JP2006258565A - Hub unit with displacement sensor - Google Patents

Hub unit with displacement sensor Download PDF

Info

Publication number
JP2006258565A
JP2006258565A JP2005075617A JP2005075617A JP2006258565A JP 2006258565 A JP2006258565 A JP 2006258565A JP 2005075617 A JP2005075617 A JP 2005075617A JP 2005075617 A JP2005075617 A JP 2005075617A JP 2006258565 A JP2006258565 A JP 2006258565A
Authority
JP
Japan
Prior art keywords
displacement
hub
axle
sensor
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005075617A
Other languages
Japanese (ja)
Inventor
Kenji Ishiguro
憲治 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005075617A priority Critical patent/JP2006258565A/en
Publication of JP2006258565A publication Critical patent/JP2006258565A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hub unit with a displacement sensor capable of detecting highly accurately a load in the axle axial direction. <P>SOLUTION: In this hub 4, a detection part 4a is formed on the end face on the car body inner side in the axial direction, and a sensor cover 70 for covering a displacement detection part in the state where a space is formed in the axial direction between itself and the displacement detection part is provided on the car body inner side rear end of a non-rotating outer ring 5b. The sensor cover 70 is provided with the displacement detection part 71 on a position facing to the detection part 4a inside the sensor cover 70. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

この発明は、変位センサ付きハブユニットに関する。   The present invention relates to a hub unit with a displacement sensor.

特開2004−270844号公報JP 2004-270844 A 特開2004−360782号公報Japanese Patent Laid-Open No. 2004-360782 特開2004−155261号公報JP 2004-155261 A

自動車の走行制御には種々のセンサが使用されており、例えば、路面摩擦係数、路面反力あるいはヨーレートなどを、タイヤを懸架するサスペンション機構に取り付けた荷重センサで検出し、その検出出力を、例えばアンチロックブレーキシステムや操舵系の制御に使用することが行われている。しかし、サスペンション機構を介した荷重検出には精度上必ずしも満足できないものがあるため、特許文献1〜特許文献3のごとく、タイヤホイールを取り付ける軸受ハブユニットに荷重センサを組み込み、より高精度に荷重検出する提案がなされている。軸受ハブユニットに荷重センサが予め組み込まれることで、自動車へのセンサの組み付けが一層容易になり、生産性の向上にも寄与している。   Various sensors are used for driving control of automobiles. For example, a road surface friction coefficient, a road surface reaction force, a yaw rate, or the like is detected by a load sensor attached to a suspension mechanism that suspends a tire, and the detection output is, for example, It is used to control anti-lock brake systems and steering systems. However, there are some cases where the load detection via the suspension mechanism is not always satisfactory in accuracy. Therefore, as in Patent Document 1 to Patent Document 3, a load sensor is incorporated in the bearing hub unit to which the tire wheel is attached to detect the load with higher accuracy. Proposals have been made. Since the load sensor is incorporated in the bearing hub unit in advance, the assembly of the sensor to the automobile becomes easier and contributes to the improvement of productivity.

特許文献1〜特許文献3では、軸受外輪の外側に、これと当接する荷重センサをラジアル方向に複数設けた構成となっている。この構成では、路面反力(路面に対して垂直方向)やタイヤ摩擦(路面と平行方向)など、車軸に対して半径方向に作用する荷重は高精度に検出できるが、車軸アキシャル方向の荷重は、ラジアル方向の異なる位置に設けられた検出荷重のアンバランスから、車軸方向の投影成分を見出して間接的に測定せざるを得ず、精度に欠ける問題があった。   In Patent Documents 1 to 3, a plurality of load sensors in contact with the outer ring of the bearing are provided in the radial direction outside the bearing outer ring. In this configuration, load acting in the radial direction on the axle, such as road surface reaction force (perpendicular to the road surface) and tire friction (direction parallel to the road surface), can be detected with high accuracy, but the load in the axial direction of the axle is In addition, there is a problem of lack of accuracy because it is necessary to find the projection component in the axle direction indirectly from the imbalance of the detected loads provided at different positions in the radial direction and to measure it indirectly.

本発明の課題は、車軸アキシャル方向の荷重を、変位センサを用いて高精度に検出できる変位センサ付きハブユニットを提供することにある。   The subject of this invention is providing the hub unit with a displacement sensor which can detect the load of an axle axial direction with a high precision using a displacement sensor.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の変位センサ付きハブユニットは、
ハブ本体と、該ハブ本体の外周面からラジアル方向外向きに突出する形で設けられ、車体アウタ側にタイヤホイールが取り付けられるホイール取付フランジとを有するハブと、
ホイール取付フランジよりも車体インナ側において、ハブ本体に一体回転可能に設けられる内輪と、
該内輪のラジアル方向外側において自動車側の取付ベースに対し非回転かつアキシャル方向の位置が固定に配置される外輪と、
内輪と外輪との間に配置される複数の転動体と、
車軸に作用するアキシャル方向荷重レベルに応じて当該アキシャル方向に変位を生ずるよう、ハブ又は車軸に設けられた被検出部と、
被検出部のアキシャル方向の変位成分を非接触にて検出する変位検出部とを備え、
変位検出部による変位検出情報を、車軸に加わるアキシャル荷重の情報として出力することを特徴とする。
In order to solve the above problems, the hub unit with a displacement sensor of the present invention is
A hub having a hub main body and a wheel mounting flange provided in a shape protruding radially outward from the outer peripheral surface of the hub main body, to which a tire wheel is mounted on the vehicle body outer side;
An inner ring provided on the hub body so as to be integrally rotatable on the inner side of the vehicle body from the wheel mounting flange,
An outer ring in which the position in the axial direction is non-rotating and fixed relative to the mounting base on the automobile side on the radially outer side of the inner ring;
A plurality of rolling elements disposed between the inner ring and the outer ring;
A detected portion provided on the hub or the axle so as to cause displacement in the axial direction according to the axial load level acting on the axle;
A displacement detection unit that detects a displacement component in the axial direction of the detected unit in a non-contact manner;
Displacement detection information by the displacement detector is output as information on an axial load applied to the axle.

