JP2006257442A - Process for removal of salt, catalytic reforming method and catalytic reforming apparatus using the process - Google Patents

Process for removal of salt, catalytic reforming method and catalytic reforming apparatus using the process Download PDF

Info

Publication number
JP2006257442A
JP2006257442A JP2006159512A JP2006159512A JP2006257442A JP 2006257442 A JP2006257442 A JP 2006257442A JP 2006159512 A JP2006159512 A JP 2006159512A JP 2006159512 A JP2006159512 A JP 2006159512A JP 2006257442 A JP2006257442 A JP 2006257442A
Authority
JP
Japan
Prior art keywords
salt
oil
filter
catalytic reforming
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006159512A
Other languages
Japanese (ja)
Other versions
JP4741982B2 (en
Inventor
Hideo Abe
秀雄 阿部
Shin Hasegawa
慎 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kashima Oil Co Ltd
Original Assignee
Kashima Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kashima Oil Co Ltd filed Critical Kashima Oil Co Ltd
Priority to JP2006159512A priority Critical patent/JP4741982B2/en
Publication of JP2006257442A publication Critical patent/JP2006257442A/en
Application granted granted Critical
Publication of JP4741982B2 publication Critical patent/JP4741982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective removal process of a salt contained in a hydrocarbon oil. <P>SOLUTION: The method for removal of a salt is characterized by filtering a hydrocarbon oil containing the salt through a filter at ≤120°C substantially in the absence of water to trap the salt with the filter, separation and washing of the filter with water to dissolve and remove the trapped salt and reuse of the salt free filter for the removal of the salt in the hydrocarbon oil. The present invention also relates to a catalytic reforming method and apparatus using aforementioned method for removal of the salt. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化水素油中の塩の除去方法に関し、より詳しくは、炭化水素油から塩化アンモニウム等の塩を極めて簡単な設備で効率的に除去する塩の除去方法に関する。また、本発明はかかる塩の除去方法を利用した接触改質装置及び接触改質方法に関する。   The present invention relates to a method for removing a salt in a hydrocarbon oil, and more particularly, to a salt removing method for efficiently removing a salt such as ammonium chloride from a hydrocarbon oil with very simple equipment. The present invention also relates to a catalytic reforming apparatus and a catalytic reforming method using such a salt removal method.

石油精製プロセスや石油化学プロセスにおいて、各種の石油製品や半製品を製造するために、蒸留塔による蒸留分離操作が広く採用されている。ところが、蒸留塔への原料油中に塩類が含有されていると、蒸留塔内において、塩類が固体となって析出してトレイ等のインターナルに堆積したり、付着し、気液の流路を閉塞して運転不調をきたすことがある。これは、同伴される塩類が蒸留塔内を移動する過程で濃縮されて、更には塩類の析出に好都合な温度、圧力、流速などの条件の部位に到達して析出が促進されて、塩類の堆積又は付着が起こるものと考えられる。石油精製等のプロセスにおいて処理される油に含まれてトラブルを引き起こす代表的な塩として塩化アンモニウムが挙げられる。塩化アンモニウム等の塩類は、高温では固体にならないが、低温で固体となり析出して各種のトラブルを引き起こすことになる。   In petroleum refining processes and petrochemical processes, distillation separation operations using distillation towers are widely used to produce various petroleum products and semi-finished products. However, if salts are contained in the raw material oil to the distillation tower, the salts are deposited as solids in the distillation tower and deposited or adhered to the internals of trays, etc. May cause a malfunction. This is because the entrained salt is concentrated in the process of moving through the distillation tower, and further reaches the site of conditions such as temperature, pressure, flow rate, etc. that are convenient for salt precipitation, and precipitation is promoted. It is believed that deposition or adhesion occurs. A typical salt that causes troubles in oils processed in processes such as petroleum refining is ammonium chloride. Salts such as ammonium chloride do not become solid at high temperatures, but become solid at low temperatures and cause various troubles.

このように塩類は、析出条件を満たす場所で、特に温度が低下することによって析出するので、蒸留塔に限らず、配管や熱交換器の閉塞、ホンプ/コンプレッサー等回転機の駆動不良を引き起こす等のトラブルを生じる。甚だしい場合には、当該機器の運転、更にはプロセス全体の運転を一時停止し、塩析出物を除去することも必要になる。これは、通常、1年以上の連続運転をすることが前提である石油精製や石油化学などの装置産業にとって大きな損失となる。   In this way, the salt is deposited in a place that satisfies the precipitation conditions, particularly when the temperature is lowered. Therefore, the salt is not limited to the distillation tower, and piping and heat exchangers are blocked, and rotation of a rotary machine such as a pump / compressor is caused. Cause trouble. In extreme cases, it is also necessary to suspend the operation of the equipment, and even the entire process, to remove salt deposits. This is a significant loss for equipment industries such as petroleum refining and petrochemistry, which are usually premised on continuous operation for one year or longer.

近年、石油精製業において、ナフサの接触改質装置は、連続触媒再生装置を装備した接触改質装置が広く採用されている。この連続触媒再生式の接触改質装置は、常にフレッシュな触媒(再生触媒)を改質反応器に供給し、順次複数の反応器に流して劣化した触媒を触媒再生系に送り、該触媒再生系においても再生を連続的に行い、活性を回復した触媒を再び改質反応器に供給するものである。このとき、改質触媒は、活性を調節するために触媒再生中に塩素化合物で処理される。塩素化合物の塩素分は再生触媒とともに改質反応器に入る。水素雰囲気かつ高温の改質反応器内で、塩素分は、ナフサフィードなどに不純物として同伴されるか、あるいは改質反応器の雰囲気下に生成された塩基性化合物と塩を生成し、接触改質油とともに反応器から流出する。塩は、高温下では固体にならないが、冷却されて120℃以下の温度で固化して反応器に後続するスタビライザー又はデブタナイザーなどの蒸留塔、配管や熱交換器、及びホンプ/コンプレッサー等の回転機において析出して上述のようなトラブルを引き起こす。   In recent years, in the petroleum refining industry, a catalytic reformer equipped with a continuous catalyst regeneration device has been widely adopted as a naphtha catalytic reformer. This continuous catalyst regeneration type catalytic reformer always supplies a fresh catalyst (regenerated catalyst) to the reforming reactor, and sequentially flows it to a plurality of reactors to send the deteriorated catalyst to the catalyst regeneration system. Also in the system, regeneration is continuously performed, and the catalyst whose activity is restored is supplied again to the reforming reactor. At this time, the reforming catalyst is treated with a chlorine compound during catalyst regeneration in order to adjust the activity. The chlorine content of the chlorine compound enters the reforming reactor together with the regenerated catalyst. In the reforming reactor in a hydrogen atmosphere and high temperature, the chlorine content is accompanied by impurities in the naphtha feed or the like, or the basic compound and salt produced in the reforming reactor atmosphere are generated, and the catalytic modification is performed. It flows out of the reactor together with quality oil. The salt does not become a solid at high temperature, but is cooled and solidified at a temperature of 120 ° C. or lower, followed by a distillation column such as a stabilizer or debutizer, a pipe or a heat exchanger, and a rotary machine such as a pump / compressor. In this case, it precipitates and causes the above troubles.

