JP2006256323A - Tubular object and its manufacturing process - Google Patents

Tubular object and its manufacturing process Download PDF

Info

Publication number
JP2006256323A
JP2006256323A JP2006042221A JP2006042221A JP2006256323A JP 2006256323 A JP2006256323 A JP 2006256323A JP 2006042221 A JP2006042221 A JP 2006042221A JP 2006042221 A JP2006042221 A JP 2006042221A JP 2006256323 A JP2006256323 A JP 2006256323A
Authority
JP
Japan
Prior art keywords
fluororesin
tubular object
polyimide
layer
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006042221A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamada
弘志 山田
Tomoe Aoyama
智栄 青山
Takanobu Sandaiji
貴信 三大寺
Kae Fujiwara
花英 藤原
Kenji Hioki
健児 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IST Corp Japan
Original Assignee
IST Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Corp Japan filed Critical IST Corp Japan
Priority to JP2006042221A priority Critical patent/JP2006256323A/en
Publication of JP2006256323A publication Critical patent/JP2006256323A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tubular object of high durability and low production cost and its manufacturing process, by lowering a coefficient of dynamic friction especially on the exterior surface of the tubular object. <P>SOLUTION: A tubular object (31) comprises a molded and heat cured composite containing polyimide and fluororesin particles, wherein at least a part of the fluororesin particles residing near the surface of the tubular object (31) precipitates by melt flowing to the exterior surface or inner and outer surfaces of the tubular object and forms a fluororesin coating film partially or fully. The tubular object (31) can be manufactured by aplying a liquid mixture, in which the fluororesin particle is added into a polyimide precursor solution, on the outer surface of a die and cast molding into a predetermined thickness; heating it to imidize, setting a maximum imidization temperature to exceed fusion point of the fluororesin; and separating the die and the tubular object after cooling off. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は複写機、プリンター、ファクシミリなどの電子写真方式を利用した画像成形装置において、未定着のトナー像を熱定着するための耐熱樹脂からなる管状物体に関し、さらに詳しくは管状物体の内外面の動摩擦係数を下げ、耐久性の高い管状物体及びその製造方法に関するものである。   The present invention relates to a tubular object made of a heat-resistant resin for thermally fixing an unfixed toner image in an image forming apparatus using an electrophotographic system such as a copying machine, a printer, and a facsimile machine. More specifically, the present invention relates to the inner and outer surfaces of a tubular object. The present invention relates to a tubular object having a low dynamic friction coefficient and high durability, and a method for manufacturing the same.

ポリイミド樹脂は耐熱性、寸法安定性、機械的特性、電気的特性など優れた特性を有し電子・電気機器や絶縁材料、あるいは航空宇宙などの幅広い分野で使用されている。その用途の一例として、電子写真方式の画像形成装置では帯電、感光、中間転写および定着などの電子写真プロセスの中でも多くの部材として使用されている。   Polyimide resins have excellent properties such as heat resistance, dimensional stability, mechanical properties, and electrical properties, and are used in a wide range of fields such as electronic and electrical equipment, insulating materials, and aerospace. As an example of the application, an electrophotographic image forming apparatus is used as many members in electrophotographic processes such as charging, photosensitivity, intermediate transfer, and fixing.

ここで画像形成装置の定着部材として使用されるポリイミド管状物体について例を挙げて説明する。複写機・レーザービームプリンターなどの画像形成装置において、印刷や複写の最終段階では紙をはじめとするシート状転写材上のトナー像を、加熱溶融して転写材上に定着させている。   Here, an example of a polyimide tubular object used as a fixing member of an image forming apparatus will be described. In an image forming apparatus such as a copying machine or a laser beam printer, in a final stage of printing or copying, a toner image on a sheet-like transfer material such as paper is heated and melted and fixed on the transfer material.

ポリイミド樹脂管状物体を画像形成装置の定着ベルトとして使用する一例を挙げると、特許文献1〜3等で提案されているベルト定着方式があり、図6に示すように複写紙上に形成したトナー像を、熱定着するための定着ベルトとして使用されている。この用途では定着ベルト31(ポリイミド樹脂管状物体)の内側にベルトガイド32とセラミックヒーター33を備え、ヒーターと圧接した駆動源を持つ加圧ロール34との間にトナー像を形成した複写紙37を順次送り込みながらトナー38を加熱溶融させ複写紙上に定着させるものである。前記ベルト定着方式では極めて薄いフィルム状の被膜を有するポリイミド管状物体(定着ベルト)を介して、ヒーターが実質的に直接トナーを加熱するため、加熱部が瞬時に所定の定着温度に達し電源の投入から定着可能状態に達するまでの待ち時間がなく、また消費電力も小さいく優れた特徴がある。   As an example of using a polyimide resin tubular object as a fixing belt of an image forming apparatus, there is a belt fixing method proposed in Patent Documents 1 to 3, etc., and a toner image formed on a copy paper as shown in FIG. It is used as a fixing belt for heat fixing. In this application, a copy paper 37 having a belt guide 32 and a ceramic heater 33 inside a fixing belt 31 (polyimide resin tubular object) and having a toner image formed between a pressure roll 34 having a driving source in pressure contact with the heater is used. While sequentially feeding, the toner 38 is heated and melted and fixed on the copy paper. In the belt fixing method, since the heater substantially directly heats the toner through a polyimide tubular object (fixing belt) having an extremely thin film-like film, the heating unit instantaneously reaches a predetermined fixing temperature and the power is turned on. There is no waiting time until the fixing state is reached, and the power consumption is small and it has an excellent feature.