上記本発明の変位センサ付きハブユニットは、車軸及びハブのいずれかに、車軸に作用するアキシャル方向荷重レベルに応じて当該アキシャル方向に変位を生ずるように設けられた被検出部と、被検出部のアキシャル方向の変位成分を非接触にて検出する変位検出部とを備え、変位検出部による変位検出情報を、車軸に加わるアキシャル荷重の情報として出力する。これにより、車軸に加わるアキシャル荷重を、従来の荷重センサ付きハブユニットと比較してはるかに高精度に検出することが可能となる。   The hub unit with a displacement sensor according to the present invention includes a detected portion provided on either the axle or the hub so as to cause displacement in the axial direction according to an axial load level acting on the axle, and a detected portion. A displacement detection unit that detects a displacement component in the axial direction in a non-contact manner, and outputs displacement detection information by the displacement detection unit as information on an axial load applied to the axle. As a result, the axial load applied to the axle can be detected with much higher accuracy than a conventional hub unit with a load sensor.

以下、本発明の実施の形態を、図面を参照して説明する。
図1は本発明の一実施形態である変位センサ付きハブユニット6の一例を断面構造にて示すものである。該変位センサ付きハブユニット6は、車軸2の先端部外周面に取り付けられる筒状のハブ本体4bと、該ハブ本体4bの外周面からラジアル方向外向きに突出するホイール取付部4aとを有するハブ4と、ホイール取付フランジ4aよりも車体インナ側において、ハブ本体4bに一体回転可能に設けられる内輪5aと、該内輪5aのラジアル方向外側において自動車側の取付ベース3に対し非回転かつアキシャル方向の位置が固定に配置される外輪5bと、それら内輪5aと外輪5bとの間に配置される複数の転動体5cとを備える。ホイール取付フランジ4aの車体アウタ側主表面には、タイヤホイール302とブレーキディスク301が取り付けられる。符号8は、ホイール取付ボルトである。本図のハブユニット6は、自動車の従動輪側に使用されるものであり、ハブ本体4bが中実部材とされ、車軸に兼用されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross-sectional structure of an example of a hub unit 6 with a displacement sensor according to an embodiment of the present invention. The hub unit 6 with a displacement sensor has a cylindrical hub main body 4b attached to the outer peripheral surface of the front end portion of the axle 2, and a wheel mounting portion 4a protruding outward in the radial direction from the outer peripheral surface of the hub main body 4b. 4, an inner ring 5 a provided to be integrally rotatable with the hub body 4 b on the vehicle body inner side of the wheel mounting flange 4 a, and a non-rotating and axial direction with respect to the mounting base 3 on the vehicle side outside the inner ring 5 a in the radial direction. The outer ring 5b is disposed at a fixed position, and a plurality of rolling elements 5c are disposed between the inner ring 5a and the outer ring 5b. A tire wheel 302 and a brake disc 301 are attached to the main body outer side main surface of the wheel attachment flange 4a. Reference numeral 8 denotes a wheel mounting bolt. The hub unit 6 in this figure is used on the side of a driven wheel of an automobile, and the hub body 4b is a solid member and is also used as an axle.

図1の構成において、軸受は複列外向きアンギュラ玉軸受からなり、ハブ本体4bの外周に、単列用の内輪5a(他方の内輪はハブ本体4bの外周面を軌道面とする形で、これと一体化されている)と、二列の軌道溝を有する外輪5bと、二列で配設される複数の玉(転動体)5cと、二つの冠形保持器5d、5dとを備えている。ハブ本体4bの外周面には、ラジアル方向に突出する形で、内輪5aの自身に対するアキシャル方向の相対移動を規制する内輪規制部4dが形成されている。この内輪規制部4dは、ハブ本体の外周面に形成された環状の切欠部の内壁部である。   In the configuration of FIG. 1, the bearing is a double-row outward angular ball bearing, and on the outer periphery of the hub body 4 b, a single-row inner ring 5 a (the other inner ring has the outer peripheral surface of the hub body 4 b as a raceway surface, The outer ring 5b having two rows of raceway grooves, a plurality of balls (rolling elements) 5c arranged in two rows, and two crown-shaped cages 5d and 5d. ing. On the outer peripheral surface of the hub main body 4b, an inner ring restricting portion 4d for restricting the relative movement in the axial direction of the inner ring 5a with respect to itself is formed so as to protrude in the radial direction. The inner ring restricting portion 4d is an inner wall portion of an annular cutout portion formed on the outer peripheral surface of the hub body.

ハブ4には、アキシャル方向にて車体インナ側の端面(以下、後端面ともいう)に被検出部4eが形成され、非回転の外輪5bの車体インナ側後端部には、変位検出部との間にアキシャル方向に空間を生じた形でこれを覆うセンサカバー70が設けられている。該センサカバー70には、当該センサカバー70の内部にて被検出部4eと対向する位置に変位検出部71が設けられている。該変位センサ付きハブユニット6によると、ハブ4の変位に基づいて、車軸に加わるアキシャル荷重を高精度に検出することが可能となる。また、センサカバー70が被回転となるので、変位検出部71からの出力の取り出しも容易である。さらに、被検出部4eへの汚れ付着等による検出感度の劣化も生じにくい。   The hub 4 has a detected portion 4e formed on an end surface (hereinafter also referred to as a rear end surface) on the inner side of the vehicle body in the axial direction, and a displacement detection portion on the rear end portion of the non-rotating outer ring 5b on the inner side of the vehicle body. A sensor cover 70 is provided so as to cover a space in the axial direction. The sensor cover 70 is provided with a displacement detection unit 71 at a position facing the detected portion 4e inside the sensor cover 70. According to the hub unit 6 with a displacement sensor, the axial load applied to the axle can be detected with high accuracy based on the displacement of the hub 4. Further, since the sensor cover 70 is rotated, the output from the displacement detection unit 71 can be easily taken out. In addition, the detection sensitivity is hardly deteriorated due to dirt adhering to the detected portion 4e.

本実施形態では、ハブ本体4bの内側に配置される従動輪側車軸の車体インナ側の端面において、その回転軸線を含む領域に被検出部4eが形成されている。被検出部4eをハブ4の回転軸線上に形成することにより、被検出部4eの回転変位が抑制され、アキシャル荷重を高精度に検出することができる。なお、本実施形態においてハブ本体4bは、車軸が一体化された中実構造を有してなり、該中実のハブ本体4bの、車体インナ側の端面に被検出部4eを形成している。これにより、ハブに対する車軸の組み付けが不要となり、しかもそのハブ本体4bの車体インナ側の端面を被検出部4eとして活用することで、変位検出機構の更なる簡略化が図られている。   In the present embodiment, the detected portion 4e is formed in a region including the rotation axis on the end surface on the vehicle body inner side of the driven wheel side axle disposed inside the hub body 4b. By forming the detected part 4e on the rotation axis of the hub 4, the rotational displacement of the detected part 4e is suppressed, and the axial load can be detected with high accuracy. In the present embodiment, the hub body 4b has a solid structure in which an axle is integrated, and the detected portion 4e is formed on the end surface of the solid hub body 4b on the inner side of the vehicle body. . As a result, it is not necessary to assemble the axle to the hub, and the end surface of the hub body 4b on the vehicle body inner side is utilized as the detected portion 4e, thereby further simplifying the displacement detection mechanism.

