JP2006257477A - METHOD FOR MEASURING QUANTITY OF gamma-Fe2O3 IN IRON ORE - Google Patents
METHOD FOR MEASURING QUANTITY OF gamma-Fe2O3 IN IRON ORE Download PDFInfo
- Publication number
- JP2006257477A JP2006257477A JP2005075467A JP2005075467A JP2006257477A JP 2006257477 A JP2006257477 A JP 2006257477A JP 2005075467 A JP2005075467 A JP 2005075467A JP 2005075467 A JP2005075467 A JP 2005075467A JP 2006257477 A JP2006257477 A JP 2006257477A
- Authority
- JP
- Japan
- Prior art keywords
- iron ore
- iron
- ray diffraction
- amount
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、製鉄原料等に用いられる鉄鉱石の評価方法に関し、特に、鉄鉱石を構成する鉱物組成の1種であるγ−Fe2O3量を測定する方法に関する。 The present invention relates to a method for evaluating iron ore used for iron making raw materials and the like, and more particularly to a method for measuring the amount of γ-Fe 2 O 3 which is one of the mineral compositions constituting iron ore.
製鉄原料等に用いられる鉄鉱石は、主成分である鉄酸化物の化学形態、すなわち鉄と酸素との結合状態によって、Fe3O4を主成分とする黒色で磁性のある磁鉄鉱(以下、マグネタイトと言うこともある)、赤色を帯びたα−Fe2O3を主成分とする赤鉄鉱(以下、ヘマタイトと言うこともある)、化合水を10%前後含む褐鉄鉱(以下、リモナイトと言うこともある)に大別される(例えば、非特許文献1参照)。
Iron ore used for ironmaking raw materials, etc., is a black and magnetic magnetite (hereinafter referred to as magnetite) mainly composed of Fe 3 O 4 depending on the chemical form of iron oxide as a main component, that is, the binding state of iron and oxygen. ), Hematite mainly composed of red-colored α-Fe 2 O 3 (hereinafter sometimes referred to as hematite), limonite containing about 10% of combined water (hereinafter referred to as limonite). (See Non-Patent
また、褐鉄鉱は含水酸化鉄であり、その大部分はα−FeOOHを主成分とする針鉄鉱(以下、ゲーサイトと言うこともある)、γ−FeOOHを主成分とする鱗鉄鉱(以下、レピドクロサイトと言うこともある)であることが確認されている。 Limonite is hydrous iron oxide, most of which is goethite (hereinafter sometimes referred to as goethite) mainly composed of α-FeOOH, and sputite (hereinafter referred to as lepiite) mainly composed of γ-FeOOH. It is also confirmed that it is a doccrosite).
一般に、酸化鉄の化学形態としてFeO(以下、ウスタイトと言うこともある)も知られているが、不安定で、天然には産出しにくいと言われており、鉄鉱石中にはほとんど存在しないと考えられる。 Generally, FeO (hereinafter sometimes referred to as wustite) is also known as a chemical form of iron oxide, but it is said to be unstable and difficult to produce naturally, and is hardly present in iron ore. it is conceivable that.
実際の鉄鉱石中には、上記Fe3O4、α−Fe2O3、FeOOHを各々主成分とする磁鉄鉱、赤鉄鉱、褐鉄鉱の種々の化学形態からなる鉄酸化物と水酸化物が混在しており、鉄鉱石の鉱物組成は複雑である。 In the actual iron ore, iron oxides and hydroxides composed of various chemical forms of magnetite, hematite and limonite, each of which contains the above-mentioned Fe 3 O 4 , α-Fe 2 O 3 and FeOOH as a main component, are mixed. The mineral composition of iron ore is complex.
製鉄プロセスでは、塊状鉄鉱石および予め粉状鉄鉱石を焼結鉱等に塊成化した後、還元剤(コークスなどの炭材)とともに高炉に装入し、高炉内で加熱還元して溶融鉄鉄が製造されるが、原料として高炉に装入される鉄鉱石の鉱物組成によって高炉内での還元特性や通気性などが影響する。 In the iron making process, massive iron ore and powdered iron ore are agglomerated into sintered ore in advance, and then charged into a blast furnace together with a reducing agent (carbonaceous material such as coke), and heated and reduced in the blast furnace to produce molten iron. Iron is produced, but the reduction characteristics and air permeability in the blast furnace are affected by the mineral composition of iron ore charged into the blast furnace as a raw material.
また、高炉に装入する原料として所定粒径および強度が必要であるため、粉状鉄鉱石は、事前に塊成化プロセスにより、所定粒径および強度の焼結鉱、あるいはペレットに加工される。 In addition, since a predetermined particle size and strength are necessary as raw materials to be charged into the blast furnace, the powdered iron ore is processed into a sintered ore or pellets having a predetermined particle size and strength in advance by an agglomeration process. .
この粉状鉄鉱石の塊成化において、例えば、焼結プロセスを用いて所望の焼結鉱を製造するためには、複数種の粉状鉄鉱石を配合し、炭材(燃料)と副原料(石灰石、珪石など)と混合、造粒して擬似粒子とした後、焼結機に装入し、焼結機内に装入した原料中の炭材を空気中の酸素により燃焼させ、粉状鉄鉱石の一部を副原料と同化、溶融させて粉状鉄鉱石同士が焼結した焼結鉱とする。 In this agglomeration of powdered iron ore, for example, in order to produce a desired sintered ore using a sintering process, a plurality of types of powdered iron ore are blended, and a carbonaceous material (fuel) and an auxiliary material are mixed. After mixing and granulating (limestone, silica stone, etc.) to make pseudo-particles, they are charged into a sintering machine, and the carbonaceous material in the raw material charged into the sintering machine is burned with oxygen in the air and powdered. A part of the iron ore is assimilated with the auxiliary material and melted to obtain a sintered ore in which powdered iron ores are sintered together.
この焼結プロセスにおいて、安定した焼結操業を行い、高炉原料として必要な品質、例えば、強度、被還元性、耐還元粉化性などの品質を満足した焼結鉱を製造するためには、主原料である鉄鉱石の鉱物組成によって擬似粒子とするための造粒性や焼結性が異なる結果、得られる焼結鉱の鉱物組織および強度、還元性、耐還元粉化性などの品質が大きく左右する。 In this sintering process, in order to produce a sintered ore that performs stable sintering operations and satisfies the qualities required as a blast furnace raw material, such as strength, reducibility, and resistance to reduction dusting, Depending on the mineral composition of the iron ore, which is the main raw material, the granulation properties and sinterability to make pseudo particles differ, resulting in the mineral structure and strength of the resulting sinter, the strength, reducibility, reduction dust resistance, etc. It greatly affects.
このため、従来から、製鉄プロセスにおいて、主原料である鉄鉱石の鉱物組成を定量的に測定、評価し、鉄鉱石の品質を管理することが行なわれている。 For this reason, conventionally, in the iron making process, the mineral composition of iron ore, which is the main raw material, is quantitatively measured and evaluated to control the quality of the iron ore.
鉄鉱石の評価方法は、例えば、JIS M8202、JIS M8205、JIS M8207、JIS M8208、JIS M8210〜JIS M8230などで詳しく規定されている。この内、鉄鉱石を構成する、鉄酸化物、鉄水酸化物の評価で特に重要なのはJIS M8212「鉄鉱石−全鉄定量方法」、JIS M8213「鉄鉱石−酸可溶性鉄(II)定量方法」、JIS M8211「鉄鉱石−化合水定量方法」である。 The iron ore evaluation method is defined in detail in, for example, JIS M8202, JIS M8205, JIS M8207, JIS M8208, JIS M8210 and JIS M8230. Among these, JIS M8212 “Iron ore-total iron determination method” and JIS M8213 “Iron ore—acid-soluble iron (II) determination method” are particularly important in the evaluation of iron oxides and iron hydroxides constituting iron ore. , JIS M8211 “Iron Ore-Compound Water Determination Method”.
JIS M8212「鉄鉱石−全鉄定量方法」に準じて測定される鉄鉱石中の全鉄(T.Fe)は、例えば、Fe3O4の場合72.36mass%、Fe2O3では69.94mass%、FeOOHは62.85mass%となり、鉄鉱石の品質を考える上で非常に重要な指標となる。ただし、JIS M8212は全鉄含有率30mass%以上72mass%以下の試料に適用される。 JIS M8212 - total iron in the iron ore, which is measured according to "ore total iron quantification method" (T.Fe) is, for example, Fe 3 For O 4 72.36mass%, Fe 2 O 3 in 69. 94 mass% and FeOOH are 62.85 mass%, which are very important indices in considering the quality of iron ore. However, JIS M8212 is applied to a sample having a total iron content of 30 mass% to 72 mass%.
JIS M8213「鉄鉱石−酸可溶性鉄(II)定量方法」に準じて測定される酸可溶性鉄(II)は、2価の酸化鉄(FeO)であるが、上述の通り、FeOそのものは天然には産出しにくいため、この測定で検出されるFeOは、Fe3O4(FeOとFe2O3の逆スピネル型格子構造)を構成するFeOであることが知られている。 The acid-soluble iron (II) measured according to JIS M8213 “Iron ore-acid-soluble iron (II) determination method” is divalent iron oxide (FeO), but as described above, FeO itself is naturally It is known that FeO detected by this measurement is FeO constituting Fe 3 O 4 (reverse spinel lattice structure of FeO and Fe 2 O 3 ).
純粋なFe3O4の理想化学組成によれば、FeOが31.03mass%となり、Fe2O3、FeOOHはFeOを与えないため、JIS M8213「鉄鉱石−酸可溶性鉄(II)定量方法」により測定される鉄鉱石におけるFeO量を基に鉄鉱石中のFe3O4量を推定できる。ただし、JIS M8213は、酸可溶性鉄(II)含有率1mass%以上30mass%以下の試料に適用される。 According to the ideal chemical composition of pure Fe 3 O 4 , FeO becomes 31.03 mass%, and Fe 2 O 3 and FeOOH do not give FeO, so JIS M8213 “Iron ore-acid soluble iron (II) determination method” The amount of Fe 3 O 4 in the iron ore can be estimated based on the amount of FeO in the iron ore measured by the above. However, JIS M8213 is applied to a sample having an acid-soluble iron (II) content of 1 mass% to 30 mass%.
JIS M8211「鉄鉱石−化合水定量方法」に準じて測定される鉄鉱石の化合水(CW)は、事前に鉄鉱石を窒素気流中105℃で加熱して吸湿水を除去した後、950℃まで加熱した時に遊離した水分量の測定値である。 The iron ore compound water (CW) measured according to JIS M8211 “Iron Ore-Compound Water Determination Method” is 950 ° C. after heating the iron ore at 105 ° C. in a nitrogen stream in advance and removing moisture absorption water. It is a measured value of the amount of water released when heated up to.
上記Fe3O4、Fe2O3、FeOOHの3種類の鉄形態を考えた場合、CWを与えるものはFeOOH(理想的にはCW=10.14mass%)だけであるから、JIS M8211「鉄鉱石−化合水定量方法」によりFeOOHの化合水(CW)を求めることができる。ただし、JIS M8211は、化合水含有率0.05mass%以上10mass%以下の試料に適用される。 When considering the three types of iron forms of Fe 3 O 4, Fe 2 O 3 , and FeOOH, the only thing that gives CW is FeOOH (ideally CW = 10.14 mass%). The combined water (CW) of FeOOH can be determined by the “stone-compound water determination method”. However, JIS M8211 is applied to a sample having a compound water content of 0.05 mass% to 10 mass%.
実際の鉄鉱石には、鉄酸化物、鉄水酸化物の他に、石英などの酸化物、粘土鉱物などアルミノケイ酸塩、石灰石、苦土灰石などの炭酸塩が含まれているが、鉄酸化物、鉄水酸化物の鉄系化合物については上記の方法による鉄鉱石のT.Fe、FeO、CWによって概ね推定できるとされている。 In addition to iron oxide and iron hydroxide, the actual iron ore contains oxides such as quartz, aluminosilicates such as clay minerals, and carbonates such as limestone and mashed stone. For iron-based compounds of oxides and iron hydroxides, the T.O. It can be generally estimated by Fe, FeO, and CW.