油中の塩類を除去する方法として、プロセス流体(炭化水素油)と水又は苛性ソーダ水溶液とを混合してプロセス流体中に含まれる塩を水又は苛性ソーダ水溶液側に移行させて除去する方法がある。この方法は、除去効果は期待されるが、水又は苛性ソーダ水溶液の注入設備、油と水又は苛性ソーダ水溶液との混合設備、油と水又は水溶液との分離設備、廃水処理設備等が必要となり、しかも、洗浄時にプロセス流体に微量水分が混入するため、水分によって性能が左右される装置が下流にある場合には、徹底した水分除去の追加対応が要求される。
前記洗浄方法に類似した塩の除去方法として、特開2000‐96067号公報は、蒸留塔内に堆積する塩類を除去するために、蒸留塔に水を導入する水溶性塩類を含む炭化水素油の蒸留方法を開示している。この方法は、水の注入設備、油と水の分離設備を増設ないし強化する必要があり、更に後続の炭化水素処理プロセスが水分を嫌う場合、上記の洗浄による方法と同様に炭化水素油中の微量水分を除去しなければならない問題を有している。
As a method for removing salts in oil, there is a method in which a process fluid (hydrocarbon oil) and water or a caustic soda aqueous solution are mixed and a salt contained in the process fluid is transferred to the water or caustic soda aqueous solution side to be removed. Although this method is expected to have a removal effect, it requires water or caustic soda aqueous solution injection equipment, oil and water or caustic soda aqueous solution mixing equipment, oil and water or aqueous solution separation equipment, wastewater treatment equipment, etc. Since a trace amount of water is mixed in the process fluid at the time of cleaning, if the device whose performance is affected by the water is downstream, additional measures for thorough water removal are required.
As a salt removal method similar to the washing method, JP-A-2000-96067 discloses a hydrocarbon oil containing water-soluble salts for introducing water into a distillation column in order to remove the salts accumulated in the distillation column. A distillation method is disclosed. In this method, water injection equipment, oil and water separation equipment need to be expanded or strengthened, and if the subsequent hydrocarbon treatment process dislikes moisture, the same as in the above washing method, There is a problem that trace moisture must be removed.

また、特開2001−72984号公報には、液状炭化水素流体中の無機及び有機塩素化合物を除去するために、(a)酸化亜鉛と(b)結合剤及び(c)少なくとも一種のアルカリ(土類)金属化合物を主成分として含有する塩素化合物除去剤、及びそれを用いる除去方法が開示されている。この発明は、塩素化合物を除去するとともに、有機塩素化合物の生成を抑制して塩素リークまでの期間の長期化を図ったものである。しかしながら、この発明の実施例にも示されているように、塩素化合物除去剤は、吸着剤であるから一定量の塩素化合物を吸着すると、それ以上の塩素化合物は吸着されずにリークする。したがって、リークする前に吸着剤を交換する必要があるが、その予測(すなわち、吸着剤の寿命予測)は極めて困難であり、計画的な定期修理に合わせて吸着剤を無駄なく使いきることは不可能といえる。更に、吸着剤による方法は、当然、吸着剤が充填された塩素化合物除去設備を増設し、定期修理時ごとに高価な吸着剤を購入して交換する必要があり、しかも使用済み吸着剤を二次公害に配慮して処分しなければならない等の問題も有している。   Japanese Patent Laid-Open No. 2001-72984 discloses (a) zinc oxide, (b) a binder, and (c) at least one alkali (earth) to remove inorganic and organic chlorine compounds in a liquid hydrocarbon fluid. Class) A chlorine compound removing agent containing a metal compound as a main component and a removing method using the same are disclosed. In the present invention, the chlorine compound is removed and the generation of the organic chlorine compound is suppressed to extend the period until the chlorine leak. However, as shown in the examples of the present invention, the chlorine compound removing agent is an adsorbent, and therefore, when a certain amount of chlorine compound is adsorbed, more chlorine compound leaks without being adsorbed. Therefore, it is necessary to replace the adsorbent before leaking, but it is extremely difficult to predict (that is, the life expectancy of the adsorbent), and it is not possible to use the adsorbent without waste for planned periodic repairs. It's impossible. Furthermore, in the method using an adsorbent, naturally, it is necessary to add a chlorine compound removal facility filled with the adsorbent, and purchase and replace an expensive adsorbent every time periodic repairs are performed. There are also problems such as having to dispose of in consideration of the next pollution.

本発明は、上記の問題を解決するものであり、極めて簡単で運転が容易な設備で、炭化水素油中の塩化アンモニウム等の塩を効果的に除去する塩の除去方法を提供することを目的とする。また、本発明は、前記塩の除去方法を利用したナフサの接触改質装置及び接触改質方法を提供することを目的とする。   An object of the present invention is to solve the above problems, and to provide a salt removal method for effectively removing a salt such as ammonium chloride in a hydrocarbon oil with an extremely simple and easy-to-operate facility. And Another object of the present invention is to provide a naphtha catalytic reforming apparatus and catalytic reforming method using the salt removal method.

本発明者等は、改質反応器に後続する蒸留塔における運転不良の発生原因について検討し、この原因が塩の析出、特に塩化アンモニウムの析出によるものであることを見出した。
この塩析出のメカニズムの詳細は明らかではないが、改質触媒の活性を調節するために再生中に注入される有機塩素化合物と、原料油等に由来する有機窒素化合物とが、改質反応器において、その高温及び水素雰囲気下で、塩化水素及びアンモニアを生成し、それらが反応して塩を生成して、温度の低下に伴い塩固形物(塩化アンモニウムの結晶)として局所的に析出したものと推察される。また、特に蒸留塔で問題となるのは、蒸留塔内において塩の濃縮、温度低下に伴う塩固形物(結晶)の成長、油の流速、その他の条件が大きな塩固形物の形成を促して蒸留塔のある部位に析出・堆積することと推察される。
The present inventors have examined the cause of operation failure in the distillation column following the reforming reactor, and found that this cause is due to salt precipitation, particularly ammonium chloride precipitation.
Although the details of the salt precipitation mechanism are not clear, an organic chlorine compound injected during regeneration to adjust the activity of the reforming catalyst and an organic nitrogen compound derived from the raw material oil, etc. In which hydrogen chloride and ammonia are produced under the high temperature and hydrogen atmosphere, and they react to form a salt, which is locally precipitated as a salt solid (ammonium chloride crystal) as the temperature decreases. It is guessed. In particular, the problem with distillation towers is that salt concentration in the distillation tower, growth of salt solids (crystals) as the temperature decreases, oil flow rate, and other conditions promote the formation of large salt solids. Presumed to be deposited and deposited at a certain part of the distillation tower.

本発明者等は、更に、この塩はある条件下で炭化水素油中において固体状態で存在し、フィルターによって容易に濾過除去できることを見出し、本発明に到達した。
すなわち、前記課題を解決した本発明の要旨は以下のとおりである。
(1) 塩を含有する炭化水素油を、実質的に水のない雰囲気下で120℃以下の温度でフィルターに通して濾過し、塩をフィルターで捕捉し、かつ、フィルターを切り離して水で洗浄し、捕捉された塩を溶解して除去し、塩が除去されたフィルターを炭化水素油中の塩の除去に再使用する炭化水素油中の塩の除去方法。
(2) 塩が、塩化アンモニウムである上記(1)記載の塩の除去方法。
(3) 炭化水素油が、蒸留前のナフサ接触改質油である上記(1)又は(2)に記載の塩の除去方法。
(4) 濾過を、0.1〜20μmの目開きを有するフィルターを用いて行う上記(1)〜(3)のいずれかに記載の塩の除去方法。
Furthermore, the present inventors have found that this salt exists in a hydrocarbon oil in a solid state under a certain condition and can be easily filtered off by a filter, and the present invention has been reached.
That is, the gist of the present invention that solves the above problems is as follows.
(1) The salt-containing hydrocarbon oil is filtered through a filter at a temperature of 120 ° C. or less in an atmosphere substantially free of water, the salt is captured by the filter, and the filter is separated and washed with water. And removing the trapped salt and reusing the filter from which the salt has been removed to remove the salt in the hydrocarbon oil.
(2) The method for removing a salt according to the above (1), wherein the salt is ammonium chloride.
(3) The method for removing a salt according to the above (1) or (2), wherein the hydrocarbon oil is a naphtha catalytic reformed oil before distillation.
(4) The salt removal method according to any one of (1) to (3), wherein the filtration is performed using a filter having an opening of 0.1 to 20 μm.