図1において、センサカバー70は、外輪5bの車体インナ側の開口部に嵌合する形態で設けられている。外輪5bのアキシャル方向後端部(あるいはインロウ部)5mは、外輪取付部となる車軸ケース3の外輪収容孔3hの内側に挿入されている。外輪5bの外周面にはハブ取付フランジ5fがラジアル方向に突出形成されており、該ハブ取付フランジ5fを車軸ケース3の外輪収容孔3hの周縁部に当接させることにより、該外輪5bの車軸ケース3に対するアキシャル方向の相対移動が規制されている。ハブ取付フランジ5fには外輪締結部5eが一体化されており、これにボルト挿通孔5hが貫通形成されている。そして、該ボルト挿通孔5hを経て車軸ケース3側に締結部材をなす外輪締結ボルト5vがねじ込まれ、外輪5bが車軸ケース3に取り付けられる。   In FIG. 1, the sensor cover 70 is provided in a form that fits into an opening on the vehicle body inner side of the outer ring 5b. A rear end portion (or inrow portion) 5m in the axial direction of the outer ring 5b is inserted inside the outer ring accommodation hole 3h of the axle case 3 serving as the outer ring attachment portion. A hub mounting flange 5f is formed on the outer peripheral surface of the outer ring 5b so as to protrude in the radial direction. By bringing the hub mounting flange 5f into contact with the peripheral edge of the outer ring receiving hole 3h of the axle case 3, the axle of the outer ring 5b is contacted. The relative movement in the axial direction with respect to the case 3 is restricted. An outer ring fastening portion 5e is integrated with the hub mounting flange 5f, and a bolt insertion hole 5h is formed therethrough. Then, an outer ring fastening bolt 5v serving as a fastening member is screwed into the axle case 3 through the bolt insertion hole 5h, and the outer ring 5b is attached to the axle case 3.

また、本実施形態では、変位検出部が近接センサ71にて構成されている。近接センサ71により、前述のアキシャル方向変位を安価にかつ高精度に測定できる。特に、誘導渦電流式の近接センサの場合、変位検出部4eを金属で形成しておけば、軸受側からの潤滑油飛沫等が付着しても、測定感度への影響はほとんど及ばない。   In the present embodiment, the displacement detector is configured by the proximity sensor 71. The proximity sensor 71 can measure the axial displacement described above at low cost and with high accuracy. In particular, in the case of an inductive eddy current type proximity sensor, if the displacement detector 4e is formed of metal, even if lubricant droplets or the like from the bearing side adhere, the measurement sensitivity is hardly affected.

図1においては、中実金属製のハブ本体4bの車体インナ側端面4eを被検出部として、その変位を誘導渦電流式の近接センサ71によって測定するようにしている。なお、ハブ本体4bの車体インナ側端部は、内輪5aよりも後方側に延出し、その延出部外周面に形成された雄ねじ部に、内輪固定用のナット102が螺合・締結されている。また、近接センサ71のプローブ中心は、ハブ本体4bの車体インナ側端面(つまり、被検出部)4eの回転軸線に位置決めされている。   In FIG. 1, the body inner side end surface 4e of the hub body 4b made of solid metal is used as a detected portion, and the displacement is measured by an inductive eddy current type proximity sensor 71. The end portion on the vehicle body inner side of the hub body 4b extends rearward from the inner ring 5a, and an inner ring fixing nut 102 is screwed and fastened to a male screw portion formed on the outer peripheral surface of the extended portion. Yes. Further, the probe center of the proximity sensor 71 is positioned on the rotation axis of the vehicle body inner side end surface (that is, the detected portion) 4e of the hub body 4b.

図2は、近接センサ71の出力制御回路の一例を示すものである。近接センサ71は、プローブコイル71aと、これに交番電流を通電する発振回路71bと、プローブコイル71aの発振状態を検出する発振状態検出回路71cと、その発振状態波形に基づいて被検出部までの距離を反映した出力を行なう出力回路71dとを有する。プローブコイル71aを被検出部に交番電流を通電ながら近づけると、被検出部にはプローブコイル71aからの交番磁界により渦電流が励起される。この渦電流は、被検出部までの距離に応じて、プローブコイル71aの交番電流を打ち消す向きの交番磁界を発生させる。従って、発振状態検出回路71cが検出するプローブコイル71aの電圧波形の振幅から、プローブコイルと被検出部との距離を知ることができる。出力回路は、例えば、この電圧波形のピークホールド回路と、そのホールド出力の線形化回路などにより構成され、例えば検出部までの距離に比例した電圧信号を出力する。この出力を、後段の電圧フォロワ162を介して、被検出部の変位情報ひいては車軸に加わるアキシャル方向荷重の情報として取り出す。   FIG. 2 shows an example of the output control circuit of the proximity sensor 71. The proximity sensor 71 includes a probe coil 71a, an oscillation circuit 71b that supplies an alternating current to the probe coil 71a, an oscillation state detection circuit 71c that detects an oscillation state of the probe coil 71a, and a detected part based on the oscillation state waveform. And an output circuit 71d for performing output reflecting the distance. When the probe coil 71a is brought close to the detected part while applying an alternating current, an eddy current is excited in the detected part by the alternating magnetic field from the probe coil 71a. This eddy current generates an alternating magnetic field in a direction that cancels the alternating current of the probe coil 71a according to the distance to the detected part. Therefore, the distance between the probe coil and the detected part can be known from the amplitude of the voltage waveform of the probe coil 71a detected by the oscillation state detection circuit 71c. The output circuit includes, for example, a peak hold circuit of this voltage waveform and a linearization circuit of the hold output, and outputs a voltage signal proportional to the distance to the detection unit, for example. This output is taken out as displacement information of the detected portion and thus information on the axial load applied to the axle via the voltage follower 162 in the subsequent stage.