またフルカラー画像形成装置においてポリイミド管状物体を定着機の加圧ベルトとして使用する一例が特許文献4で提案されている。この定着装置は図7に示すように、熱源55を有する駆動源を持つ回転可能な定着ロール54と、このロールに圧接した加圧ベルト51(ポリイミド樹脂管状物体)と、この加圧ベルトの内側に配置された押圧パッド53、押圧ガイド52からなる構成であり、定着ロールの表面に加圧ベルトを押圧し、定着ロールの駆動力により加圧ベルトを回転させ、この挟接部にトナー画像が形成された複写紙57を順次、送りこみトナー像56を定着ロール表面で熱定着する方法である。これらの用途で使用されるポリイミド樹脂管状物体は、一般に極性重合溶媒中でテトラカルボン酸二無水物とジアミンを反応させて得られるポリイミド前駆体溶液から管状物体を成形し、これをイミド化することにより得ることができる。   An example in which a polyimide tubular object is used as a pressure belt of a fixing device in a full-color image forming apparatus is proposed in Patent Document 4. As shown in FIG. 7, the fixing device includes a rotatable fixing roll 54 having a driving source having a heat source 55, a pressure belt 51 (polyimide resin tubular object) pressed against the roll, and an inner side of the pressure belt. The pressure pad 53 and the pressure guide 52 are arranged on the surface of the fixing roll. The pressure belt is pressed against the surface of the fixing roll, and the pressure belt is rotated by the driving force of the fixing roll. In this method, the formed copy paper 57 is sequentially fed and the toner image 56 is thermally fixed on the surface of the fixing roll. Polyimide resin tubular objects used in these applications are generally formed from a polyimide precursor solution obtained by reacting tetracarboxylic dianhydride and diamine in a polar polymerization solvent, and imidized. Can be obtained.

前記ポリイミド前駆体溶液から管状物体を製造する方法は、特許文献5〜6で知られているように、成形金型の外面や内面に所定の厚みでポリイミド前駆体溶液を成形した後、加熱あるいは化学的にイミド化を完結させ、金型から分離して管状物体を得る方法が提案されている。   A method of manufacturing a tubular body from the polyimide precursor solution is, as known in Patent Documents 5 to 6, after forming a polyimide precursor solution with a predetermined thickness on the outer surface or inner surface of a molding die, A method has been proposed in which imidization is chemically completed and a tubular object is obtained by separation from a mold.

前記定着ベルトあるいは加圧ベルトはポリイミド管状物体の外面(トナーと接する面)にフッ素樹脂などの離型層が形成された2層構造、あるいは前記ポリイミド管状物体とフッ素樹脂層の間に接着性を向上させるためのプライマー層を有する3層構造のベルトが使用されている。   The fixing belt or pressure belt has a two-layer structure in which a release layer such as a fluororesin is formed on the outer surface of the polyimide tubular object (the surface in contact with the toner), or has an adhesive property between the polyimide tubular object and the fluororesin layer. A three-layer belt having a primer layer for improvement is used.

近年、OA機器は小型化、高速化の要求が高く、こうした要求に対応するための定着ベルトあるいは加圧ベルトではベルト外面の離型性と共に、内面の動摩擦係数が低いこと、あるいは高い熱伝導性などの特性が要求される。   In recent years, there has been a high demand for miniaturization and high speed of OA equipment, and a fixing belt or pressure belt for meeting such demands has a low dynamic friction coefficient on the inner surface as well as a releasability of the outer surface of the belt, or a high thermal conductivity. Such characteristics are required.

すなわち、前記図6の定着ベルトあるいは図7の加圧ベルトは、それぞれ駆動源を持つ加圧ロールあるいは定着ロールによって伝達され回転する機構になっている。このような機構で駆動源を持つロールとベルトが直接接触している場合は、駆動ロールの回転力はそのままベルトに伝わり、比較的円滑に回転する。しかしながら、駆動ロールとベルトの間に複写紙が挿入され、実質的にトナーの定着が行われる時は、ベルトへの回転力は駆動ロールから転写紙を介してベルトに伝達されるため、転写紙とベルトの表面でスリップが発生しやすくなる。   That is, the fixing belt shown in FIG. 6 or the pressure belt shown in FIG. 7 is a mechanism that is transmitted and rotated by a pressure roll or a fixing roll having a drive source. When the roll having the drive source and the belt are in direct contact with such a mechanism, the rotational force of the drive roll is transmitted to the belt as it is and rotates relatively smoothly. However, when the copy paper is inserted between the drive roll and the belt and the toner is substantially fixed, the rotational force to the belt is transmitted from the drive roll to the belt via the transfer paper. And slip is likely to occur on the surface of the belt.