(5) ナフサを接触改質する接触改質装置において、接触改質反応器と、該接触改質反応器から流出する接触改質油に含まれる軽質分を除去するための蒸留塔との間に、実質的に水のない雰囲気下で前記接触改質油を120℃以下の温度で濾過して接触改質油中の塩を除去するフィルターを設けてなる接触改質装置。
(6) ナフサを接触改質する接触改質方法において、接触改質反応器と、該接触改質反応器から流出する接触改質油に含まれる軽質分を除去するための蒸留塔との間にフィルターを設け、実質的に水のない雰囲気下で前記接触改質油を120℃以下の温度で濾過して、接触改質油中の塩を除去する接触改質方法。
(5) In a catalytic reformer for catalytically reforming naphtha, between the catalytic reforming reactor and a distillation column for removing light components contained in the catalytic reforming oil flowing out from the catalytic reforming reactor And a filter for removing the salt in the catalytic reforming oil by filtering the catalytic reforming oil at a temperature of 120 ° C. or less in an atmosphere substantially free of water.
(6) In the catalytic reforming method for catalytically reforming naphtha, between the catalytic reforming reactor and a distillation column for removing light components contained in the catalytic reforming oil flowing out from the catalytic reforming reactor A catalytic reforming method in which a filter is provided on the catalytic reforming oil and the catalytic reforming oil is filtered at a temperature of 120 ° C. or less in an atmosphere substantially free of water to remove salts in the catalytic reforming oil.

本発明は、塩を含有する炭化水素油を、実質的に水のない雰囲気下で120℃以下で濾過する炭化水素油中の塩の除去方法であり、本発明によれば、簡単な設備で、効率よく炭化水素油から塩を除去することができる。したがって、後続の蒸留設備のトレイ等の閉塞、配管や熱交換器の閉塞、ホンプ/コンプレッサー等回転機の駆動不良などの塩析出によるトラブルを回避することができる。   The present invention is a method for removing a salt in a hydrocarbon oil by filtering a hydrocarbon oil containing a salt at a temperature of 120 ° C. or less in an atmosphere substantially free of water. The salt can be efficiently removed from the hydrocarbon oil. Therefore, troubles due to salt precipitation such as blockage of a tray of a subsequent distillation facility, blockage of a pipe or a heat exchanger, drive failure of a rotary machine such as a pump / compressor, and the like can be avoided.

本発明でいう塩を含有する炭化水素油としては、120℃以下の温度で析出する塩化アンモニウムなどの塩を含有する炭化水素油、原油や原料油に由来する塩を含有する精製油、石油留分を処理するプロセス又は石油化学プロセスで発生する塩を含有する当該プロセスの流出油などが挙げられる。具体的には、接触改質装置において、特には連続触媒再生装置を装備した接触改質装置において、接触改質反応器から流出する接触改質油、常圧蒸留装置から留出したナフサや灯油などの留出油を水素化脱硫した水素化脱硫油、減圧蒸留装置から留出する減圧軽油などが挙げられる。   Examples of the hydrocarbon oil containing a salt referred to in the present invention include a hydrocarbon oil containing a salt such as ammonium chloride which precipitates at a temperature of 120 ° C. or less, a refined oil containing a salt derived from crude oil or a raw oil, and a petroleum distillate. For example, a spilled oil of the process containing a salt generated in a process for treating a minute or a petrochemical process. Specifically, in a catalytic reformer, particularly in a catalytic reformer equipped with a continuous catalyst regeneration device, catalytic reformed oil flowing out from the catalytic reforming reactor, naphtha or kerosene distilled from the atmospheric distillation unit And hydrodesulfurized oil obtained by hydrodesulfurizing distillate such as reduced pressure gas oil distilled from a vacuum distillation apparatus.

すなわち、本発明は、塩を含有する炭化水素油、例えば接触改質油、水素化脱硫油などを、実質的に水のない雰囲気下で120℃以下の温度で濾過する塩化アンモニウム等の塩を除去する方法である。以下に本発明の実施の形態を、ナフサを接触改質する接触改質装置を代表的に取り上げて、図1及び2を参照して具体的に説明するが、本発明は、接触改質装置に限定されるものではない。図1に本発明の一実施態様としての接触改質装置を示し、図2に従来の接触改質装置を示す。図1及び2において、同じ設備は同一の符号を付した。   That is, the present invention provides a salt such as ammonium chloride for filtering a hydrocarbon oil containing a salt, such as catalytic reforming oil, hydrodesulfurized oil, etc., at a temperature of 120 ° C. or less in an atmosphere substantially free of water. It is a method of removing. Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2 with a catalytic reformer for catalytically reforming naphtha as a representative. It is not limited to. FIG. 1 shows a catalytic reforming apparatus as one embodiment of the present invention, and FIG. 2 shows a conventional catalytic reforming apparatus. 1 and 2, the same equipment is given the same reference numerals.

図2において、接触改質装置の原料ナフサ(脱硫ナフサ)はリサイクル水素と混合、加熱されたフィード7として改質反応器1に供給される。改質反応器1において、ナフサは水素ガス及び高温下に、連続的に再生系から供給される再生触媒13で接触改質される。図2で改質反応器は符号1として1基のみで示しているが、通常は、3、4基あって、ナフサと水素の混合物(フィード7)は3、4基の反応器間に設けられた加熱炉で温度調節されて各反応器を順次通過して改質される。触媒も反応器を順次通過して劣化触媒14となり、再生系(図示せず)に送られて再生され、活性を取り戻して、再生触媒13として再び改質反応器1に供給される。改質反応器1から流出する接触改質油8は、クーラー2で冷却されて分離槽3に送られ、水素リッチな軽質ガス10と該軽質ガス10が分離された接触改質油9として流出する。通常軽質ガス10の一部はリサイクル水素として使用される。接触改質油9は、ヒーター4で昇温されてスタビライザー又はデブタナイザーなどの蒸留塔5に送られて蒸留される。蒸留塔5の塔頂から軽質ガス又は液化石油ガス(LPG)以下の軽質留分12が流出し、塔底から蒸気圧を調整された又はLPG以下の軽質留分が分離された接触改質油11が流出する。接触改質油11はガソリン基材として又は芳香族成分を回収して化学製品を製造する石油化学用の原料として利用される。   In FIG. 2, the raw material naphtha (desulfurized naphtha) of the catalytic reformer is supplied to the reforming reactor 1 as a feed 7 mixed and heated with recycled hydrogen. In the reforming reactor 1, the naphtha is catalytically reformed with hydrogen gas and a regenerated catalyst 13 continuously supplied from the regeneration system at a high temperature. In FIG. 2, the reforming reactor is shown by only one unit as reference numeral 1, but usually there are three or four units, and a mixture of naphtha and hydrogen (feed 7) is provided between the three or four reactors. The temperature is adjusted in the heating furnace, and the reforming is performed by sequentially passing through each reactor. The catalyst also sequentially passes through the reactor to become a deteriorated catalyst 14, is sent to a regeneration system (not shown), is regenerated, recovers its activity, and is supplied again to the reforming reactor 1 as a regenerated catalyst 13. The catalytic reformed oil 8 flowing out from the reforming reactor 1 is cooled by the cooler 2 and sent to the separation tank 3 and flows out as a hydrogen-rich light gas 10 and a catalytic reformed oil 9 from which the light gas 10 is separated. To do. Usually, a part of the light gas 10 is used as recycled hydrogen. The catalytic reforming oil 9 is heated by the heater 4 and sent to a distillation column 5 such as a stabilizer or a debutizer to be distilled. A light reformed fraction 12 of light gas or liquefied petroleum gas (LPG) or less flows out from the top of the distillation column 5, and a catalytic reformed oil whose vapor pressure is adjusted or light fraction of LPG or less is separated from the bottom of the column. 11 flows out. The catalytic reforming oil 11 is used as a gasoline base material or as a petrochemical raw material for recovering aromatic components and producing chemical products.

