JP2006258189A - Variable rigidity type dynamic vibration absorbing device - Google Patents

Variable rigidity type dynamic vibration absorbing device Download PDF

Info

Publication number
JP2006258189A
JP2006258189A JP2005076317A JP2005076317A JP2006258189A JP 2006258189 A JP2006258189 A JP 2006258189A JP 2005076317 A JP2005076317 A JP 2005076317A JP 2005076317 A JP2005076317 A JP 2005076317A JP 2006258189 A JP2006258189 A JP 2006258189A
Authority
JP
Japan
Prior art keywords
vibration
rigid
pair
long
long rigid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005076317A
Other languages
Japanese (ja)
Other versions
JP4257432B2 (en
Inventor
Takahiro Ryu
孝宏 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oita University
Original Assignee
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oita University filed Critical Oita University
Priority to JP2005076317A priority Critical patent/JP4257432B2/en
Publication of JP2006258189A publication Critical patent/JP2006258189A/en
Application granted granted Critical
Publication of JP4257432B2 publication Critical patent/JP4257432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable rigidity type dynamic vibration absorbing device, capable of solving the problem of a pattern formation phenomenon if any generated due to vibration of a contact roll system, for example, to which there is no fundamental measure of prevention at site, giving fatal damage to the product, or causing a situation of setting an upper limit of line speed. <P>SOLUTION: This variable rigidity type dynamic vibration absorbing device is composed of a pair of same rigidity long rigid members having axial centers on the same perpendicular plane to the vibration direction of a vibration body, and having the longer axis and the shorter axis in a cross sectional surface, a vibration absorbing body installed on the vibration member to be rotatable on both sides of the pair of the long rigid members, a weight installed to be rotatable between the pair of the long rigid members, and a mechanism to vary a synthetic rigidity coefficient while holding the synthetic vibration direction of the pair of the long rigid members set to the linear vibration direction of the vibration body by mutually reversely rotating the pair of the long rigid members in a surface-symmetric state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、並進方向振動に対する可変剛性型動吸振装置に関するものである。   The present invention relates to a variable stiffness dynamic vibration absorber for translational vibration.

産業界では、接触回転系の稼働にともなって徐々に規則的なパタ−ンがロールやロールに接触している系に形成されて、それがまた激しい振動を誘発したり、製品に転写されて欠陥製品となる現象が多く見受けられる。たとえば、鉄道車両とレール、繊維機械のワインダ系の糸玉を介したドライブロールとボビンホルダ、一対の抄紙機ゴム巻きロール、自動車タイヤと道路、製鉄機械、工作機械などの系には特定のパターンが形成される。これらの現象はパターン形成現象と呼ばれ、その発生メカニズムの解明と対策の研究を行ってきた。 In the industry, regular patterns are gradually formed on the roll and the system in contact with the roll with the operation of the contact rotating system, which also induces severe vibration or is transferred to the product. There are many phenomena that result in defective products. For example, railroad vehicles and rails, drive rolls and bobbin holders via yarn balls of textile machinery winders, a pair of paper machine rubber winding rolls, automobile tires and roads, steelmaking machines, machine tools, etc. have specific patterns. It is formed. These phenomena are called pattern formation phenomena, and the mechanism of their occurrence has been elucidated and countermeasures have been studied.

特に、製鉄機械においては、テンションレベラのチャタマーク、熱間・冷間圧延時のチャタリングなどが製品の精度要求の高まりとともに製品管理上重大な問題となっている。また、一方では、抄紙機のプレスパートにおけるスムーザロールやゲートロールサイズプレスのロール多角形化現象も、ライン速度の向上を阻害する最も主要な原因である。
これらの現象のほとんどは、ロールとロールが接触回転する接触ロール系に発生するパターン形成現象である。
In particular, in steelmaking machines, chatter marks for tension levelers and chattering during hot / cold rolling have become serious problems in product management as the accuracy of products increases. On the other hand, the roll polygonalization phenomenon of smoother rolls and gate roll size presses in the press part of the paper machine is also the main cause that hinders the improvement of the line speed.
Most of these phenomena are pattern formation phenomena that occur in a contact roll system in which the roll rotates in contact with the roll.

このような接触回転系のパターン形成現象の研究は、世界的な研究の見地から見ても、主に工作機械のびびり現象と鉄道レールのコルゲーションが国内で多く研究されているのみで、ロールとロールが接触回転する接触ロール系のパターン形成現象に関する研究は、現在発展途上段階にある。特に、熱間圧延、冷間圧延等の製鉄機械に発生するチャタリング現象、抄紙機のロール多角変形化現象、紙などの薄帯巻き取り過程の異常振動等に関しては、その明確な発生メカニズムが未だ解明されていない。従って、このような接触ロール系に発生するパターン形成現象に対する現場の対策としては、ライン速度を遅くしたり、ロールの早期交換を余儀なくされたりするのみで、根本的な問題解決にはいたっていない。
この現象が発生した場合、製品に致命的なダメージを与たり、ライン速度の上限を設定せざるを得ない状況に陥るため、工業界ではその防止対策の開発が急務となっている。
From the viewpoint of global research, this kind of contact rotation system pattern formation phenomenon is mainly researched on chattering of machine tools and corrugation of railway rails in Japan. The research on the pattern formation phenomenon of the contact roll system in which the roll rotates is in the developing stage. In particular, the chattering phenomenon that occurs in steelmaking machines such as hot rolling and cold rolling, the polygonal deformation phenomenon of rolls in paper machines, and the abnormal vibration in the winding process of thin strips of paper, etc., still have a clear mechanism. It has not been elucidated. Therefore, as a countermeasure in the field against the pattern formation phenomenon that occurs in such a contact roll system, only the line speed is slowed down or the rolls are replaced early, and the fundamental problem is not solved.
When this phenomenon occurs, the industry has to deal with fatal damage or set an upper limit of the line speed. Therefore, the industry is urgently required to develop a countermeasure.