特に定着あるいは加圧ベルトの最外層は溶融したトナーの付着(オフセット現象)を防止するためにフッ素樹脂等の離型層が積層されており動摩擦係数も低くすべり易く、さらに複写機やプリンターが高速化になるほどスリップが発生しやすい。前記のように定着面(ニップ部)でスリップが発生すると、複写紙とベルト表面の微小なスリップの繰り返しにより、ベルト表面の離型層が複写紙で磨耗されることになり毛羽立ち離型層表面が粗くなり、オフセットの原因になっている。   In particular, the outermost layer of the fixing or pressure belt is laminated with a release layer such as fluororesin to prevent adhesion of melted toner (offset phenomenon), making it easy to slide with a low coefficient of dynamic friction, and high speed copying machines and printers. Slip is more likely to occur. As described above, when slip occurs on the fixing surface (nip part), the release layer on the belt surface is worn by the copy paper due to repeated minute slips on the copy paper and the belt surface, and the fluffing release layer surface Becomes rough and causes offset.

またポリイミド樹脂やその外面に積層されているフッ素樹脂はもともと熱伝導性が低く、且つ多層構造になっているため高速化に対応するための熱伝導性に乏しいことも問題になっている。   In addition, the polyimide resin and the fluororesin laminated on the outer surface have a low thermal conductivity from the beginning, and since it has a multilayer structure, it has a problem that it has a poor thermal conductivity to cope with a higher speed.

これらの要求特性に対応するため、例えば特許文献7〜9等の提案がされている。特許文献7は、ポリイミド管状物体の内側表面を粗面化して潤滑剤を保持させるものである。特許文献8は、ポリイミド前駆体に熱伝導性無機質充填剤とポリテトラフルオロエチレン等のフッ素樹脂粉末を添加し、250℃で加熱し、その後外表面にフッ素樹脂をコーティングして被膜形成している。特許文献9は、ポリイミド前駆体にフッ素樹脂粉末を添加したものを、円筒金型の内周面に塗布して展延し、加熱して硬化反応をさせている。
特開平7−178741号公報 特開平3−25471号公報 特開平6−258969号公報 特開平11−133776号公報 特開平6−23770号公報 特開平1−156017号公報 特開2001−341143 特開2001−040102 特開2001−056615
In order to cope with these required characteristics, for example, Patent Documents 7 to 9 have been proposed. In Patent Document 7, the inner surface of a polyimide tubular object is roughened to hold a lubricant. In Patent Document 8, a polyimide precursor is added with a heat conductive inorganic filler and a fluororesin powder such as polytetrafluoroethylene, heated at 250 ° C., and then coated with a fluororesin on the outer surface to form a film. . In Patent Document 9, a polyimide precursor added with fluororesin powder is spread on an inner peripheral surface of a cylindrical mold, and heated to cause a curing reaction.
JP 7-178741 A Japanese Patent Laid-Open No. 3-25471 JP-A-6-258969 Japanese Patent Application Laid-Open No. 11-133776 JP-A-6-23770 Japanese Patent Laid-Open No. 1-156017 JP 2001-341143 A JP 2001-040102 A JP 2001-056615 A

しかし、前記従来の提案の特許文献7〜9は、いずれも管状物体内面の摩擦抵抗を下げることを目的としており、表層の紙と接触する面は従来からのフッ素樹脂層の離型層をそのまま採用しているか、又は改良されていない。また、ポリイミド管状物体とフッ素樹脂離型層を有する2層構造あるいはポリイミド層とフッ素樹脂層間にプライマー層を有する3層構造であり特に図6の定着装置で使用する場合には多層構造であるため厚みが厚く熱伝導性が低下し、また、その製造方法も3種類の原料と、3つのそれぞれ異なる工程が必要となり製造工程が煩雑で、かつ、各材料で形成された層間の接着力にも問題があった。   However, Patent Documents 7 to 9 of the conventional proposals all aim at lowering the frictional resistance of the inner surface of the tubular object, and the surface of the surface layer in contact with the paper is the conventional release layer of the fluororesin layer as it is. Adopted or not improved. In addition, since it has a two-layer structure having a polyimide tubular object and a fluororesin release layer or a three-layer structure having a primer layer between the polyimide layer and the fluororesin layer, it has a multilayer structure particularly when used in the fixing device of FIG. The thickness is large and the thermal conductivity is reduced. Also, the manufacturing method requires three types of raw materials and three different processes, making the manufacturing process complicated, and the adhesion between layers formed of each material. There was a problem.