図1は、本発明の一実施態様を示すものであり、上記蒸留塔5に供給するために接触改質油9をヒーター4で加熱する前に、フィルター6を備えた接触改質装置である。
既に述べたように、触媒活性を調節するために注入された塩素化合物由来の塩素分は、再生触媒とともに改質反応器に導入され、高温かつ水素雰囲気の改質反応器内で塩化水素に変換される。一方、ナフサは高度に水素化脱硫された脱硫ナフサを接触改質装置の原料として用いるが、微量の窒素化合物を含んでおり、窒素分は改質反応器内でアンモニアに変換される。改質反応器内で生成した塩化水素及びアンモニアは、冷却されて塩化アンモニウムの塩として析出する。反応器に入る塩素分及びアンモニア分は、必ずしも塩形成当量で導入されるわけではなく、一般的に塩素分が過剰である。塩素分は塩化水素又は塩素イオンとして装置材料を腐食することがあるので好ましくないばかりでなく、固化、析出する塩が専ら後続の機器、特に蒸留塔5で析出・堆積して、閉塞、運転不調などの不具合ももたらす。
FIG. 1 shows an embodiment of the present invention, which is a catalytic reformer equipped with a filter 6 before heating the catalytic reforming oil 9 with the heater 4 to supply the distillation column 5. .
As already mentioned, the chlorine component derived from the chlorine compound injected to adjust the catalyst activity is introduced into the reforming reactor together with the regenerated catalyst and converted to hydrogen chloride in the reforming reactor in a high-temperature hydrogen atmosphere. Is done. On the other hand, naphtha uses highly hydrodesulfurized desulfurized naphtha as a raw material of the catalytic reformer, but contains a trace amount of nitrogen compound, and the nitrogen content is converted into ammonia in the reforming reactor. Hydrogen chloride and ammonia produced in the reforming reactor are cooled and deposited as ammonium chloride salts. The chlorine and ammonia components that enter the reactor are not necessarily introduced in salt-forming equivalents, and are generally in excess of chlorine. Chlorine content is not preferable because it may corrode equipment materials as hydrogen chloride or chloride ions, but the solidified and precipitated salts are deposited and deposited exclusively in the subsequent equipment, especially the distillation tower 5, causing clogging and malfunction. It also causes problems such as.

そこで本発明では、接触反応器1から流出後、降温して水素リッチの軽質ガスが分離された接触改質油9を、蒸留塔に供給する前の低温のうちに、120℃以下の温度で濾過する。すなわち、本発明は、図1に示すように、従来の接触改質装置にないフィルター6を設置して軽質ガス分離後の接触改質油9の少なくとも一部をフィルター6に通して濾過するものである。こうすることによって、接触改質油中の塩化アンモニウムなどの塩はフィルター6で捕捉されて、蒸留塔5で塩の析出・堆積による、蒸留塔5の運転不調等の不具合は解消される。   Therefore, in the present invention, the temperature of the catalytic reforming oil 9 that has been cooled down and separated from the hydrogen-rich light gas after flowing out of the catalytic reactor 1 is 120 ° C. or less before being supplied to the distillation column. Filter. That is, in the present invention, as shown in FIG. 1, a filter 6 not provided in the conventional catalytic reforming apparatus is installed, and at least a part of the catalytic reforming oil 9 after light gas separation is filtered through the filter 6. It is. By doing so, a salt such as ammonium chloride in the catalytically modified oil is captured by the filter 6, and problems such as malfunction of the distillation column 5 due to salt precipitation / deposition in the distillation column 5 are eliminated.

120℃を超える温度では、固形の塩の析出が少なく、フィルターで捕捉されずに通過する塩(あるいは、塩化水素及びアンモニア)が多くなり好ましくない。塩は、温度が低いほど析出し、濾過で捕捉するために好ましいが、後続の蒸留段階で昇温する必要があるので、装置あるいは製油所全体のエネルギーバランスを考慮して決めるべきである。濾過温度は100℃以下、特に50℃以下が好ましい。炭化水素油の温度が120℃を超えている場合には、周知の適当な方法を用いて前記の温度に調整すればよい。   When the temperature exceeds 120 ° C., the precipitation of solid salt is small, and the amount of salt (or hydrogen chloride and ammonia) that passes through without being trapped by the filter increases. The lower the temperature, the better the salt precipitates out and is captured by filtration, but the temperature must be raised in the subsequent distillation step, so it should be determined taking into account the energy balance of the entire device or refinery. The filtration temperature is preferably 100 ° C. or lower, particularly 50 ° C. or lower. When the temperature of the hydrocarbon oil exceeds 120 ° C., the temperature may be adjusted to the above temperature using a known appropriate method.

また、本発明で炭化水素油は、実質的に水分を含まない雰囲気下で濾過される。すなわち、本発明において、炭化水素油の濾過は、系外から水、水蒸気などの水分を加えることなく行うことをいい、接触改質油等の炭化水素油をそのまま濾過処理することを意味する。すなわち、炭化水素油は、少なくとも飽和以上の水分との混合物の形態で濾過されるものではなく、飽和未満の水分を含み得る。炭化水素油に溶解する水分量は、常温(10〜25℃)で飽和未満であることが好ましく、炭化水素油が接触改質油の場合、50重量ppm以下が好ましい。したがって、本発明の方法で塩を除去した炭化水素油には水分が実質的に含まれていないので、後続の水を嫌うプロセスに特別配慮する必要がなく、更に、水洗などの塩除去方法と異なり油水分離の必要がなく、しかも潜熱の大きな水を加熱冷却することがないのでエネルギー的にも有利である。   In the present invention, the hydrocarbon oil is filtered under an atmosphere substantially free of moisture. That is, in the present invention, the filtration of the hydrocarbon oil is performed without adding water such as water and water vapor from the outside of the system, which means that the hydrocarbon oil such as the contact reforming oil is directly filtered. That is, the hydrocarbon oil is not filtered in the form of a mixture with at least saturated or higher moisture and may contain less than saturated moisture. The amount of water dissolved in the hydrocarbon oil is preferably less than saturation at normal temperature (10 to 25 ° C.), and preferably 50 ppm by weight or less when the hydrocarbon oil is a catalytically modified oil. Therefore, since the hydrocarbon oil from which salt has been removed by the method of the present invention is substantially free of moisture, there is no need to give special consideration to the process that dislikes the subsequent water. In contrast, there is no need for oil / water separation, and water having a large latent heat is not heated and cooled, which is advantageous in terms of energy.

