JP2006257674A - Vibration control structure for building - Google Patents

Vibration control structure for building Download PDF

Info

Publication number
JP2006257674A
JP2006257674A JP2005073505A JP2005073505A JP2006257674A JP 2006257674 A JP2006257674 A JP 2006257674A JP 2005073505 A JP2005073505 A JP 2005073505A JP 2005073505 A JP2005073505 A JP 2005073505A JP 2006257674 A JP2006257674 A JP 2006257674A
Authority
JP
Japan
Prior art keywords
damper
frame
viscoelastic
friction
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005073505A
Other languages
Japanese (ja)
Other versions
JP4355673B2 (en
Inventor
Tomokazu Takada
友和 高田
Takashi Uchiyama
高 内山
Isao Natsubori
功 夏堀
Seiji Tanigawa
清次 谷川
Mamoru Sato
守 佐藤
Shigekazu Yokoyama
重和 横山
Yoshiaki Azuma
義敬 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Sekisui House Ltd
Original Assignee
Sumitomo Riko Co Ltd
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Sekisui House Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2005073505A priority Critical patent/JP4355673B2/en
Publication of JP2006257674A publication Critical patent/JP2006257674A/en
Application granted granted Critical
Publication of JP4355673B2 publication Critical patent/JP4355673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration control structure for a building, which effectively protects a skeleton of the building from being destroyed due to dynamic load, and positively generates strength against static load. <P>SOLUTION: In the vibration control structure for the building, a brace 4 of a framework 1 has a viscoelastic damper 9 and a frication damper 10 serially arranged thereon. A fixed plate 6 of the viscoelastic damper 9 has a stopper pin 12 arranged thereon, and a movable plate 8 has a slot 13 formed therein, in which the stopper pin 12 is loosely inserted. When vibration occurs, shear deformation of a viscoelastic body 11 of the viscoelastic damper 9 generates a damping action, while at the time of application of excessive load, a fixed plate 7 and the movable plate 8 are relatively moved in a longitudinal direction in the friction damper 10 to generate a friction damping action. On the other hand, with respect to static load such as wind, by virtue of the shear deformation of the viscoelastic body 11, the stopper pin 12 abuts on the slot 13, which brings generation of strength. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、住宅等の建物に、地震や風等の外力による震動を減衰させるために設けられる制震構造に関する。   The present invention relates to a vibration control structure provided in a building such as a house for attenuating vibration caused by an external force such as an earthquake or wind.

建物の制震構造として、柱と横架材とからなる軸組フレーム内に、板体や筒体等の複数の制震部材と、その制震部材間に接着される粘弾性体とからなる粘弾性ダンパーを例えばブレースとして組み込む構造が知られている。これにより、加振時には、制震部材の相反方向への動作に伴う粘弾性体の剪断変形で振動減衰作用を得ることができる。
しかし、この場合、粘弾性ダンパーで吸収できるエネルギーを超えた負荷が加わると、粘弾性ダンパーが破壊されるおそれがある。
そこで、特許文献1〜3に開示の如く、複数の滑動部材をボルト等のクランプ手段によって互いの対向方向へ押圧し、滑動部材の相反方向への動作により摩擦減衰作用を生じさせる摩擦ダンパーを採用して粘弾性ダンパーと接続する構造が考えられる。このような複合ダンパーによれば、躯体の設計最大耐力内での所定の負荷が加わった場合には、摩擦ダンパーを動作させて粘弾性ダンパーを保護することができる。
As a vibration control structure of a building, it is composed of a plurality of vibration control members such as plates and cylinders and a viscoelastic body bonded between the vibration control members in a frame frame composed of columns and horizontal members. A structure in which a viscoelastic damper is incorporated as, for example, a brace is known. Thereby, at the time of vibration, a vibration damping action can be obtained by shear deformation of the viscoelastic body accompanying the operation of the damping member in the opposite direction.
However, in this case, if a load exceeding energy that can be absorbed by the viscoelastic damper is applied, the viscoelastic damper may be destroyed.
Therefore, as disclosed in Patent Documents 1 to 3, a friction damper is used in which a plurality of sliding members are pressed against each other by clamping means such as bolts and a friction damping action is generated by the movement of the sliding members in the opposite direction. Thus, a structure connecting to a viscoelastic damper is conceivable. According to such a composite damper, the viscoelastic damper can be protected by operating the friction damper when a predetermined load is applied within the design maximum proof stress of the housing.

特開平9−268802号公報JP-A-9-268802 特開平10−37515号公報Japanese Patent Laid-Open No. 10-37515 特開2001−342749号公報JP 2001-342749 A

ところで、建物には、地震等による動的荷重の他、風による静的荷重が加わることがある。このような静的荷重には、応力緩和が大きい粘弾性ダンパーには対抗する応力を発生させることができず、変位の増大を許してしまう。この現象は複合ダンパーであっても同様で、ある一方向の静的な荷重に対しては、粘弾性ダンパーのみがどんどんクリープ変形してしまうために、摩擦ダンパーは静的荷重に対しては何ら機能せず、結局静的荷重に対する耐力は得られない。   By the way, in addition to a dynamic load due to an earthquake or the like, a static load due to wind may be applied to the building. Such a static load cannot generate an opposing stress in a viscoelastic damper having a large stress relaxation, and allows an increase in displacement. This phenomenon is the same even in the case of a composite damper. For a static load in one direction, only the viscoelastic damper undergoes creep deformation. It does not function and eventually cannot withstand a static load.

そこで、本発明は、地震等による動的荷重に対しては、躯体の破壊を効果的に防止でき、風等による静的荷重に対しては、粘弾性ダンパーでの変位の増大を防止して好適な耐力を発生できる建物の制震構造を提供することを目的としたものである。   Therefore, the present invention can effectively prevent the destruction of the housing against a dynamic load due to an earthquake or the like, and can prevent an increase in displacement with a viscoelastic damper against a static load due to a wind or the like. An object of the present invention is to provide a building seismic control structure capable of generating a suitable proof stress.

上記目的を達成するために、請求項1に記載の発明は、粘弾性ダンパーの制震部材間に、粘弾性体の剪断変形を、摩擦ダンパーが動作する所定の負荷よりも小さい負荷に対応した所定の変位で規制するストッパ機構を設けたことを特徴とする。
請求項2に記載の発明は、請求項1の目的に加えて、ストッパ機構を簡単に構成するために、ストッパ機構を、何れか一方の動作側の制震部材に設けられるピン部材と、他方の動作側の制震部材に粘弾性体の変位方向に沿って設けられ、ピン部材が遊挿する長孔とからなる構成としたものである。
請求項3に記載の発明は、請求項1または2の目的に加えて、粘弾性ダンパーを複数備えた複合ダンパーを合理的に構成するために、複合ダンパーを、軸組フレーム内を上下に二等分した各フレーム面内で対角線状に、且つ上下軸対称となるように配置された一対の粘弾性ダンパーと、両粘弾性ダンパーの交点側の柱の中間部位に配置され、一方の動作側の滑動部材に上下の粘弾性ダンパーを、他方の動作側の滑動部材に柱を夫々接続した1つの摩擦ダンパーとから形成したものである。
請求項4に記載の発明は、請求項1または2の目的に加えて、粘弾性ダンパーを複数備えた複合ダンパーを合理的に構成するために、複合ダンパーを、軸組フレームの中央から軸組フレームの四隅へ向けて放射状に配置された4つの粘弾性ダンパーと、軸組フレームの中央に配置され、一方の動作側の滑動部材に、左右何れか一方側での上下の粘弾性ダンパーを、他方の動作側の滑動部材に、左右他方側での上下の粘弾性ダンパーを夫々接続した1つの摩擦ダンパーとから形成したものである。
In order to achieve the above object, the invention according to claim 1 corresponds to the shear deformation of the viscoelastic body between the damping members of the viscoelastic damper to a load smaller than a predetermined load on which the friction damper operates. A stopper mechanism is provided which regulates with a predetermined displacement.
In addition to the object of the first aspect, the invention according to claim 2 includes a pin member provided on any one of the vibration control members on the operating side and a second member, in order to simply configure the stopper mechanism. It is made into the structure which is provided in the vibration control member of this operation | movement side along the displacement direction of a viscoelastic body, and consists of a long hole in which a pin member loosely inserts.
In addition to the object of the first or second aspect, the invention described in claim 3 is configured so that the composite damper is arranged vertically in the shaft frame in order to rationally configure a composite damper having a plurality of viscoelastic dampers. A pair of viscoelastic dampers arranged so as to be diagonal and symmetrical in the vertical axis within each equally divided frame surface, and one operating side arranged at the middle part of the column on the intersection point of both viscoelastic dampers The upper and lower viscoelastic dampers are formed on this sliding member, and one friction damper having a column connected to the other sliding member on the operating side.
According to a fourth aspect of the present invention, in addition to the object of the first or second aspect, in order to rationally configure a composite damper having a plurality of viscoelastic dampers, the composite damper is attached to the shaft assembly from the center of the shaft assembly frame. Four viscoelastic dampers arranged radially toward the four corners of the frame and the center of the frame frame, and the upper and lower viscoelastic dampers on either the left or right side of the sliding member on one operation side, The sliding member on the other operation side is formed from one friction damper in which upper and lower viscoelastic dampers on the other side are connected.