本発明は前記従来例の問題を解決し、管状物体の内面が低い摩擦抵抗を持ち同時に管状物体外面も定着ベルトや加圧ベルトとしての十分な離型性を有し耐久性が高く、製造コストの低い管状物体及びその製造方法を提供する。   The present invention solves the problems of the conventional example, and the inner surface of the tubular object has low frictional resistance, and at the same time, the outer surface of the tubular object has sufficient releasability as a fixing belt and a pressure belt, and has high durability and manufacturing cost. A low-pipe tubular object and a method for manufacturing the same are provided.

本発明の管状物体は、ポリイミドとフッ素樹脂粒子とを含む混合物が成形され加熱硬化された管状物体であって、前記管状物体の表層近傍に存在する少なくとも一部のフッ素樹脂粒子は、前記管状物体の外面又は内外面に溶融流動して析出し、部分的又は全面にフッ素樹脂被膜を形成していることを特徴とする。   The tubular object of the present invention is a tubular object obtained by molding and heat-curing a mixture containing polyimide and fluororesin particles, and at least a part of the fluororesin particles present in the vicinity of the surface layer of the tubular object is the tubular object It is characterized by being melt-flowed and deposited on the outer surface or inner / outer surface of the film, and forming a fluororesin film partially or entirely.

本発明の管状物体の製造方法は、ポリイミド前駆体溶液と溶融流動するフッ素樹脂粒子との混合溶液を金型外面に塗布し所定の厚みにキャスト成形し、加熱してイミド化し、前記イミド化の最高温度をフッ素樹脂の融点を越える温度とし、冷却後、前記金型と管状物体を分離することにより、前記管状物体の表層近傍に存在する少なくとも一部のフッ素樹脂粒子を前記管状物体の外面又は内外面に溶融流動して析出させ、部分的又は全面にフッ素樹脂被膜を形成させることを特徴とする。   In the method for producing a tubular object of the present invention, a mixed solution of a polyimide precursor solution and melt-flowing fluororesin particles is applied to the outer surface of a mold, cast to a predetermined thickness, heated to imidize, The maximum temperature is set to a temperature exceeding the melting point of the fluororesin, and after cooling, the mold and the tubular object are separated, so that at least a part of the fluororesin particles present in the vicinity of the surface layer of the tubular object is removed from the outer surface of the tubular object or It is characterized by being melt-flowed and deposited on the inner and outer surfaces, and forming a fluororesin film partially or entirely.

本発明は、管状物体の表層近傍に存在する少なくとも一部のフッ素樹脂粒子は、管状物体の外面又は内外面に溶融して析出し、この溶融析出したフッ素樹脂はポリイミドと一体化し、且つ前記管状物体表面で流動した被膜を形成しているので、管状物体内面の動摩擦係数が低く、また管状物体の外面もフッ素樹脂被膜で形成されているため、溶融したトナーの離型性も高く、従来の定着ベルトのようにフッ素樹脂離型層を別工程で新に成型する必要もなく、画像形成装置の定着部材や転写ベルト、あるいは中間転写兼加熱定着ベルトなどに使用できる。さらに、ポリイミド前駆体溶液にフッ素樹脂粒子を添加した混合溶液を成形金型外面又は内面に塗布し、所定の厚みにキャスト成形し、加熱してイミド化し、前記イミド化の最高温度をフッ素樹脂の融点を越える温度とすることにより、管状物体の表層近傍に存在する少なくとも一部のフッ素樹脂粒子を管状物体の少なくとも外面に溶融して析出させることができる。ポリイミド基材の片面あるいは両面にフッ素樹脂が溶融析出した構造の成形物はフィルム状では耐熱摺動材料や離型性フィルム、あるいはチューブ形状としてはフッ素樹脂の化学的な安定性及びポリイミドの機械的特性などを持ち合わせ医療用分野のカテーテルや体内に挿入する医療用の各種チューブなどにも好適に使用できる。   In the present invention, at least a part of the fluororesin particles present in the vicinity of the surface layer of the tubular object is melted and deposited on the outer surface or the inner and outer surfaces of the tubular object, and the melted and precipitated fluororesin is integrated with the polyimide, and the tubular Since the film that flows on the surface of the object is formed, the coefficient of dynamic friction on the inner surface of the tubular object is low, and the outer surface of the tubular object is also formed of a fluororesin film. Unlike the fixing belt, there is no need to newly form a fluororesin release layer in a separate process, and it can be used for a fixing member or transfer belt of an image forming apparatus, an intermediate transfer / heat fixing belt, or the like. Further, a mixed solution obtained by adding fluororesin particles to a polyimide precursor solution is applied to the outer surface or inner surface of a molding die, cast-molded to a predetermined thickness, heated to imidize, and the maximum temperature of the imidization is set to the maximum temperature of the fluororesin. By setting the temperature exceeding the melting point, at least a part of the fluororesin particles existing in the vicinity of the surface layer of the tubular object can be melted and deposited on at least the outer surface of the tubular object. Molded products with a structure in which a fluororesin melts and precipitates on one or both sides of a polyimide substrate. In the form of a film, the heat-resistant sliding material or release film, or in the form of a tube, the chemical stability of the fluororesin and the mechanical properties of the polyimide. It has characteristics and can be suitably used for medical catheters and various medical tubes inserted into the body.