しかし、上記従来のJISで定められた鉄鉱石中の鉄酸化物、鉄水酸化物の測定および鉄鉱石の評価法では、以下の問題があった。 However, the measurement of iron oxide and iron hydroxide in iron ore and the method for evaluating iron ore defined by the conventional JIS have the following problems.
つまり、上記従来のJISの鉄鉱石の評価法では、単独またはその組み合わせにより鉄鉱石中のFe3O4、Fe2O3、FeOOHの三種類の鉄化合物の形態までは推定できるが、Fe2O3をさらに、α−Fe2O3とγ−Fe2O3に区別して定量することはできなかった。 That is, in the above conventional JIS method for evaluating iron ore, it is possible to estimate the form of three types of iron compounds of Fe 3 O 4 , Fe 2 O 3 , and FeOOH alone or in combination, but Fe 2 O 3 further, it was not possible to quantify by distinguishing the alpha-Fe 2 O 3 and γ-Fe 2 O 3.
また、鉄鉱石中のγ−Fe2O3は、鉱物の結晶構造解析に良く用いられるX線回折法を用いても、その回折パターンがFe3O4とほとんど重なってしまい、γ−Fe2O3とFe3O4の両者を区別することは困難であった。 In addition, γ-Fe 2 O 3 in iron ore has a diffraction pattern almost overlapping with Fe 3 O 4 even when an X-ray diffraction method often used for crystal structure analysis of minerals is used, and γ-Fe 2 It was difficult to distinguish between O 3 and Fe 3 O 4 .
また、従来から、鉱物中に存在するγ−Fe2O3は、鉱物の組織観察によれば、Fe3O4と連続固溶体を形成しているため、組織観察でも鉄鉱石中のFe3O4とγ−Fe2O3の両者を区別できず、マータイトと呼ばれている(例えば、非特許文献2参照)。反射率(輝度)の変化から鉱物組織を解析する試みもあるが、経験的要素が強く、また判別の基準が曖昧なため、定量的な評価は行われていない。 Further, conventionally, γ-Fe 2 O 3 present in the mineral, according to structure observation minerals, because they form a continuous solid solution with Fe 3 O 4, Fe 3 O iron ore in structure observation Both 4 and γ-Fe 2 O 3 are indistinguishable and are called martite (see, for example, Non-Patent Document 2). There are attempts to analyze the mineral structure from changes in reflectance (brightness), but quantitative evaluation has not been performed due to strong empirical factors and vague discrimination criteria.
一方、従来から、鉄鉱石中に含有するFe2O3にはα型(α−Fe2O3:ヘマタイト)とγ型(γ−Fe2O3:マグヘマイト)の二種類の結晶形態があり、両者は反応性等の化学的性質が異なることが知られていた。 On the other hand, conventionally, Fe 2 O 3 contained in iron ore has two types of crystal forms, α-type (α-Fe 2 O 3 : hematite) and γ-type (γ-Fe 2 O 3 : maghemite). Both were known to differ in chemical properties such as reactivity.
また、鉄鉱石中のマータイト相は微細な気孔を持つことから吸水率が高く、焼結原料の造粒性に悪影響を及ぼすことが知られていた(例えば、非特許文献3参照)。このため、鉄鉱石中に含有するγ−Fe2O3を精度良く定量化する方法は、粉状鉄鉱石の塊成化プロセスにおける焼結原料の造粒性、ひいては、焼結鉱の生産性、焼結鉱の品質を改善するために望まれていた。 In addition, it has been known that the martite phase in iron ore has fine pores and thus has a high water absorption rate, which adversely affects the granulation properties of the sintered raw material (for example, see Non-Patent Document 3). For this reason, the method of accurately quantifying γ-Fe 2 O 3 contained in iron ore is the granulation property of the sintering raw material in the agglomeration process of powdered iron ore, and consequently the productivity of the sintered ore. It was desired to improve the quality of sintered ore.
本発明は、上記の従来技術の現状を鑑みて、鉄鉱石の鉱物組成の中で従来の方法では測定が困難であったγ−Fe2O3を精度良く定量することが可能である鉄鉱石中のγ−Fe2O3量の測定方法を提供することを目的とする。 In view of the current state of the prior art described above, the present invention is capable of accurately quantifying γ-Fe 2 O 3 , which was difficult to measure by conventional methods, among the mineral compositions of iron ore. An object of the present invention is to provide a method for measuring the amount of γ-Fe 2 O 3 therein.
本発明者らは、上記課題を解決するために鋭意検討した結果、
(i)鉄鉱石の温度−示差熱曲線における特定温度範囲で観察されるγ−Fe2O3からα−Fe2O3への変態に起因して生じる発熱量を基に鉄鉱石中のγ−Fe2O3量を測定できること、
(ii)鉄鉱石のX線回折パターンにおける特定回折角で観察されるγ−Fe2O3とFe3O4に起因する回折ピークの強度を基に鉄鉱石中のγ−Fe2O3及びFe3O4の総量を測定するとともに、JIS M8213に準じて測定された鉄鉱石中の酸可溶性鉄(II)からFe3O4量を測定し、これらから、鉄鉱石中のγ−Fe2O3量を測定できること、および、
(iii)鉄鉱石を大気中で所定温度で加熱処理し、該鉄鉱石のX線回折パターンにおける特定回折角で観察されるγ−Fe2O3とFe3O4に起因する回折ピークの強度を基に鉄鉱石中のγ−Fe2O3量を測定できること、
を知見した。
As a result of intensive studies to solve the above problems, the present inventors have
(I) γ in iron ore based on the calorific value caused by transformation from γ-Fe 2 O 3 to α-Fe 2 O 3 observed in a specific temperature range in the temperature-differential heat curve of iron ore -fe 2 O 3 amount can be measured,
(Ii) γ-Fe 2 O 3 and iron ore X-ray diffraction pattern of iron ore based on the intensity of the diffraction peaks due to the γ-Fe 2 O 3 is observed Fe 3 O 4 at a specific diffraction angle in the Fe 3 with measuring the total amount of O 4, to measure the Fe 3 O 4 content of acid-soluble iron iron in the ore that is measured according to JIS M8213 (II), from these, in the iron ore gamma-Fe 2 Being able to measure the amount of O 3 , and
(Iii) Intensity of diffraction peaks caused by γ-Fe 2 O 3 and Fe 3 O 4 observed at a specific diffraction angle in an X-ray diffraction pattern of iron ore after heat treatment at a predetermined temperature in the atmosphere The amount of γ-Fe 2 O 3 in iron ore can be measured based on
I found out.
つまり、本発明の要旨とするところは、以下の通りである。 That is, the gist of the present invention is as follows.
(1)鉄鉱石中に含有するγ−Fe2O3量を測定する方法であって、鉄鉱石の示差走査熱量測定または示差熱分析により測定された温度−示差熱曲線における650〜750℃の温度範囲で観測された発熱ピークの面積を基に、鉄鉱石中のγ−Fe2O3量を求めることを特徴とする鉄鉱石中のγ−Fe2O3量の測定方法。 (1) A method for measuring the amount of γ-Fe 2 O 3 contained in iron ore, which is 650 to 750 ° C. in a temperature-differential heat curve measured by differential scanning calorimetry or differential thermal analysis of iron ore. based on the area of the exothermic peak observed in the temperature range, γ-Fe 2 O 3 of method of measuring iron ore, wherein the determination of the γ-Fe 2 O 3 content in the iron ore.
(2)鉄鉱石中に含有するγ−Fe2O3量を測定する方法であって、先ず、鉄鉱石のX線回折分析により測定されたX線回折パターンにおける回折角29.8〜30.5゜、または、42.9〜43.7゜で観測される回折ピークの強度からFe3O4およびγ−Fe2O3の総量を求め、次に、JIS M8213に準じて測定された前記鉄鉱石中の酸可溶性鉄(II)からFe3O4量を求め、前記Fe3O4およびγ−Fe2O3の総量と前記Fe3O4量から鉄鉱石中のγ−Fe2O3量を求めることを特徴とする鉄鉱石中のγ−Fe2O3量の測定方法。 (2) A method for measuring the amount of γ-Fe 2 O 3 contained in iron ore, first, a diffraction angle 29.8-30. In an X-ray diffraction pattern measured by X-ray diffraction analysis of iron ore. The total amount of Fe 3 O 4 and γ-Fe 2 O 3 was determined from the intensity of the diffraction peak observed at 5 ° or 42.9 to 43.7 °, and then measured according to JIS M8213. seeking Fe 3 O 4 content of acid-soluble iron in the iron ore (II), wherein Fe 3 O 4 and γ-Fe 2 O in the iron ore from the total amount of 3 and the Fe 3 O 4 weight gamma-Fe 2 O 3. A method for measuring the amount of γ-Fe 2 O 3 in iron ore, wherein the amount is determined.
(3)鉄鉱石中に含有するγ−Fe2O3量を測定する方法であって、鉄鉱石を大気中で400〜650℃の温度で加熱処理した後、該鉄鉱石のX線回折分析により測定されたX線回折パターンにおける回折角29.8〜30.5゜、または、42.9〜43.7゜で観測される回折ピークの強度からγ−Fe2O3の総量を求めることを特徴とする鉄鉱石中のγ−Fe2O3量の測定方法。 (3) A method for measuring the amount of γ-Fe 2 O 3 contained in iron ore, wherein the iron ore is heat-treated in the atmosphere at a temperature of 400 to 650 ° C., and then X-ray diffraction analysis of the iron ore is performed. The total amount of γ-Fe 2 O 3 is obtained from the intensity of diffraction peaks observed at diffraction angles of 29.8 to 30.5 ° or 42.9 to 43.7 ° in the X-ray diffraction pattern measured by A method for measuring the amount of γ-Fe 2 O 3 in iron ore characterized by
本発明によれば、従来の方法では測定が困難であった鉄鉱石中のγ−Fe2O3を精度良く定量することが可能となる。γ−Fe2O3は、鉄鉱石中でマータイトと呼ばれる、Fe3O4とγ−Fe2O3が連続固溶体を形成する鉱物相であり、微細な気孔を持つことから吸水率が高く、焼結プロセスにおける粉状鉄鉱石の造粒性に悪影響を及ぼすことが知られている。 According to the present invention, γ-Fe 2 O 3 in iron ore, which has been difficult to measure by conventional methods, can be accurately quantified. γ-Fe 2 O 3 is a mineral phase in which Fe 3 O 4 and γ-Fe 2 O 3 form a continuous solid solution called martite in iron ore and has a high water absorption rate because it has fine pores. It is known to adversely affect the granulation properties of powdered iron ore in the sintering process.
したがって、本発明法の適用により製鉄プロセスの主原料として使用される鉄鉱石中のγ−Fe2O3を精度良く測定し、焼結プロセスにおける粉状鉄鉱石の造粒性や水分調湿などの生産性、ひいては、焼結鉱の品質の向上を可能とし、本発明による産業上の貢献は多大なものである。 Therefore, γ-Fe 2 O 3 in iron ore used as the main raw material of the iron making process by applying the method of the present invention is accurately measured, and the granularity and moisture conditioning of the powdered iron ore in the sintering process, etc. Therefore, it is possible to improve the quality of the sintered ore and the quality of the sintered ore, and the industrial contribution by the present invention is great.
以下に本発明の詳細を説明する。 Details of the present invention will be described below.
先ず、本発明の第1実施形態として、示差走査熱量測定法または示差熱分析法を用いて、鉄鉱石の650〜750℃の温度範囲で観測されるγ−Fe2O3がα−Fe2O3に変態する際に生じる発熱量から鉄鉱石中のγ−Fe2O3量を定量する方法について説明する。 First, as a first embodiment of the present invention, γ-Fe 2 O 3 observed in a temperature range of 650 to 750 ° C. of iron ore is changed to α-Fe 2 using a differential scanning calorimetry method or a differential thermal analysis method. gamma-Fe 2 O 3 content in the iron ore from the heating amount generated when transformed into O 3 methods of quantifying described.