なお、アキシャル荷重の検出出力は、例えば自動車に働くヨーレートのような比較的長周期の成分を抽出して測定したい場合、路面やエンジンからの振動など不要な短周期の成分は、出力側の回路最終段に設けたローパスフィルタ63(図4では、オペアンプ63mと、周辺抵抗63c,63d及びキャパシタ63b,63eとからなる正帰還型二次アクティブフィルタとして構成されている)により除去することができる。   The detection output of the axial load can be measured by extracting a relatively long cycle component such as the yaw rate that works for an automobile, for example. The filter can be removed by a low-pass filter 63 (in FIG. 4, configured as a positive feedback secondary active filter including an operational amplifier 63m, peripheral resistors 63c and 63d, and capacitors 63b and 63e).

変位検出の方式としては、上記のような近接センサを用いる以外にも種々の方式を採用可能である。図3は、光学式変位検出方式を採用した場合の例である(図1との共通部分には共通の符号を付与して詳細な説明は省略する)。被検出部は反射部材60(ここでは、ハブ本体4bの後端面に配置されている)として構成でき、変位検出部51は、反射部材60に測定光を照射する光源52と、測定光の反射部材60による反射光を検出する反射光検出部56とを備えたものとして構成できる。該反射光の情報に基づいて変位検出情報が生成される。   As a displacement detection method, various methods can be adopted in addition to using the proximity sensor as described above. FIG. 3 shows an example in which an optical displacement detection method is adopted (a common reference numeral is assigned to a common part with FIG. 1 and a detailed description thereof is omitted). The detected part can be configured as a reflecting member 60 (here, disposed on the rear end face of the hub body 4b), and the displacement detecting part 51 includes a light source 52 that irradiates the reflecting member 60 with measuring light, and reflection of the measuring light. A reflection light detection unit 56 that detects the reflection light from the member 60 can be provided. Displacement detection information is generated based on the reflected light information.

車軸への荷重付加に伴うホイール取付フランジ4aの変位量はμmオーダー、場合によってはnmオーダーのごく小さなものであり、これをより安価にかつ高精度に検出するために、以下のような方式を採用することも可能である。すなわち、反射部材60と光源52との間に配置された、反射光LMを反射光検出部56に導くための光学系を非点収差光学系51pにて構成し、該非点収差光学系51pを通過した反射光LMの反射光検出部56による検出像の形状変化に基づいて変位検出情報を生成する。非点収差光学系51pで点像を結合すると、観測面(つまり、ハブ本体4bの後端面にて、反射部材(被検出部)60が形成する反射面)の位置によって像が縦長、円形、横長と変化する。この検出像の形状変化を、例えば4分割光検出器等を利用して検出すれば、光軸方向の変位を測定することができるほか、像が円形となる位置を基準にすれば、像が縦長であるか横長であるかにより、変位つまりアキシャル荷重の方向も識別できる。さらに、最高で1nm程度までの非常に高い変位検出感度も確保できる。   The displacement of the wheel mounting flange 4a due to the load applied to the axle is very small, in the order of μm, and sometimes in the order of nm. In order to detect this more inexpensively and with high accuracy, the following method is used. It is also possible to adopt. That is, the astigmatism optical system 51p is configured by an astigmatism optical system 51p that is disposed between the reflection member 60 and the light source 52 and that guides the reflected light LM to the reflected light detection unit 56. Displacement detection information is generated based on the shape change of the detected image by the reflected light detection unit 56 of the reflected light LM that has passed. When the point images are combined by the astigmatism optical system 51p, the image is vertically long, circular, depending on the position of the observation surface (that is, the reflection surface formed by the reflection member (detected portion) 60 at the rear end surface of the hub body 4b). It changes with landscape. If this change in the shape of the detected image is detected using, for example, a quadrant photodetector, the displacement in the optical axis direction can be measured, and if the position where the image is circular is used as a reference, the image is The direction of displacement, that is, the axial load can also be identified depending on whether it is vertically long or horizontally long. Furthermore, a very high displacement detection sensitivity up to about 1 nm can be secured.

図4は、その一例を示すもので、光源52はレーザー光源であり、非点収差光学系51pは、対物レンズ54、ビームスプリッタ53及び円筒レンズ55を備える。対物レンズ54は、光源52からの測定光LPを基準位置(例えば、アキシャル荷重が付与されていない状態での、反射部材60の反射面位置)に合焦させるように焦点距離が定められている。ビームスプリッタ53は、対物レンズ54への入射経路上に配置され、反射部材60による反射光LMを、測定光LPの入射光軸から直角方向に分離する。この反射光LMを反射光検出部56により受光する。   FIG. 4 shows an example thereof. The light source 52 is a laser light source, and the astigmatism optical system 51p includes an objective lens 54, a beam splitter 53, and a cylindrical lens 55. The objective lens 54 has a focal length so that the measurement light LP from the light source 52 is focused on a reference position (for example, the position of the reflecting surface of the reflecting member 60 when no axial load is applied). . The beam splitter 53 is disposed on the incident path to the objective lens 54, and separates the reflected light LM from the reflecting member 60 in a direction perpendicular to the incident optical axis of the measuring light LP. The reflected light LM is received by the reflected light detection unit 56.

円筒レンズ55は、反射光LMの反射光検出部56への入射経路上に設けられ、非点収差を有している。該円筒レンズ55を通過して、反射部材60に向けて収束する光束は、ある中立状態位置Jに反射光検出部56が位置する場合は円形断面となり、反射光検出部56の位置が光束上で円筒レンズ55に近い位置N側に相対移動すると縦方向(円筒レンズ55の円筒軸方向)に長くなり、逆に遠い位置F側に相対移動すると横方向(円筒レンズ55の円筒軸直交方向)に長くなる。反射部材60がレンズ54の焦点位置(アキシャル荷重無付加状態に対応)に位置した状態で、反射光検出部56が中立状態位置Jとなるように、その配置位置を定めておく。これにより、反射部材60が基準位置よりも近い場合、つまり図3の正方向にアキシャル荷重が作用している場合には、反射光検出部56上の像は横長の楕円となり、反射部材60が基準位置よりも遠い場合、つまり図1の負方向にアキシャル荷重が作用している場合には、反射光検出部56上の像は縦長の楕円となる。   The cylindrical lens 55 is provided on the incident path of the reflected light LM to the reflected light detection unit 56 and has astigmatism. The light beam that passes through the cylindrical lens 55 and converges toward the reflecting member 60 has a circular cross section when the reflected light detection unit 56 is located at a neutral position J, and the position of the reflected light detection unit 56 is on the light beam. If it moves relative to the position N side close to the cylindrical lens 55, it becomes longer in the vertical direction (cylindrical axis direction of the cylindrical lens 55), and conversely if it moves relatively far to the position F side, it moves in the horizontal direction (direction perpendicular to the cylindrical axis of the cylindrical lens 55). It becomes long. The arrangement position is determined so that the reflected light detection unit 56 becomes the neutral state position J in a state where the reflection member 60 is located at the focal position of the lens 54 (corresponding to the state where no axial load is added). Thereby, when the reflecting member 60 is closer than the reference position, that is, when an axial load is acting in the positive direction of FIG. 3, the image on the reflected light detection unit 56 becomes a horizontally long ellipse, and the reflecting member 60 is When far from the reference position, that is, when an axial load is acting in the negative direction of FIG. 1, the image on the reflected light detection unit 56 becomes a vertically long ellipse.