本発明の管状物体の基本的成分は、ポリイミドとフッ素樹脂粒子である。ポリイミドとフッ素樹脂粒子との相溶性はなくポリイミド管状物体の外面又は内外面にフッ素樹脂が溶融析出し、且つ前記溶融析出面はその表面で流動した被膜を形成している。   The basic components of the tubular object of the present invention are polyimide and fluororesin particles. There is no compatibility between the polyimide and the fluororesin particles, and the fluororesin melts and precipitates on the outer surface or inner and outer surfaces of the polyimide tubular body, and the melt-deposited surface forms a fluidized film on the surface.

そして、金型の外面にキャスト成形されたフッ素樹脂粒子を含むポリイミド前駆体溶液を加熱してイミド化させる際に、イミド化の最高温度をフッ素樹脂の融点を越える温度とする。これにより、フッ素樹脂粒子がポリイミドの少なくとも外面に溶融析出し、これにより低摩擦係数を有する内面と高い離型性を有する外面特性を持つポリイミド管状物体を得ることができる。   When the polyimide precursor solution containing fluororesin particles cast on the outer surface of the mold is heated and imidized, the maximum temperature of imidization is set to a temperature exceeding the melting point of the fluororesin. Thereby, the fluororesin particles melt and precipitate on at least the outer surface of the polyimide, whereby a polyimide tubular body having an inner surface having a low friction coefficient and an outer surface characteristic having a high releasability can be obtained.

前記フッ素樹脂被膜面は、フッ素樹脂粒子に起因する粒状模様を有していることが好ましい。これはフッ素樹脂粒子が一部残存しており、表面が細かな泡の状態として観察される。   The fluororesin coating surface preferably has a granular pattern resulting from the fluororesin particles. This is observed as a state of fine bubbles with a part of the fluororesin particles remaining.

前記フッ素樹脂粒子は、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(PETFE)から選ばれる少なくとも一つのフッ素樹脂であることが好ましい。   The fluororesin particles include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP). ) Or at least one fluororesin selected from tetrafluoroethylene-ethylene copolymer (PETFE).

管状物体の表面に析出したフッ素樹脂を熱的に流動させ、フッ素樹脂被膜を形成させるためにはPFAやFEPのような熱可塑性フッ素樹脂が好ましい。これらのフッ素樹脂は、融点以上の温度で流動し、管状物体の内外面にフィルム状の被膜として形成することができる。   In order to thermally flow the fluororesin deposited on the surface of the tubular body and form a fluororesin coating, a thermoplastic fluororesin such as PFA or FEP is preferable. These fluororesins flow at a temperature equal to or higher than the melting point, and can be formed as a film-like film on the inner and outer surfaces of the tubular object.

またPTFE樹脂のように、融点以上の温度に加熱しても溶融粘度が高く熱流動しにくいフッ素樹脂を混合した場合、管状物体の内外表面の状態は、ポリイミドが海状、フッ素樹脂粒子が島状で存在する、いわゆる海島構造である。このような構造は、画像形成装置に用いる中間転写ベルトなどの用途に最適な構造である。すなわち、前記転写ベルトは、感光体からトナー像を中間的に転写させ、その後トナー像を複写紙に再転写する目的に使用されるベルトであり、複写紙に再転写したのち転写ベルト表面にわずかに残存しているトナー粉末をブレードで掻き取り除去する場合に、ブレードとの摺動抵抗が低く好ましい構造である。   In addition, when a fluororesin such as PTFE resin, which has a high melt viscosity and is difficult to heat flow even when heated to a temperature higher than the melting point, the state of the inner and outer surfaces of the tubular object is as follows. This is a so-called sea-island structure. Such a structure is optimal for applications such as an intermediate transfer belt used in an image forming apparatus. That is, the transfer belt is a belt that is used for the purpose of intermediately transferring a toner image from a photosensitive member and then retransferring the toner image onto a copy paper. When the toner powder remaining on the surface is scraped off with a blade, the sliding resistance with the blade is low, which is a preferable structure.

本発明で使用するポリイミドは、熱硬化性樹脂であり、ポリイミド前駆体溶液とフッ素樹脂の混合溶液を、例えば金型の外面あるいは内面にキャスティング成形し、乾燥及び加熱してイミド化を完結させ、管状物体の少なくとも外面又は内外面にフッ素樹脂が析出したポリイミド・フッ素樹脂複合管状物体を製作することができる。   The polyimide used in the present invention is a thermosetting resin, a mixed solution of a polyimide precursor solution and a fluororesin is cast on, for example, the outer surface or the inner surface of a mold, dried and heated to complete imidization, A polyimide / fluororesin composite tubular object in which a fluororesin is deposited on at least the outer surface or the inner / outer surface of the tubular object can be manufactured.