物質の変態や反応などに伴う熱量変化は示差走査熱量法(Differential Scanning Calorimetry;DSC)、あるいは示差熱分析法(Differential Thermal Analysis;DTA)によって測定できる。 The calorie change accompanying transformation or reaction of a substance can be measured by differential scanning calorimetry (DSC) or differential thermal analysis (DTA).
DSCは、試料と基準物質の温度を一定のプログラムに従って変化させながら、その試料と基準物質へ流入する熱流差を温度の関数として測定する方法である。 DSC is a method of measuring a difference in heat flow flowing into a sample and a reference material as a function of temperature while changing the temperature of the sample and the reference material according to a certain program.
DTAは、試料と基準物質の温度を一定のプログラムに従って変化させながら、その試料と基準物質との温度差を温度の関数として測定する方法である。 DTA is a method of measuring the temperature difference between a sample and a reference material as a function of temperature while changing the temperature of the sample and the reference material according to a certain program.
DSCおよびDTAの何れの方法も試料の転移や変態、反応に伴う熱量の変化が温度の関数、あるいは、一定昇温速度の場合は時間の関数として測定することができ、その測定曲線における発熱ピークの面積から定量分析もできる。 In both DSC and DTA methods, the sample transition and transformation, and the change in the amount of heat accompanying the reaction can be measured as a function of temperature, or in the case of a constant heating rate, it can be measured as a function of time. Quantitative analysis can also be performed from the area.
図1に(a)Fe3O4、(b)α−Fe2O3、(c)γ−Fe2O3、(d)α−FeOOH、(e)γ−FeOOH、(f)Fe(OH)3の純粋試料1.0mgを各々大気中で室温から1000℃まで加熱した時の各化合物のDTA曲線を示す。 FIG. 1 shows (a) Fe 3 O 4 , (b) α-Fe 2 O 3 , (c) γ-Fe 2 O 3 , (d) α-FeOOH, (e) γ-FeOOH, (f) Fe ( The DTA curve of each compound when a pure sample of OH) 3 is heated from room temperature to 1000 ° C. in the air is shown.
大気中でFe3O4純粋試料は400℃程度の温度で酸化し始め、α−Fe2O3となる際に発熱する(図1(a)、参照)。さらに、α−Fe2O3は1000℃付近までの温度において変化しない(図1(b)、参照)。 In the air, the Fe 3 O 4 pure sample starts to oxidize at a temperature of about 400 ° C. and generates heat when it becomes α-Fe 2 O 3 (see FIG. 1A). Furthermore, α-Fe 2 O 3 does not change at temperatures up to around 1000 ° C. (see FIG. 1B).
γ−Fe2O3純粋試料は、700℃付近の温度でα−Fe2O3に変態するが、この変態は発熱反応であるから、この温度付近で発熱を生じる(図1(c)、参照)。 The pure sample of γ-Fe 2 O 3 transforms to α-Fe 2 O 3 at a temperature around 700 ° C., but this transformation is an exothermic reaction, and thus generates heat near this temperature (FIG. 1 (c), reference).
α−FeOOH純粋試料は250〜300℃の温度で脱水してα−Fe2O3となるが、この反応は吸熱反応であるから、この温度で吸熱を生じる(図1(d)、参照)。ここで生成したα−Fe2O3の結晶性は低いが、温度の上昇と共に結晶性が向上する。 An α-FeOOH pure sample is dehydrated to a α-Fe 2 O 3 at a temperature of 250 to 300 ° C. Since this reaction is an endothermic reaction, an endotherm is produced at this temperature (see FIG. 1 (d)). . The α-Fe 2 O 3 produced here has low crystallinity, but the crystallinity improves with increasing temperature.
γ−FeOOH純粋試料も250〜300℃の温度で脱水して(吸熱反応)吸熱を生じ、γ−Fe2O3となる(図1(e)、参照)。ここで生成したγ−Fe2O3の結晶性は低いが、さらに加熱すると、700℃付近の加熱温度でα−Fe2O3に変態する。この変態は発熱反応であるから、この温度で発熱を生じる(図1(e)、参照)。 The pure sample of γ-FeOOH is also dehydrated at a temperature of 250 to 300 ° C. (endothermic reaction) to generate an endotherm, and becomes γ-Fe 2 O 3 (see FIG. 1 (e)). Although the crystallinity of the produced γ-Fe 2 O 3 is low, when it is further heated, it transforms to α-Fe 2 O 3 at a heating temperature around 700 ° C. Since this transformation is an exothermic reaction, an exotherm occurs at this temperature (see FIG. 1 (e)).
Fe(OH)3純粋試料は付着水を多く持っており、加熱すると、まず付着水が脱水し(吸熱反応)吸熱を生じ、次に、α−FeOOHが250〜300℃の加熱温度で脱水して吸熱を生じ、α−Fe2O3となる(図1(f)、参照)。ここで生成したα−Fe2O3の結晶性は低いが、温度の上昇と共に結晶性が向上する。 The Fe (OH) 3 pure sample has a lot of adhering water, and when heated, the adhering water dehydrates (endothermic reaction) and generates endotherm, then α-FeOOH dehydrates at a heating temperature of 250-300 ° C. Endotherm, and becomes α-Fe 2 O 3 (see FIG. 1 (f)). The α-Fe 2 O 3 produced here has low crystallinity, but the crystallinity improves with increasing temperature.
鉄鉱石中の各鉱物相において図1(c)に示すようにγ−Fe2O3純粋試料だけが700℃付近の加熱温度で発熱反応による熱量増加を示す。また、図2は、図1(c)のγ−Fe2O3純粋試料のDTA曲線の拡大図である。図2から、γ−Fe2O3純粋試料がα−Fe2O3に変態する温度範囲は650〜750℃であることがわかる。 In each mineral phase in iron ore, as shown in FIG. 1 (c), only the pure sample of γ-Fe 2 O 3 shows an increase in calorie due to an exothermic reaction at a heating temperature around 700 ° C. FIG. 2 is an enlarged view of the DTA curve of the γ-Fe 2 O 3 pure sample of FIG. FIG. 2 shows that the temperature range in which the γ-Fe 2 O 3 pure sample is transformed to α-Fe 2 O 3 is 650 to 750 ° C.
以上から、鉄鉱石の示差走査熱量測定法(DSC)または示差熱分析法(DTA)により測定された温度−示差熱曲線における650〜750℃の温度範囲で観測されたγ−Fe2O3からα−Fe2O3への変態に起因する発熱ピークの面積、つまり、発熱量をもとに鉄鉱石中のγ−Fe2O3を定量することができる。 From the above, from γ-Fe 2 O 3 observed in the temperature range of 650 to 750 ° C. in the temperature-differential heat curve measured by differential scanning calorimetry (DSC) or differential thermal analysis (DTA) of iron ore. area of the exothermic peak due to transformation to α-Fe 2 O 3, that is, the γ-Fe 2 O 3 in the ore can be determined on the basis of the calorific value.
DTAあるいはDSCによる鉄鉱石中のγ−Fe2O3の定量は、測定されたDTA曲線(温度と示差熱の関係グラフ)またはDSC曲線(温度と熱量の関係グラフ)の650〜750℃の加熱温度において観測される発熱ピークのピーク面積から鉄鉱石中のγ−Fe2O3量を換算することで行うことができる。 Quantification of γ-Fe 2 O 3 in iron ore by DTA or DSC is performed by heating the measured DTA curve (temperature-differential heat relationship graph) or DSC curve (temperature-heat amount relationship graph) at 650-750 ° C. This can be done by converting the amount of γ-Fe 2 O 3 in the iron ore from the peak area of the exothermic peak observed at the temperature.
なお、図1(e)に示されるように、γ−FeOOH純粋試料も250〜300℃で脱水(吸熱反応)しγ−Fe2O3を生成した後、さらに、650℃から750℃の温度でα−Fe2O3に変態する際の発熱が観察される。 As shown in FIG. 1 (e), a pure sample of γ-FeOOH was also dehydrated (endothermic reaction) at 250 to 300 ° C. to produce γ-Fe 2 O 3, and then at a temperature of 650 to 750 ° C. The heat generation upon transformation to α-Fe 2 O 3 is observed.
このため、鉄鉱石の示差熱分析法(DTA)、あるいは、示差走査熱量法(DSC)により測定された鉄鉱石中のγ−Fe2O3量は、厳密には、加熱によりγ−FeOOHから生成したγ−Fe2O3量が含まれる。 Therefore, the amount of γ-Fe 2 O 3 in iron ore measured by differential thermal analysis (DTA) or differential scanning calorimetry (DSC) of iron ore is strictly determined from γ-FeOOH by heating. The amount of γ-Fe 2 O 3 produced is included.
通常の製鉄原料に用いられている鉄鉱石中に含有するγ−FeOOH量は少ないものの、X線回折測定法、あるいは、赤外分光分析法などから、より精度の高いγ−Fe2O3の定量を行なうためには、加熱する前の鉄鉱石中のγ−FeOOH量を求め、上記示差走査熱量法(DSC)、あるいは、示差熱分析法(DTA)により測定された鉄鉱石中のγ−Fe2O3量を補正することが好ましい。 Although the amount of γ-FeOOH contained in the iron ore used for ordinary iron-making raw materials is small, it is possible to obtain more accurate γ-Fe 2 O 3 from X-ray diffractometry or infrared spectroscopy. In order to perform quantitative determination, the amount of γ-FeOOH in the iron ore before heating is determined, and γ− in the iron ore measured by the above-mentioned differential scanning calorimetry (DSC) or differential thermal analysis (DTA). It is preferable to correct the amount of Fe 2 O 3 .
本発明の第1の実施形態は、概略、以下のように行なわれる。 The first embodiment of the present invention is generally performed as follows.
まず、純粋試薬のγ−Fe2O3の質量を測定し、DTAまたはDSC測定を行って、650℃から750℃の温度範囲で観測される発熱ピークの面積を求め、この面積を試料質量で除して単位質量あたりの発熱量を求める。 First, the mass of γ-Fe 2 O 3 as a pure reagent is measured, DTA or DSC measurement is performed, and the area of the exothermic peak observed in the temperature range of 650 ° C. to 750 ° C. is obtained. To obtain the calorific value per unit mass.
次に、鉄鉱石試料の質量を測定し、DTAまたはDSC測定を行って、650℃から750℃の温度範囲で観測される発熱ピークの面積と試料質量から、単位質量あたりの発熱量を求め、純粋試薬の単位質量あたりの発熱量と鉄鉱石試料の単位質量あたりの発熱量との比から下記(1)式によって鉄鉱石試料中のγ−Fe2O3量を算出する。 Next, the mass of the iron ore sample is measured, DTA or DSC measurement is performed, the calorific value per unit mass is obtained from the area of the exothermic peak observed in the temperature range of 650 ° C. to 750 ° C. and the sample mass, From the ratio of the calorific value per unit mass of the pure reagent and the calorific value per unit mass of the iron ore sample, the amount of γ-Fe 2 O 3 in the iron ore sample is calculated by the following equation (1).
γ−Fe2O3量(mass%)=(鉄鉱石単位質量あたり発熱量/純粋試薬単位質量あたり 発熱量)×100 ・・・(1) γ-Fe 2 O 3 amount (mass%) = (calorific value per unit mass of iron ore / calorific value per unit mass of pure reagent) × 100 (1)
次に、本発明の第2の実施形態として、X線回折分析法を用いて、鉄鉱石のX線回折パターンにおいて回折角29.8〜30.5゜、または、42.9〜43.7゜に観測されるピークの回折強度から鉄鉱石中のγ−Fe2O3とFe3O4の総量を求め、酸可溶性鉄(II)定量方法を用いて測定した酸化第一鉄量から鉄鉱石中のFe3O4量を求め、前記鉄鉱石中のγ−Fe2O3とFe3O4の総量と、前記鉄鉱石中のFe3O4量との差から、γ−Fe2O3量を算出する方法について説明する。 Next, as a second embodiment of the present invention, using an X-ray diffraction analysis method, a diffraction angle of 29.8 to 30.5 ° or 42.9 to 43.7 in an X-ray diffraction pattern of iron ore is used. The total amount of γ-Fe 2 O 3 and Fe 3 O 4 in the iron ore is obtained from the diffraction intensity of the peak observed at °, and the iron ore is determined from the amount of ferrous oxide measured using the acid-soluble iron (II) determination method. The amount of Fe 3 O 4 in the stone was determined, and from the difference between the total amount of γ-Fe 2 O 3 and Fe 3 O 4 in the iron ore and the amount of Fe 3 O 4 in the iron ore, γ-Fe 2 A method for calculating the amount of O 3 will be described.