しかしながら、このような防止対策は未だ検討されていなかった。
これまでの研究において、前記パターン形成現象の防止対策として、ロールの直径比を最適化して不安定度を低減させる手法およびロール回転速度を変動させるパターン形成の遅延対策を検討し、設計指針を提言してきた。直径比最適化による手法は、対をなすロールがともに均等に且つ対象的に変形する場合に有効であるが、一方のロールが変形する場合などは効果をなさない。また、回転数変動に対しては、製鉄機械や製紙機械など、一定回転数で運転せざるを得ないケースが多く存在するため、対策が利用できる機械の種類が限定されてしまう。
さらに、パッシブ型動吸振器を取り付けることにより、パターン形成現象がどのように影響させられるか理論的に解析を試みた。その結果、一般的な自励振動に対する動吸振器の制振効果と異なり、ドラスティックな制振は望めず、しかも、制振対象となる振動モードがあらたに出現する等の問題があった。
また、繊維機械のワインダ系や、紙などの薄帯の巻き取り機などは、システムの固有振動数が時々刻々と変化するため、パッシブ型動吸振器では制振が不可能である。
However, such preventive measures have not yet been studied.
In previous studies, as measures to prevent the pattern formation phenomenon, we studied methods for reducing the instability by optimizing the roll diameter ratio and measures for delaying pattern formation that fluctuates the roll rotation speed, and proposed design guidelines. I have done it. The diameter ratio optimization method is effective when the paired rolls are deformed equally and objectively, but is not effective when one of the rolls is deformed. Moreover, since there are many cases where it is necessary to operate at a constant rotation speed, such as an iron-making machine or a papermaking machine, the types of machines that can take countermeasures are limited.
In addition, we theoretically analyzed how the pattern formation phenomenon is affected by attaching a passive dynamic vibration absorber. As a result, unlike the vibration damping effect of a dynamic vibration absorber for general self-excited vibration, there is a problem that a drastic vibration damping cannot be expected and a vibration mode to be damped appears newly.
Further, in a winder system of a textile machine, a winder of a thin ribbon such as paper, etc., the natural frequency of the system changes every moment, so vibration suppression is impossible with a passive dynamic vibration absorber.

そこで、本発明は、上記の問題点を解決する可変剛性型動吸振器を提供するものであり、その特徴とする手段は次の通りである。
(1)。振動体の振動方向に対する同一直交面上に各軸心を位置し且つ横断面に長軸と短軸を有する一対の同一剛性長尺剛性体と、振動体に取り付けられ前記一対の長尺剛性体の両側部を回転可能に装着した吸振本体と、前記一対の長尺剛性体の中央部を回転可能に装着した重錘と、前記一対の長尺剛性体を面対称状態で互いに逆方向回転させて該一対の長尺剛性体の合成振動方向を振動体の直線的振動方向に保持したままでその合成剛性係数を変更する機構とから構成してなる可変剛性型動吸振装置。
(2)。振動体の振動方向に対する同一直交面上に各軸心を位置し且つ横断面に長軸と短軸を有する二対の同一大剛性長尺剛性体と同一小剛性長尺剛性体、振動体に取り付けられ前記二対の長尺剛性体の両側部を回転可能に装着した吸振本体と、前記二対の剛性体の中央部を回転可能に装着した重錘と、平行関係で且つ前記同一大剛性長尺剛性体対の外側又は内側に同一小剛性長尺剛性体対を配置すると共に該二対の長尺剛性体の各一方側と他方側を面対称状態で互いに対単位で逆方向回転させて該二対の長尺剛性体の合成振動方向を振動体の直線的振動方向に保持したままでその合成剛性係数を変更する機構とから構成してなる可変剛性型動吸振装置。
Therefore, the present invention provides a variable stiffness type dynamic vibration absorber that solves the above-mentioned problems, and features thereof are as follows.
(1). A pair of identical rigid long rigid bodies having respective axial centers located on the same orthogonal plane with respect to the vibration direction of the vibrating body and having a long axis and a short axis in the cross section, and the pair of long rigid bodies attached to the vibrating body A vibration-absorbing body that is rotatably mounted on both sides thereof, a weight that is rotatably mounted at the center of the pair of long rigid bodies, and the pair of long rigid bodies that are rotated in opposite directions in a plane-symmetrical state. And a mechanism for changing the combined stiffness coefficient while maintaining the combined vibration direction of the pair of long rigid bodies in the linear vibration direction of the vibrating body.
(2). Two pairs of the same large rigid long rigid body, the same small rigid long rigid body, the same small rigid long rigid body, and the vibrating body, each axis centering on the same orthogonal plane with respect to the vibration direction of the vibrating body and having a long axis and a short axis in the cross section A vibration-absorbing body that is mounted on both sides of the two pairs of long rigid bodies so as to be rotatable, and a weight that is rotatably mounted on the center of the two pairs of rigid bodies, and has the same large rigidity in parallel relation. The same small rigid long rigid body pair is disposed outside or inside the long rigid body pair, and one side and the other side of the two pairs of long rigid bodies are rotated in opposite directions in pairs with each other in a plane symmetrical state. And a mechanism for changing the combined stiffness coefficient while maintaining the combined vibration direction of the two pairs of long rigid bodies in the linear vibration direction of the vibrating body.