前記方法で製作した管状物体は、その被膜が空気に接している面にフッ素樹脂が溶融析出し易い。すなわち、フッ素樹脂粉末はポリイミド前駆体溶液中では混合され分散した状態で存在する。しかし、加熱処理により、イミド化を進行させる過程でフッ素樹脂の融点を超える温度まで加熱処理することにより、溶融したフッ素樹脂が管状物体の厚み方向で、空気に接している最外層に向かって移動していくことが考えられる。   In the tubular body manufactured by the above method, the fluororesin is likely to be melted and deposited on the surface where the coating is in contact with air. That is, the fluororesin powder exists in a mixed and dispersed state in the polyimide precursor solution. However, the heat treatment causes the molten fluororesin to move toward the outermost layer in contact with the air in the thickness direction of the tubular object by performing heat treatment to a temperature exceeding the melting point of the fluororesin during the process of imidization. It is conceivable to do.

フッ素樹脂が前記管状物体の中で移動していく現象の詳細なメカニズムは不明であるが、本発明者らは数多くの実験と研究を継続した結果、前記のポリイミド前駆体溶液とフッ素樹脂の混合溶液をガラス板上に流延し、キャスティング成形し、乾燥及び加熱してイミド化を完結させ、ポリイミド・フッ素樹脂複合フィルムの製作において、前記フィルムがガラス面に接触している面にも、フッ素樹脂が溶融析出することを見出し、本発明の管状物体において確認実験を行った。   Although the detailed mechanism of the phenomenon in which the fluororesin moves in the tubular body is not clear, the present inventors have continued numerous experiments and researches, and as a result, mixed polyimide precursor solution and fluororesin. The solution is cast on a glass plate, cast-molded, dried and heated to complete imidization, and in the production of a polyimide / fluorine resin composite film, the surface where the film is in contact with the glass surface is also treated with fluorine. It was found that the resin melted and precipitated, and a confirmation experiment was conducted on the tubular object of the present invention.

その結果、空気層に全く接していない管状物体の内面にも、フッ素樹脂を析出させることができることを見出した。また、管状物体の両面にフッ素樹脂が析出してくる現象は、フッ素樹脂の種類の違いやイミド化工程の温度の違いによって異なることを見出した。   As a result, it has been found that the fluororesin can be deposited also on the inner surface of the tubular object that is not in contact with the air layer. Further, it has been found that the phenomenon in which the fluororesin precipitates on both surfaces of the tubular object is different depending on the difference in the type of fluororesin and the temperature in the imidization process.

すなわち、フッ素樹脂が析出する現象は、フッ素樹脂の融点とポリイミド前駆体のイミド化温度の影響を受ける。詳細な実験結果では、芳香族テトラカルボン酸二無水物としてビフェニルテトラカルボン酸二無水物(BPDA)と、芳香族ジアミンとしてパラフェニレンジアミン(PPD)を用いた剛直なポリイミドに、フッ素樹脂を混合した場合、イミド化の最高温度がフッ素樹脂の融点未満では、フッ素樹脂は管状物体のいずれの面にも顕著に現れないが、フッ素樹脂の融点以上まで温度を上げると、管状物体の内面、外面の両面にフッ素樹脂が溶融して析出し、低い摩擦抵抗を有する管状物体を得ることができた。   That is, the phenomenon in which the fluororesin precipitates is affected by the melting point of the fluororesin and the imidization temperature of the polyimide precursor. In the detailed experimental results, fluororesin was mixed with rigid polyimide using biphenyltetracarboxylic dianhydride (BPDA) as aromatic tetracarboxylic dianhydride and paraphenylenediamine (PPD) as aromatic diamine. In this case, when the maximum temperature of imidization is lower than the melting point of the fluororesin, the fluororesin does not appear remarkably on any surface of the tubular object. The fluororesin melted and deposited on both sides, and a tubular object having low frictional resistance could be obtained.

また、前記芳香族テトラカルボン酸二無水物と芳香族ジアミンからなるポリイミド前駆体溶液単体をイミド化して得られるポリイミドの熱収縮率が大きいことがフッ素樹脂を溶融析出させるために好ましいことを見出した。すなわちポリイミド前駆体溶液をガラス板上にキャスティング成形し乾燥後、段階的に300℃まで加熱しイミド化を進行させた後、冷却後ポリイミドフィルムをガラス板より剥がし、300℃からフッ素樹脂の融点以上の温度、例えば400℃まで加熱したときの熱収縮率の大きいポリイミドにおいてフッ素樹脂が溶融析出しやすい。   Moreover, it discovered that it was preferable in order to melt-precipitate a fluororesin that the polyimide has a large thermal contraction rate obtained by imidizing a polyimide precursor solution consisting of the aromatic tetracarboxylic dianhydride and an aromatic diamine. . That is, the polyimide precursor solution is cast on a glass plate, dried, heated to 300 ° C stepwise to advance imidization, and after cooling, the polyimide film is peeled off from the glass plate and the melting point of the fluororesin is increased from 300 ° C. Fluorine resin tends to melt and precipitate in polyimide having a large thermal shrinkage when heated to a temperature of, for example, 400 ° C.