先ず、本発明の第2の実施形態において、X線回折分析法を用いて鉄鉱石中のγ−Fe2O3とFe3O4の総量を求める方法を説明する。 First, in the second embodiment of the present invention, a method for obtaining the total amount of γ-Fe 2 O 3 and Fe 3 O 4 in iron ore using an X-ray diffraction analysis method will be described.
粒径0.25mm以下の鉄鉱石からなる粉末試料にスリットで細く絞られた波長λのX線を照射し、回折されるX線の回折角と回折強度から試料成分の結晶構造、すなわち、鉱物組成の同定を行い、回折強度から鉱物組成を定量する。 A powder sample made of iron ore having a particle size of 0.25 mm or less is irradiated with X-rays having a wavelength λ narrowed by a slit, and the crystal structure of the sample components, that is, minerals, from the diffraction angle and diffraction intensity of the diffracted X-rays The composition is identified, and the mineral composition is quantified from the diffraction intensity.
鉄鉱石からなる粉末試料のX線の回折角は、鉱物組成に依存する結晶面によって異なり、(2)式に示すBragg(ブラッグ)の法則に従って一定条件が満たされた時に定まる。 The X-ray diffraction angle of a powder sample made of iron ore varies depending on the crystal plane depending on the mineral composition, and is determined when a certain condition is satisfied according to the Bragg law shown in the equation (2).
nλ=2dsinθ ・・・(2)
ここで、λはX線の波長、nは回折次数、dは結晶格子面間隔、θはブラッグ角すなわち回折角を示す。
nλ = 2dsinθ (2)
Here, λ is the X-ray wavelength, n is the diffraction order, d is the crystal lattice spacing, and θ is the Bragg angle, that is, the diffraction angle.
図3に、純粋試薬の(a)Fe3O4、(b)α−Fe2O3、(c)γ−Fe2O3、(d)α−FeOOH、(e)γ−FeOOH、(f)Fe(OH)3の各々のX線回折パターンをそれぞれ示す。 FIG. 3 shows pure reagents (a) Fe 3 O 4 , (b) α-Fe 2 O 3 , (c) γ-Fe 2 O 3 , (d) α-FeOOH, (e) γ-FeOOH, ( f) Each X-ray diffraction pattern of Fe (OH) 3 is shown.
図3の(a)と(b)の比較からわかるように、鉄鉱石中のFe3O4とγ−Fe2O3の回折パターンは非常によく一致しており、回折パターンから鉄鉱石中のFe3O4とγ−Fe2O3を区別して定量することは困難である。 As can be seen from the comparison between (a) and (b) of FIG. 3, the diffraction patterns of Fe 3 O 4 and γ-Fe 2 O 3 in iron ore are in good agreement. It is difficult to distinguish and quantify Fe 3 O 4 and γ-Fe 2 O 3 .
一方、図3の(a)と(c)に示される鉄鉱石中のFe3O4とγ−Fe2O3の回折パターンは、図3の(b),(d)〜(f)に示されるその他の鉱物組成であるα−Fe2O3、α−FeOOH、γ−FeOOHの回折パターンとは全く異なるため、鉄鉱石の回折パターンによりFe3O4およびγ−Fe2O3とその他の鉱物組成とは十分区別することができる。 On the other hand, the diffraction patterns of Fe 3 O 4 and γ-Fe 2 O 3 in the iron ore shown in (a) and (c) of FIG. 3 are shown in (b), (d) to (f) of FIG. Since the diffraction patterns of α-Fe 2 O 3 , α-FeOOH, and γ-FeOOH, which are other mineral compositions shown, are completely different from each other, Fe 3 O 4 and γ-Fe 2 O 3 and others are different depending on the diffraction pattern of iron ore. It can be sufficiently distinguished from the mineral composition.
なお、図3の(f)に示されるFe(OH)3のX線回折パターンには、強度は弱いながらα−FeOOHと同じ回折角にピークが観測されており、Fe(OH)3には結晶性の低いα−FeOOHが含まれていることがわかる。しかし、Fe3O4および/またはγ−Fe2O3とは回折パターンが異なっている。 Note that X-ray diffraction pattern of the Fe (OH) 3 as shown in (f) of FIG. 3, the intensity is observed peaks at the same diffraction angles as alpha-FeOOH while weak, the Fe (OH) 3 is It can be seen that α-FeOOH having low crystallinity is contained. However, the diffraction pattern is different from Fe 3 O 4 and / or γ-Fe 2 O 3 .
以上から、X線回折分析法を用いて、鉄鉱石のX線回折パターンにおけるFe3O4とγ−Fe2O3の回折ピークの回折角度と回折強度を基に、鉄鉱石中のFe3O4とγ−Fe2O3の総量を算出することができる。
From the above, by using the X-ray diffraction analysis, based on the diffraction angle and diffraction intensity of the diffraction peak of Fe 3 O 4 in the X-ray diffraction pattern of the
X線回折分析法を用いた各鉱物組成の定量分析では、鉱物組成毎に透過・吸収係数が異なるため、各鉱物組成(Fe3O4、α−Fe2O3、γ−Fe2O3、α−FeOOH、γ−FeOOH、Fe(OH)3)の組成を変えた複数の混合試料を作成し、これらの混合試料のX線回折パターンにおける各鉱物組成の回折ピークの回折強度と濃度の関係から検量線を作り、この検量線を用いて実際に測定される鉄鉱石中の各鉱物組成濃度を求めるのが好ましい。 In the quantitative analysis of each mineral composition using the X-ray diffraction analysis method, the transmission and absorption coefficients differ for each mineral composition, so each mineral composition (Fe 3 O 4 , α-Fe 2 O 3 , γ-Fe 2 O 3). , Α-FeOOH, γ-FeOOH, Fe (OH) 3 ) with different compositions, and the diffraction intensity and concentration of diffraction peaks of each mineral composition in the X-ray diffraction pattern of these mixed samples It is preferable to make a calibration curve from the relationship, and to determine the concentration of each mineral composition in the iron ore actually measured using this calibration curve.
測定対象とする鉄鉱石中のFe3O4およびγ−Fe2O3、並びに、これらと共存するα−Fe2O3、α−FeOOH、γ−FeOOHおよびFe(OH)3は全て鉄の酸化物および水酸化物であり、各鉱物組成のX線透過・吸収係数は非常に近い。このため、鉄鉱石のX線回折パターンにおける各鉱物組成の特徴的な回折ピークの相対的な強度比から目的とするFe3O4、γ−Fe2O3の濃度を求めてもよい。 Fe 3 O 4 and γ-Fe 2 O 3 in the iron ore to be measured, and α-Fe 2 O 3 , α-FeOOH, γ-FeOOH and Fe (OH) 3 coexisting with them are all iron. These are oxides and hydroxides, and the X-ray transmission / absorption coefficient of each mineral composition is very close. Therefore, Fe 3 O 4 and an object from the relative intensity ratio of characteristic diffraction peaks of the respective mineral composition in the X-ray diffraction pattern of the iron ore, may determine the concentration of γ-Fe 2 O 3.
または、鉄鉱石のX線回折パターンにおける各鉱物組成(Fe3O4、α−Fe2O3、γ−Fe2O3、α−FeOOH、γ−FeOOH、Fe(OH)3)の回折ピークと重ならない回折角に回折ピークを持つような結晶物質、例えば、フッ化カルシウムなどを内部標準として一定量試料鉄鉱石に混合し、フッ化カルシウムの回折ピーク強度と目的とするFe3O4、γ−Fe2O3の回折ピーク強度の比から濃度を求めてもよい。
Or each mineral composition in the X-ray diffraction pattern of the iron ore diffraction peak of (Fe 3 O 4, α- Fe 2
測定対象である鉄鉱石中のFe3O4およびγ−Fe2O3のX線回折パターンは、回折角29.8〜30.5゜、35.4〜35.8゜、42.9〜43.7゜、56.8〜57.5゜、62.5〜63.2゜等にピークが観測され、Fe3O4およびγ−Fe2O3を定量するための回折角は特に限定する必要はない。 The X-ray diffraction patterns of Fe 3 O 4 and γ-Fe 2 O 3 in the iron ore to be measured are diffraction angles of 29.8 to 30.5 °, 35.4 to 35.8 °, 42.9 to Peaks are observed at 43.7 °, 56.8-57.5 °, 62.5-63.2 °, etc., and the diffraction angle for quantifying Fe 3 O 4 and γ-Fe 2 O 3 is particularly limited. do not have to.
しかし、測定条件によっては、一部の回折ピークがその他の鉱物組成の回折ピークと重なる場合もあるため、好ましくは、Fe3O4およびγ−Fe2O3以外の鉱物組成の回折ピークと重ならない、回折角29.8〜30.5゜、または、42.9〜43.7゜に観測されるピークを定量分析に用いるのが好ましい。 However, depending on the measurement conditions, some diffraction peaks may overlap with diffraction peaks of other mineral compositions. Therefore, it is preferable to overlap diffraction peaks of mineral compositions other than Fe 3 O 4 and γ-Fe 2 O 3. It is preferable to use the peak observed at a diffraction angle of 29.8 to 30.5 ° or 42.9 to 43.7 ° for quantitative analysis.
次に、本発明の第2実施形態において、鉄鉱石中のFe3O4を定量する方法について説明する。 Next, a method for quantifying Fe 3 O 4 in iron ore in the second embodiment of the present invention will be described.
鉄鉱石中のFe3O4は、鉄鉱石中の酸可溶性鉄(II)の測定、つまり、JIS M8213「鉄鉱石−酸可溶性鉄(II)定量方法」に則って鉄鉱石中の2価の酸化鉄であるFeOを測定し、この測定値から換算して求められる。 Fe 3 O 4 in iron ore is measured by acid-soluble iron (II) in iron ore, that is, in accordance with JIS M8213 “Iron ore-acid-soluble iron (II) determination method”. It is obtained by measuring FeO which is iron oxide and converting from this measured value.
上述の通りJIS M8213に則って測定される鉄鉱石中のFeOは天然には産出しにくいため、この方法で測定されるFeOは、Fe3O4(FeOとFe2O3の逆スピネル型格子構造)を構成するFeOとして測定され、下記(2)及び(3)によりFeOの測定値から鉄鉱石中のFe3O4に換算できる。 As described above, since FeO in iron ore measured according to JIS M8213 is difficult to produce naturally, FeO measured by this method is Fe 3 O 4 (reverse spinel lattice of FeO and Fe 2 O 3 It is measured as FeO constituting (structure), and can be converted to Fe 3 O 4 in iron ore from the measured value of FeO by the following (2) and (3).