上記の像形状の識別は、反射光検出部56を以下のような4分割光検出器として構成することにより可能となる。検出器は、伸縮する像の2本の楕円軸に沿って各々対向するセンサ対A,C(横方向検出用)とセンサ対D,B(縦方向検出用)とからなり、像形状が縦長となった場合(正方向荷重)は縦方向検出用センサ対D,Bの受光量が増加し、横方向検出用センサ対A,Cの受光量は減少する。逆に、形状が横長となった場合(逆方向荷重)は縦方向検出用センサ対D,Bの受光量が減少し、横方向検出用センサ対A,Cの受光量は増加する。また、中立状態では両センサ対A,C及びD,Bの受光量は等しくなる。   The above-described image shape can be identified by configuring the reflected light detection unit 56 as a four-divided photodetector as follows. The detector is composed of sensor pairs A and C (for detecting in the horizontal direction) and sensor pairs D and B (for detecting in the vertical direction) facing each other along the two elliptical axes of the expanding and contracting image. In this case (positive load), the amount of light received by the pair of vertical detection sensors D and B increases, and the amount of light received by the pair of horizontal detection sensors A and C decreases. Conversely, when the shape is horizontally long (reverse load), the amount of light received by the pair of vertical detection sensors D and B decreases, and the amount of light received by the pair of horizontal detection sensors A and C increases. In the neutral state, the received light amounts of both sensor pairs A, C and D, B are equal.

図5は、反射光検出部56からの出力から、アキシャル荷重の検出出力を生成する回路の構成例である。センサ対A,C(横方向検出用)とセンサ対D,B(縦方向検出用)の各出力は、各々加算器59(オペアンプ59m及び周辺抵抗59a〜59cよりなる)及び加算器61(オペアンプ61m及び周辺抵抗61a〜61cよりなる)に入力され、各々その加算出力が差動アンプ62(オペアンプ62m及び周辺抵抗62a〜62dよりなる)に入力されて、センサ対A,Cの入力和とセンサ対D,Bの入力和との差分((A+C)−(D+B))の形で出力される。この出力電圧は、アキシャル荷重が正方向に大きくなると正方向に大きくなり、負方向に大きくなると負方向に大きくなるので、該出力電圧の符号と大きさからアキシャル荷重の向きと値とを知ることができる。   FIG. 5 is a configuration example of a circuit that generates an axial load detection output from the output from the reflected light detection unit 56. The outputs of the sensor pair A, C (for horizontal direction detection) and the sensor pair D, B (for vertical direction detection) are respectively an adder 59 (comprising an operational amplifier 59m and peripheral resistors 59a to 59c) and an adder 61 (operational amplifier). 61m and peripheral resistors 61a to 61c), and the respective sum outputs are input to the differential amplifier 62 (comprising the operational amplifier 62m and the peripheral resistors 62a to 62d). It is output in the form of a difference ((A + C)-(D + B)) from the input sum of the pairs D and B. This output voltage increases in the positive direction when the axial load increases in the positive direction, and increases in the negative direction when the axial load increases in the negative direction. Therefore, know the direction and value of the axial load from the sign and magnitude of the output voltage. Can do.

次に、被検出部を強磁性体被検出部とし、変位検出部を、該強磁性体被検出部のアキシャル方向変位に由来した磁界変化を検出する磁気センサとして構成することも可能である。この場合、該磁気センサの検出磁界に基づいて変位検出情報を生成することとなる。この方式によると、強磁性体被検出部と磁気センサとの距離を光学式の場合よりもかなり接近させなければならないが、汚れ等によるセンサ感度の低下が小さい利点がある。   Next, it is possible to configure the detected portion as a ferromagnetic detected portion, and the displacement detecting portion as a magnetic sensor for detecting a magnetic field change resulting from the axial displacement of the ferromagnetic detected portion. In this case, displacement detection information is generated based on the detected magnetic field of the magnetic sensor. According to this method, the distance between the ferromagnetic substance detection portion and the magnetic sensor must be made much closer than in the optical case, but there is an advantage that the sensor sensitivity is less lowered due to dirt or the like.

図6はこの場合の実施形態を示すものである(図1との共通部分には共通の符号を付与して詳細な説明は省略する)。ハブ本体4bの後端面には、永久磁石にて構成された強磁性被検出部62が取り付けられている。また、センサカバー70には、該強磁性被検出部62と対向する位置に磁気センサ61が設けられている。磁気センサ61は、磁気ヘッド、ホール素子あるいはピックアップコイル等の周知の構成であり、強磁性被検出部62の発生磁界に応じて出力電圧(あるいは出力電流)を変化させるものである。従って、磁気センサ61の出力により、ハブ本体4bの変位、ひいてはアキシャル荷重の発生レベルを知ることができる。なお、強磁性被検出部62を、軟磁性材料からなる凹凸部として形成し、これに磁気ギャップを介してバイアス磁界発生用の磁石を対向させ、凹凸による磁気ギャップ長変化に対応した強磁性被検出部62の磁化変化を、ギャップ内に設けたピックアップコイルで検出する方式も可能である。   FIG. 6 shows an embodiment in this case (the same parts as in FIG. 1 are denoted by the same reference numerals and detailed description thereof is omitted). A ferromagnetic detection portion 62 made of a permanent magnet is attached to the rear end surface of the hub body 4b. The sensor cover 70 is provided with a magnetic sensor 61 at a position facing the ferromagnetic detected portion 62. The magnetic sensor 61 has a known configuration such as a magnetic head, a Hall element, or a pickup coil, and changes the output voltage (or output current) in accordance with the magnetic field generated by the ferromagnetic detection unit 62. Therefore, the output of the magnetic sensor 61 can know the displacement of the hub body 4b, and hence the generation level of the axial load. The ferromagnetic detection part 62 is formed as a concave / convex part made of a soft magnetic material, and a magnet for generating a bias magnetic field is opposed to the ferromagnetic target part via the magnetic gap so that the ferromagnetic target corresponding to the change in the magnetic gap length due to the concave / convex part is obtained. A method of detecting the magnetization change of the detection unit 62 with a pickup coil provided in the gap is also possible.