前記テストの結果、芳香族テトラカルボン酸二無水物成分としてBPDAと芳香族ジアミン成分としてPPDからなるポリイミド前駆体から作製したフィルムの熱収縮率は0.9%であり、PMDAとODAを用いたポリイミド前駆体より得られたフィルムの熱収縮率は0.09%であった。ポリイミドフィルムの熱収縮率の値とフッ素樹脂が溶融析出する現象の関係は、300℃〜400℃における熱収縮率が大きいほどポリイミド被膜中からフッ素樹脂が析出しやすい現象を見出した。   As a result of the test, the heat shrinkage rate of the film prepared from the polyimide precursor composed of BPDA as the aromatic tetracarboxylic dianhydride component and PPD as the aromatic diamine component was 0.9%, and PMDA and ODA were used. The heat shrinkage rate of the film obtained from the polyimide precursor was 0.09%. The relationship between the value of the heat shrinkage rate of the polyimide film and the phenomenon in which the fluororesin melts and precipitates was found to be a phenomenon in which the fluororesin easily precipitates from the polyimide film as the heat shrinkage rate at 300 ° C. to 400 ° C. increases.

前記熱収縮率の詳細なテスト方法を下記に説明する。熱収縮率の測定は島津製作所社製“TMA−50”を用いた。ポリイミドフィルムは前記モノマーから得られたポリイミド前駆体溶液をガラス板上にイミド化完結時の厚みが50μmになるよう流延し150℃の温度で40分乾燥後200℃で40分、さらに250℃で20分、300℃で20分加熱しポリイミドフィルムを作製した。   A detailed test method for the heat shrinkage will be described below. “TMA-50” manufactured by Shimadzu Corporation was used for the measurement of the heat shrinkage rate. The polyimide film was prepared by casting a polyimide precursor solution obtained from the above monomer onto a glass plate so that the thickness upon completion of imidization was 50 μm, dried at 150 ° C. for 40 minutes, then 200 ° C. for 40 minutes, and further 250 ° C. And heated at 300 ° C. for 20 minutes to produce a polyimide film.

このフィルムを長さ10mm幅3.5mmの短冊状に切断し、その片方に2.0gの荷重をかけ“TMA−50”に装着した。熱収縮の状態は室温から400℃まで10℃/分の昇温速度で観察し300℃から400℃における熱収縮率を算出した。   This film was cut into strips having a length of 10 mm and a width of 3.5 mm, and a load of 2.0 g was applied to one of the films and the film was attached to “TMA-50”. The state of heat shrinkage was observed from room temperature to 400 ° C. at a rate of temperature increase of 10 ° C./min, and the heat shrinkage rate from 300 ° C. to 400 ° C. was calculated.

また、PTFE(融点:327℃)よりも融点の低いFEP(融点:250℃)を用いたポリイミド前駆体溶液で実験した結果では、イミド化の最高温度が300℃の温度で、管状物体の内外面にフッ素樹脂(FEP)が析出し、且つその表面は熱流動し被膜の状態を形成し、低い摩擦抵抗を有する管状物体を得ることができた。   In addition, as a result of an experiment with a polyimide precursor solution using FEP (melting point: 250 ° C.) having a melting point lower than that of PTFE (melting point: 327 ° C.), the maximum temperature of imidization is 300 ° C. Fluororesin (FEP) was deposited on the outer surface, and the surface was heat-flowed to form a coating state, and a tubular object having a low frictional resistance could be obtained.

このように本発明の管状物体の内外面にフッ素樹脂が析出する現象は、フッ素樹脂の融点、ポリイミド前駆体のイミド化温度等を選定し、所定の条件に設定することにより、管状物体の両面にフッ素樹脂を析出させることが可能になった。   As described above, the phenomenon in which the fluororesin precipitates on the inner and outer surfaces of the tubular object of the present invention is achieved by selecting the melting point of the fluororesin, the imidization temperature of the polyimide precursor, etc., and setting them to predetermined conditions. It became possible to deposit a fluororesin on.