{(FeOの式量:71.84)/(Fe3O4の式量:231.53)}×100
=31.03mass% ・・・(2)
{(JIS M8213から求められるFeO量:mass%)/31.03}×100
=鉄鉱石中のFe3O4量 ・・・(3)
{(Formula amount of FeO: 71.84) / (Formula amount of Fe 3 O 4 : 231.53)} × 100
= 31.03 mass% (2)
{(FeO amount determined from JIS M8213: mass%) / 31.03} × 100
= Fe 3 O 4 content in iron ore (3)
表1にJIS M8212「鉄鉱石−全鉄定量方法」およびJIS M8213「鉄鉱石−酸可溶性鉄(II)定量方法」に準じて測定した純粋試薬のFe3O4、α−Fe2O3、γ−Fe2O3、α−FeOOH、γ−FeOOH、Fe(OH)3のT.FeおよびFeOを測定した結果を示す。なお、表中の( )内には、理想化学組成に基づく理論値を示す。 Table 1 shows pure reagents Fe 3 O 4 and α-Fe 2 O 3 measured according to JIS M8212 “Iron ore-total iron determination method” and JIS M8213 “Iron ore-acid soluble iron (II) determination method”, T. of γ-Fe 2 O 3 , α-FeOOH, γ-FeOOH, Fe (OH) 3 The result of having measured Fe and FeO is shown. In addition, in () in a table | surface, the theoretical value based on an ideal chemical composition is shown.
表1から、JIS M8213に準じて測定したFeOの測定値から換算して得られた純粋試薬のFe3O4量は、( )内に示された理想化学組成に基づく理論値と精度良く一致することは明らかである。 From Table 1, the amount of Fe 3 O 4 of the pure reagent obtained by conversion from the measured value of FeO measured according to JIS M8213 is in good agreement with the theoretical value based on the ideal chemical composition shown in (). It is clear to do.
なお、JIS M8213によって測定される酸可溶性鉄(II)(FeO)は、2価の鉄が酸に溶けやすいことを利用して測定するものである。鉱石を構成する3価の鉄や金属鉄も酸に不溶ではないため、わずかにFeOとして検出される。このため、JIS M8213が適用される範囲は酸可溶性鉄(II)含有率1mass%以上30mass%以下の試料とされている。 In addition, acid-soluble iron (II) (FeO) measured by JIS M8213 is measured using the fact that divalent iron is easily dissolved in acid. Since trivalent iron and metallic iron constituting the ore are not insoluble in acid, they are slightly detected as FeO. For this reason, the range to which JIS M8213 is applied is a sample having an acid-soluble iron (II) content of 1 mass% to 30 mass%.
表1においても、試薬のγ−Fe2O3の見かけ上のFeO値は1.04mass%と示されているが、Fe2O3は結晶構造においてFeOとして存在しないため、この値はFe3O4量を示すものではない。 Also in Table 1, the apparent FeO value of the reagent γ-Fe 2 O 3 is 1.04 mass%, but since Fe 2 O 3 does not exist as FeO in the crystal structure, this value is Fe 3. It does not indicate the amount of O 4 .
以上から本発明の第2実施形態として、X線回折分析法を用いて、鉄鉱石のX線回折パターンにおいて回折角29.8〜30.5゜、または、42.9〜43.7゜に観測されるピークの回折強度から鉄鉱石中のγ−Fe2O3とFe3O4の総量を求め、JIS M8213の酸可溶性鉄(II)定量方法に準じて測定した酸化第一鉄量から、鉄鉱石中のFe3O4量を求め、前記鉄鉱石中のγ−Fe2O3とFe3O4の総量と、前記鉄鉱石中のFe3O4量との差から、γ−Fe2O3量を算出することができる。 From the above, as the second embodiment of the present invention, the X-ray diffraction analysis method is used to set the diffraction angle of 29.8 to 30.5 ° or 42.9 to 43.7 ° in the X-ray diffraction pattern of iron ore. The total amount of γ-Fe 2 O 3 and Fe 3 O 4 in the iron ore was determined from the diffraction intensity of the observed peak, and was determined from the amount of ferrous oxide measured according to the acid-soluble iron (II) determination method of JIS M8213. The amount of Fe 3 O 4 in the iron ore was determined, and from the difference between the total amount of γ-Fe 2 O 3 and Fe 3 O 4 in the iron ore and the amount of Fe 3 O 4 in the iron ore, γ− The amount of Fe 2 O 3 can be calculated.
次に、本発明の第3実施形態として、鉄鉱石を大気中で400〜650℃の温度で加熱処理した後、該鉄鉱石のX線回折分析により測定されたX線回折パターンにおける回折角29.8〜30.5゜、または、42.9〜43.7゜で観測された回折ピークの強度から鉄鉱石中のγ−Fe2O3量を求める方法を説明する。 Next, as a third embodiment of the present invention, after iron ore is heat-treated in the atmosphere at a temperature of 400 to 650 ° C., a diffraction angle 29 in an X-ray diffraction pattern measured by X-ray diffraction analysis of the iron ore is 29. A method for obtaining the amount of γ-Fe 2 O 3 in the iron ore from the intensity of the diffraction peak observed at .8-30.5 ° or 42.9-43.7 ° will be described.
上述のとおり、鉄鉱石を構成する鉱物組成(Fe3O4、α−Fe2O3、γ−Fe2O3、α−FeOOH、γ−FeOOH、Fe(OH)3)は、図1に示されるように、大気中で室温から1000℃まで加熱すると室温時の鉱物組成の一部は脱水、変態などにより鉱物組成が別のものに変化する。 As described above, the mineral composition (Fe 3 O 4 , α-Fe 2 O 3 , γ-Fe 2 O 3 , α-FeOOH, γ-FeOOH, Fe (OH) 3 ) constituting the iron ore is shown in FIG. As shown, when heated from room temperature to 1000 ° C. in the atmosphere, part of the mineral composition at room temperature changes to another due to dehydration, transformation, and the like.
本発明の第3実施形態は、X線回折分析法において、鉄鉱石中の各鉱物組成の加熱温度に依存した構造変化を利用して、加熱処理後の鉄鉱石のX線回折パターンから鉄鉱石中のγ−Fe2O3量を定量するものである。 In the X-ray diffraction analysis method, the third embodiment of the present invention uses the structural change depending on the heating temperature of each mineral composition in the iron ore to calculate the iron ore from the X-ray diffraction pattern of the iron ore after the heat treatment. The amount of γ-Fe 2 O 3 is quantitatively determined.
図4〜図9は、各々大気中で、100℃、300℃、500℃、600℃、700℃、1000℃の温度で加熱処理した場合のFe3O4、α−Fe2O3、γ−Fe2O3、α−FeOOH、γ−FeOOH、Fe(OH)3の純粋試料のX線回折パターンを示す。 4 to FIG. 9 show Fe 3 O 4 , α-Fe 2 O 3 , and γ when heat treatment is performed at temperatures of 100 ° C., 300 ° C., 500 ° C., 600 ° C., 700 ° C., and 1000 ° C., respectively. -Fe 2 O 3, α-FeOOH , γ-FeOOH, shows a X-ray diffraction pattern of pure samples of Fe (OH) 3.
X線回折法は、先に述べたDTAやDSCのような熱分析法と異なり、測定対象物を連続的に加熱しながら測定することは困難であるため、大気中で100℃、300℃、500℃、600℃、700℃、1000℃の温度で加熱処理した同一純粋試料のX線回折パターンを測定した。 Unlike the thermal analysis methods such as DTA and DSC described above, the X-ray diffraction method is difficult to measure while continuously heating an object to be measured. X-ray diffraction patterns of the same pure sample heat-treated at temperatures of 500 ° C., 600 ° C., 700 ° C., and 1000 ° C. were measured.
前述の通り、図1の熱分析データ(DTA曲線)から鉄鉱石を構成する鉱物組成は加熱することによって、100℃の温度で純粋試料中の付着水は脱水し、300℃の温度でα−FeOOH、γ−FeOOH、Fe(OH)3結合水が脱水し、500℃の温度でFe3O4が酸化する温度、600℃および700℃の温度はγ−Fe2O3がα−Fe2O3に変態することを確認している。 As described above, the mineral composition constituting the iron ore is heated from the thermal analysis data (DTA curve) of FIG. 1 to dehydrate the adhering water in the pure sample at a temperature of 100 ° C., and α− at the temperature of 300 ° C. The temperature at which FeOOH, γ-FeOOH, Fe (OH) 3 -bonded water is dehydrated and Fe 3 O 4 is oxidized at a temperature of 500 ° C. is the temperature at 600 ° C. and 700 ° C., and γ-Fe 2 O 3 is α-Fe 2. The transformation to O 3 is confirmed.
X線回折パターンの測定対象である純粋試料の加熱処理温度は、これらの知見をもとに設定した。 The heat treatment temperature of the pure sample, which is the measurement target of the X-ray diffraction pattern, was set based on these findings.
図4に示す100℃、300℃、500℃、600℃、700℃、1000℃の温度で加熱処理した同一Fe3O4純粋試料の各X線回折パターンから、Fe3O4の回折ピーク(回折角2θ=18.28°、30.10°、35.48°、43.08°、53.50°、56.98°、62.56°、74.02゜等のピーク)は、500℃以上でほとんどなくなるとともに、α−Fe2O3の回折ピーク(回折角2θ=24.12°、33.14°、35.62°、40.86°、49.48°、54.08゜等のピーク)が大きくなる。 100 ° C. as shown in FIG. 4, 300 ℃, 500 ℃, 600 ℃, 700 ℃, the same was heat-treated at a temperature of 1000 ℃ Fe 3 O 4 from the X-ray diffraction pattern of pure samples, Fe 3 O 4 diffraction peaks ( Diffraction angle 2θ = 18.28 °, 30.10 °, 35.48 °, 43.08 °, 53.50 °, 56.98 °, 62.56 °, 74.02 °, etc.)) is 500 The diffraction peak of α-Fe 2 O 3 (diffraction angle 2θ = 24.12 °, 33.14 °, 35.62 °, 40.86 °, 49.48 °, 54.08 °) almost disappeared at a temperature higher than ℃. Etc.)) becomes larger.
この結果から、500℃、600℃の温度では、Fe3O4純粋試料のほとんどが、α−Fe2O3に変化したことが判る。これは、上述の通り、図1(a)に示されるFe3O4純粋試料のDTA曲線から、400℃の温度で、Fe3O4純粋試料の酸化、α−Fe2O3への変化がかなり進行することからも同様に確認できる。 From this result, it can be seen that at temperatures of 500 ° C. and 600 ° C., most of the Fe 3 O 4 pure sample was changed to α-Fe 2 O 3 . From the DTA curve of the Fe 3 O 4 pure sample shown in FIG. 1A as described above, the oxidation of the Fe 3 O 4 pure sample and the change to α-Fe 2 O 3 at a temperature of 400 ° C. The same can be confirmed from the fact that the process proceeds considerably.
図5に示す100℃、300℃、500℃、600℃、700℃、1000℃の温度で加熱処理した同一α−Fe2O3純粋試料の各X線回折パターンから、α−Fe2O3の回折ピーク(回折角2θ=24.12°、33.14°、35.62°、40.86°、49.48°、54.08゜等のピーク)は、大気中で1000℃まで加熱しても変化せず、α−Fe2O3純粋試料の構造は変化しない。 100 ° C. as shown in FIG. 5, 300 ℃, 500 ℃, 600 ℃, 700 ℃, from the X-ray diffraction pattern of the same α-Fe 2 O 3 pure sample heated at a temperature of 1000 ℃, α-Fe 2 O 3 Diffraction peaks (diffraction angles 2θ = 24.12 °, 33.14 °, 35.62 °, 40.86 °, 49.48 °, 54.08 °, etc.) are heated to 1000 ° C. in the atmosphere. Even if it does not change, the structure of the α-Fe 2 O 3 pure sample does not change.
図6に示す100℃、300℃、500℃、600℃、700℃、1000℃の温度で加熱処理した同一γ−Fe2O3純粋試料の各X線回折パターンから、γ−Fe2O3の回折ピーク(回折角2θ=18.30°、30.28°、35.70°、43.36°、53.82°、57.36°、62.96°、74.52゜等のピーク)は、大気中で600℃までの加熱ではほとんどその強度は変化せず、γ−Fe2O3純粋試料の構造は変化しない。 From each X-ray diffraction pattern of the same γ-Fe 2 O 3 pure sample heat-treated at temperatures of 100 ° C., 300 ° C., 500 ° C., 600 ° C., 700 ° C. and 1000 ° C. shown in FIG. 6, γ-Fe 2 O 3 Diffraction peaks (diffraction angles 2θ = 18.30 °, 30.28 °, 35.70 °, 43.36 °, 53.82 °, 57.36 °, 62.96 °, 74.52 °, etc.) ), The strength hardly changes when heated to 600 ° C. in the atmosphere, and the structure of the γ-Fe 2 O 3 pure sample does not change.