即ち本発明の可変剛性型動吸振装置は、振動体に取り付けられ吸振本体で前記各長尺剛性体の両側部を回転可能に装着し、その長尺剛性体の中央部に重錘を回転可能に装着することにより、長尺剛性体の一側に重錘を回転可能に装着した所謂片支持式に比し、剛性係数に異方性を有する長尺剛性体の回転角を確実正確に面対称状態で又は正確な平行関係で変更することができる。片支持式型を並進方向振動に適用した場合、回転方向の振動を連成させることになり、特に強制振動系では効果的な制振が得難い。これにより対の長尺剛性体の合成剛性係数を連続的に変化させて、吸振本体側の固有振動数を振動体の固有振動数に正確に一致させ長尺振動体の振動を制止又は低減或いは遅延するのである。
また長尺剛性体を二対設けその一対を同一大剛性長尺剛性体として基本調整用にし他の一対を同一小剛性長尺剛性体として微調整用にすることにより、長尺剛性体の合成剛性係数をより正確な値に設定することができる。
即ち、一対の大剛性長尺剛性体と一対の小剛性長尺剛性体とは、たとえば長方形断面の幅と高さの違いが大きい(異方性が大きい)粗調整用剛性体を大剛性長尺剛性体と言い、異方性が小さい微調整用剛性体を小剛性長尺剛性体と言う。
又、構造的には、一対の長尺剛性体の剛性係数変更機構としては手動式でも自動式でも可能であり簡便である。
更に一対の長尺剛性体の回転角を面対称での調節又は平行関係での調節を行い、吸振本体側の固有振動数を振動体の固有振動に調整できるため、コンパクトで広い周波数範囲の振動の制止・低減・遅延制御を可能とするのである。
そして本発明は、次に紹介する通り製鉄機械や製紙機械等への多数の応用例があり工業的に極めて有益な効果を有するのである。製鉄機械や製紙機械などのようにロールが回転する場合は、ロール軸受部に吸振装置を装着して使用する他に以下のような手法が考えられる。
a)。円筒状のロール内に、中心軸を介してすべり軸受等の軸受を設け、その軸受を介して配置することができる。
b)。ロール表面にバックアップロールを取り付け、バックアップロール軸受に取り付けるその上下振動を吸収する。
これらの例は、ロール表面に接触するロール軸受部の振幅が小さい振動モードに対しても制振効果が得られる。
c)。レールのコルゲーション、車輪の多角形化防止装置として応用する。
電車が走行を繰り返すうちにレールの表面や、車輪が多角形に変形し(コルゲーション)、騒音、レールの寿命低下、走行安全性の問題など発生している。車軸部分にベアリングを介して吸振装置を装着し、車輪の上下方向振動を抑制することにより、コルゲーションを防止する。
d)。工作機械に応用する。
工作機械のびびり振動を抑制するために、バイト上に吸振装置を装着する。
e)。自動車用ブレーキ鳴き現象防止装置に応用する。
自動車のディスクブレーキ鳴きは、ロータとパッド、あるいはロータとキャリパの連成による自励振動である。特に問題となっている後者は、キャリパに動吸振器を装着することで、確実に鳴きを抑えることができる。しかしながら、ベンチテストでチューニングした振動吸振器を実車に取り付けた場合、シャーシ構造の違いから、効果が得られないことが多い。この吸振装置は容易にチューニングが可能であるため、実車のブレーキ鳴き現象にも効果的である。装着箇所としては、キャリパ、ロータ内部(この場合複数個必要となる)、油圧ピストン内などが考えられる。また、前者の鳴きに関しては、パッドに装着する。
f)。自動車用サスペンションに応用する。
自動車のサスペンション上部に本装置を装着することにより、路面の強制振動による車体への振動を最小限度に抑えることができる。
g)。その他
地震による建物の振動抑制、電線の自励振動(ギャロッピング)抑制、電車のスキールノイズ防止などに応用する。
That is, the variable stiffness type dynamic vibration absorber of the present invention is attached to a vibrating body, and both sides of each of the long rigid bodies are rotatably mounted by a vibration absorbing body, and a weight can be rotated at the center of the long rigid body. As a result, the rotation angle of the long rigid body having anisotropy in the stiffness coefficient can be reliably and accurately compared to the so-called single-support type in which a weight is rotatably mounted on one side of the long rigid body. It can be changed in a symmetric state or in an exact parallel relationship. When the single-support type is applied to the vibration in the translational direction, the vibration in the rotational direction is coupled, and it is difficult to obtain effective vibration suppression particularly in the forced vibration system. As a result, the composite stiffness coefficient of the pair of long rigid bodies is continuously changed to accurately match the natural frequency of the vibration absorption body side with the natural frequency of the vibrator, thereby suppressing or reducing the vibration of the long vibrator. It is delayed.
In addition, by combining two pairs of long rigid bodies and making one pair as the same large rigid long rigid body for basic adjustment and the other pair as the same small rigid long rigid body for fine adjustment, synthesis of the long rigid body The rigidity coefficient can be set to a more accurate value.
That is, the pair of large rigid long rigid bodies and the pair of small rigid long rigid bodies are, for example, coarse adjustment rigid bodies having a large difference in width and height (large anisotropy) of the rectangular cross section. A rigid body for fine adjustment having a small anisotropy is referred to as a small rigid long rigid body.
In terms of structure, the rigidity coefficient changing mechanism for the pair of long rigid bodies can be either a manual type or an automatic type and is simple.
In addition, the rotation angle of a pair of long rigid bodies can be adjusted in a plane symmetry or in a parallel relationship, and the natural frequency on the vibration absorption body side can be adjusted to the natural vibration of the vibration body. It is possible to stop, reduce, and delay control.
The present invention, as will be introduced next, has many examples of application to iron making machines, paper making machines, and the like, and has extremely beneficial effects industrially. In the case where the roll rotates like an iron making machine or a paper making machine, the following method can be considered in addition to using the vibration absorbing device mounted on the roll bearing portion.
a). In a cylindrical roll, a bearing such as a slide bearing can be provided via a central axis, and the bearing can be arranged via the bearing.
b). A backup roll is attached to the roll surface, and the vertical vibration attached to the backup roll bearing is absorbed.
In these examples, the vibration damping effect can be obtained even in the vibration mode in which the amplitude of the roll bearing portion contacting the roll surface is small.
c). It is applied as a corrugation for rails and a polygonal prevention device for wheels.
As the train repeats running, the surface of the rail and the wheels are deformed into a polygon (corrugation), and noise, a decrease in the service life of the rail, and driving safety problems occur. Corrugation is prevented by attaching a vibration absorber to the axle portion through a bearing and suppressing the vertical vibration of the wheel.
d). Apply to machine tools.
In order to suppress chatter vibration of the machine tool, a vibration absorber is mounted on the tool.
e). Applied to automobile brake squeal prevention device.
The disc brake squeal of an automobile is self-excited vibration caused by the combination of a rotor and a pad or a rotor and a caliper. The latter, which is a particular problem, can be reliably suppressed by attaching a dynamic vibration absorber to the caliper. However, when a vibration absorber tuned by a bench test is attached to an actual vehicle, the effect is often not obtained due to the difference in chassis structure. Since this vibration absorber can be easily tuned, it is also effective in the brake squeal phenomenon of an actual vehicle. Possible mounting locations include calipers, rotor interiors (in which case a plurality are required), and hydraulic piston interiors. In addition, the former squeal is attached to the pad.
f). Applied to automobile suspension.
By mounting this device on the suspension upper part of the automobile, it is possible to minimize the vibration to the vehicle body due to the forced vibration of the road surface.
g). Other applications include building vibration suppression due to earthquakes, electric wire self-excited vibration (galloping) suppression, and train squeal noise prevention.