請求項1に記載の発明によれば、地震による加振時には、設計最大耐力内での過大な負荷に対して確実に摩擦ダンパーを動作させることができる。よって、躯体(軸組フレーム)の破壊を防止して好適な制震機能を維持でき、信頼性や耐久性に優れる。一方、風等による静的荷重に対しては、粘弾性ダンパーにおいてストッパ機構によって確実に耐力を発生させて静的荷重に対抗することができる。
請求項2に記載の発明によれば、請求項1の効果に加えて、ピン部材と長孔とによってストッパ機構を簡単に構成することができる。
請求項3及び4に記載の発明によれば、請求項1または2の効果に加えて、複数の粘弾性ダンパーで1つの摩擦ダンパーを共用できるため、構造が簡略化してコスト面で有利となる。また、摩擦ダンパーを安定して動作させることもできる。
According to the first aspect of the present invention, the friction damper can be reliably operated with respect to an excessive load within the design maximum proof stress during vibration due to an earthquake. Therefore, destruction of a frame (shaft frame) can be prevented and a suitable vibration control function can be maintained, and the reliability and durability are excellent. On the other hand, with respect to a static load caused by wind or the like, the viscoelastic damper can surely generate a proof stress by a stopper mechanism to counter the static load.
According to the second aspect of the present invention, in addition to the effect of the first aspect, the stopper mechanism can be easily configured by the pin member and the long hole.
According to the third and fourth aspects of the present invention, in addition to the effect of the first or second aspect, a plurality of viscoelastic dampers can share a single friction damper, which simplifies the structure and is advantageous in terms of cost. . Also, the friction damper can be operated stably.

以下、本発明の実施の形態を図面に基づいて説明する。なお、各形態において、前出の形態と同じ構成部には同じ符号を付して重複する説明を省略する。
《形態1》
図1は、軽量鉄骨構造の住宅に用いられる軸組フレームの正面図で、軸組フレーム1は、左右一対の柱2,2と、柱2,2の上端間及び下端間に架設される一対の横架材3,3と、柱2と横架材3との仕口部間で対角線状に架設されるブレース4とからなる。このブレース4は、図2(A)(B)に示すように、仕口部に接合されたガセットプレート5,5に同一面上で固定される長短2つの固定プレート6,7と、その固定プレート6,7の夫々の自由端側を厚み方向で両側から挟むように配置される一対の可動プレート8,8とを備え、一方の固定プレート6側には粘弾性ダンパー9が、他方の固定プレート7側には摩擦ダンパー10が夫々設けられて、複合ダンパーを構成している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment, the same components as those in the previous embodiment are denoted by the same reference numerals, and redundant description is omitted.
<< Form 1 >>
FIG. 1 is a front view of a frame frame used in a lightweight steel frame house. The frame frame 1 includes a pair of left and right columns 2 and 2 and a pair of columns 2 and 2 that are installed between upper ends and lower ends. The horizontal members 3, 3, and the braces 4 that are installed diagonally between the joints of the pillar 2 and the horizontal member 3. As shown in FIGS. 2 (A) and 2 (B), the brace 4 includes two fixed plates 6 and 7 which are fixed to the gusset plates 5 and 5 joined to the joint portion on the same surface, and the fixing thereof. A pair of movable plates 8 and 8 are arranged so that the free end sides of the plates 6 and 7 are sandwiched from both sides in the thickness direction. A viscoelastic damper 9 is provided on one fixed plate 6 side, and the other fixed side is fixed. Friction dampers 10 are respectively provided on the plate 7 side to constitute a composite damper.

まず、粘弾性ダンパー9は、制震部材としての固定プレート6と可動プレート8,8と、両プレート6,8の間にあって、互いの対向面が接着された薄板状の一対の粘弾性体11,11とで形成される。また、固定プレート6における粘弾性体11の長手方向の中央部位には、ストッパ機構のピン部材となるストッパピン12が直交状に固着されて、両端を可動プレート8,8に長手方向へ穿設した一対の長孔13,13に遊挿させている。常態で、可動プレート8の長手方向でストッパピン12と長孔13との間には、前後にクリアランスC1が生じる設定となっている。よって、固定プレート6と可動プレート8,8とは、粘弾性体11,11が長手方向に剪断変形する際、ストッパピン12が長孔13,13の端部に当接するまで長手方向の前後に相対移動可能となる。   First, the viscoelastic damper 9 is a pair of thin plate-like viscoelastic bodies 11 between the fixed plate 6 and the movable plates 8 and 8 as the vibration control members, and the plates 6 and 8, and the opposing surfaces are bonded to each other. , 11. In addition, a stopper pin 12 serving as a pin member of the stopper mechanism is fixed orthogonally to a central portion of the fixed plate 6 in the longitudinal direction of the viscoelastic body 11, and both ends are formed in the movable plates 8 and 8 in the longitudinal direction. The pair of elongated holes 13 and 13 are loosely inserted. In a normal state, a clearance C <b> 1 is generated between the stopper pin 12 and the long hole 13 in the longitudinal direction of the movable plate 8. Therefore, the fixed plate 6 and the movable plates 8 and 8 are moved back and forth in the longitudinal direction until the stopper pin 12 contacts the end of the long holes 13 and 13 when the viscoelastic bodies 11 and 11 are sheared and deformed in the longitudinal direction. Relative movement is possible.

摩擦ダンパー10は、滑動部材としての固定プレート7と可動プレート8,8と、各可動プレート8における固定プレート7との対向面に固定される鋳鉄製の摩擦板14と、両プレート7,8及び摩擦板14を貫通して可動プレート8,8の夫々の外側からナットにより所定のクランプ力で緊締されるクランプ手段としての締付ボルト15とから形成される。また、固定プレート7における締付ボルト15の貫通部も、長手方向に沿った長孔16となって、常態では、可動プレート8の長手方向で締付ボルト15と長孔16との間に、前後にクリアランスC2が生じる設定となっている。このクリアランスC2は、粘弾性ダンパー9におけるストッパピン12と長孔13とのクリアランスC1よりも大きくなっている。
よって、固定プレート7と可動プレート8,8とは、軸組フレーム1の設計最大耐力内での所定の負荷(締付ボルト15のクランプ力で設定される滑り荷重)が加わった際に、締付ボルト15が長孔16の端部に当接するまで長手方向の前後に夫々相対移動可能となる。なお、粘弾性ダンパー9においてストッパピン12が長孔13に当接して変位規制がされる負荷は、摩擦ダンパー10の滑り荷重よりも小さくなっている。
The friction damper 10 includes a fixed plate 7 and movable plates 8 and 8 as sliding members, a friction plate 14 made of cast iron fixed to a surface of each movable plate 8 facing the fixed plate 7, both plates 7 and 8, and It is formed of a fastening bolt 15 as a clamping means that penetrates the friction plate 14 and is fastened with a predetermined clamping force by a nut from the outside of each of the movable plates 8 and 8. Further, the penetration portion of the fastening bolt 15 in the fixed plate 7 also becomes a long hole 16 along the longitudinal direction, and normally, between the fastening bolt 15 and the long hole 16 in the longitudinal direction of the movable plate 8, The clearance C2 is set to be generated before and after. This clearance C <b> 2 is larger than the clearance C <b> 1 between the stopper pin 12 and the long hole 13 in the viscoelastic damper 9.
Therefore, the fixed plate 7 and the movable plates 8 and 8 are tightened when a predetermined load (sliding load set by the clamping force of the tightening bolt 15) within the design maximum proof stress of the frame assembly 1 is applied. The attached bolts 15 can be relatively moved back and forth in the longitudinal direction until they come into contact with the ends of the long holes 16. In the viscoelastic damper 9, the load at which the stopper pin 12 abuts the elongated hole 13 and the displacement is restricted is smaller than the sliding load of the friction damper 10.