次に、本発明のハブユニットにおいて、被検出部と変位検出部との配置位置は上記の態様に限られるものではなく、また、その適用対象は従動輪側に限定されるものではない。図7は、駆動輪側のハブユニットに本発明を適用した例である。該ハブユニット106においては、ホイール取付フランジ4aの車体インナ側主表面には被検知部60が設けられ、該被検知部60のアキシャル方向の変位成分が変位検出部51により非接触にて検出される。該変位検出部51による変位検出情報が、車軸2に加わるアキシャル荷重の情報として出力される。該変位センサ付きハブユニット106によると、車軸2と一体的に設けられるハブ4の変位に基づいて、車軸に加わるアキシャル荷重を高精度に検出することが可能となる。図7では、図1と全く同様の光学式の変位検出部51が用いられている。   Next, in the hub unit of the present invention, the arrangement positions of the detected part and the displacement detection part are not limited to the above-described aspects, and the application target is not limited to the driven wheel side. FIG. 7 shows an example in which the present invention is applied to a hub unit on the drive wheel side. In the hub unit 106, a detected portion 60 is provided on the main surface of the wheel mounting flange 4a on the inner side of the vehicle body, and a displacement component in the axial direction of the detected portion 60 is detected by the displacement detecting portion 51 in a non-contact manner. The Displacement detection information by the displacement detector 51 is output as information on the axial load applied to the axle 2. According to the hub unit 106 with the displacement sensor, the axial load applied to the axle can be detected with high accuracy based on the displacement of the hub 4 provided integrally with the axle 2. In FIG. 7, an optical displacement detection unit 51 exactly the same as in FIG. 1 is used.

図7の構成においては、車軸先端部2tが、その後端側に隣接する車軸本体部2mよりも縮径されてなり、ハブ本体4bが該車軸先端部2tに外挿される。該車軸先端部2tと車軸本体部2mとの境界位置には、ハブ本体4bの後端面と当接する段部2fが形成されている。軸受は複列外向きアンギュラ玉軸受からなり、ハブ本体4bの外周に、アキシャル方向に隣接する形で圧入外嵌される2つの単列用の内輪5aと、二列の軌道溝を有する単一の外輪5bと、二列で配設される複数の玉(転動体)5cと、二つの冠形保持器5d、5dとを備えている。ハブ本体4bの内周面と車軸先端部2tの外周面との嵌合部にはスプライン4sが形成されている。ハブ本体4bの外周面には、ラジアル方向に突出する形で、内輪5aの自身に対するアキシャル方向の相対移動を規制する内輪規制部4dが形成されている。この内輪規制部4dは、ハブ本体の外周面に形成された環状の切欠部の内壁部である。   In the configuration of FIG. 7, the axle front end 2t has a diameter smaller than that of the axle main body 2m adjacent to the rear end, and the hub main body 4b is extrapolated to the axle front 2t. At the boundary position between the axle tip 2t and the axle body 2m, a step 2f is formed that contacts the rear end surface of the hub body 4b. The bearing is composed of a double-row outward angular ball bearing, and has two single-row inner rings 5a that are press-fitted and fitted on the outer periphery of the hub body 4b so as to be adjacent to each other in the axial direction. Outer ring 5b, a plurality of balls (rolling elements) 5c arranged in two rows, and two crown-shaped cages 5d and 5d. A spline 4s is formed at a fitting portion between the inner peripheral surface of the hub body 4b and the outer peripheral surface of the axle tip portion 2t. On the outer peripheral surface of the hub main body 4b, an inner ring restricting portion 4d for restricting the relative movement in the axial direction of the inner ring 5a with respect to itself is formed so as to protrude in the radial direction. The inner ring restricting portion 4d is an inner wall portion of an annular cutout portion formed on the outer peripheral surface of the hub body.

他方、ハブ本体4bにはアキシャル方向に貫通する車軸挿通孔4hが形成されている。該車軸挿通孔4hの先端開口において車軸2の先端には、ハブ4を車軸2に締結するためのハブ締結用ボルト2vがねじ込まれている。他方、外輪5bのアキシャル方向後端部5mは、外輪取付部となる車軸ケース3の外輪収容孔3hの内側に挿入されている。外輪5bの外周面にはハブ取付フランジ5fがラジアル方向に突出形成されており、該ハブ取付フランジ5fを車軸ケース3の外輪収容孔3hの周縁部に当接させることにより、該外輪5bの車軸ケース3に対するアキシャル方向の相対移動が規制されている。ハブ取付フランジ5fには外輪締結部5eが一体化されており、これにボルト挿通孔5hが貫通形成されている。そして、該ボルト挿通孔5hを経て車軸ケース3側に締結部材をなす外輪締結ボルト5vがねじ込まれ、外輪5bが車軸ケース3に取り付けられる。   On the other hand, an axle insertion hole 4h that penetrates in the axial direction is formed in the hub body 4b. A hub fastening bolt 2v for fastening the hub 4 to the axle 2 is screwed into the tip of the axle 2 at the tip opening of the axle insertion hole 4h. On the other hand, the axial rear end portion 5m of the outer ring 5b is inserted inside the outer ring accommodation hole 3h of the axle case 3 serving as the outer ring attachment portion. A hub mounting flange 5f is formed on the outer peripheral surface of the outer ring 5b so as to protrude in the radial direction. By bringing the hub mounting flange 5f into contact with the peripheral edge of the outer ring receiving hole 3h of the axle case 3, the axle of the outer ring 5b is contacted. The relative movement in the axial direction with respect to the case 3 is restricted. An outer ring fastening portion 5e is integrated with the hub mounting flange 5f, and a bolt insertion hole 5h is formed therethrough. Then, an outer ring fastening bolt 5v serving as a fastening member is screwed into the axle case 3 through the bolt insertion hole 5h, and the outer ring 5b is attached to the axle case 3.