本発明の可変剛性型動吸振装置において、長尺剛性体の形状は、対単位で同一とし、しかも一対の剛性体から重錘が受ける合成振動方向は、常に振動体の振動方向と同一方向となり且つ回転角の面対称状態変更や平行状態変更で合成剛性係数が連続的に変化する矩形、楕円等の長軸・短軸を有する断面形状にするのである。
また長尺剛性体の剛性係数変更機構としては、単独又は共用の長尺剛性体回転装置を用いる。例えば後述の実施例1、実施例2に紹介のような歯車式回転装置例は、一対の長尺剛性体が回転方向を互いに逆にして同時に面対称回転するように、一対の長尺剛性体各々と吸振本体又は重錘との回転装着部に同一サイズの一対のメイン歯車を各長尺剛性体の断面長軸が振動方向に平行にした基準位置で互いに噛合せ設置し、あるいは該歯車間に中間伝達歯車を介設して、このメイン歯車の一方をその回転駆動軸をモータ駆動機構により回転駆動させたもの等が簡単である。
次に本発明の変形例を列記する。
(イ)。複数対の長尺剛性体を設け、その対間の剛性係数を替えた前記可変剛性型動吸振装置。
例えば一対の2本の長尺剛性体を大まかな振動数調整用、他の一対の2本の長尺剛性体を細かい振動数調整用に設ける。
(ロ)。前記重錘の中に粘性流体を封入し減衰効果をコントロール可能にした前記可変剛性型動吸振装置。
(ハ)。前記吸振本体を3次元的に回転可能に振動体に装着し、外力の振動に応じた向に前記吸振本体を回転させる前記可変剛性型動吸振装置。
(ニ)。前記重錘と吸振本体間に弾性棒を差し込むことによりチューニング範囲を移動可能とした前記可変剛性型動吸振装置。
(ホ)。振動体の振幅だけでなく、振動体と前記重錘の振動の位相差をもとにチューニングを行う前記吸振本体の固有振動数の制御手法。
(ヘ)。ハイブリッド型可変剛性動吸振器。
長尺剛性体と前記重錘の複数対を並列または直列につなぎ、吸振装置を1自由度振動系から多自由度振動系に拡張することにより、複数の振動数を1台の吸振装置で同時に制振できるハイブリッド型の可変剛性型動吸振装置。
(ト)。剛性係数変更機構の剛性体回転用モータを前記重錘部分に代用して小型化した可変剛性型動吸振装置。
(チ)。MR流体などを前記吸振本体または剛性係数変更機構等の稼働部に用いて、粘性、剛性ともにコントロール可能にした可変剛性型動吸振装置。
In the variable stiffness type dynamic vibration damping device of the present invention, the shape of the long rigid body is the same for each pair, and the combined vibration direction received by the weight from the pair of rigid bodies is always the same direction as the vibration direction of the vibrating body. In addition, a cross-sectional shape having a major axis and a minor axis such as a rectangle or an ellipse whose composite stiffness coefficient continuously changes by changing the plane symmetry state or the parallel state of the rotation angle is formed.
Further, as the rigidity coefficient changing mechanism for the long rigid body, a single or shared long rigid body rotating device is used. For example, an example of a gear-type rotating device as introduced in Example 1 and Example 2 described later is a pair of long rigid bodies so that the pair of long rigid bodies rotate in plane symmetry simultaneously with their rotational directions reversed from each other. A pair of main gears of the same size are fitted to each other at a reference position where the long axis of each long rigid body is parallel to the vibration direction, or between the gears. In this case, an intermediate transmission gear is interposed between the main gear and one of the main gears is rotationally driven by a motor drive mechanism.
Next, modifications of the present invention will be listed.
(I). The variable stiffness type dynamic vibration absorber having a plurality of pairs of long rigid bodies and changing the stiffness coefficient between the pairs.
For example, a pair of two long rigid bodies are provided for rough frequency adjustment, and another pair of two long rigid bodies are provided for fine frequency adjustment.
(B). The variable stiffness type dynamic vibration damping device in which a viscous fluid is sealed in the weight so that the damping effect can be controlled.
(C). The variable stiffness type dynamic vibration absorber, wherein the vibration absorbing body is mounted on a vibrating body so as to be three-dimensionally rotatable, and the vibration absorbing body is rotated in a direction corresponding to vibration of an external force.
(D). The variable rigidity type dynamic vibration absorber capable of moving a tuning range by inserting an elastic rod between the weight and the vibration absorbing body.
(E). A control method of the natural frequency of the vibration absorbing body that performs tuning based on the phase difference between the vibration of the vibrating body and the weight as well as the amplitude of the vibrating body.
(F). Hybrid variable stiffness dynamic vibration absorber.
By connecting multiple pairs of long rigid bodies and the weights in parallel or in series, and expanding the vibration absorber from a one-degree-of-freedom vibration system to a multi-degree-of-freedom vibration system, a plurality of vibration frequencies can be simultaneously controlled by a single vibration absorber. A hybrid variable rigidity dynamic vibration absorber that can control vibration.
(G). A variable stiffness type dynamic vibration absorber in which a rigid body rotating motor of a stiffness coefficient changing mechanism is miniaturized in place of the weight portion.
(Chi). A variable-rigidity dynamic vibration absorber that can control both viscosity and rigidity by using MR fluid or the like in the vibration absorber body or the operating part of the stiffness coefficient changing mechanism.