以上の如く構成された軸組フレーム1においては、地震による加振時に、フレーム面方向に沿って水平方向の外力が断続的に作用すると、ブレース4には、軸方向への引張力と圧縮力とが交互に加わる。すると図2(C)に示すように、固定プレート6と可動プレート8,8との長手方向への相反移動によって粘弾性体11,11が剪断変形することで、エネルギーを吸収して減衰作用を生じさせる。このとき、ストッパピン12は長孔13の端部には当接しない。   In the axial frame 1 configured as described above, when an external force in the horizontal direction is intermittently applied along the frame surface direction during vibration due to an earthquake, the tensile force and compressive force in the axial direction are applied to the brace 4. And are added alternately. Then, as shown in FIG. 2 (C), the viscoelastic bodies 11 and 11 are shear-deformed by the reciprocal movement of the fixed plate 6 and the movable plates 8 and 8 in the longitudinal direction, thereby absorbing energy and performing a damping action. Cause it to occur. At this time, the stopper pin 12 does not contact the end of the long hole 13.

そして、動的な大規模地震において過大な負荷が加わった場合、同図(D)に示すように、粘弾性体11,11の剪断変形によってクリアランスC1を相対移動したストッパピン12が長孔13の端部に当接し、それ以上の粘弾性体11,11の剪断変形を規制する。さらに同方向への負荷が増大して滑り荷重を超えると、同図(E)に示すように、摩擦ダンパー10において、固定プレート7と可動プレート8,8とが長手方向へ相反移動する。この摩擦ダンパー10の動作によって摩擦減衰作用が発揮され、軸組フレーム1の破壊が防止される。
なお、ここでは、過大な負荷に対して粘弾性ダンパー9のストッパ機構が動作してから摩擦ダンパー10が動作する作用を説明しているが、負荷の周波数によっては、粘弾性ダンパー9のストッパ機構が動作する前(ストッパピン12が長孔13の端部に当接する前)に摩擦ダンパー10が動作する場合もある。これは後述する他の形態においても同様である。
When an excessive load is applied in a dynamic large-scale earthquake, the stopper pin 12 that has moved relative to the clearance C1 due to the shear deformation of the viscoelastic bodies 11 and 11 is provided with a long hole 13 as shown in FIG. The viscoelastic bodies 11 and 11 are restricted from further shear deformation. When the load in the same direction further increases and exceeds the sliding load, the fixed plate 7 and the movable plates 8 and 8 move in the longitudinal direction in the friction damper 10 as shown in FIG. The operation of the friction damper 10 exerts a friction damping effect and prevents the shaft frame 1 from being broken.
Here, the action of the friction damper 10 operating after the stopper mechanism of the viscoelastic damper 9 is operated for an excessive load is described. However, depending on the frequency of the load, the stopper mechanism of the viscoelastic damper 9 is described. In some cases, the friction damper 10 may operate before the operation of the frictional damper 10 (before the stopper pin 12 contacts the end of the long hole 13). The same applies to other forms described later.

一方、軸組フレーム1に、風等によって水平方向の外力が静的荷重として加わった際には、粘弾性ダンパー9は、静的荷重の増大に連れて粘弾性体11,11が剪断変形の変位量を徐々に増大させることになる。しかし、図2(D)のようにストッパピン12が長孔13の端部に当接すると、それ以上の変位が規制されるため、以後の負荷に対して耐力を発生させることができる。このとき、摩擦ダンパー10は、滑り荷重を超えない限り動作しない。   On the other hand, when a horizontal external force is applied as a static load to the frame 1 by wind or the like, the viscoelastic damper 9 causes the viscoelastic bodies 11 and 11 to undergo shear deformation as the static load increases. The amount of displacement is gradually increased. However, when the stopper pin 12 comes into contact with the end of the long hole 13 as shown in FIG. 2 (D), further displacement is restricted, so that a proof stress can be generated for the subsequent load. At this time, the friction damper 10 does not operate unless the sliding load is exceeded.

このように、上記形態1の軸組フレーム1によれば、粘弾性ダンパー9の固定プレート6と可動プレート8との間に、粘弾性体11の剪断変形を、摩擦ダンパー10が動作する所定の負荷よりも小さい負荷に対応した所定の変位で規制するストッパ機構を設けたことで、地震による加振時には、軸組フレーム1の設計最大耐力内での過大な負荷に対して摩擦ダンパー10を確実に動作させることができる。よって、軸組フレーム1の破壊を防止して好適な制震機能を維持でき、信頼性や耐久性に優れる。一方、風等による静的荷重に対しては、粘弾性ダンパー9においてストッパ機構によって確実に耐力を発生させて静的荷重に対抗することができる。
また、ストッパピン12と長孔13との採用により、ストッパ機構を簡単に構成可能となっている。
As described above, according to the frame assembly 1 of the first aspect, the shear deformation of the viscoelastic body 11 between the fixed plate 6 and the movable plate 8 of the viscoelastic damper 9 causes the friction damper 10 to operate. By providing a stopper mechanism that regulates with a predetermined displacement corresponding to a load smaller than the load, the friction damper 10 can be reliably protected against an excessive load within the design maximum proof strength of the frame assembly 1 when the vibration is caused by an earthquake. Can be operated. Therefore, destruction of the shaft frame 1 can be prevented and a suitable vibration control function can be maintained, and the reliability and durability are excellent. On the other hand, with respect to a static load caused by wind or the like, the viscoelastic damper 9 can surely generate a proof stress by the stopper mechanism to counter the static load.
In addition, the stopper mechanism can be easily configured by employing the stopper pin 12 and the long hole 13.

《形態2》
図3に示す軸組フレーム20において、上下の横架材3,3の中央部位でフレーム面側には、ガセットプレート21,21が平行に固着され、このガセットプレート21,21に、左右方向に幅広な長短2つの固定プレート22,23が、上下方向で同一面上に夫々固定されている。また、可動プレート24,24も、固定プレート22,23と同じ左右幅で、フレーム面の略中央で両固定プレート22,23の自由端側を前後から挟むように配置されて、上側に粘弾性ダンパー25が、下側に摩擦ダンパー26が夫々設けられて、軸組フレーム20内で上下に架設される複合ダンパーを構成している。
<< Form 2 >>
In the frame frame 20 shown in FIG. 3, gusset plates 21 and 21 are fixed in parallel on the frame surface side at the central portion of the upper and lower horizontal members 3 and 3, and the gusset plates 21 and 21 are connected to the gusset plates 21 and 21 in the left-right direction. Two wide and short fixing plates 22 and 23 are fixed on the same surface in the vertical direction. The movable plates 24 and 24 are also arranged to sandwich the free end sides of the fixed plates 22 and 23 from the front and rear at the approximate center of the frame surface with the same left-right width as the fixed plates 22 and 23, and viscoelastic upward. The damper 25 is provided with a friction damper 26 on the lower side to constitute a composite damper that is installed vertically within the shaft frame 20.

粘弾性ダンパー25は、図4に示す如く、上記形態1と同様に制震部材となる固定プレート22及び可動プレート24,24と、両プレート22,24の間で互いの対向面に接着された粘弾性体27,27とを有すると共に、固定プレート22に直交状に固着されるストッパピン28と、ストッパピン28が遊挿する可動プレート24,24の長孔29.29とからなるストッパ機構を備えている。ここでの長孔29は左右方向に形成されて、ストッパピン28の左右に、クリアランスC1を夫々形成するようになっている。このクリアランスC1も、形態1と同様に、軸組フレーム20の設計最大耐力以下で設定される摩擦ダンパー26の滑り荷重よりも小さい負荷に対応する変位である。
また、摩擦ダンパー26も同様に、滑動部材となる可動プレート24及び固定プレート23と、可動プレート24,24における固定プレート23との対向面に固定される鋳鉄製の摩擦板30,30と、両プレート23,24及び摩擦板30,30を貫通して可動プレート24,24の夫々の外側からナットにより所定のクランプ力で緊締されるクランプ手段としての締付ボルト31とから形成される。そして、締付ボルト31が貫通する固定プレート23の長孔32も、左右方向に形成されて、締付ボルト31の左右に、粘弾性ダンパー25のクリアランスC1よりも大きいクリアランスC2を夫々形成している。
As shown in FIG. 4, the viscoelastic damper 25 is bonded to the opposing surfaces between the fixed plate 22 and the movable plates 24 and 24 that are the vibration control members and the plates 22 and 24 as in the first embodiment. A stopper mechanism having viscoelastic bodies 27 and 27 and comprising a stopper pin 28 fixed to the fixed plate 22 orthogonally and a long hole 29.29 of the movable plates 24 and 24 into which the stopper pin 28 is loosely inserted. I have. Here, the long holes 29 are formed in the left-right direction so that clearances C1 are formed on the left and right sides of the stopper pin 28, respectively. This clearance C1 is also a displacement corresponding to a load smaller than the sliding load of the friction damper 26 set to be equal to or less than the design maximum proof stress of the frame frame 20 as in the first embodiment.
Similarly, the friction damper 26 includes a movable plate 24 and a fixed plate 23 which are sliding members, and cast iron friction plates 30 and 30 fixed to the surfaces of the movable plates 24 and 24 facing the fixed plate 23. A clamping bolt 31 is formed as a clamping means that penetrates the plates 23 and 24 and the friction plates 30 and 30 and is fastened with a predetermined clamping force by a nut from the outside of each of the movable plates 24 and 24. The long holes 32 of the fixing plate 23 through which the fastening bolts 31 pass are also formed in the left-right direction, and clearances C2 larger than the clearance C1 of the viscoelastic damper 25 are respectively formed on the left and right sides of the fastening bolts 31. Yes.