しかし、さらに、γ−Fe2O3純粋試料を700℃に加熱すると、γ−Fe2O3の回折ピークが減少し、これに代わってα−Fe2O3の回折ピーク(回折角2θ=24.12°、33.14°、35.62°、40.86°、49.48°、54.08゜等のピーク)の強度が増加することから、700℃以上の加熱で、γ−Fe2O3純粋試料はα−Fe2O3に変態し構造が変わったことがわかる。 However, when a γ-Fe 2 O 3 pure sample is further heated to 700 ° C., the diffraction peak of γ-Fe 2 O 3 decreases, and instead of this, the diffraction peak of α-Fe 2 O 3 (diffraction angle 2θ = 24.12 °, 33.14 °, 35.62 °, 40.86 °, 49.48 °, 54.08 °, etc.) increases in intensity. It can be seen that the Fe 2 O 3 pure sample was transformed to α-Fe 2 O 3 and the structure was changed.
図7に示す100℃、300℃、500℃、600℃、700℃、1000℃の温度で加熱処理した同一α−FeOOH純粋試料の各X線回折パターンから、α−FeOOHの回折ピーク(回折角2θ=17.72°、21.18°、26.30°、33.20°、36.64°、41.16°、53.20°、58.96°、71.52゜等のピーク)は、300℃付近でその強度が減少し、一方、α−Fe2O3の回折ピーク(回折角2θ=24.12、33.14、35.62、40.86、49.48、54.08゜等のピーク)が増加し始め、この温度でα−FeOOHの結合水が脱水し、α−Fe2O3に構造が変化する。 From each X-ray diffraction pattern of the same α-FeOOH pure sample heat-treated at 100 ° C., 300 ° C., 500 ° C., 600 ° C., 700 ° C. and 1000 ° C. shown in FIG. 2θ = 17.72 °, 21.18 °, 26.30 °, 33.20 °, 36.64 °, 41.16 °, 53.20 °, 58.96 °, 71.52 °, etc.) Is reduced in intensity around 300 ° C., while the diffraction peak of α-Fe 2 O 3 (diffraction angle 2θ = 24.12, 33.14, 35.62, 40.86, 49.48, 54. (Peaks such as 08 °) start to increase, and α-FeOOH bonded water dehydrates at this temperature, and the structure changes to α-Fe 2 O 3 .
特に、500℃以上の温度で、α−Fe2O3の回折ピークの増加は顕著となり、600〜700℃の加熱温度では、α−FeOOH純粋試料のほとんどがα−Fe2O3の結晶構造に変化することがわかる。 In particular, the increase of the diffraction peak of α-Fe 2 O 3 becomes remarkable at a temperature of 500 ° C. or higher, and most of the α-FeOOH pure sample has a crystal structure of α-Fe 2 O 3 at a heating temperature of 600 to 700 ° C. It turns out that it changes to.
図8に示す100℃、300℃、500℃、600℃、700℃、1000℃の温度で加熱処理した同一γ−FeOOH純粋試料の各X線回折パターンから、γ−FeOOHの回折ピーク(回折角2θ=14.14°、27.04°、36.26°、38.06°、43.34°、46.78°、52.76°、60.16°、64.92°、68.40゜等のピーク)も、300℃付近でその強度が減少し、一方、γ−Fe2O3の回折ピーク(回折角2θ=30.28°、35.70°、43.36°、53.82°、62.96゜等のピーク)が増加し、この温度で、γ−FeOOHの結合水が脱水し、γ−Fe2O3に構造が変化する。 From each X-ray diffraction pattern of the same γ-FeOOH pure sample heat-treated at 100 ° C., 300 ° C., 500 ° C., 600 ° C., 700 ° C., and 1000 ° C. shown in FIG. 2θ = 14.14 °, 27.04 °, 36.26 °, 38.06 °, 43.34 °, 46.78 °, 52.76 °, 60.16 °, 64.92 °, 68.40 The intensity of the γ-Fe 2 O 3 diffraction peaks (diffraction angles 2θ = 30.28 °, 35.70 °, 43.36 °, 53.36 °, 53.degree.) Is also reduced. The peaks of 82 °, 62.96 °, etc.) increase, and at this temperature, the bound water of γ-FeOOH is dehydrated and the structure changes to γ-Fe 2 O 3 .
このγ−Fe2O3の構造は、600℃程度の温度までは、維持されるが、700℃以上の温度で、α−Fe2O3の回折ピーク(回折角2θ=24.12°、33.14°、35.62°、40.86°、49.48°、54.08゜等のピーク)が増大し、α−Fe2O3に変態することがわかる。 The structure of γ-Fe 2 O 3 is maintained up to a temperature of about 600 ° C., but the diffraction peak of α-Fe 2 O 3 (diffraction angle 2θ = 24.12 °, 33.14 °, 35.62 °, 40.86 °, 49.48 °, 54.08 °, etc.) increases, and it can be seen that it transforms into α-Fe 2 O 3 .
図9に示す100℃、300℃、500℃、600℃、700℃、1000℃の温度で加熱処理した同一Fe(OH)3純粋試料の各X線回折パターンから、Fe(OH)3には結晶性が低く量は少ないが、α−FeOOHの回折ピーク(回折角2θ=17.72°、21.18°、26.30°、33.20°、36.64°、41.16°、53.20°、58.96°、71.52゜等のピーク)が示めされ、Fe(OH)3そのものの回折ピークは回折パターンに現れない。これは、Fe(OH)3が非晶質、あるいは非常に細かい微結晶であるためと考えられる。 100 ° C. as shown in FIG. 9, 300 ℃, 500 ℃, 600 ℃, 700 ℃, the same Fe (OH) 3 the X-ray diffraction pattern of pure sample heated at a temperature of 1000 ° C., the Fe (OH) 3 is Although the crystallinity is low and the amount is small, the diffraction peak of α-FeOOH (diffraction angle 2θ = 17.72 °, 21.18 °, 26.30 °, 33.20 °, 36.64 °, 41.16 °, 53.20 [deg.], 58.96 [deg.], 71.52 [deg.] And the like, and the diffraction peak of Fe (OH) 3 itself does not appear in the diffraction pattern. This is presumably because Fe (OH) 3 is amorphous or very fine crystallites.
300℃以上の温度でのX線回折パターンにおけるα−Fe2O3の回折ピーク(回折角2θ=24.12°、33.14°、35.62°、40.86°、49.48°、54.08゜等のピーク)の増加から、Fe(OH)3純粋試料中のα−FeOOHは、300℃付近の温度で脱水してα−Fe2O3に構造が変化し、結晶性が低下する。 Diffraction peaks of α-Fe 2 O 3 in an X-ray diffraction pattern at a temperature of 300 ° C. or higher (diffraction angles 2θ = 24.12 °, 33.14 °, 35.62 °, 40.86 °, 49.48 ° , 54.08 °, etc.), the α-FeOOH in the Fe (OH) 3 pure sample dehydrates at a temperature around 300 ° C., and the structure changes to α-Fe 2 O 3 , resulting in crystallinity. Decreases.
また、この際、Fe(OH)3も脱水が起こり、元素組成としてはFe2O3となる。両者は、500℃以上の加熱でα−Fe2O3の回折ピークの増加は顕著となり、600〜700℃の加熱温度では、そのほとんどがα−Fe2O3の結晶構造に変化することがわかる。 At this time, Fe (OH) 3 is also dehydrated, and the element composition becomes Fe 2 O 3 . In both cases, the increase in the diffraction peak of α-Fe 2 O 3 becomes remarkable when heating at 500 ° C. or higher, and most of them change to the crystal structure of α-Fe 2 O 3 at a heating temperature of 600 to 700 ° C. Recognize.
図10(a)〜(d)は、α−Fe2O3、Fe3O4、γ−Fe2O3の各純粋試薬と、α−Fe2O3(80mass%)、Fe3O4(15mass%)、および、γ−Fe2O3(5mass%)の各純粋試薬を混合した混合物について加熱しないで測定したX線回折パターンを示す。また、図11(a)〜(d)は、上記図10(a)〜(d)と同じ試料を600℃の温度で加熱処理して測定したX線回折パターンを示す。 10 (a) to 10 (d) show α-Fe 2 O 3 , Fe 3 O 4 , γ-Fe 2 O 3 pure reagents, α-Fe 2 O 3 (80 mass%), Fe 3 O 4. (15 mass%), and show the γ-Fe 2 O 3 X-ray diffraction pattern measured without heating the mixture obtained by mixing the pure reagent (5 mass%). FIGS. 11A to 11D show X-ray diffraction patterns measured by heat-treating the same sample as FIGS. 10A to 10D at a temperature of 600.degree.
図10(c)に示した加熱しないFe3O4純粋試料のX線回折ピーク(回折角2θ=30.12゜と43.08゜)は、図10の(b)に示した加熱しないγ−Fe2O3純粋試料のX線回折ピークに近い位置にあり、図10(d)のα−Fe2O3純粋試料のX線回折ピークとは異なる位置にある。 The X-ray diffraction peaks (diffraction angles 2θ = 30.12 ° and 43.08 °) of the unheated Fe 3 O 4 pure sample shown in FIG. 10 (c) are the unheated γ shown in FIG. 10 (b). It is located near the X-ray diffraction peak of the pure sample of —Fe 2 O 3 and is different from the X-ray diffraction peak of the α-Fe 2 O 3 pure sample of FIG.
一方、図11(c)に示した600℃の温度で加熱処理後のFe3O4純粋試料のX線回折ピークは、この温度でFe3O4はα−Fe2O3構造に変態し、そのX線回折ピークは、図10(d)に示した加熱しないα−Fe2O3純粋試料、および、図11(d)に示した同じ温度で加熱処理した後のα−Fe2O3純粋試料の回折ピークと一致する。 On the other hand, Fe 3 O 4 X-ray diffraction peaks of pure samples after the heat treatment at a temperature of 600 ° C. as shown in FIG. 11 (c), Fe 3 O 4 at this temperature is transformed into α-Fe 2 O 3 structure , the X-ray diffraction peaks, Figure 10 does not heat shown in (d) α-Fe 2 O 3 pure sample, and, after heat treatment at the same temperature as shown in FIG. 11 (d) α-Fe 2 O It is consistent with the diffraction peak of 3 pure samples.
従って、図10(a)に示す加熱しない混合物のX線回折パターンにおいて、回折角2θ=30.12゜と43.08゜で観測される回折ピークは、Fe3O4およびγ−Fe2O3の回折ピークが重なったものであるが、図11(a)に示す600℃の温度で加熱処理後の混合物のX線回折パターンにおいて、回折角2θ=30.08゜と43.16゜で観測される回折ピークはγ−Fe2O3の回折ピーク単独のものである。 Therefore, in the X-ray diffraction pattern of the unheated mixture shown in FIG. 10A, the diffraction peaks observed at diffraction angles 2θ = 30.12 ° and 43.08 ° are Fe 3 O 4 and γ-Fe 2 O. 3 overlapped with each other, but in the X-ray diffraction pattern of the mixture after the heat treatment at a temperature of 600 ° C. shown in FIG. 11A, the diffraction angles 2θ = 30.08 ° and 43.16 °. The observed diffraction peak is the diffraction peak of γ-Fe 2 O 3 alone.