次に本発明(1)の1実施例(具体例)を図1〜図3と共に説明する。
図1は、本発明装置の1実施例を示す説明図であり図2の矢視A−Aからの平断面図である。図2は、図1の矢視B−Bからの側断面図である。図3は、図1の矢視C−Cからの正面図である。
図1〜図3において、振動体1に吸振本体2を取り付け、吸振本体2に一対の同一剛性係数の板バネ(長尺剛性体)3、4の両側部を回転可能に装着すると共に、板バネ用の剛性係数変更機構6を付設し、板バネ3、4の中部に重錘5に回転可能に装着する。
吸振本体2の下部面は、振動体1の振動方向Vに対する直交面H1にして振動体1に取り付けてある。
板バネ3、4は、断面形状を、図3に示すように同一の長方形(矩形の一種)にしてあり、その軸芯C1、C2を振動体1の振動方向Vに対する直交面H2上に平行関係に位置させ、又その断面長軸L1、L2を基準位置で該振動方向Vに平行に一致させる。
板バネ3、4の両側部と吸振本体2との装着は、板バネ3、4の両側部各々を回転軸3a、4aに成形し、吸振本体2にベァリング式軸受2a、2bを設け、ベァリング式軸受2a、2bに回転軸3a、4aを装着したものであり、板バネ3、4の中央部と重錘5との装着は、板バネ3、4の中央部を回転軸3b、4bに成形し、重錘5にベァリング式軸受5a、5bを設け、ベァリング式軸受5a、5bに回転軸3b、4bを装着したものである。
板バネ用の剛性係数変更機構6は、前記基準位置にした板ばね3、4の回転軸3a、4aに同一サイズのメイン歯車6a、6bを固定し、これを互いに噛み合わせて、この歯車の回転で該一対の板ばね3、4を基準位置の0°から90°の範囲で面対称的に回転角度を連続変化させ一対の板ばねをハ型又は逆ハ型にしてその合成した剛性係数を下降変更し装置全体の固有振動数を可変することを可能にし、またこの歯車の回転駆動は、その一方に回転調節用サーボモーター6gの駆動歯車機構6cを噛み合わせて可能にし、回転調節用サーボモーター6gには振動体1と吸振本体2の振動周波数検出器6d、6eからの検出振動周波数とに基づきこれらが一致する板ばね回転角度に回転作動制御する制御器6fを設けたものである。
Next, an embodiment (specific example) of the present invention (1) will be described with reference to FIGS.
FIG. 1 is an explanatory view showing an embodiment of the device of the present invention, and is a plan sectional view taken along line AA in FIG. FIG. 2 is a side cross-sectional view from the arrow BB in FIG. FIG. 3 is a front view from the arrow CC of FIG.
1 to 3, a vibration absorbing body 2 is attached to the vibrating body 1, and both sides of a pair of leaf springs (long rigid bodies) 3, 4 having the same rigidity coefficient are rotatably mounted on the vibration absorbing body 2. A spring stiffness coefficient changing mechanism 6 is attached, and a weight 5 is rotatably mounted in the middle of the leaf springs 3 and 4.
The lower surface of the vibration absorbing body 2 is attached to the vibrating body 1 as a plane H1 orthogonal to the vibration direction V of the vibrating body 1.
The leaf springs 3 and 4 have the same rectangular shape (a kind of rectangle) as shown in FIG. 3, and their axial cores C 1 and C 2 are parallel to a plane H 2 orthogonal to the vibration direction V of the vibrating body 1. The cross-sectional major axes L1 and L2 are aligned in parallel with the vibration direction V at the reference position.
The two sides of the leaf springs 3 and 4 and the vibration absorbing body 2 are mounted by forming the both side portions of the leaf springs 3 and 4 on the rotating shafts 3a and 4a, and providing the bearing body 2a and 2b with the bearing body 2a. Type bearings 2a, 2b with rotating shafts 3a, 4a attached. The center part of the leaf springs 3, 4 and the weight 5 are attached to the center part of the leaf springs 3, 4 on the rotating shafts 3b, 4b. The bearing 5 is formed with bearings 5a and 5b, and the bearings 5a and 5b are equipped with the rotary shafts 3b and 4b.
The leaf spring stiffness coefficient changing mechanism 6 fixes main gears 6a and 6b of the same size to the rotation shafts 3a and 4a of the leaf springs 3 and 4 at the reference position, and meshes them with each other. By rotating the pair of leaf springs 3 and 4 in a plane symmetrical range of 0 ° to 90 ° of the reference position, the rotation angle is continuously changed to make the pair of leaf springs C-shaped or reverse-shaped, and the combined stiffness coefficient. It is possible to change the natural frequency of the entire device by lowering, and the rotation drive of this gear is enabled by engaging the drive gear mechanism 6c of the servo motor 6g for rotation adjustment with one of them, for rotation adjustment The servo motor 6g is provided with a controller 6f that controls the rotational operation to a leaf spring rotation angle that matches the vibration frequency detectors 6d and 6e of the vibration body 1 and the vibration absorbing body 2 based on the detected vibration frequencies. .