以上の如く構成された軸組フレーム20においては、地震による加振時にフレーム面方向に沿って水平方向の外力が断続的に作用すると、上下の横架材3が相反する水平方向へずれる変形が交互に生じる。すると図5(A)に示すように、固定プレート22と、摩擦ダンパー26を介して下方の固定プレート23と一体となる可動プレート24,24との相反する水平方向への移動により、粘弾性体27,27が剪断変形してエネルギーを吸収し、減衰作用を生じさせる。このとき、ストッパピン28は長孔29の端部には当接しない。
そして、動的な大規模地震において過大な負荷が加わった場合は、同図(B)に示すように、粘弾性体27,27の剪断変形によってクリアランスC1を水平方向へ相対移動したストッパピン28が長孔29の端部に当接し、それ以上の粘弾性体27,27の剪断変形を規制する。さらに同方向への負荷が増大して滑り荷重を超えると、同図(C)に示すように、摩擦ダンパー26において、固定プレート23と可動プレート24,24とが水平方向へ相反移動し、摩擦減衰作用を生じさせる。この摩擦ダンパー26の動作により、軸組フレーム20の破壊が防止される。
In the frame frame 20 configured as described above, when an external force in the horizontal direction is intermittently applied along the frame surface direction at the time of vibration due to an earthquake, the upper and lower horizontal members 3 are deformed to shift in the opposite horizontal direction. It occurs alternately. Then, as shown in FIG. 5A, the viscoelastic body is caused by the movement in the opposite horizontal direction between the fixed plate 22 and the movable plates 24, 24 integrated with the lower fixed plate 23 via the friction damper 26. 27 and 27 are sheared to absorb energy and cause a damping action. At this time, the stopper pin 28 does not come into contact with the end of the long hole 29.
When an excessive load is applied in a dynamic large-scale earthquake, as shown in FIG. 5B, the stopper pin 28 that has moved the clearance C1 in the horizontal direction relative to the shearing deformation of the viscoelastic bodies 27, 27. Abuts against the end of the long hole 29 and restricts further shear deformation of the viscoelastic bodies 27, 27. When the load in the same direction further increases and exceeds the sliding load, the fixed plate 23 and the movable plates 24 and 24 move in the horizontal direction in the friction damper 26 as shown in FIG. Causes a dampening effect. The operation of the friction damper 26 prevents the frame assembly 20 from being broken.

一方、軸組フレーム20に、風等によって水平方向の外力が静的荷重として加わった際には、粘弾性ダンパー25は、静的荷重の増大に連れて粘弾性体25,25が剪断変形してその変位量を徐々に増大させることになる。しかし、図5(B)のようにストッパピン28が長孔29の端部に当接すると、それ以上の変位が規制されるため、以後の負荷に対して耐力を発生させることができる。このとき、摩擦ダンパー26は、滑り荷重を超えない限り動作しない。   On the other hand, when a horizontal external force is applied as a static load to the frame frame 20 by wind or the like, the viscoelastic damper 25 shears and deforms the viscoelastic bodies 25 and 25 as the static load increases. The amount of displacement is gradually increased. However, when the stopper pin 28 comes into contact with the end of the long hole 29 as shown in FIG. 5B, further displacement is restricted, so that a proof stress can be generated for the subsequent load. At this time, the friction damper 26 does not operate unless the sliding load is exceeded.

このように、上記形態2の軸組フレーム20においても、形態1と同様の効果を得ることができる。すなわち、地震による加振時には、軸組フレーム20の設計最大耐力内での過大な負荷に対して摩擦ダンパー26を確実に動作させることができる。よって、軸組フレーム20の破壊を防止して好適な制震機能を維持でき、信頼性や耐久性に優れる。一方、風等による静的荷重に対しては、粘弾性ダンパー25においてストッパ機構によって確実に耐力を発生させて静的荷重に対抗することができる。   Thus, also in the frame frame 20 of the second aspect, the same effect as that of the first aspect can be obtained. That is, at the time of vibration due to an earthquake, the friction damper 26 can be reliably operated against an excessive load within the design maximum proof stress of the frame frame 20. Therefore, destruction of the shaft frame 20 can be prevented and a suitable vibration control function can be maintained, and the reliability and durability are excellent. On the other hand, with respect to a static load caused by wind or the like, the viscoelastic damper 25 can reliably resist the static load by generating a proof stress by the stopper mechanism.

《形態3》
図6に示す軸組フレーム40は、水平な中桟41によってフレーム面を上下に二等分し、各分割フレーム内に、一対のブレース42,42を、夫々の対角線状に上下軸対称となるように配置したいわゆるKブレースと称される構造となっている。B,Bは、軸組フレーム40の上下端が夫々固定される梁である。各ブレース42は、柱2と横架材3との仕口部にガセットプレート43を介して接合される長尺板状の固定プレート44と、その固定プレート44に重なる格好で平行に配置される可動プレート45と、制震部材となる両プレート44,45間で互いの対向面に接着される粘弾性体46とからなる粘弾性ダンパーを形成しており、固定プレート44へ直交状に連結させたストッパピン47を、可動プレート45へその長手方向に設けた長孔48に貫通させてストッパ機構を形成し、クリアランスC1内で上記形態1,2と同様の変位規制を可能としている。
<< Form 3 >>
The frame frame 40 shown in FIG. 6 divides the frame surface into two equal parts by a horizontal center bar 41, and a pair of braces 42 and 42 are symmetrical with respect to the vertical axis in the respective diagonal lines in each divided frame. Thus, the so-called K brace is arranged. B and B are beams to which the upper and lower ends of the frame frame 40 are respectively fixed. Each brace 42 is arranged in parallel with a long plate-like fixing plate 44 joined to a joint portion between the pillar 2 and the horizontal member 3 via a gusset plate 43 and overlapping the fixing plate 44. A viscoelastic damper including a movable plate 45 and a viscoelastic body 46 bonded to the opposing surfaces is formed between the plates 44 and 45 serving as vibration control members, and is connected to the fixed plate 44 in an orthogonal manner. The stopper pin 47 is passed through the long hole 48 provided in the longitudinal direction of the movable plate 45 to form a stopper mechanism, and the displacement restriction similar to the first and second embodiments can be performed within the clearance C1.