本発明の濾過に用いるフィルターとしては、塩類を除去できるものであれば、不織布フィルター、焼結フィルター、中空糸膜フィルターなどどのようなものでも用いることができる。平膜を折り重ねたプリーツ型のカートリッジをケーシングに収納するタイプのフィルターが、コンパクトで大量に濾過処理できることから、特にバルクで扱われる石油製品などを処理する場合、好ましく用いることができる。   As the filter used for the filtration of the present invention, any filter such as a nonwoven fabric filter, a sintered filter, and a hollow fiber membrane filter can be used as long as salts can be removed. Since a filter of a type in which a pleated type cartridge in which a flat membrane is folded is accommodated in a casing is compact and can be subjected to a large amount of filtration processing, it can be preferably used particularly when processing petroleum products handled in bulk.

また、フィルター材料として、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエステル、ポリアミド、ポリイミド、ポリスルホン、アクリル、セルロースエステル、グラスファイバー、金属、紙などを挙げることができる。フィルター材料の選定にあたっては、芳香族成分を多く含有する接触改質油のように炭化水素油によっては材料を溶解したり、あるいは膨潤するものがあるので、事前に対象油種やその温度、圧力などの使用条件において材料の耐性を検討して適宜選定することが好ましい。例えば、ポリエチレン、ポリプロピレンなどのプラスチックは、このような用途では膨潤されることがあるので、避けるか、あるいは表面処理などにより膨潤対策を施したものを用いることが好ましい。   Examples of the filter material include polytetrafluoroethylene, polyethylene, polypropylene, polycarbonate, polyester, polyamide, polyimide, polysulfone, acrylic, cellulose ester, glass fiber, metal, and paper. When selecting filter materials, some hydrocarbon oils, such as catalytically modified oils that contain a large amount of aromatic components, may dissolve or swell, so the target oil type, its temperature, and pressure must be selected in advance. It is preferable to appropriately select the material under consideration of the use conditions such as the above. For example, since plastics such as polyethylene and polypropylene may be swollen in such applications, it is preferable to avoid them or use those that have been treated for swelling by surface treatment or the like.

フィルターの目開きは、塩類を効率よく捕捉するために0.1〜20μmにすることが好ましい。サイズが0.1μm未満のフィルターでは、差圧が大きくなり、また通油後、このフィルター差圧がフィルターの許容差圧に上昇するまでの期間が短くなり、系から切り離して捕捉された塩を頻繁に水洗等の方法で除去しなければならなくなるので実用的でない。20μmをこえるサイズは、捕捉されずにフィルターを通過する塩類が多くなりすぎてフィルターを設置する意味がなくなる。目開きは、1〜10μmがより好ましく、1〜5μmが特に好ましい。   The opening of the filter is preferably 0.1 to 20 μm in order to capture salts efficiently. For filters with a size of less than 0.1 μm, the differential pressure increases, and after passing the oil, the time until the filter differential pressure rises to the allowable differential pressure of the filter is shortened. It is not practical because it must be frequently removed by washing. When the size exceeds 20 μm, there is too much salt passing through the filter without being trapped, and it makes no sense to install the filter. The mesh opening is more preferably 1 to 10 μm, and particularly preferably 1 to 5 μm.

具体的にフィルターを接触改質装置に装備する場合、図1に示すように、フィルターは反応器1から最初の蒸留塔の間で接触改質油の温度が120℃以下の流路(配管)、例えばリサイクル水素ガスの分離槽3から流出する接触改質油9の流路中に設置することが好ましい。120℃以下の温度の場所がない場合には、クーラー(冷却用熱交換器)を通す等公知の方法で接触改質油の温度を120℃以下に下げてフィルターを通すようにすればよい。また、フィルターは、前記接触改質油の全量又は少なくとも一部、例えば油流量の10〜90%がフィルターを通るように設けることもできる。このようにして、蒸留塔の運転不調を回避できる最低量の塩を捕捉するようにフィルターに通す油量を制限することによって、フィルターサイズを小さくすることができる。   Specifically, when a filter is installed in a catalytic reformer, as shown in FIG. 1, the filter is a flow path (pipe) between the reactor 1 and the first distillation column where the temperature of the catalytic reforming oil is 120 ° C. or less. For example, it is preferable to install in the flow path of the contact reforming oil 9 flowing out from the separation tank 3 of the recycled hydrogen gas. If there is no place at a temperature of 120 ° C. or lower, the temperature of the contact reformed oil may be lowered to 120 ° C. or lower by a known method such as passing through a cooler (cooling heat exchanger) and passed through a filter. In addition, the filter may be provided so that the total amount or at least a part of the catalytic reforming oil, for example, 10 to 90% of the oil flow rate passes through the filter. In this way, the filter size can be reduced by limiting the amount of oil passed through the filter so as to capture the minimum amount of salt that can avoid the malfunction of the distillation column.

フィルターは、複雑な制御を必要とせず、操作も特別の熟練を必要としない設備である。フィルターで塩類が捕捉されていくと、フィルター差圧が上昇する。フィルターの設計上許容される上限の差圧に達したら、通油を停止して差圧が上限に達したフィルターをオイル系から切り離す。
通常、塩化アンモニウムなどの塩は水溶性であるので、フィルターに水を通して捕捉された塩類を水に溶解して除去することができる。フィルターの洗浄方法としては、フィルターに水を連続的に通すことにより行ってもよいし、あるいはフィルターケーシングに水を満たして一定時間保持して塩を溶解して排水するバッチ洗浄を1回又は2回以上繰り返すことにより行ってもよい。フィルターに水を通す方向としては、接触改質油を通した方向に流しても、油とは逆向きに流してもよい。また、フィルターケーシングを開放してカートリッジを抜き出して、外部で水洗して塩を除去することもできる。
水洗後、フィルターに乾燥空気などを通して水分を除去したのち、フィルターをオイル系につなぎ接触改質油を通油する。フィルターはほぼフレッシュな状態に戻り、繰り返し使用することができる。
A filter is a facility that does not require complex control and does not require special skill to operate. As salt is captured by the filter, the filter differential pressure increases. When the maximum pressure difference allowed by the design of the filter is reached, oil passing is stopped and the filter whose differential pressure has reached the upper limit is disconnected from the oil system.
Usually, since salts such as ammonium chloride are water-soluble, salts captured by passing water through a filter can be dissolved and removed in water. The filter may be washed by passing water continuously through the filter, or once or two batch washings in which the filter casing is filled with water and held for a certain period of time to dissolve and drain the salt. You may carry out by repeating more than once. The direction in which water is passed through the filter may flow in the direction through which the contact reforming oil is passed, or may flow in the opposite direction to the oil. Alternatively, the salt can be removed by opening the filter casing, extracting the cartridge, and washing with water outside.
After washing with water, moisture is removed by passing dry air through the filter, then the filter is connected to an oil system and contact reformed oil is passed. The filter returns to an almost fresh state and can be used repeatedly.