以上の鉄鉱石の加熱処理温度と、X線回折パターンにおける鉄鉱石を構成する各鉱物組成の回折ピークとの関係から、本発明の第3実施形態では、X線回折パターンでγ−Fe2O3と重なる位置に回折ピークの回折角をもつ鉄鉱石中のFe3O4を加熱処理し、γ−Fe2O3と重ならない位置に回折ピークの回折角をもつα−Fe2O3に変態させるため、鉄鉱石の加熱処理温度を400℃以上とする(図4および図1(a)、参照)。 From the relationship between the heat treatment temperature of the iron ore and the diffraction peak of each mineral composition constituting the iron ore in the X-ray diffraction pattern, in the third embodiment of the present invention, in the X-ray diffraction pattern, γ-Fe 2 O is used. 3 and the Fe 3 O 4 in the iron ore having a diffraction angle of the diffraction peak at the position overlapping heat treatment, the α-Fe 2 O 3 having a diffraction angle of the diffraction peak in a position that does not overlap with gamma-Fe 2 O 3 In order to transform, the heat treatment temperature of the iron ore is set to 400 ° C. or higher (see FIG. 4 and FIG. 1 (a)).
鉄鉱石の加熱処理温度が低い場合でも、鉄鉱石中のFe3O4をα−Fe2O3に変態させることは可能であるが、完全に変態するまでの保持時間を長くする必要があるため、鉄鉱石を加熱処理する際の加熱温度の下限は600℃とするのが好ましい。 Even when the heat treatment temperature of iron ore is low, it is possible to transform Fe 3 O 4 in iron ore into α-Fe 2 O 3 , but it is necessary to lengthen the holding time until complete transformation. Therefore, it is preferable that the lower limit of the heating temperature when heat-treating iron ore is 600 ° C.
一方、鉄鉱石を加熱処理する際の加熱温度が650℃を超える場合では、X線回折パターンにおける測定対象である鉄鉱石中のγ−Fe2O3もα−Fe2O3に変態してしまうため(図2、図6参照)、室温で鉄鉱石中に存在するγ−Fe2O3の構造をそのまま維持させるために、鉄鉱石を加熱処理する際の過熱温度の上限は650℃に規定した。 On the other hand, when the heating temperature at the time of heat-treating iron ore exceeds 650 ° C., γ-Fe 2 O 3 in the iron ore that is a measurement target in the X-ray diffraction pattern is also transformed into α-Fe 2 O 3. Therefore, in order to maintain the structure of γ-Fe 2 O 3 present in the iron ore at room temperature as it is (see FIGS. 2 and 6), the upper limit of the heating temperature when the iron ore is heat-treated is 650 ° C. Stipulated.
鉄鉱石を400℃以上の加熱温度で加熱処理することにより、加熱処理前に存在していた鉄鉱石中のFe3O4と、鉄鉱石中のα−FeOOH、Fe(OH)3は、何れもα−Fe2O3に変態し(図4、7および9、参照)、この加熱温度の上限を650℃以下とすることにより、室温で存在する鉄鉱石中のγ−Fe2O3およびα−Fe2O3の構造を変化せず、そのまま維持する(図6および図5、参照)ことが可能となり、X線回折パターンにおいて目的とする鉄鉱石中のγ−Fe2O3の回折ピークを他の鉱物組成の回折ピークと分離し、高い精度で鉄鉱石中のγ−Fe2O3量を定量することができる。 By heating the iron ore at a heating temperature of 400 ° C. or higher, Fe 3 O 4 in the iron ore that existed before the heat treatment, and α-FeOOH and Fe (OH) 3 in the iron ore are either Is transformed to α-Fe 2 O 3 (see FIGS. 4, 7 and 9), and the upper limit of the heating temperature is set to 650 ° C. or less, so that γ-Fe 2 O 3 in iron ore existing at room temperature and The structure of α-Fe 2 O 3 can be maintained as it is (see FIGS. 6 and 5), and the diffraction of γ-Fe 2 O 3 in the target iron ore in the X-ray diffraction pattern can be achieved. The peak can be separated from diffraction peaks of other mineral compositions, and the amount of γ-Fe 2 O 3 in iron ore can be quantified with high accuracy.
なお、上記400℃〜650℃に加熱処理した鉄鉱石をX線回折する際は、加熱温度を保持した状態の鉄鉱石を測定しても、加熱処理した後、室温まで冷却した鉄鉱石を測定してもよい。 In addition, when X-ray diffraction is performed on the iron ore heat-treated at 400 ° C. to 650 ° C., the iron ore that has been heated to the room temperature is measured after the heat treatment even if the iron ore in the state where the heating temperature is maintained is measured. May be.
なお、図8に示されるように、鉄鉱石を400℃〜650℃の加熱温度で加熱処理すると、室温で存在していた鉄鉱石中のγ−FeOOHはγ−Fe2O3に変態するため、上記加熱温度で加熱処理した鉄鉱石のX線回折パターンから定量されたγ−Fe2O3量には、γ−FeOOHの構造が変化して生成したγ−Fe2O3量も一部含まれる。 As shown in FIG. 8, when iron ore is heat-treated at a heating temperature of 400 ° C. to 650 ° C., γ-FeOOH in the iron ore existing at room temperature is transformed into γ-Fe 2 O 3. The amount of γ-Fe 2 O 3 quantified from the X-ray diffraction pattern of the iron ore heat-treated at the above heating temperature is also partly the amount of γ-Fe 2 O 3 produced by changing the structure of γ-FeOOH included.
通常の製鉄原料に用いられている鉄鉱石中に含有するγ−FeOOH量は少ないものの、X線回折パターンからより精度の高いγ−Fe2O3の定量を行なうためには、加熱処理をしない鉄鉱石のX線回折パターンからγ−FeOOHを定量し、この測定値を基に、加熱処理した鉄鉱石のX線回折パターンから定量されたγ−FeOOH量を補正することが好ましい。 Although the amount of γ-FeOOH contained in the iron ore used for ordinary steelmaking raw materials is small, no heat treatment is performed in order to more accurately determine γ-Fe 2 O 3 from the X-ray diffraction pattern. It is preferable to quantify γ-FeOOH from the X-ray diffraction pattern of the iron ore and correct the amount of γ-FeOOH determined from the X-ray diffraction pattern of the heat-treated iron ore based on this measured value.
また、上記X線回折分析法を用いた各鉱物組成の定量分析では、鉱物組成毎に透過・吸収係数が異なるため、予め濃度の異なる純粋試薬(Fe3O4、α−Fe2O3、γ−Fe2O3、α−FeOOH、γ−FeOOH、Fe(OH)3)を混合した混合物を作成し、これらの混合試料のX線回折パターンにおける各鉱物組成の回折ピークの回折強度と濃度の関係から検量線を作り、この検量線を用いて、実際に測定される鉄鉱石中の各鉱物組成濃度を求めるのが好ましい。 Further, in the quantitative analysis of each mineral composition using the X-ray diffraction analysis method, since the transmission / absorption coefficients differ for each mineral composition, pure reagents (Fe 3 O 4 , α-Fe 2 O 3 , γ-Fe 2 O 3 , α-FeOOH, γ-FeOOH, Fe (OH) 3 ) are mixed, and the diffraction intensity and concentration of the diffraction peak of each mineral composition in the X-ray diffraction pattern of these mixed samples are prepared. It is preferable to make a calibration curve from the above relationship, and use this calibration curve to determine each mineral composition concentration in the iron ore that is actually measured.
検量線は、例えば、X線回折パターンにおける測定対象のFe3O4とγ−Fe2O3の29.8〜30.5゜、42.9〜43.7゜で観察される回折ピーク強度と、α−Fe2O3特有の23.8〜24.5、または、32.8〜33.5°、または40.5〜41.2°、または49.1〜49.8°、53.7〜54.4゜等で観察される回折ピークとの強度比と各鉱物濃度の関係から作成し、その後、この検量線を用いて、実際の鉄鉱石試料のX線回折パターンにおける同様の回折ピークの強度比から濃度を求めることが好ましい。 The calibration curve is, for example, diffraction peak intensities observed at 29.8 to 30.5 ° and 42.9 to 43.7 ° of Fe 3 O 4 and γ-Fe 2 O 3 to be measured in the X-ray diffraction pattern. And 23.8 to 24.5, or 32.8 to 33.5 °, or 40.5 to 41.2 °, or 49.1 to 49.8 °, 53 unique to α-Fe 2 O 3 , It is created from the relationship between the intensity ratio of the diffraction peak observed at .7 to 54.4 ° and the concentration of each mineral, and then, using this calibration curve, the same X-ray diffraction pattern in the actual iron ore sample is used. It is preferable to obtain the concentration from the intensity ratio of the diffraction peaks.
あるいは、各鉱物組成の回折ピークと重ならない回折角にピークを持つ結晶物質、例えばフッ化カルシウムなどを内部標準として一定量試料鉄鉱石に混合し、フッ化カルシウムの回折ピーク強度と測定対象であるFe3O4とγ−Fe2O3の回折ピークの強度比から濃度を求めてもよい。 Alternatively, a crystalline substance having a peak at a diffraction angle that does not overlap with the diffraction peak of each mineral composition, such as calcium fluoride, is mixed with a certain amount of sample iron ore as an internal standard, and the diffraction peak intensity of calcium fluoride and measurement target The concentration may be obtained from the intensity ratio of diffraction peaks of Fe 3 O 4 and γ-Fe 2 O 3 .
以上説明したように、本発明の第3実施形態によれば、X線回折分析法を用いて、400〜650℃で加熱した鉄鉱石のX線回折パターンにおける回折角29.8〜30.5゜、または、42.9〜43.7゜で観察される回折ピークの回折強度から鉄鉱石中のγ−Fe2O3量を求め、前記鉄鉱石中のγ−Fe2O3とFe3O4の総量と、前記鉄鉱石中のγ−Fe2O3量との差からFe3O4量を精度良く算出することができる。 As described above, according to the third embodiment of the present invention, the diffraction angle 29.8 to 30.5 in the X-ray diffraction pattern of iron ore heated at 400 to 650 ° C. using the X-ray diffraction analysis method. Or the amount of γ-Fe 2 O 3 in the iron ore from the diffraction intensity of the diffraction peak observed at 42.9 to 43.7 °, and γ-Fe 2 O 3 and Fe 3 in the iron ore are obtained. The amount of Fe 3 O 4 can be accurately calculated from the difference between the total amount of O 4 and the amount of γ-Fe 2 O 3 in the iron ore.
4種類の鉄鉱石A〜Dについて、以下の発明例1:示差熱分析(DTA)測定、発明例2:X線回折パターン測定およびJIS M8213「酸可溶性鉄(II)」(FeO)測定、発明例3:高温X線回折パターン(X線回折パターンの温度変化)測定、を用いて鉄鉱石中のγ−Fe2O3量を測定した。 For the four types of iron ores A to D, the following invention example 1: differential thermal analysis (DTA) measurement, invention example 2: X-ray diffraction pattern measurement and JIS M8213 “acid-soluble iron (II)” (FeO) measurement, invention Example 3: The amount of γ-Fe 2 O 3 in iron ore was measured using a high temperature X-ray diffraction pattern (temperature change of X-ray diffraction pattern) measurement.
(発明例1)
鉄鉱石A〜Dについて示差熱分析(DTA)を行なった。図12に一例として鉄鉱石AのDTA測定結果を示す。図12中の○で囲んだ部分が、650℃から750℃の加熱温度で観測されるγ−Fe2O3がα−Fe2O3に変態する際に生じる発熱ピークである。図13は図12に示したDTA曲線の上記発熱ピークを抽出し、ベースラインを補正した結果を示す。
(Invention Example 1)
Differential thermal analysis (DTA) was performed on iron ores A to D. FIG. 12 shows the DTA measurement result of iron ore A as an example. A portion surrounded by a circle in FIG. 12 is an exothermic peak generated when γ-Fe 2 O 3 transformed to α-Fe 2 O 3 observed at a heating temperature of 650 ° C. to 750 ° C. FIG. 13 shows the result of extracting the exothermic peak of the DTA curve shown in FIG. 12 and correcting the baseline.