そして、ここでの摩擦ダンパー49は、両ブレース42,42の交点側となる柱2の中間部位に1つ設けられて複合ダンパーを構成している。すなわち、図7にも示す如く、中桟41及び両ブレース42,42の可動プレート45,45の端部が固着される平板状の連結バー50と、その連結バー50を前後から挟む格好でボルト52,52・・によって互いに平行に連結される一方の滑動部材としての一対の連結板51,51と、その連結板51,51の間に位置し、左側の柱2の中間部位にフレーム面と平行に固着される他方の滑動部材としての芯プレート53と、各連結板51における芯プレート53との対向面側に固着される摩擦板54,54と、各連結板51の外側から連結板51,51、摩擦板54,54、芯プレート53を貫通して緊締されるクランプ手段としての締付ボルト55とから形成される。56,56は、連結板51,51の外側で締付ボルト55の頭部とナットとの間に介在された面圧スペーサである。
また、芯プレート53における締付ボルト55の貫通部分は、上下方向に長い長孔57となっている。この締付ボルト55と長孔57の端部とのクリアランスC2も、ブレース42におけるストッパピン47と長孔48とのクリアランスC1よりも大きい設定で、粘弾性ダンパーのストッパ機構が動作する負荷と摩擦ダンパー49の滑り荷重との大小関係も上記形態と同様である。
One friction damper 49 here is provided at an intermediate portion of the column 2 on the intersection side of both braces 42 and 42 to constitute a composite damper. That is, as shown in FIG. 7, the plate-like connecting bar 50 to which the ends of the movable plates 45, 45 of the middle rail 41 and the braces 42, 42 are fixed, and the bolts that hold the connecting bar 50 from the front and the back. A pair of connecting plates 51, 51 as one sliding member connected in parallel with each other by 52, 52, .., and located between the connecting plates 51, 51, and a frame surface at an intermediate portion of the left pillar 2 The core plate 53 as the other sliding member fixed in parallel, the friction plates 54 and 54 fixed on the side of each connecting plate 51 facing the core plate 53, and the connecting plate 51 from the outside of each connecting plate 51. , 51, friction plates 54, 54, and fastening bolts 55 as clamping means that are fastened through the core plate 53. 56 and 56 are surface pressure spacers interposed between the heads of the tightening bolts 55 and the nuts on the outside of the connecting plates 51 and 51.
In addition, a penetration portion of the fastening bolt 55 in the core plate 53 is a long hole 57 that is long in the vertical direction. The clearance C2 between the tightening bolt 55 and the end of the long hole 57 is also set to be larger than the clearance C1 between the stopper pin 47 and the long hole 48 in the brace 42, and the load and friction at which the stopper mechanism of the viscoelastic damper operates. The magnitude relationship with the sliding load of the damper 49 is the same as that of the said form.

以上の如く構成された軸組フレーム40においても、地震による加振時には、上下のブレース42,42に、長手方向への引張力と圧縮力とが交互に加わり、粘弾性体46が長手方向に剪断変形することで、エネルギーを吸収して減衰作用を生じさせる。
そして、動的な大規模地震において過大な負荷が加わった場合、粘弾性体46の剪断変形によってクリアランスC1を相対移動したストッパピン47が長孔48の端部に当接し、それ以上の粘弾性体46の剪断変形を規制する。さらに同方向への負荷が増大して滑り荷重を超えると、摩擦ダンパー49において、可動プレート45,45に固定される連結板51,51が、締付ボルト55への長孔57の案内によって上下方向へ移動(軸組フレーム40が図6の右方向へ変形する場合は上方向へ、左方向へ変形する場合は下方向へ移動)し、摩擦減衰作用を生じさせる。この摩擦ダンパー49の動作により、軸組フレーム40の破壊が防止される。
Even in the frame frame 40 configured as described above, when the vibration is caused by the earthquake, the upper and lower braces 42 and 42 are alternately applied with the tensile force and the compressive force in the longitudinal direction, and the viscoelastic body 46 is moved in the longitudinal direction. By shear deformation, energy is absorbed and a damping action is generated.
When an excessive load is applied in a dynamic large-scale earthquake, the stopper pin 47 that has moved relative to the clearance C1 by the shear deformation of the viscoelastic body 46 comes into contact with the end of the long hole 48, and viscoelasticity beyond that. The shear deformation of the body 46 is restricted. When the load in the same direction further increases and exceeds the sliding load, the connecting plates 51 and 51 fixed to the movable plates 45 and 45 are moved up and down by the guide of the long hole 57 to the tightening bolt 55 in the friction damper 49. It moves in the direction (when the frame 40 is deformed to the right in FIG. 6, it moves upward, and when it is deformed to the left, it moves downward) to produce a friction damping action. The operation of the friction damper 49 prevents the shaft frame 40 from being broken.

一方、軸組フレーム40に、風等によって水平方向の外力が静的荷重として加わった際には、ブレース42の粘弾性ダンパーは、静的荷重の増大に連れて粘弾性体46が剪断変形の変位量を徐々に増大させることになる。しかし、ストッパピン47が長孔48の端部に当接すると、それ以上の変位が抑えられるため、以後の負荷に対して耐力を発生させることができる。このとき、摩擦ダンパー49は、滑り荷重を超えない限り動作しない。   On the other hand, when a horizontal external force is applied as a static load to the frame 40 by wind or the like, the viscoelastic damper of the brace 42 causes the viscoelastic body 46 to undergo shear deformation as the static load increases. The amount of displacement is gradually increased. However, when the stopper pin 47 comes into contact with the end portion of the long hole 48, further displacement is suppressed, so that a proof stress can be generated against the subsequent load. At this time, the friction damper 49 does not operate unless the sliding load is exceeded.

このように、上記形態3の軸組フレーム40においても、地震による加振時には、軸組フレーム40の設計最大耐力内での過大な負荷に対して摩擦ダンパー49を確実に動作させることができる。よって、軸組フレーム40の破壊を防止して好適な制震機能を維持でき、信頼性や耐久性に優れる。一方、風等による静的荷重に対しては、粘弾性ダンパーにおいてストッパ機構によって確実に耐力を発生させて静的荷重に対抗することができる。
特にこの形態では、複合ダンパーを、軸組フレーム40内を上下に二等分した各フレーム面内で対角線状に、且つ上下軸対称となるように配置された一対の粘弾性ダンパー(ブレース42)と、両粘弾性ダンパーの交点側の柱2の中間部位に配置され、連結板51に上下のブレース42を、芯プレート53に柱2を夫々接続した1つの摩擦ダンパー49とから形成したことで、2つの粘弾性ダンパーで1つの摩擦ダンパー49を共用できるため、構造が簡略化してコスト面で有利となる。また、摩擦ダンパー49を安定して動作させることもできる。
Thus, also in the frame frame 40 of the above-described form 3, the friction damper 49 can be reliably operated against an excessive load within the design maximum proof stress of the frame frame 40 at the time of vibration due to an earthquake. Therefore, destruction of the shaft frame 40 can be prevented and a suitable vibration control function can be maintained, and the reliability and durability are excellent. On the other hand, with respect to a static load caused by wind or the like, the viscoelastic damper can surely generate a proof stress by a stopper mechanism to counter the static load.
In particular, in this embodiment, the composite damper is a pair of viscoelastic dampers (braces 42) arranged diagonally in each frame plane that bisects the inside of the frame 40 and vertically symmetrical. The upper and lower braces 42 are connected to the connecting plate 51, and the friction plate 49 is connected to the core plate 53. Since one friction damper 49 can be shared by two viscoelastic dampers, the structure is simplified, which is advantageous in terms of cost. Further, the friction damper 49 can be operated stably.

《形態4》
図8に示す軸組フレーム60は、形態3と同じ粘弾性ダンパーを備えた4つのブレース42,42・・を、軸組フレーム60の中央から四隅に向けて放射状に配置したものであるが、ここでも図6,7と同様の摩擦ダンパー49が共用されて複合ダンパーが構成されている。すなわち、図9にも示すように、フレーム内の右側に位置する上下のブレース42,42及び中桟41に、連結バー50及び一方の滑動部材となる連結板51,51、摩擦板54,54、クランプ手段としての締付ボルト55等が設けられるものであるが、他方の滑動部材となる芯プレート61は、フレーム内の左側に位置する上下のブレース42,42の各固定プレート45及び中桟62に固定されている。クリアランスC1,C2の関係や、粘弾性ダンパーのストッパ機構が動作する負荷と摩擦ダンパーの滑り荷重との大小関係は他の形態と同じである。
よって、この軸組フレーム60においても、地震による加振時には、対角線上に位置する一対のブレース42,42ごとに、引張力と圧縮力とが交互に加わり、粘弾性体46が長手方向に剪断変形することで、エネルギーを吸収して減衰作用を生じさせる。
<< Form 4 >>
The shaft frame 60 shown in FIG. 8 has four braces 42, 42,... Having the same viscoelastic damper as in the third embodiment arranged radially from the center of the shaft frame 60 toward the four corners. Here, a friction damper 49 similar to that shown in FIGS. 6 and 7 is shared to form a composite damper. That is, as shown in FIG. 9, the upper and lower braces 42 and 42 and the middle rail 41 positioned on the right side in the frame are connected to the connecting bar 50 and the connecting plates 51 and 51 serving as one sliding member, and the friction plates 54 and 54. The clamping plate 55 or the like as a clamping means is provided. The core plate 61 as the other sliding member is provided with the fixing plates 45 and the middle rails of the upper and lower braces 42 and 42 located on the left side in the frame. 62 is fixed. The relationship between the clearances C1 and C2 and the magnitude relationship between the load at which the stopper mechanism of the viscoelastic damper operates and the sliding load of the friction damper are the same as in the other embodiments.
Therefore, also in this frame frame 60, during vibration due to an earthquake, a tensile force and a compressive force are alternately applied to each of the pair of braces 42, 42 located on the diagonal line, and the viscoelastic body 46 is sheared in the longitudinal direction. By deforming, it absorbs energy and causes a damping action.