また、フィルターは、炭化水素油の流路に2基以上を並列に設けて通油と水洗(及び待機)を互に連携して繰り返してもよいし、あるいは、炭化水素油流路に1基のみ設けて、フィルターの水洗中は、フィルターのバイパス(従来の炭化水素油の流路)に炭化水素油の全量を通すようにしてもよい。いずれにせよ、こうすることによって、当該炭化水素の処理装置の運転を停止することなく塩を除去することができる。   In addition, two or more filters may be provided in parallel in the hydrocarbon oil flow path so that oil passing and washing (and waiting) are repeated in cooperation with each other, or one filter is provided in the hydrocarbon oil flow path. Only when the filter is washed with water, the entire amount of the hydrocarbon oil may be passed through the bypass of the filter (conventional hydrocarbon oil passage). In any case, the salt can be removed without stopping the operation of the hydrocarbon treatment apparatus.

なお、以上の説明では、石油精製業のナフサ接触改質装置に本発明の塩の除去方法を適用した例を、連続触媒再生装置を装備した接触改質装置を中心に説明したが、塩を含有する炭化水素油であれば適用できるので、固定床方式の接触改質装置にも触媒再生装置の有無に拘らず適用できる。更に、その他の石油精製プロセス又は石油化学プロセスにおける塩を含有する炭化水素油から塩を除去する場合についても同様に実施可能である。
例えば、ナフサは、接触改質装置で処理する前に不純物として含まれている硫黄分を除去するために必ず脱硫処理されている。この脱硫処理は通常水素化脱硫処理であり、不純物の硫黄化合物は水素化物(主にHS)に変換されて分離除去される。この場合、脱硫処理される原料の粗ナフサ中の窒素化合物も水素化されてアンモニアを生成する。アンモニアは、粗ナフサやリサイクル水素中の不純物として系内に持ち込まれた塩素分などと反応して塩化アンモニウムなどの塩を生成する。このような塩を含有する水素化脱硫ナフサにも、本発明の塩の除去方法は適用でき、効果的に塩を除去することができる。
In the above description, an example in which the salt removal method of the present invention is applied to a naphtha catalytic reformer in the oil refining industry has been described focusing on a catalytic reformer equipped with a continuous catalyst regeneration device. Since it can be applied as long as it contains hydrocarbon oil, it can also be applied to a fixed bed type catalytic reformer with or without a catalyst regeneration device. Furthermore, the present invention can be similarly applied to the case of removing a salt from a hydrocarbon oil containing a salt in other petroleum refining processes or petrochemical processes.
For example, naphtha is always desulfurized in order to remove sulfur contained as impurities before being processed in the catalytic reformer. This desulfurization treatment is usually a hydrodesulfurization treatment, and the sulfur compound as an impurity is converted into a hydride (mainly H 2 S) and separated and removed. In this case, the nitrogen compound in the raw naphtha as the raw material to be desulfurized is also hydrogenated to produce ammonia. Ammonia reacts with chlorine etc. brought into the system as impurities in crude naphtha and recycled hydrogen to produce salts such as ammonium chloride. The salt removal method of the present invention can also be applied to hydrodesulfurized naphtha containing such a salt, and the salt can be effectively removed.

本発明の方法は、フィルターを炭化水素油の流路に設けるだけで塩を除去することができるものであるから、従来の水洗又はソーダ洗浄、蒸留塔への水の導入、吸着剤などによる方法と比較して、設備がシンプルで経済的であり、二次公害を懸念する必要がなく、運転にも全く熟練を要しない。   In the method of the present invention, salt can be removed simply by providing a filter in the flow path of hydrocarbon oil. Therefore, conventional water washing or soda washing, introduction of water into a distillation column, method using an adsorbent, etc. Compared with, the equipment is simple and economical, there is no need to worry about secondary pollution, and no skill is required for operation.

次に、本究明を実施例に基づいてより詳細に説明する。ここでは、接触改質装置を用いて行った試験を示すが、本発明は実施例により何ら制約されるものではない。   Next, the present study will be described in more detail based on examples. Here, although the test performed using the catalytic reforming apparatus is shown, the present invention is not limited by the examples.

図1に示すように、実際の接触改質装置において、水素リッチガス10と接触改質油9とを分離する分離槽3の出口配管に、プリーツタイプの円筒形フィルターカートリッジをケーシングに装着したフィルター6を設置し、接触改質油9中の一定量をフィルターに通油して接触改質油中の塩化アンモニウムの除去試験を行った。
接触改質油中のアンモニウムイオン及び塩素イオンの濃度は、原料油や、触媒活性を調節するために注入される塩素量等によって異なるが、通常、重量比で塩素イオンがアンモニウムイオンの約2倍ないしそれ以上の割合で含まれている。塩化アンモニウムの生成は、アンモニウムイオンの量が支配していると言える。フィルターの入口及び出口から採取した接触改質油サンプル中のアンモニウムイオン濃度及び塩素イオン濃度を下記の方法により測定することによって、フィルターによる塩化アンモニウムの除去効果を評価した。
As shown in FIG. 1, in an actual catalytic reforming apparatus, a filter 6 in which a pleated type cylindrical filter cartridge is mounted on a casing in an outlet pipe of a separation tank 3 that separates a hydrogen rich gas 10 and a catalytic reforming oil 9. Was installed, and a certain amount of the catalytic reforming oil 9 was passed through a filter, and a test for removing ammonium chloride in the catalytic reforming oil was conducted.
The concentration of ammonium ions and chlorine ions in the catalytic reforming oil varies depending on the feedstock oil and the amount of chlorine injected to adjust the catalyst activity, but the chlorine ion is usually about twice the ammonium ion by weight ratio. It is included at a rate of more than that. It can be said that the production of ammonium chloride is governed by the amount of ammonium ions. The removal effect of ammonium chloride by the filter was evaluated by measuring the ammonium ion concentration and the chlorine ion concentration in the contact reformed oil sample collected from the inlet and outlet of the filter by the following method.

(濃度測定方法)
接触改質油サンプル500mlを分液ロートに入れ、純水50mlを加えて密栓し、5分間激しく振とうした。その後5分間静置して水層及び油層を分離し、得られた水層中のアンモニウムイオン及び塩素イオンの濃度を、イオンクロマトグラフィーを用いて測定した。得られたアンモニウムイオン及び塩素イオンの測定値を接触改質油基準に換算して、接触改質油中のアンモニウムイオン濃度及び塩素イオン濃度を求めた。
(Concentration measurement method)
500 ml of the contact reformed oil sample was placed in a separatory funnel, 50 ml of pure water was added and sealed, and shaken vigorously for 5 minutes. Thereafter, the mixture was allowed to stand for 5 minutes to separate the aqueous layer and the oil layer, and the concentrations of ammonium ions and chlorine ions in the obtained aqueous layer were measured using ion chromatography. The obtained measured values of ammonium ion and chlorine ion were converted to the contact reformed oil standard, and the ammonium ion concentration and the chlorine ion concentration in the contact reformed oil were determined.

