハイドロセム River flow velocity measuring device and method using optical flow video processing
KR20220065436A (en) * 2020-11-13 2022-05-20 단국대학교 산학협력단 Determination method of the searching window based on optical flow alogorithm
CN114541341A (en) * 2022-03-02 2022-05-27 水利部交通运输部国家能源局南京水利科学研究院 Special-shaped barrage and curved river channel dredging method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075188A (en) * 1993-06-17 1995-01-10 Anritsu Corp Current measuring equipment
JPH10336631A (en) * 1997-05-28 1998-12-18 Mitsubishi Electric Corp Control circuit for monitoring camera and monitor system
JP2004117119A (en) * 2002-09-25 2004-04-15 Asia Air Survey Co Ltd System, method, and program for measuring flow velocity distribution and system, method, and program for measuring flow rate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075188A (en) * 1993-06-17 1995-01-10 Anritsu Corp Current measuring equipment
JPH10336631A (en) * 1997-05-28 1998-12-18 Mitsubishi Electric Corp Control circuit for monitoring camera and monitor system
JP2004117119A (en) * 2002-09-25 2004-04-15 Asia Air Survey Co Ltd System, method, and program for measuring flow velocity distribution and system, method, and program for measuring flow rate

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147445B1 (en) 2011-12-23 2012-05-18 (주)리버앤씨 Water level data distributor
WO2020071584A1 (en) * 2018-10-04 2020-04-09 대한민국(행정안전부 국립재난안전연구원장) Mobile flow rate measurement device and flow rate measurement method
JP7120581B2 (en) 2018-11-13 2022-08-17 ハイドロセム CCTV image-based real-time automatic flowmeter-side system and method
JP7120583B2 (en) 2018-11-13 2022-08-17 ハイドロセム Real-time river water level measurement device and method through positioning data filtering
JP7120582B2 (en) 2018-11-13 2022-08-17 ハイドロセム River flow velocity measurement device and method using optical flow image processing
WO2020101104A1 (en) * 2018-11-13 2020-05-22 주식회사 하이드로셈 System and method for automatically measuring flow rate in real time on basis of cctv video
JP2021530674A (en) * 2018-11-13 2021-11-11 ハイドロセム Real-time river water level measurement equipment and methods through positioning data filtering
JP2021531450A (en) * 2018-11-13 2021-11-18 ハイドロセム River flow velocity measuring device and method using optical flow video processing
JP2021531449A (en) * 2018-11-13 2021-11-18 ハイドロセム CCTV video-based real-time automatic flowmeter side system and method
KR101978351B1 (en) * 2018-11-13 2019-05-15 주식회사 하이드로셈 System and Method for Measuring Real Time Water Discharge based on CCTV Image
US11353354B2 (en) 2018-11-13 2022-06-07 Hydrosem System for automatically measuring discharge in real-time based on cctv image and method thereof
KR20200072146A (en) * 2018-12-12 2020-06-22 대한민국(행정안전부 국립재난안전연구원장) Apparatus and method for sensing water level
KR102128934B1 (en) * 2018-12-12 2020-07-01 대한민국(행정안전부 국립재난안전연구원장) Apparatus and method for sensing water level
JP2021047156A (en) * 2019-09-20 2021-03-25 株式会社日立国際電気 Surveillance system
KR20220065436A (en) * 2020-11-13 2022-05-20 단국대학교 산학협력단 Determination method of the searching window based on optical flow alogorithm
KR102462351B1 (en) 2020-11-13 2022-11-02 단국대학교 산학협력단 Determination method of the searching window based on optical flow alogorithm
CN112560595A (en) * 2020-11-30 2021-03-26 武汉大学 River cross section flow calculation method based on river surface flow velocity
CN112560595B (en) * 2020-11-30 2022-04-29 武汉大学 River cross section flow calculation method based on river surface flow velocity
CN114541341A (en) * 2022-03-02 2022-05-27 水利部交通运输部国家能源局南京水利科学研究院 Special-shaped barrage and curved river channel dredging method
CN114541341B (en) * 2022-03-02 2023-04-21 水利部交通运输部国家能源局南京水利科学研究院 Curved river dredging method

Similar Documents

Publication Publication Date Title
JP2006258575A (en) Method and system for measuring flow velocity of river and method and system for measuring river flow rate
JP7120581B2 (en) CCTV image-based real-time automatic flowmeter-side system and method
JP4844844B2 (en) Vibration measurement system and computer program
KR100850307B1 (en) Monitoring system for maintennance of sewer
JP4025161B2 (en) Flow velocity distribution measurement system, flow velocity distribution measurement method, flow velocity distribution measurement program, flow rate measurement system, flow rate measurement method, and flow rate measurement program
KR101512690B1 (en) Analysis method and portable instrument measuring water surface velocity using digital image processing
CN102346014A (en) Method for measuring arc sag of wire of power transmission line based on image processing
CN102980517A (en) Monitoring measurement method
WO2007007528A1 (en) Image processor and environment information observing device
JP5035606B2 (en) River flow rate calculation device, river flow rate calculation method, and computer program
CN103578114B (en) Coal jetting branch based on image procossing surveys stifled anti-blocking method
CN104063863A (en) Pitch-down type binocular vision system for watercourse monitoring and image processing method
CN115326026A (en) Method and device for acquiring hydraulic characteristics based on non-contact measurement-hydrodynamic fusion assimilation
JP4574657B2 (en) Method and apparatus for measuring water flow
KR20160116686A (en) Multi-lane over-speed enforcement system based on FPGA, using radar speed sensor and low resolution image camera
KR102363567B1 (en) Monotoring system for sewer
JP6671249B2 (en) Irrigation monitoring system
US11821815B2 (en) Displacement measurement apparatus for structure
JP3701859B2 (en) River observation system
Frank et al. Spatial dike breach: Accuracy of photogrammetric measurement system
KR102232518B1 (en) Apparatus for real-time monitoring of water outflow in cave
CN109348178A (en) A kind of prison intelligent control method and system
JP2021047156A (en) Surveillance system
JP2019066368A (en) System and method for detecting displacement of structure
CN104504633A (en) Actual practice examination assessment device and actual practice examination assessment system for seamen of inland waterway vessels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011