そして、動的な大規模地震において過大な負荷が加わった場合、粘弾性体46の剪断変形によってクリアランスC1を相対移動したストッパピン47が長孔48の端部に当接し、それ以上の粘弾性体46の剪断変形を抑制する。さらに同方向への負荷が増大して滑り荷重を超えると、摩擦ダンパー49において、可動プレート45,45に固定される連結板51,51が、締付ボルト55への長孔57の案内によって上下方向へ移動(軸組フレーム60が図8の右方向へ変形する場合は上方向へ、左方向へ変形する場合は下方向へ移動)し、摩擦減衰作用を生じさせる。この摩擦ダンパー49の動作により、軸組フレーム60の破壊が防止される。   When an excessive load is applied in a dynamic large-scale earthquake, the stopper pin 47 that has moved relative to the clearance C1 by the shear deformation of the viscoelastic body 46 comes into contact with the end of the long hole 48, and viscoelasticity beyond that. The shear deformation of the body 46 is suppressed. When the load in the same direction further increases and exceeds the sliding load, the connecting plates 51 and 51 fixed to the movable plates 45 and 45 are moved up and down by the guide of the long hole 57 to the tightening bolt 55 in the friction damper 49. It moves in the direction (when the frame 60 is deformed to the right in FIG. 8, it moves upward, and when it is deformed to the left, it moves downward) to produce a friction damping action. The operation of the friction damper 49 prevents the shaft frame 60 from being broken.

一方、軸組フレーム60に、風等によって水平方向の外力が静的荷重として加わった際には、ブレース42の粘弾性ダンパーは、静的荷重の増大に連れて粘弾性体46が剪断変形の変位量を徐々に増大させることになる。しかし、ストッパピン47が長孔48の端部に当接すると、それ以上の変位が抑えられるため、以後の負荷に対して耐力を発生させることができる。このとき、摩擦ダンパー49は、滑り荷重を超えない限り動作しない。   On the other hand, when a horizontal external force is applied as a static load to the frame 60 by wind or the like, the viscoelastic damper of the brace 42 causes the viscoelastic body 46 to undergo shear deformation as the static load increases. The amount of displacement is gradually increased. However, when the stopper pin 47 comes into contact with the end portion of the long hole 48, further displacement is suppressed, so that a proof stress can be generated against the subsequent load. At this time, the friction damper 49 does not operate unless the sliding load is exceeded.

このように、上記形態4の軸組フレーム60においても、地震による加振時には、軸組フレーム60の設計最大耐力内での過大な負荷に対して確実に摩擦ダンパー49を動作させることができる。よって、軸組フレーム60の破壊を防止して好適な制震機能を維持でき、信頼性や耐久性に優れる。一方、風等による静的荷重に対しては、粘弾性ダンパーにおいてストッパ機構によって確実に耐力を発生させて静的荷重に対抗することができる。
そしてこの形態でも、複合ダンパーを、軸組フレーム60の中央から軸組フレーム60の四隅へ向けて放射状に配置された4つの粘弾性ダンパー(ブレース42)と、軸組フレーム60の中央に配置され、連結板51に、右側の上下のブレース42,42を、芯プレート61に、左側の上下のブレース42,42を夫々接続した1つの摩擦ダンパー49とから形成したことで、4つの粘弾性ダンパーで1つの摩擦ダンパー49を共用できるため、構造が簡略化してコスト面で有利となると共に、摩擦ダンパー49を安定動作させることができる。
Thus, also in the frame frame 60 of the above-described form 4, the friction damper 49 can be reliably operated against an excessive load within the design maximum proof stress of the frame frame 60 during vibration due to an earthquake. Therefore, destruction of the shaft frame 60 can be prevented and a suitable vibration control function can be maintained, and the reliability and durability are excellent. On the other hand, with respect to a static load caused by wind or the like, the viscoelastic damper can surely generate a proof stress by a stopper mechanism to counter the static load.
In this embodiment as well, the composite damper is arranged at the center of the frame frame 60 and the four viscoelastic dampers (braces 42) arranged radially from the center of the frame frame 60 toward the four corners of the frame frame 60. The four upper and lower braces 42, 42 are formed on the connecting plate 51, and one friction damper 49 is connected to the core plate 61 on the left upper and lower braces 42, 42. Since one friction damper 49 can be shared, the structure is simplified and it is advantageous in terms of cost, and the friction damper 49 can be stably operated.

以下、変更例について説明する。
上記形態1〜4に共通して、ピン部材はストッパピンに限らず、制震部材に突設した突起や、制震部材に螺合させたボルト等を利用することもできる。また、ピン部材と長孔とは複数組を平行に設けても差し支えない。これは摩擦ダンパーにおいても同様で、締付ボルトと長孔とを複数組平行に設けることができる。さらに、長孔に代えて、制震部材の端縁に形成した切欠部として、ピン部材の規制を図ることも可能である。一方、摩擦ダンパーでのクランプ手段は、締付ボルトを貫通させて押圧する構造に限らず、滑動部材の外側から一対のアームで挟持して、一方のアームをネジ送り等で押圧させる構造等、適宜変更可能である。
Hereinafter, a modified example will be described.
In common with the first to fourth embodiments, the pin member is not limited to the stopper pin, and a protrusion protruding from the vibration control member, a bolt screwed to the vibration control member, or the like can be used. Further, a plurality of pairs of the pin member and the long hole may be provided in parallel. The same applies to the friction damper, and a plurality of sets of tightening bolts and long holes can be provided in parallel. Furthermore, it is also possible to restrict the pin member as a notch formed on the edge of the vibration control member instead of the long hole. On the other hand, the clamping means in the friction damper is not limited to the structure that penetrates the clamping bolt and presses it, but is sandwiched by a pair of arms from the outside of the sliding member, and the structure that presses one arm by screw feeding, etc. It can be changed as appropriate.

また、粘弾性ダンパーは、形態1,2では、1枚の固定プレートと2枚の可動プレートとの間に一対の粘弾性体を介在させる構造としているが、形態3,4のように、一方の1の制震部材(固定プレート等)と他方の1の制震部材(可動プレート等)との間に1の粘弾性体を介在させる構造としても良い。この場合、1の制震部材の端部に、摩擦ダンパーの滑動部材を形態3,4のように連結すれば良い。逆に、形態3,4では、形態1等のように、一方の1の制震部材と他方の2の制震部材との間に一対の粘弾性体を介在させる構造とすることも可能である。勿論制震部材は動作方向毎に複数ずつ設けても差し支えないし、上記形態のようにプレート形状に限らず、同軸で遊挿される大小異径の複数の筒体として、その筒体の間に粘弾性体を接着する構造も採用できる。この構造では、一方の動作側の筒体にストッパを、他方の動作側の筒体に長孔を設けてストッパ機構を設ければ良い。   In the first and second embodiments, the viscoelastic damper has a structure in which a pair of viscoelastic bodies are interposed between one fixed plate and two movable plates. It is also possible to adopt a structure in which one viscoelastic body is interposed between one damping member (such as a fixed plate) and the other one damping member (such as a movable plate). In this case, the sliding member of the friction damper may be connected to the end of the one damping member as in the third and fourth embodiments. On the contrary, in the third and fourth modes, as in the first mode, it is possible to adopt a structure in which a pair of viscoelastic bodies are interposed between one seismic control member and the other two seismic control members. is there. Of course, a plurality of vibration control members may be provided for each direction of operation, and not limited to the plate shape as in the above-described form, a plurality of large and small diameter cylinders that are loosely inserted coaxially are bonded between the cylinders. A structure in which an elastic body is bonded can also be adopted. In this structure, a stopper mechanism may be provided by providing a stopper in one cylinder on the operation side and providing a long hole in the cylinder on the other operation side.