(実施例1)
表1に実施例1として示した仕様のフィルターを用い、これに接触改質油(圧力3.4MPa、温度35℃)を5kl/hrの流量で流し、フィルター差庄が許容差圧である0.3MPaに達したとき、接触改質油の供給を停止した。接触改質油の供給を停止した後、フィルターケーシングを開放してフィルターカートリッジを抜き出し、容量約20lの金属容器にこのフィルターカートリッジを入れ、純水を注いでフィルターカートリッジ全体を浸らせ、次いで排水した。
この操作を4回繰り返して塩化アンモニウムを水洗除去した後、5回目の注水を行い、フィルターカートリッジ全体が浸った状態でそのまま1時間静置してフィルター濾材の深部の塩化アンモニウムを十分に溶解させ、排水した。洗浄したフィルターカートリッジを約30℃の乾燥室にて24hr乾燥した後、フィルターカートリッジをケーシングにセットし、再び接触改質油を通油した。このようにして、接触改質油の通油、フィルター洗浄の操作を6回繰り返した。
通油開始時、通油停止時及び通油開始後2日目にフィルター入口及び出口の接触改質油をサンプリングし、上記の方法で各サンプル油中のアンモニウムイオン濃度及び塩素イオン濃度を測定し、塩化アンモニウムの除去効果を評価した。
Example 1
A filter having the specifications shown in Table 1 as Example 1 was used, and contact reforming oil (pressure 3.4 MPa, temperature 35 ° C.) was allowed to flow therethrough at a flow rate of 5 kl / hr, and the filter differential was an allowable differential pressure of 0. When the pressure reached 3 MPa, the supply of catalytic reforming oil was stopped. After stopping the supply of the catalytic reforming oil, the filter casing was opened and the filter cartridge was taken out. The filter cartridge was put in a metal container having a capacity of about 20 l, and pure water was poured to immerse the entire filter cartridge, and then drained. .
This operation is repeated 4 times, and the ammonium chloride is washed and removed. Then, the water is injected for the fifth time, and the filter cartridge is completely immersed for 1 hour to dissolve ammonium chloride deep in the filter medium sufficiently. Drained. The washed filter cartridge was dried in a drying chamber at about 30 ° C. for 24 hours, and then the filter cartridge was set in the casing and contact reformed oil was passed again. In this way, the operation of contact reforming oil passing and filter washing was repeated 6 times.
Sample the contact reformed oil at the filter inlet and outlet at the start of oil flow, at the time of oil flow stop and at the second day after the start of oil flow, and measure the ammonium ion concentration and chlorine ion concentration in each sample oil by the above method. The removal effect of ammonium chloride was evaluated.

この試験の結果、1回目から6回目の通油期間中(合計683hr)にわたり特に問題なく接触改質油をフィルターに通油することができた。フィルター入口及び出口のサンプル油中のアンモニウムイオン濃度及び塩素イオン濃度を、全通油期間にわたって測定し(n=18)、その算術平均した数値を表2に示す。表2に示すように、通油期間にわたって、フィルター出口のサンプル油中にアンモニウムイオンは検出されなかった。また、塩素イオン濃度の減少量は、フィルター入口の接触改質油に含まれるアンモニウムイオンとで塩化アンモニウムを形成する当量の塩素イオン量にほぼ相当している。したがって、接触改質油に含まれていた塩化アンモニウムは、フィルターによりほぼ全量除去できることが分かる。   As a result of this test, the contact-modified oil could be passed through the filter without any particular problem during the first to sixth oil passage periods (total 683 hours). The ammonium ion concentration and the chlorine ion concentration in the sample oil at the filter inlet and outlet were measured over the entire oil passage period (n = 18), and numerical values obtained by arithmetic averaging are shown in Table 2. As shown in Table 2, ammonium ions were not detected in the sample oil at the filter outlet over the oil passing period. The amount of decrease in the chlorine ion concentration substantially corresponds to the equivalent amount of chlorine ions that form ammonium chloride with the ammonium ions contained in the contact reforming oil at the filter inlet. Therefore, it can be seen that almost all of the ammonium chloride contained in the contact reformed oil can be removed by the filter.

(実施例2)
表1に実施例2として示した仕様のアクリル製フィルターを用いた以外は、実施例1と同様にして評価を行った。アンモニウムイオン濃度と塩素イオン濃度(通油期間全体にわたる算術平均値)を、実施例1と同様に表2に示す。
その結果、1回目から6回目の通油期間(合計534hr)にわたり、特に問題なく良好に接触改質油を通油することができ、接触改質油中の塩化アンモニウムのほぼ全量をフィルターにより除去することができた。
(Example 2)
Evaluation was performed in the same manner as in Example 1 except that an acrylic filter having the specifications shown in Table 1 as Example 2 was used. The ammonium ion concentration and the chlorine ion concentration (arithmetic average value over the entire oil passing period) are shown in Table 2 as in Example 1.
As a result, during the first to sixth oil passage periods (total of 534 hours), the contact reformed oil can be satisfactorily passed without any particular problems, and almost all ammonium chloride in the contact reformed oil is removed by the filter. We were able to.

(参考例)
本発明のフィルターを設置していない図2に示す接触改質装置において、長期間の連続運転により、分離槽3の下流にある蒸留塔5において塩化アンモニウムの析出による不具合が認められた。
(Reference example)
In the catalytic reforming apparatus shown in FIG. 2 in which the filter of the present invention is not installed, inconvenience due to precipitation of ammonium chloride was observed in the distillation column 5 downstream of the separation tank 3 due to long-term continuous operation.

以上のように本発明は、実質的に水のない雰囲気下で120℃以下で濾過する炭化水素油中の塩の除去方法であり、簡単な濾過設備で塩を確実に除去することができるから、塩の析出による蒸留塔などの精製設備におけるトラブルの発生を未然に防ぎ、更に水や吸着剤を使う従来の方法と異なり、設備がシンプルで経済的であり、運転に全く熟練を要しないなどの効果を有する。   As described above, the present invention is a method for removing salt in hydrocarbon oil that is filtered at 120 ° C. or lower in an atmosphere substantially free of water, and salt can be reliably removed with simple filtration equipment. In addition, troubles in purification equipment such as distillation towers due to salt precipitation can be prevented, and unlike conventional methods using water and adsorbents, the equipment is simple and economical, and requires no skill in operation. It has the effect of.

接触改質装置にフィルターを設置した本発明の一実施形態を示すフロー図である。It is a flowchart which shows one Embodiment of this invention which installed the filter in the catalytic reforming apparatus. フィルターを具備しない従来の接触改質装置を示すフロー図である。It is a flowchart which shows the conventional catalytic reforming apparatus which does not comprise a filter.

符号の説明Explanation of symbols

1・・・接触改質反応器
5・・・蒸留塔
6・・・フィルター
9・・・接触改質油(軽質ガス分離後)
DESCRIPTION OF SYMBOLS 1 ... Catalytic reforming reactor 5 ... Distillation tower 6 ... Filter 9 ... Catalytic reforming oil (after light gas separation)

Claims (6)