ベースラインを補正すると、ピークが明瞭に観測され、ピーク面積の算出も容易である。鉄鉱石試料単位質量あたりのピーク面積(発熱量)と純粋試薬γ−Fe2O3の単位質量あたりの発熱量から計算すると、鉄鉱石A中のγ−Fe2O3量は5.6mass%であった。 When the baseline is corrected, the peak is clearly observed and the peak area can be easily calculated. When calculated from the peak area (calorific value) per unit mass of iron ore sample and the calorific value per unit mass of pure reagent γ-Fe 2 O 3 , the amount of γ-Fe 2 O 3 in iron ore A is 5.6 mass%. Met.
上記鉄鉱石Aと同様に他の鉄鉱石B〜D中のγ−Fe2O3量を測定した。これら鉄鉱石A〜Dの分析結果を表2に示す。 Similarly to the iron ore A, the amount of γ-Fe 2 O 3 in the other iron ores B to D was measured. The analysis results of these iron ores A to D are shown in Table 2.
(発明例2)
加熱しない鉄鉱石A〜DについてX線回折パターンを測定した。図14に、鉄鉱石試料A、B、C、Dの加熱しない試料のX線回折パターンを示す。
(Invention Example 2)
X-ray diffraction patterns were measured for iron ores A to D that were not heated. FIG. 14 shows the X-ray diffraction patterns of the iron ore samples A, B, C, and D that are not heated.
図14示す鉄鉱石試料A、B、C、DのX線回折パターンにおいて矢印で示す回折角2θ=29.8〜30.5゜で、Fe3O4およびγ−Fe2O3に相当するピークの強度から、Fe3O4およびγ−Fe2O3の総量を求めた。 In the X-ray diffraction patterns of the iron ore samples A, B, C, and D shown in FIG. 14, the diffraction angle 2θ = 29.8 to 30.5 ° indicated by the arrow corresponds to Fe 3 O 4 and γ-Fe 2 O 3 . From the peak intensity, the total amount of Fe 3 O 4 and γ-Fe 2 O 3 was determined.
また、JIS M8213「鉄鉱石−酸可溶性鉄(II)定量方法」により酸可溶性鉄(II)(FeO)を測定し、このFeO測定値からFe3O4量を求めた。表2に、これらFe3O4およびγ−Fe2O3総量、Fe3O4量、および、これらから求めたγ−Fe2O3量を示す。 Further, acid-soluble iron (II) (FeO) was measured according to JIS M8213 “Iron ore-acid-soluble iron (II) determination method”, and the amount of Fe 3 O 4 was determined from the measured value of FeO. Table 2 shows the total amount of Fe 3 O 4 and γ-Fe 2 O 3, the amount of Fe 3 O 4 , and the amount of γ-Fe 2 O 3 determined from these.
(発明例3)
600℃で加熱処理した鉄鉱石A〜DについてX線回折パターンを測定した。図15に、600℃で加熱処理した鉄鉱石のX線回折パターンを示す。
(Invention Example 3)
X-ray diffraction patterns were measured for iron ores A to D heat-treated at 600 ° C. FIG. 15 shows an X-ray diffraction pattern of iron ore heat-treated at 600 ° C.
600℃で加熱処理した鉄鉱石中のFe3O4は全てα−Fe2O3に変態するため、図15のX線回折パターンにおいて矢印で示した回折角2θ=29.8〜30.5゜で観察される回折ピークは、γ−Fe2O3に由来する回折ピークである。このピーク強度からγ−Fe2O3量を測定した結果を表4に示す。 Since all Fe 3 O 4 in the iron ore heat-treated at 600 ° C. is transformed into α-Fe 2 O 3 , the diffraction angle 2θ = 29.8-30.5 indicated by the arrow in the X-ray diffraction pattern of FIG. The diffraction peak observed at ° is a diffraction peak derived from γ-Fe 2 O 3 . The results of measuring the amount of γ-Fe 2 O 3 from this peak intensity are shown in Table 4.
なお、表4には、上記発明例2で測定した加熱しない鉄鉱石のX線回折パターンから求めたFe3O4およびγ−Fe2O3総量、および、前記γ−Fe2O3量とFe3O4及びγ−Fe2O3総量から求めたFe3O4量を示した。 Table 4 shows the total amount of Fe 3 O 4 and γ-Fe 2 O 3 determined from the X-ray diffraction pattern of the unheated iron ore measured in Invention Example 2, and the amount of γ-Fe 2 O 3 The amount of Fe 3 O 4 determined from the total amount of Fe 3 O 4 and γ-Fe 2 O 3 is shown.
表5に、上記発明例1〜3に示したγ−Fe2O3量、Fe3O4量(発明例2のみ)の測定結果、比較例として、従来法で測定したFe3O4量を示す。なお、比較例は、JIS M8213「鉄鉱石−酸可溶性鉄(II)定量方法」により酸可溶性鉄(II)(FeO)を測定し、この測定値から鉄鉱石中のFe3O4量を求めた。 Table 5, the invention examples 1~3 γ-Fe 2 O 3 amount shown in, Fe 3 O 4 content (Inventive Example 2 only) measurements, as a comparative example, Fe 3 O 4 weight measured by conventional methods Indicates. In the comparative example, acid-soluble iron (II) (FeO) was measured according to JIS M8213 “Iron ore-acid-soluble iron (II) determination method”, and the amount of Fe 3 O 4 in the iron ore was determined from this measured value. It was.
以上のように、本発明によれば、従来法では不可能であった、Fe3O4とγ−Fe2O3を分別して定量的に評価することができ、鉄鉱石品質評価法として好適に使用することができる。 As described above, according to the present invention, Fe 3 O 4 and γ-Fe 2 O 3 can be separated and quantitatively evaluated, which is impossible with the conventional method, and is suitable as an iron ore quality evaluation method. Can be used for
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005075467A JP2006257477A (en) | 2005-03-16 | 2005-03-16 | METHOD FOR MEASURING QUANTITY OF gamma-Fe2O3 IN IRON ORE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005075467A JP2006257477A (en) | 2005-03-16 | 2005-03-16 | METHOD FOR MEASURING QUANTITY OF gamma-Fe2O3 IN IRON ORE |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006257477A true JP2006257477A (en) | 2006-09-28 |
Family
ID=37097058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005075467A Withdrawn JP2006257477A (en) | 2005-03-16 | 2005-03-16 | METHOD FOR MEASURING QUANTITY OF gamma-Fe2O3 IN IRON ORE |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006257477A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009014404A (en) * | 2007-07-02 | 2009-01-22 | Orion Mach Co Ltd | Measuring apparatus of oil mist concentration |
JP2009014403A (en) * | 2007-07-02 | 2009-01-22 | Orion Mach Co Ltd | Measuring method of oil mist concentration and measuring apparatus of oil mist concentration |
JP2012026963A (en) * | 2010-07-27 | 2012-02-09 | Nippon Steel Corp | Oxide structure evaluation method |
JP2013092539A (en) * | 2013-02-04 | 2013-05-16 | Nippon Steel & Sumitomo Metal | Evaluation method for blended iron ore for sintering |
JP2013523586A (en) * | 2010-04-06 | 2013-06-17 | エボニック デグサ ゲーエムベーハー | Janus iron-silicon oxide particles |
JP2014095655A (en) * | 2012-11-12 | 2014-05-22 | Jfe Steel Corp | Method of analyzing iron-based oxide |
JP2014095653A (en) * | 2012-11-12 | 2014-05-22 | Jfe Steel Corp | Method of analyzing iron-based oxide |
JP2016098460A (en) * | 2014-11-21 | 2016-05-30 | カースル株式会社 | Functional non-woven fabric |
CN106596631A (en) * | 2017-02-13 | 2017-04-26 | 天津出入境检验检疫局化矿金属材料检测中心 | Method for distinguishing properties of iron mine and scale |
CN114594116A (en) * | 2022-03-15 | 2022-06-07 | 连云港海关综合技术中心 | Method for measuring phase content in iron ore |
-
2005
- 2005-03-16 JP JP2005075467A patent/JP2006257477A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009014404A (en) * | 2007-07-02 | 2009-01-22 | Orion Mach Co Ltd | Measuring apparatus of oil mist concentration |
JP2009014403A (en) * | 2007-07-02 | 2009-01-22 | Orion Mach Co Ltd | Measuring method of oil mist concentration and measuring apparatus of oil mist concentration |
JP2013523586A (en) * | 2010-04-06 | 2013-06-17 | エボニック デグサ ゲーエムベーハー | Janus iron-silicon oxide particles |
JP2012026963A (en) * | 2010-07-27 | 2012-02-09 | Nippon Steel Corp | Oxide structure evaluation method |
JP2014095655A (en) * | 2012-11-12 | 2014-05-22 | Jfe Steel Corp | Method of analyzing iron-based oxide |
JP2014095653A (en) * | 2012-11-12 | 2014-05-22 | Jfe Steel Corp | Method of analyzing iron-based oxide |
JP2013092539A (en) * | 2013-02-04 | 2013-05-16 | Nippon Steel & Sumitomo Metal | Evaluation method for blended iron ore for sintering |
JP2016098460A (en) * | 2014-11-21 | 2016-05-30 | カースル株式会社 | Functional non-woven fabric |
CN106596631A (en) * | 2017-02-13 | 2017-04-26 | 天津出入境检验检疫局化矿金属材料检测中心 | Method for distinguishing properties of iron mine and scale |
CN114594116A (en) * | 2022-03-15 | 2022-06-07 | 连云港海关综合技术中心 | Method for measuring phase content in iron ore |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006257477A (en) | METHOD FOR MEASURING QUANTITY OF gamma-Fe2O3 IN IRON ORE | |
Pourghahramani et al. | Reduction kinetics of mechanically activated hematite concentrate with hydrogen gas using nonisothermal methods | |
Ptak et al. | Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn–Teller distorted NiCr2O4 powders | |
Padella et al. | Mechanosynthesis and process characterization of nanostructured manganese ferrite | |
Carp et al. | Nonconventional methods for obtaining hexaferrites: II. Barium hexaferrite | |
Yang et al. | Mechanistic and kinetic analysis of Na2SO4-modified laterite decomposition by thermogravimetry coupled with mass spectrometry | |
Azianty et al. | Effects of Fe2O3 replacement of ZnO on elastic and structural properties of 80TeO2–(20− x) ZnO–xFe2O3 tellurite glass system | |
JP2010096592A (en) | Evaluation method of blended iron ore for sintering | |
US9169532B2 (en) | Process for the improvement of reducibility of ore pellets | |
Deraz et al. | Structural and magnetic properties of pure and doped nanocrystalline cadmium ferrite | |
JP5565481B2 (en) | Evaluation method of compound iron ore for sintering | |
Rajshekar et al. | Mill scale as a potential additive to improve the quality of hematite ore pellet | |
Khedr et al. | Reduction of carbon dioxide into carbon by freshly reduced CoFe2O4 nanoparticles | |
Ponomar | Crystal structures and magnetic properties of spinel ferrites synthesized from natural Fe–Mg–Ca carbonates | |
Wang et al. | Facile synthesis of metal-doped Ni-Zn ferrite from treated Zn-containing electric arc furnace dust | |
Marinca et al. | Influence of the heat treatment conditions on the formation of CuFe 2 O 4 from mechanical milled precursors oxides | |
Botta et al. | Kinetic study of ZnFe2O4 formation from mechanochemically activated Zn–Fe2O3 mixtures | |
Shofi et al. | Selective reduction of Southeast Sulawesi nickel laterite using palm kernel shell charcoal: kinetic studies with addition of Na2SO4 and NaCl as additives | |
JP5020446B2 (en) | Method for producing sintered ore | |
Hankare et al. | Effect of sintering temperature and thermoelectric power studies of the system MgFe2− xCrxO4 | |
Paananen | The effect of minor oxide components on reduction of iron ore agglomerates | |
Tang et al. | Oxidation kinetics of typical high FeO ferrous spinels | |
Kerry et al. | Zinc vaporization and self-reduction behavior of industrial waste residues for recycling to the HIsarna furnace | |
JP5307391B2 (en) | Magnetic carrier core material for electrophotographic developer and method for producing the same, magnetic carrier and electrophotographic developer | |
Nell et al. | Cation to anion stoichiometry of chromite: A new perspective |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080603 |