一方、摩擦ダンパーにおいても、摩擦板は芯プレート側に固着しても良いし、摩擦板の材質も、ステンレス等の他の金属や、固着側と摩擦側とを別金属とした複合材等、所定の滑り荷重が得られるものであれば、適宜選択可能である。また、上記形態のように摩擦板を固着した滑動部材に代えて、滑動部材となるプレートの対向面同士に摩擦面(ローレット加工等)を直接加工して滑り荷重を得るようにしても良い。
さらに、形態3,4では、複数の粘弾性ダンパーに1つの摩擦ダンパーを共用する形態としているが、各粘弾性ダンパー毎に形態1のように個別の摩擦ダンパーを設けることは可能である。また、形態2,4の構造は、形態3のように上下に二分割したフレーム内に夫々形成することもできる。
On the other hand, in the friction damper, the friction plate may be fixed to the core plate side, the material of the friction plate is also another metal such as stainless steel, a composite material in which the fixing side and the friction side are separate metals, etc. As long as a predetermined sliding load can be obtained, it can be appropriately selected. Further, instead of the sliding member to which the friction plate is fixed as in the above embodiment, a sliding load may be obtained by directly processing a friction surface (knurling or the like) between the opposing surfaces of the plate to be the sliding member.
Furthermore, in forms 3 and 4, a single friction damper is shared by a plurality of viscoelastic dampers, but it is possible to provide individual friction dampers as in form 1 for each viscoelastic damper. Further, the structures of forms 2 and 4 can also be formed in a frame that is divided into two vertically as in form 3.

形態1の軸組フレームの正面図である。FIG. 6 is a front view of a shaft assembly frame of form 1. (A)はブレースの説明図、(B)〜(E)は加振時の動作を示す説明図である。(A) is explanatory drawing of a brace, (B)-(E) is explanatory drawing which shows the operation | movement at the time of vibration. 形態2の軸組フレームの正面図である。It is a front view of the shaft set frame of form 2. 粘弾性ダンパー及び摩擦ダンパーの説明図である。It is explanatory drawing of a viscoelastic damper and a friction damper. 加振時の動作を示す説明図である。It is explanatory drawing which shows the operation | movement at the time of vibration. 形態3の軸組フレームの正面図である。It is a front view of the shaft set frame of form 3. 摩擦ダンパー部分の説明図である。It is explanatory drawing of a friction damper part. 形態4の軸組フレームの正面図である。It is a front view of the axial frame of form 4. 摩擦ダンパー部分の説明図である。It is explanatory drawing of a friction damper part.

符号の説明Explanation of symbols

1,20,40,60・・軸組フレーム、2・・柱、3・・横架材、4,42・・ブレース、6,7,22,23,44・・固定プレート、8,24,45・・可動プレート、9,25・・粘弾性ダンパー、10,26,49・・摩擦ダンパー、12,28,47・・ストッパピン、13,16,29,32,48,57・・長孔、14,30,54・・摩擦板、15,31,55・・締付ボルト。
1, 20, 40, 60 ··· Frame frame, 2 · · · pillar, 3 · · horizontal member, 4, 42 · · brace, 6, 7, 22, 23, 44 · · fixed plate, 8, 24, 45 ·· movable plate, 9, 25 ·· viscoelastic damper, 10, 26, 49 ·· friction damper, 12, 28, 47 · · stopper pin, 13, 16, 29, 32, 48, 57 · · long hole 14, 30, 54 ... Friction plate 15, 31, 55 ... Tightening bolts.

Claims (4)

柱と横架材とで形成される軸組フレーム内に、
対向する複数の制震部材及びその制震部材間に固着される粘弾性体を備え、前記制震部材の相反方向への動作に伴う前記粘弾性体の剪断変形により減衰作用を生じさせる粘弾性ダンパーと、対向する複数の滑動部材及びその滑動部材同士を互いの対向方向へ押圧するクランプ手段を備え、前記クランプ手段のクランプ力に抗した前記滑動部材の相反方向への動作により摩擦減衰作用を生じさせる摩擦ダンパーと、を接続してなる複合ダンパーを架設して、
前記軸組フレームへの加振時には、前記粘弾性ダンパーの動作によって振動減衰作用を得る一方、前記軸組フレームの設計最大耐力内での所定の負荷で前記摩擦ダンパーを動作させるようにした建物の制震構造であって、
前記粘弾性ダンパーの制震部材間に、前記粘弾性体の剪断変形を、前記摩擦ダンパーが動作する所定の負荷よりも小さい負荷に対応した所定の変位で規制するストッパ機構を設けたことを特徴とする建物の制震構造。
In the frame frame formed by columns and horizontal members,
A viscoelasticity comprising a plurality of opposing damping members and a viscoelastic body fixed between the damping members, and causing a damping action by shear deformation of the viscoelastic body accompanying the operation of the damping member in the opposite direction A damper, a plurality of sliding members facing each other, and clamping means for pressing the sliding members in the opposing direction to each other, and a friction damping action by the movement of the sliding members in the opposite direction against the clamping force of the clamping means. Construct a composite damper that connects the friction damper to be generated,
The vibration damper is operated by the viscoelastic damper at the time of vibration to the frame frame, while the friction damper is operated with a predetermined load within the design maximum proof stress of the frame frame. A damping structure,
A stopper mechanism is provided between the vibration control members of the viscoelastic damper to restrict shear deformation of the viscoelastic body with a predetermined displacement corresponding to a load smaller than a predetermined load on which the friction damper operates. Seismic control structure of the building.
ストッパ機構が、何れか一方の動作側の制震部材に設けられるピン部材と、他方の動作側の制震部材に粘弾性体の変位方向に沿って設けられ、前記ピン部材が遊挿する長孔とからなる請求項1に記載の建物の制震構造。   A stopper mechanism is provided along the displacement direction of the viscoelastic body on the pin member provided on one of the operation-side vibration control members and the other operation-side vibration control member, and the pin member is loosely inserted. The building vibration control structure according to claim 1, comprising a hole. 複合ダンパーを、軸組フレーム内を上下に二等分した各フレーム面内で対角線状に、且つ上下軸対称となるように配置された一対の粘弾性ダンパーと、前記両粘弾性ダンパーの交点側の柱の中間部位に配置され、一方の動作側の滑動部材に前記上下の粘弾性ダンパーを、他方の動作側の滑動部材に前記柱を夫々接続した1つの摩擦ダンパーとから形成した請求項1又は2に記載の建物の制震構造。   A pair of viscoelastic dampers arranged so that the composite damper is diagonally symmetric in the frame plane obtained by dividing the inside of the frame frame into two halves vertically and symmetrical with respect to the vertical axis, and the intersection side of the two viscoelastic dampers 2. The upper and lower viscoelastic dampers are disposed at an intermediate portion of one of the pillars, and the upper and lower viscoelastic dampers are connected to one operating side sliding member, and one friction damper is connected to the other operating side sliding member. Or the vibration control structure of the building described in 2. 複合ダンパーを、軸組フレームの中央から前記軸組フレームの四隅へ向けて放射状に配置された4つの粘弾性ダンパーと、前記軸組フレームの中央に配置され、一方の動作側の滑動部材に、左右何れか一方側での上下の粘弾性ダンパーを、他方の動作側の滑動部材に、左右他方側での上下の粘弾性ダンパーを夫々接続した1つの摩擦ダンパーとから形成した請求項1又は2に記載の建物の制震構造。
Four viscoelastic dampers are arranged radially from the center of the shaft frame toward the four corners of the shaft frame, and the composite damper is disposed at the center of the shaft frame. 3. The upper and lower viscoelastic dampers on one of the left and right sides are formed from one friction damper in which the upper and lower viscoelastic dampers on the left and right other sides are respectively connected to the sliding member on the other operation side. Seismic control structure of building described in 2.
JP2005073505A 2005-03-15 2005-03-15 Building seismic control structure Active JP4355673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073505A JP4355673B2 (en) 2005-03-15 2005-03-15 Building seismic control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073505A JP4355673B2 (en) 2005-03-15 2005-03-15 Building seismic control structure

Publications (2)

Publication Number Publication Date
JP2006257674A true JP2006257674A (en) 2006-09-28
JP4355673B2 JP4355673B2 (en) 2009-11-04

Family

ID=37097239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073505A Active JP4355673B2 (en) 2005-03-15 2005-03-15 Building seismic control structure

Country Status (1)