次に本発明(2)の1実施例(具体例)を図4と共に説明する。
図4の例は、図1〜図3に示す板バネ3、4を厚くし(同一大剛性長尺剛性体)、その外側に微調整用の薄板バネ (同一小剛性長尺剛性体)30と40を配置したものであり、図1〜図3と同一箇所には同一符号を用いその詳細説明は省略する。
板バネ3、4及び板バネ30と40は、各軸芯を振動体1の振動方向に対する直交面上に平行関係に位置させ、又その断面長軸を基準位置で該振動方向に平行に一致させてある。
板バネ30と40の両側部と吸振本体2との装着は、板バネ30と40の両側部各々を回転軸30a、40aに成形し、吸振本体2にベァリング式軸受20a、20bを設け、ベァリング式軸受20a、20bに回転軸30a、40aを装着したものであり、板バネ30と40の中央部と重錘5との装着は、板バネ30と40の中央部を回転軸30b、40bに成形し、重錘5にベァリング式軸受50a、50bを設け、ベァリング式軸受50a、50bに回転軸30b、40bを装着したものである。
板バネ用の剛性係数変更機構の本例は、歯車機構を重錘5に設けてバランスを取ったもので、板ばね3、4用は前記基準位置にした板ばね3、4の回転軸3b、4bに同一サイズのメイン歯車60a、60bを固定し噛み合わせて、板ばね3の回転駆動軸D1の回転で板ばね3、4を面対称的に回転角度を連続変化させ一対の板ばね3、4をハ型又は逆ハ型にしてその合成した剛性係数を下降変更し装置全体の固有振動数を可変する際に大まかに設定するものである。
板ばね30、40用は、前記基準位置にした板ばね30、40の中央回転軸30b、40bに同一サイズのメイン歯車61a、61bを固定し、これを板ばね3、4の回転軸3b、4bに遊合させた中間歯車62a、62bを介して噛み合わせ、板ばね30の回転駆動軸D2の回転で、中間歯車62a、62bを介して板ばね30、40を基準位置の0°から90°の範囲で面対称的に回転角度を連続変化させ一対の板ばね30、40をハ型又は逆ハ型にしてその合成した剛性係数を下降変更し装置全体の固有振動数を可変する際に板ばね3、4に続いて微調整するものである。
Next, one embodiment (specific example) of the present invention (2) will be described with reference to FIG.
In the example of FIG. 4, the leaf springs 3 and 4 shown in FIGS. 1 to 3 are thickened (same large rigid long rigid body), and a thin plate spring for fine adjustment (same small rigid long rigid body) 30 is provided on the outside thereof. 40, and the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
The leaf springs 3 and 4 and the leaf springs 30 and 40 have their axial centers positioned in a parallel relationship on a plane orthogonal to the vibration direction of the vibrating body 1, and their cross-sectional major axes coincide with the vibration direction in parallel at the reference position. I'm allowed.
The both sides of the leaf springs 30 and 40 and the vibration absorbing body 2 are mounted by forming the both side portions of the leaf springs 30 and 40 on the rotating shafts 30a and 40a, and providing the bearing body 20a and 20b on the vibration absorbing body 2, respectively. Rotary bearings 20a and 20b are mounted with rotary shafts 30a and 40a, and the central part of leaf springs 30 and 40 and the weight 5 are attached to the central part of leaf springs 30 and 40 to the rotary shafts 30b and 40b. The bearing 5 is formed with bearing bearings 50a and 50b, and the bearings 50a and 50b are equipped with rotating shafts 30b and 40b.
In this example of the stiffness coefficient changing mechanism for the leaf spring, a gear mechanism is provided on the weight 5 for balance, and for the leaf springs 3 and 4, the rotating shaft 3b of the leaf springs 3 and 4 at the reference position is provided. The main gears 60a, 60b of the same size are fixed and meshed with 4b, and the rotation angle of the leaf springs 3, 4 is continuously changed symmetrically with the rotation of the rotational drive shaft D1 of the leaf spring 3, thereby a pair of leaf springs 3 4 is set to a C shape or an inverted C shape, and the combined rigidity coefficient is lowered and changed to roughly set the natural frequency of the entire apparatus.
For the leaf springs 30 and 40, the main gears 61a and 61b of the same size are fixed to the central rotating shafts 30b and 40b of the leaf springs 30 and 40 at the reference position, and these are fixed to the rotating shafts 3b of the leaf springs 3 and 4, respectively. 4b is engaged with the intermediate gears 62a and 62b loosely engaged with each other, and the rotation of the rotational drive shaft D2 of the leaf spring 30 causes the leaf springs 30 and 40 to move through the intermediate gears 62a and 62b from 0 ° to 90 ° of the reference position. When changing the natural frequency of the whole device by changing the rotation angle continuously and symmetrically changing the rotation angle in a range of ° to make the pair of leaf springs 30 and 40 into a C shape or reverse C shape and changing the combined stiffness coefficient. Fine adjustment is performed following the leaf springs 3 and 4.