塩を含有する炭化水素油を、実質的に水のない雰囲気下で120℃以下の温度でフィルターに通して濾過し、塩をフィルターで捕捉し、かつ、フィルターを切り離して水で洗浄し、捕捉された塩を溶解して除去し、塩が除去されたフィルターを炭化水素油中の塩の除去に再使用することを特徴とする炭化水素油中の塩の除去方法。   Hydrocarbon oil containing salt is filtered through a filter at a temperature of 120 ° C. or less under a substantially water-free atmosphere, the salt is captured by the filter, and the filter is separated and washed with water, captured. A method for removing a salt in a hydrocarbon oil, wherein the salt removed is dissolved and the filter from which the salt has been removed is reused for removing the salt in the hydrocarbon oil. 塩が、塩化アンモニウムである請求項1記載の塩の除去方法。 The method for removing a salt according to claim 1, wherein the salt is ammonium chloride. 炭化水素油が、蒸留前のナフサの接触改質油である請求項1又は2に記載の塩の除去方法。 The method for removing a salt according to claim 1 or 2, wherein the hydrocarbon oil is a naphtha catalytic reformed oil before distillation. 濾過を、0.1〜20μmの目開きを有するフィルターを用いて行う請求項1〜3のいずれかに記載の塩の除去方法。 The salt removal method according to any one of claims 1 to 3, wherein the filtration is performed using a filter having an opening of 0.1 to 20 µm. ナフサを接触改質する接触改質装置において、接触改質反応器と、該接触改質反応器から流出する接触改質油に含まれる軽質分を除去するための蒸留塔との間に、実質的に水のない雰囲気下で前記接触改質油を120℃以下の温度で濾過して接触改質油中の塩を除去するフィルターを設けてなることを特徴とする接触改質装置。 In a catalytic reforming apparatus for catalytically reforming naphtha, a substantial difference between a catalytic reforming reactor and a distillation column for removing light components contained in the catalytic reforming oil flowing out from the catalytic reforming reactor, A catalytic reforming apparatus characterized by comprising a filter for removing the salt in the catalytic reforming oil by filtering the catalytic reforming oil at a temperature of 120 ° C. or less in an atmosphere free of water. ナフサを接触改質する接触改質方法において、接触改質反応器と、該接触改質反応器から流出する接触改質油に含まれる軽質分を除去するための蒸留塔との間にフィルターを設け、実質的に水のない雰囲気下で前記接触改質油を120℃以下の温度で濾過して、接触改質油中の塩を除去することを特徴とする接触改質方法。 In the catalytic reforming method for catalytically reforming naphtha, a filter is provided between the catalytic reforming reactor and a distillation column for removing light components contained in the catalytic reforming oil flowing out from the catalytic reforming reactor. A catalytic reforming method comprising removing the salt in the catalytic reforming oil by filtering the catalytic reforming oil at a temperature of 120 ° C. or lower in an atmosphere substantially free of water.
JP2006159512A 2006-06-08 2006-06-08 Method for removing salt in hydrocarbon oil Expired - Lifetime JP4741982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159512A JP4741982B2 (en) 2006-06-08 2006-06-08 Method for removing salt in hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159512A JP4741982B2 (en) 2006-06-08 2006-06-08 Method for removing salt in hydrocarbon oil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002037000A Division JP4261805B2 (en) 2002-02-14 2002-02-14 Method for removing salt, catalytic reforming method and catalytic reformer using the same

Publications (2)

Publication Number Publication Date
JP2006257442A true JP2006257442A (en) 2006-09-28
JP4741982B2 JP4741982B2 (en) 2011-08-10

Family

ID=37097026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159512A Expired - Lifetime JP4741982B2 (en) 2006-06-08 2006-06-08 Method for removing salt in hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP4741982B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031664A (en) * 2017-08-04 2019-02-28 出光興産株式会社 Method and apparatus for producing desulfurized naphtha
CN114989864A (en) * 2022-05-24 2022-09-02 宁波中金石化有限公司 Pretreatment method before catalytic reforming of naphtha

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413509A (en) * 1977-07-01 1979-02-01 Daicel Chem Ind Ltd Method of purification of oil
JPS61151298A (en) * 1984-12-20 1986-07-09 ザ ブリテイツシユ ピトローリアム コンパニー ピー.エル.シー Desalting of crude oil
JP2000096067A (en) * 1998-09-22 2000-04-04 Idemitsu Petrochem Co Ltd Distillation of hydrocarbon oil containing water-soluble salt
JP2000336376A (en) * 1999-05-31 2000-12-05 Petroleum Energy Center Desalting of oil containing solid
JP2001524576A (en) * 1997-11-21 2001-12-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Atmospheric distillation of hydrocarbon-containing liquid streams
JP4261805B2 (en) * 2002-02-14 2009-04-30 鹿島石油株式会社 Method for removing salt, catalytic reforming method and catalytic reformer using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413509A (en) * 1977-07-01 1979-02-01 Daicel Chem Ind Ltd Method of purification of oil
JPS61151298A (en) * 1984-12-20 1986-07-09 ザ ブリテイツシユ ピトローリアム コンパニー ピー.エル.シー Desalting of crude oil
JP2001524576A (en) * 1997-11-21 2001-12-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Atmospheric distillation of hydrocarbon-containing liquid streams
JP2000096067A (en) * 1998-09-22 2000-04-04 Idemitsu Petrochem Co Ltd Distillation of hydrocarbon oil containing water-soluble salt
JP2000336376A (en) * 1999-05-31 2000-12-05 Petroleum Energy Center Desalting of oil containing solid
JP4261805B2 (en) * 2002-02-14 2009-04-30 鹿島石油株式会社 Method for removing salt, catalytic reforming method and catalytic reformer using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031664A (en) * 2017-08-04 2019-02-28 出光興産株式会社 Method and apparatus for producing desulfurized naphtha
JP7176672B2 (en) 2017-08-04 2022-11-22 出光興産株式会社 Production method and production equipment for desulfurized naphtha
CN114989864A (en) * 2022-05-24 2022-09-02 宁波中金石化有限公司 Pretreatment method before catalytic reforming of naphtha
CN114989864B (en) * 2022-05-24 2023-08-25 宁波中金石化有限公司 Pretreatment method before catalytic reforming of naphtha

Also Published As

Publication number Publication date
JP4741982B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
RU2642421C2 (en) Method, device and chemical products for oil equipment processing
Verma et al. Amine system problems arising from heat stable salts and solutions to improve system performance
Haque Ethylene glycol regeneration plan: a systematic approach to troubleshoot the common problems
CN201793528U (en) Fluid catalytic cracking slurry filter equipment
RU2637549C2 (en) Method of separating acid gas from water-containing fluid flow
EA018418B1 (en) Hydrocarbon compound synthesis reaction system and method of removing powdered catalyst particles
US9139779B2 (en) Catalyst separation system
WO2012061172A1 (en) Sour gas and acid natural gas separation membrane process by pre removal of dissolved elemental sulfur for plugging prevention
CN109250854A (en) The processing method of semi-coke wastewater
JP2006241181A (en) Method for preventing fouling of heat exchanger for cooling residual oil of hydrogenation-desulfurizing decomposition process
AU2016286296A1 (en) Demetallization of hydrocarbons
Hajilary et al. Amine gas sweetening system problems arising from amine replacement and solutions to improve system performance
JP4741982B2 (en) Method for removing salt in hydrocarbon oil
JP4261805B2 (en) Method for removing salt, catalytic reforming method and catalytic reformer using the same
JP3237113B2 (en) Gas absorption liquid treatment method
JP2007238832A (en) Method for treating natural gas condensate and system for treating the same
CN101579603A (en) Process for advanced treatment of waste alkali in hydrogen sulfide removal
US5190662A (en) Removal of iron sulfide particles from alkanolamine solutions
Manteghian et al. Reduction of chloride in amine from gas sweetening unit using a continuous virtual countercurrent ion exchange setup
Niazmehr et al. Reduction of chloride ions in the diethanol amine cycle and improvement of the natural gas sweetening
CN102477309A (en) Filtering method of solid-liquid slurry
ElMoudir et al. HTC solvent reclaimer system at searles valley minerals facility in Trona, California
CN108570335B (en) Method and device for light naphtha desulfurization and deaminization
US3568405A (en) Filtration method and apparatus
CN105753089A (en) Phenol ammonia waste water degreasing treatment device and treatment technology

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

R150 Certificate of patent or registration of utility model

Ref document number: 4741982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term