ハブ取付フランジ5fは、ラジアル方向においてホイール取付フランジ4aとアキシャル方向に対向する位置まで延出形成されている。変位検出部51は、該ハブ取付フランジ5fの車体アウタ側の主表面上に固定されている。ハブ取付フランジ5f上に変位検出部51を取り付けることで、被検知部60とともに、変位検出系の全体をハブユニット6に一体化することができ、車体へのアセンブリが非常に楽になる。   The hub mounting flange 5f is formed to extend to a position facing the wheel mounting flange 4a in the axial direction in the radial direction. The displacement detector 51 is fixed on the main surface of the hub mounting flange 5f on the vehicle body outer side. By mounting the displacement detection unit 51 on the hub mounting flange 5f, the entire displacement detection system as well as the detected unit 60 can be integrated into the hub unit 6, and the assembly to the vehicle body becomes very easy.

車軸2に作用するアキシャル荷重のみを検出すればよい場合は、変位検出部51を1個所にのみ設ける構成も可能である。しかし、図2Aに示すように、車軸回転軸線周りの複数箇所に変位検出部51を配置するこれら複数の変位検出部51の出力アンバランスから、例えば車軸(あるいはタイヤ)の半径方向に作用する荷重(例えば、路面半力や摩擦力)を算出することも可能となる。   When only the axial load acting on the axle 2 needs to be detected, a configuration in which the displacement detection unit 51 is provided only at one place is also possible. However, as shown in FIG. 2A, a load acting in the radial direction of the axle (or tire), for example, from the output imbalance of the plurality of displacement detectors 51 that arrange the displacement detectors 51 at a plurality of locations around the axle rotation axis. It is also possible to calculate (for example, road surface half force and frictional force).

なお、反射部材60は、図8Aに示すように、ホイール取付フランジ4aの周方向に沿って設けることにより、反射部材60の取り付けられている回転角度区間のどこでも変位測定が可能になるので、ハブ4のホイール取付フランジ4aひいては車軸の回転位相に対する測定の自由度を増すことができる。本実施形態において反射部材60は、ホイール取付フランジ4aの主表面上に凸設されたリング状のミラー部材である。なお、図8Bに示すように、ミラー部材60を、ホイール取付フランジ4aに形成された凹部60内に配置することもできる(ここでは、ミラー部材60の反射面がホイール取付フランジ4aの主表面とほぼ面一になっている)。   As shown in FIG. 8A, since the reflecting member 60 is provided along the circumferential direction of the wheel mounting flange 4a, the displacement can be measured anywhere in the rotation angle section to which the reflecting member 60 is attached. Thus, the degree of freedom in measurement with respect to the four wheel mounting flanges 4a and thus the rotational phase of the axle can be increased. In the present embodiment, the reflecting member 60 is a ring-shaped mirror member that protrudes from the main surface of the wheel mounting flange 4a. As shown in FIG. 8B, the mirror member 60 can also be disposed in the recess 60 formed in the wheel mounting flange 4a (here, the reflecting surface of the mirror member 60 is the main surface of the wheel mounting flange 4a). It ’s almost the same).

本発明の変位センサ付きハブユニットの第一実施形態を示す断面図。Sectional drawing which shows 1st embodiment of the hub unit with a displacement sensor of this invention. 図1の変位センサの出力回路の構成例を示す回路図。The circuit diagram which shows the structural example of the output circuit of the displacement sensor of FIG. 本発明の変位センサ付きハブユニットの第二実施形態を示す断面図。Sectional drawing which shows 2nd embodiment of the hub unit with a displacement sensor of this invention. 光学式変位検出部の一例を示す模式図。The schematic diagram which shows an example of an optical displacement detection part. 図4の光学式変位検出部の、出力回路の一例を示す回路図。The circuit diagram which shows an example of the output circuit of the optical displacement detection part of FIG. 本発明の変位センサ付きハブユニットの第三実施形態を示す断面図。Sectional drawing which shows 3rd embodiment of the hub unit with a displacement sensor of this invention. 本発明の変位センサ付きハブユニットの第四実施形態を示す断面図。Sectional drawing which shows 4th embodiment of the hub unit with a displacement sensor of this invention. 図1の変位センサ付きハブユニットで使用する、反射部材及び変位検出部の配置形態の一例を示す平面図。The top view which shows an example of the arrangement | positioning form of a reflection member and a displacement detection part used with the hub unit with a displacement sensor of FIG. 同じく、ホイール取付フランジに対する反射部材の取付形態の変形例を示す断面図。Similarly, sectional drawing which shows the modification of the attachment form of the reflection member with respect to a wheel attachment flange.

符号の説明Explanation of symbols

2 車軸
3 車軸ケース
3h 外輪収容孔
4 ハブ
4a ホイール取付部
4b ハブ本体
4e 被検出部(車体インナ側端面)
5a 内輪
5b 外輪
5c 転動体
5f ハブ取付フランジ
6,106 変位センサ付きハブユニット
51 光学式変位検出部
52 光源
56 反射光検出部
60 反射部材(被検出部)
61 磁気センサ(変位検出部)
62 強磁性被検出部
70 センサカバー
2 Axle 3 Axle case 3h Outer ring accommodation hole 4 Hub 4a Wheel mounting part 4b Hub body 4e Detected part (body inner side end face)
5a Inner ring 5b Outer ring 5c Rolling element 5f Hub mounting flange 6,106 Hub unit with displacement sensor 51 Optical displacement detector 52 Light source 56 Reflected light detector 60 Reflective member (detected part)
61 Magnetic sensor (displacement detector)
62 Ferromagnetic detection part 70 Sensor cover

Claims (7)