本発明の可変剛性型動吸振装置は、前記したコンパクト化可能な構成により、吸振装置側の固有振動数を上下の振動体の固有振動数に容易に正確に一致させ該振動体の振動を制止又は低減或いは遅延することができ、前述の効果に紹介した多くの振動体に幅広く応用することができ、この種産業上の利用可能性は極めて高いものである。また、本発明は、たとえばディスクブレーキキャリパーの鳴き発生時の振動のように、回転方向の振動モードを有する系に対しても、効果的である。   The variable stiffness type dynamic vibration damping device of the present invention has the above-described structure that can be made compact so that the natural frequency on the vibration damping device side can be easily and accurately matched to the natural frequency of the upper and lower vibrating bodies to suppress the vibration of the vibrating body. Alternatively, it can be reduced or delayed, and can be widely applied to many vibrators introduced in the above-mentioned effects, and this industrial applicability is extremely high. The present invention is also effective for a system having a vibration mode in the rotational direction such as vibration when a disc brake caliper squeals.

本発明装置(1)の1実施例を示す説明図であり図2の矢視AA−AA及び図3の矢視A−Aからの平断面図。It is explanatory drawing which shows one Example of this invention apparatus (1), and is a plane sectional view from arrow AA-AA of FIG. 2, and arrow AA of FIG. 図1の矢視BB−BB及び図3矢視B−Bからの側断面図。The sectional side view from arrow BB-BB of FIG. 1 and arrow BB of FIG. 図1の矢視CC−CC及び図2矢視C−Cからの正面図。The front view from arrow CC-CC of FIG. 1 and arrow CC of FIG. 本発明装置(2)の1実施例を示す説明図であり実施例1の図1に相当する。It is explanatory drawing which shows one Example of this invention apparatus (2), and is equivalent to FIG.

符号の説明Explanation of symbols

1 振動体
2 吸振本体
3、4 剛性体
5 重錘
3a、4a 回転軸
2a、2b ベァリング式軸受
5a、5b ベァリング式軸受
6 剛性係数変更機構
6a、6b メイン歯車
6c 駆動歯車機構
6f 制御器
6g 回転調節用サーボモーター
30、40 板バネ
30a、40a 回転軸
20a、20b ベァリング式軸受
30b、40b 回転軸
50a、50b ベァリング式軸受
60a、60b メイン歯車
D1、D2 回転駆動軸
61a、61b メイン歯車
62a、62b 中間歯車
1 Vibrating body 2 Vibration absorbing body 3, 4 Rigid body 5 Weight
3a, 4a rotation axis
2a, 2b Bearing bearing
5a, 5b Bearing bearing 6 Rigidity coefficient changing mechanism
6a, 6b Main gear
6c Drive gear mechanism
6f controller
6g Servo motor for rotation adjustment
30, 40 leaf spring
30a, 40a rotating shaft
20a, 20b bearing bearings
30b, 40b rotation axis
50a, 50b bearing bearings
60a, 60b main gear
D1, D2 Rotary drive shaft
61a, 61b main gear
62a, 62b Intermediate gear

Claims (2)