Country Link
JP (1) JP4355673B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127868A (en) * 2006-11-21 2008-06-05 Ohbayashi Corp Vibration control device and vibration control method
JP2008138833A (en) * 2006-12-05 2008-06-19 Ohbayashi Corp Damper device, method of designing damper device, vibration control structure, vibration control method
JP2009228834A (en) * 2008-03-24 2009-10-08 Ohbayashi Corp Damping device
JP2009264015A (en) * 2008-04-25 2009-11-12 Tokai Rubber Ind Ltd Seismic response control apparatus
JP2010236197A (en) * 2009-03-30 2010-10-21 Takenaka Komuten Co Ltd Vibration control frame by composite damper, construction method for the vibration control frame by the composite damper, and interval adjusting method for the vibration control frame by the composite damper
JP2011006965A (en) * 2009-06-26 2011-01-13 Takenaka Komuten Co Ltd Brace structure, and building having the same
JP2012036601A (en) * 2010-08-05 2012-02-23 Mitsubishi Heavy Ind Ltd Vibration control damper
KR101134911B1 (en) 2011-08-31 2012-04-09 씨엠알기술연구원(주) Displacement amplified linear damper assembly with rotation damper for reducing seismic energy
JP2013152011A (en) * 2011-12-28 2013-08-08 Shimizu Corp Rotating inertia mass damper, brace damper and brace frame
JP2013159450A (en) * 2012-02-06 2013-08-19 Ohbayashi Corp Warehouse
JP2014001505A (en) * 2012-06-15 2014-01-09 Daiwa House Industry Co Ltd Buckling restraining brace with fail-safe mechanism
JP2014109286A (en) * 2012-11-30 2014-06-12 3M Innovative Properties Co Attenuation device
JP2014181519A (en) * 2013-03-21 2014-09-29 Daiwa House Industry Co Ltd Seismic control device
CN104153482A (en) * 2014-09-05 2014-11-19 大连理工大学 Frame-shear piezoelectric friction damping device
KR101564362B1 (en) 2014-10-01 2015-10-30 단국대학교 산학협력단 Hybrid Damping Device for Mitigation of Building Vibration
KR20160018100A (en) * 2014-08-08 2016-02-17 한국전력공사 Transmission tower
CN106062280A (en) * 2013-12-18 2016-10-26 Vsl国际股份公司 Device and method for friction damping
JP2017115553A (en) * 2015-12-25 2017-06-29 スリーエム イノベイティブ プロパティズ カンパニー Vibration control device and vibration control structure for building
JP2017222978A (en) * 2016-06-13 2017-12-21 株式会社大林組 Tensile structure, and vibration controlling structure
CN109594670A (en) * 2018-12-07 2019-04-09 东南大学 A kind of bionical multi-dimensional shock absorption device with anti-pull-out property and its every shock-dampening method
CN110439112A (en) * 2019-08-20 2019-11-12 华南理工大学 It is a kind of to exempt from prestressing force toughness steel construction by what hinge column was combined with elastic reset beam
CN110469176A (en) * 2019-08-12 2019-11-19 北京赛福思创减震科技股份公司 A kind of friction-type coupling beam damper and its application method
CN111101614A (en) * 2019-12-26 2020-05-05 郑州大学 Composite coupling beam damper and assembling method thereof
JP2020172813A (en) * 2019-04-12 2020-10-22 株式会社タツミ Bearing wall structure with damping performance of wooden building
CN112922182A (en) * 2021-01-28 2021-06-08 武汉工程大学 Self-resetting variable-damping variable-rigidity viscoelastic and friction composite damper

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127868A (en) * 2006-11-21 2008-06-05 Ohbayashi Corp Vibration control device and vibration control method
JP4737056B2 (en) * 2006-12-05 2011-07-27 株式会社大林組 Damper device, damper device design method, damping structure, damping method
JP2008138833A (en) * 2006-12-05 2008-06-19 Ohbayashi Corp Damper device, method of designing damper device, vibration control structure, vibration control method
JP2009228834A (en) * 2008-03-24 2009-10-08 Ohbayashi Corp Damping device
JP2009264015A (en) * 2008-04-25 2009-11-12 Tokai Rubber Ind Ltd Seismic response control apparatus
JP2010236197A (en) * 2009-03-30 2010-10-21 Takenaka Komuten Co Ltd Vibration control frame by composite damper, construction method for the vibration control frame by the composite damper, and interval adjusting method for the vibration control frame by the composite damper
JP2011006965A (en) * 2009-06-26 2011-01-13 Takenaka Komuten Co Ltd Brace structure, and building having the same
JP2012036601A (en) * 2010-08-05 2012-02-23 Mitsubishi Heavy Ind Ltd Vibration control damper
KR101134911B1 (en) 2011-08-31 2012-04-09 씨엠알기술연구원(주) Displacement amplified linear damper assembly with rotation damper for reducing seismic energy
JP2013152011A (en) * 2011-12-28 2013-08-08 Shimizu Corp Rotating inertia mass damper, brace damper and brace frame
JP2013159450A (en) * 2012-02-06 2013-08-19 Ohbayashi Corp Warehouse
JP2014001505A (en) * 2012-06-15 2014-01-09 Daiwa House Industry Co Ltd Buckling restraining brace with fail-safe mechanism
JP2014109286A (en) * 2012-11-30 2014-06-12 3M Innovative Properties Co Attenuation device
JP2014181519A (en) * 2013-03-21 2014-09-29 Daiwa House Industry Co Ltd Seismic control device
CN106062280A (en) * 2013-12-18 2016-10-26 Vsl国际股份公司 Device and method for friction damping
KR20160018100A (en) * 2014-08-08 2016-02-17 한국전력공사 Transmission tower
KR102116261B1 (en) * 2014-08-08 2020-05-29 한국전력공사 Transmission tower
CN104153482B (en) * 2014-09-05 2016-07-06 大连理工大学 The shearing piezoelectricity friction damping unit of frame structure
CN104153482A (en) * 2014-09-05 2014-11-19 大连理工大学 Frame-shear piezoelectric friction damping device
KR101564362B1 (en) 2014-10-01 2015-10-30 단국대학교 산학협력단 Hybrid Damping Device for Mitigation of Building Vibration
JP2017115553A (en) * 2015-12-25 2017-06-29 スリーエム イノベイティブ プロパティズ カンパニー Vibration control device and vibration control structure for building
JP2017222978A (en) * 2016-06-13 2017-12-21 株式会社大林組 Tensile structure, and vibration controlling structure
CN109594670A (en) * 2018-12-07 2019-04-09 东南大学 A kind of bionical multi-dimensional shock absorption device with anti-pull-out property and its every shock-dampening method
JP2020172813A (en) * 2019-04-12 2020-10-22 株式会社タツミ Bearing wall structure with damping performance of wooden building
CN110469176B (en) * 2019-08-12 2024-05-14 北京赛福思创减震科技股份公司 Friction type continuous beam damper and application method thereof
CN110469176A (en) * 2019-08-12 2019-11-19 北京赛福思创减震科技股份公司 A kind of friction-type coupling beam damper and its application method
CN110439112A (en) * 2019-08-20 2019-11-12 华南理工大学 It is a kind of to exempt from prestressing force toughness steel construction by what hinge column was combined with elastic reset beam
CN110439112B (en) * 2019-08-20 2024-05-28 华南理工大学 Prestressed ductile steel structure combined by hinge column and elastic reset beam
CN111101614A (en) * 2019-12-26 2020-05-05 郑州大学 Composite coupling beam damper and assembling method thereof
CN111101614B (en) * 2019-12-26 2024-09-27 郑州大学 Composite beam connecting damper and assembly method thereof
CN112922182B (en) * 2021-01-28 2022-04-19 武汉工程大学 Self-resetting variable-damping variable-rigidity viscoelastic and friction composite damper
CN112922182A (en) * 2021-01-28 2021-06-08 武汉工程大学 Self-resetting variable-damping variable-rigidity viscoelastic and friction composite damper

Also Published As

Publication number Publication date
JP4355673B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4355673B2 (en) Building seismic control structure
KR101146790B1 (en) Hybrid vibration control devices consisting of viscoelastic damper and hysteretic damper
JP2006241934A (en) Damper device
JP4737056B2 (en) Damper device, damper device design method, damping structure, damping method
JPWO2009001807A1 (en) Damper device
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
JP2014231897A (en) Tension brace vibration control system
KR101487134B1 (en) Cantilever Type Vibration Control Device Using Bearings
JP2001248324A (en) Friction joint type energy absorbing device for frame
JP2002357013A (en) Composite vibration-control brace
JP4635700B2 (en) Building seismic control structure
JP2012219553A (en) Vibration control structure
JP2002213531A (en) Damping device
JP5274851B2 (en) Friction damper and hybrid damper
JP2007016447A (en) Mounting structure of brace type viscoelastic damper
JP3772245B2 (en) Vibration control frame with composite damper
JP3147013U (en) Composite vibration brace
JP6297356B2 (en) Building seismic control structure
JP4579212B2 (en) Seismic damper installation structure
JP2005121041A (en) Friction damper gear
JP4049120B2 (en) Building seismic control structure
JP2018017249A (en) Vibration control device
JP6749288B2 (en) Composite damper, viscoelastic damper
JP2010007395A (en) Vibration control wall using corrugated steel plate
JP2005314917A (en) Vibration control stud

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Ref document number: 4355673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150807

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350