ハブ本体と、該ハブ本体の外周面からラジアル方向外向きに突出する形で設けられ、車体アウタ側にタイヤホイールが取り付けられるホイール取付フランジとを有するハブと、
前記ホイール取付フランジよりも車体インナ側において、前記ハブ本体に一体回転可能に設けられる内輪と、
該内輪のラジアル方向外側において自動車側の取付ベースに対し非回転かつアキシャル方向の位置が固定に配置される外輪と、
前記内輪と前記外輪との間に配置される複数の転動体と、
前記車軸に作用するアキシャル方向荷重レベルに応じて当該アキシャル方向に変位を生ずるよう、前記ハブ又は前記車軸に設けられた被検出部と、
前記被検出部のアキシャル方向の変位成分を非接触にて検出する変位検出部とを備え、
前記変位検出部による変位検出情報を、車軸に加わるアキシャル荷重の情報として出力することを特徴とする変位センサ付きハブユニット。
A hub having a hub main body and a wheel mounting flange provided in a shape protruding radially outward from the outer peripheral surface of the hub main body, to which a tire wheel is mounted on the vehicle body outer side;
On the inner side of the vehicle body from the wheel mounting flange, an inner ring provided to the hub body so as to be integrally rotatable,
An outer ring in which the position in the axial direction is non-rotating and fixed relative to the mounting base on the automobile side on the radially outer side of the inner ring;
A plurality of rolling elements disposed between the inner ring and the outer ring;
A detected portion provided on the hub or the axle so as to cause a displacement in the axial direction according to the axial load level acting on the axle;
A displacement detector for detecting a displacement component in the axial direction of the detected portion in a non-contact manner;
A hub unit with a displacement sensor, which outputs displacement detection information by the displacement detector as information on an axial load applied to the axle.
前記ハブには、アキシャル方向における車体インナ側の端面に前記被検出部が設けられ、非回転の前記外輪の車体インナ側後端部には、前記変位検出部との間にアキシャル方向に空間を生じた形でこれを覆うセンサカバーが設けられ、該センサカバーには、当該センサカバーの内部にて前記変位検出部と対向する位置に前記変位検出部が設けられている請求項1記載の変位センサ付きハブユニット。 The hub is provided with the detected portion on an end surface on the vehicle body inner side in the axial direction, and a space in the axial direction is provided between the rear end portion of the non-rotating outer ring on the vehicle body inner side and the displacement detection portion. The displacement according to claim 1, wherein a sensor cover is provided to cover the sensor cover in a generated form, and the displacement detector is provided at a position facing the displacement detector inside the sensor cover. Hub unit with sensor. 前記ハブ本体の内側に配置される従動輪側車軸の車体インナ側の端面において、その回転軸線を含む領域に前記被検出部が形成されている請求項2に記載の変位センサ付きハブユニット。 The hub unit with a displacement sensor according to claim 2, wherein the detected portion is formed in a region including a rotation axis on an end surface of the driven wheel side axle disposed on the inner side of the hub body on the vehicle body inner side. 前記ハブ本体は、前記車軸が一体化された中実構造を有してなり、該中実のハブ本体の車体インナ側の端面に前記被検出部が形成されている請求項3記載の変位センサ付きハブユニット。 4. The displacement sensor according to claim 3, wherein the hub body has a solid structure in which the axle is integrated, and the detected portion is formed on an end surface of the solid hub body on the vehicle body inner side. With hub unit. 前記変位検出部が近接センサで構成される請求項1ないし請求項4のいずれか1項に記載の変位センサ付きハブユニット。 The hub unit with a displacement sensor according to any one of claims 1 to 4, wherein the displacement detection unit is configured by a proximity sensor. 前記被検出部は反射部材であり、前記変位検出部は、前記反射部材に測定光を照射する光源と、前記測定光の前記反射部材による反射光を検出する反射光検出部とを備える請求項1ないし請求項4のいずれか1項に記載の変位センサ付きハブユニット。 The said detection part is a reflection member, The said displacement detection part is provided with the light source which irradiates the measurement light to the said reflection member, and the reflected light detection part which detects the reflected light by the said reflection member of the said measurement light. The hub unit with a displacement sensor according to any one of claims 1 to 4. 前記被検出部は強磁性体被検出部であり、前記変位検出部は、該強磁性体被検出部の前記アキシャル方向変位に由来した磁界変化を検出する磁気センサである請求項1ないし請求項4のいずれか1項に記載の変位センサ付きハブユニット。
2. The detection unit is a ferromagnetic body detection unit, and the displacement detection unit is a magnetic sensor that detects a magnetic field change caused by the displacement in the axial direction of the ferromagnetic body detection unit. 5. A hub unit with a displacement sensor according to any one of 4 above.
JP2005075617A 2005-03-16 2005-03-16 Hub unit with displacement sensor Withdrawn JP2006258565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075617A JP2006258565A (en) 2005-03-16 2005-03-16 Hub unit with displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075617A JP2006258565A (en) 2005-03-16 2005-03-16 Hub unit with displacement sensor

Publications (1)

Publication Number Publication Date
JP2006258565A true JP2006258565A (en) 2006-09-28

Family

ID=37098000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075617A Withdrawn JP2006258565A (en) 2005-03-16 2005-03-16 Hub unit with displacement sensor

Country Status (1)

Country Link
JP (1) JP2006258565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2486670A (en) * 2010-12-22 2012-06-27 Land Rover Uk Ltd Improvements in or relating to hub assemblies
JP2012172623A (en) * 2011-02-23 2012-09-10 Ntn Corp Rolling bearing and wind turbine generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2486670A (en) * 2010-12-22 2012-06-27 Land Rover Uk Ltd Improvements in or relating to hub assemblies
EP2469220A1 (en) * 2010-12-22 2012-06-27 Land Rover Apparatus and method for measuring the alignment of a hub assembly
GB2486670B (en) * 2010-12-22 2017-03-22 Jaguar Land Rover Ltd Method and apparatus for characterising the alignment of a hub surface.
JP2012172623A (en) * 2011-02-23 2012-09-10 Ntn Corp Rolling bearing and wind turbine generator

Similar Documents

Publication Publication Date Title
JP3900031B2 (en) Rolling bearing unit for wheel support with load measuring device
JP4844010B2 (en) Rolling bearing unit with load measuring device
JP4888074B2 (en) Rolling bearing device for wheels
JP2007127253A (en) Rolling bearing device with sensor
JP2006057817A (en) Bearing device for wheel with sensor
JPWO2018016236A1 (en) Sensing device wheel
JP4951943B2 (en) Rotating member displacement or load measuring device
JP4784967B2 (en) Wheel bearing device with rotation speed detector
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP2006258565A (en) Hub unit with displacement sensor
JP2006258572A (en) Hub unit with displacement sensor
JP4525423B2 (en) Rolling bearing device with sensor
JP2006010478A (en) Bearing device for wheel with load sensor
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP4363103B2 (en) Hub unit with sensor
JP4957259B2 (en) State quantity measuring device for rolling bearing units
JP2009052935A (en) Wheel bearing with rotation detection device
JP2008174067A (en) Wheel bearing with sensor
JP2008128812A (en) Roller bearing device equipped with sensor
JP2008180346A (en) Wheel bearing with sensor
JP2006057818A (en) Bearing device for wheel with sensor
JP2014201212A (en) Bearing device for wheel with sensor
JP2009103549A (en) Device for measuring state of quantity of rolling bearing unit
JP2007071641A (en) State quantity measuring apparatus
JP2008157790A (en) Method for assembling apparatus which measures state quantity of rolling bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081125