振動体の振動方向に対する同一直交面上に各軸心を位置し且つ横断面に長軸と短軸を有する一対の同一剛性長尺剛性体と、振動体に取り付けられ前記一対の剛性体の両側部を回転可能に装着した吸振本体と、前記一対の剛性体の中央部を回転可能に装着した重錘と、前記一対の剛性体を面対称状態で互いに逆方向回転させて該一対の剛性体の合成振動方向を振動体の直線的振動方向に保持したままでその合成剛性係数を変更する機構とから構成してなることを特徴とする可変剛性型動吸振装置。   A pair of identical rigid long rigid bodies, each having an axial center located on the same orthogonal plane with respect to the vibration direction of the vibrating body and having a long axis and a short axis in the cross section, and both sides of the pair of rigid bodies attached to the vibrating body A vibration-absorbing main body having a rotationally mounted portion, a weight having a central portion of the pair of rigid bodies rotatably mounted thereon, and the pair of rigid bodies rotated in opposite directions in a plane-symmetric state to the pair of rigid bodies A variable-rigidity dynamic vibration damping device comprising: a mechanism for changing the combined stiffness coefficient while maintaining the combined vibration direction of the vibration member in the linear vibration direction of the vibrating body. 振動体の振動方向に対する同一直交面上に各軸心を位置し且つ横断面に長軸と短軸を有する二対の同一大剛性長尺剛性体と同一小剛性長尺剛性体、振動体に取り付けられ前記二対の剛性体の両側部を回転可能に装着した吸振本体と、前記二対の剛性体の中央部を回転可能に装着した重錘と、平行関係で且つ前記同一大剛性長尺剛性体対の外側又は内側に同一小剛性長尺剛性体対を配置すると共に該二対の剛性体の各一方側と他方側を面対称状態で互いに対単位で逆方向回転させて該二対の剛性体の合成振動方向を振動体の直線的振動方向に保持したままでその合成剛性係数を変更する機構とから構成してなることを特徴とする可変剛性型動吸振装置。
Two pairs of the same large rigid long rigid body, the same small rigid long rigid body, the same small rigid long rigid body, and the vibrating body, each axis centering on the same orthogonal plane with respect to the vibration direction of the vibrating body and having a long axis and a short axis in the cross section A vibration-absorbing body that is mounted and rotatably mounted on both sides of the two pairs of rigid bodies, and a weight that is rotatably mounted on the center of the two pairs of rigid bodies, and in parallel relation and the same large rigid length The same pair of small rigid and long rigid bodies are disposed outside or inside the rigid body pair, and each of the two pairs of rigid bodies is rotated in the reverse direction in pairs with each other in a plane symmetrical state. A variable-rigidity dynamic vibration damping device comprising: a mechanism for changing a composite stiffness coefficient while maintaining a composite vibration direction of the rigid body in a linear vibration direction of the vibration body.
JP2005076317A 2005-03-17 2005-03-17 Variable rigidity dynamic vibration absorber. Active JP4257432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076317A JP4257432B2 (en) 2005-03-17 2005-03-17 Variable rigidity dynamic vibration absorber.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076317A JP4257432B2 (en) 2005-03-17 2005-03-17 Variable rigidity dynamic vibration absorber.

Publications (2)

Publication Number Publication Date
JP2006258189A true JP2006258189A (en) 2006-09-28
JP4257432B2 JP4257432B2 (en) 2009-04-22

Family

ID=37097675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076317A Active JP4257432B2 (en) 2005-03-17 2005-03-17 Variable rigidity dynamic vibration absorber.

Country Status (1)

Country Link
JP (1) JP4257432B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052577A (en) * 2007-08-23 2009-03-12 Oita Univ Variable rigidity dynamic vibration-damper
JP2014095455A (en) * 2012-11-12 2014-05-22 Kira Corporation:Kk Variable rigidity type dynamic vibration absorption device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052577A (en) * 2007-08-23 2009-03-12 Oita Univ Variable rigidity dynamic vibration-damper
JP2014095455A (en) * 2012-11-12 2014-05-22 Kira Corporation:Kk Variable rigidity type dynamic vibration absorption device

Also Published As

Publication number Publication date
JP4257432B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
JP5357696B2 (en) Rail-type vehicle having a guide device
JP2007271447A (en) Railway vehicle brake performance testing machine and railway vehicle brake performance testing method
JP4747266B2 (en) Variable rigidity dynamic vibration absorber
TWI581986B (en) Railway vehicles with sound insulation wheels
WO2019225752A1 (en) System for measuring temperature of crawler traveling apparatus, and crawler vehicle
JP4257432B2 (en) Variable rigidity dynamic vibration absorber.
JP4280849B2 (en) Variable rigidity dynamic vibration absorber
JPH10119775A (en) Axle box suspension for bogie carriage
US9770942B2 (en) Soundproof wheel for railway vehicle
EP2500231B1 (en) Rail vehicle unit with a rolling support
WO2017168547A1 (en) Independent wheel drive device and vehicle
US20120260817A1 (en) Running Gear for a Rail Vehicle with a Transversally Decoupling Motor Suspension
JP2015009572A (en) Carriage for railway vehicle
US6481508B2 (en) Spindle for machine tool
JP4213675B2 (en) Tire holding device
US1765477A (en) Vibration-dampening device
JP2004210546A (en) Base isolating apparatus for crane
JP5259999B2 (en) Axle box support device for bogie for high-speed railway vehicles
KR101303932B1 (en) Flange processing apparatus
CN107719383A (en) Overhead single rail traffic system vehicle body suspension system
Matsuzaki et al. Generation mechanism of polygonal wear of work rolls in a hot leveler and a countermeasure by dynamic absorbers
EP2165910B2 (en) Rail vehicle
US20110163221A1 (en) Method for controlling deflection in structural member
Tomioka et al. Prevention of carbody vibration of railway vehicles induced by imbalanced wheelsets with displacement-dependent rubber bush
WO2021224953A1 (en) Wheel apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150