本発明の管状物体は、単体層でも良いし、必要に応じて多層で形成しても良い。多層の場合、内層はフッ素樹脂粒子を含まないか又は外層よりもその存在量を相対的に少なくしてポリイミド層を成形することもでき、管状物体の機械的特性をさらに向上させることができる。またポリイミドやフッ素樹脂の種類やあるいはフッ素樹脂の混合量を変えた層で多層にすることもできる。さらにフッ素樹脂を混合したポリイミド前駆体を用い金型にキャスト成型した後、イミド反応時の温度を制御し、管状物体の外面のみにフッ素樹脂を溶融析出することもできる。中間転写ベルトなどの用途のように、外層の表面のみ摩擦特性を良好にすれば良い場合もあるからである。   The tubular object of the present invention may be a single layer or may be formed in multiple layers as necessary. In the case of a multilayer, the inner layer does not contain fluororesin particles, or the polyimide layer can be formed with a relatively small amount of the inner layer as compared with the outer layer, so that the mechanical properties of the tubular object can be further improved. Moreover, it can also be made into a multilayer by the layer which changed the kind of polyimide or fluororesin, or the mixing amount of fluororesin. Furthermore, after casting into a mold using a polyimide precursor mixed with a fluororesin, the temperature during the imide reaction can be controlled to melt and deposit the fluororesin only on the outer surface of the tubular object. This is because there may be a case where only the surface of the outer layer needs to have a good friction characteristic as in an intermediate transfer belt.

また、前記フッ素樹脂混合ポリイミド前駆体溶液には窒化ホウ素、チタン酸カリウム、マイカ、酸化チタン、タルク、炭酸カルシウム、窒化アルミニウム、アルミナ、炭化珪素、珪素、窒化珪素、シリカ、グラファイト、カーボンファイバー、金属粉末、酸化ベリリウム、マグネシウム、酸化マグネシウム等の熱伝導性フィラー等を添加できる。これらの熱伝導性フィラーを添加することによって管状物体被膜の熱伝導性が改善され高速定着に対応でき好ましい。   The fluororesin mixed polyimide precursor solution includes boron nitride, potassium titanate, mica, titanium oxide, talc, calcium carbonate, aluminum nitride, alumina, silicon carbide, silicon, silicon nitride, silica, graphite, carbon fiber, metal Thermally conductive fillers such as powder, beryllium oxide, magnesium and magnesium oxide can be added. Addition of these thermally conductive fillers is preferable because the thermal conductivity of the tubular object coating is improved and high-speed fixing can be supported.

本発明において前記フッ素樹脂はPTFE,PFA,FEP,CPTFE等のフッ素樹脂を単体で、あるいは混合して使用することができる。PTFE、PFA、FEPは耐熱性、離型性に優れ本発明で使用できる好ましい材料である。また、前記フッ素樹脂を混合したポリイミド前駆体溶液中にはカーボンブラック、カーボンファイバー、金属粉末などの導電性物質や帯電防止剤を添加することができる。   In the present invention, as the fluororesin, fluororesins such as PTFE, PFA, FEP, and CPTFE can be used alone or as a mixture. PTFE, PFA, and FEP are preferable materials that have excellent heat resistance and releasability and can be used in the present invention. In addition, a conductive material such as carbon black, carbon fiber, metal powder or an antistatic agent can be added to the polyimide precursor solution mixed with the fluororesin.

導電性あるいは帯電防止剤を混合分散したフッ素樹脂を用いることによって、画像形成プロセスの中で発生する静電オフセットなどによる画質の低下あるいは、画像上ゴーストとなってしまう状態を改善でき好ましい。   Use of a fluororesin in which a conductive or antistatic agent is mixed and dispersed is preferable because it can improve the deterioration of image quality due to electrostatic offset or the like generated in the image forming process, or the state of ghosting on the image.

また前記フッ素樹脂の混合量はポリイミド前駆体溶液の固形分に対して10〜90質量%に設定することが好ましい。特に好ましくは20〜80質量%である。   Moreover, it is preferable to set the mixing amount of the said fluororesin to 10-90 mass% with respect to solid content of a polyimide precursor solution. Most preferably, it is 20-80 mass%.

上記フッ素樹脂の含有量が10質量%未満であると、溶融析出してくるフッ素樹脂が少なく摩擦抵抗を低下させる効果が少なくなる傾向となり、また90質量%を超えると、機械強度が低くなり、管状物体表面の平滑性も損なわれ割れが生じやすくなる傾向となる。   When the content of the fluororesin is less than 10% by mass, the fluororesin that melts and precipitates tends to be less effective to reduce the frictional resistance, and when it exceeds 90% by mass, the mechanical strength decreases. The smoothness of the surface of the tubular object is also impaired and cracking tends to occur.

また、前記フッ素樹脂は粉末状のものが混合しやすく好ましい形態であり、平均粒径は、0.1〜100μmの範囲が好ましい。より好ましい平均粒子径は、0.5〜50μmの範囲である。このような範囲内であると粒子の凝集が少なく均一に分散できるため好ましい。   Moreover, the said fluororesin is a preferable form which is easy to mix a powdery thing, and the average particle diameter has the preferable range of 0.1-100 micrometers. A more preferable average particle diameter is in the range of 0.5 to 50 μm. Within such a range, it is preferable because the particles can be dispersed uniformly with little aggregation.

なお、前記平均粒径が0.1μm未満であると粒子が二次凝集しやすく、100μmを超えると管状物体の内面あるいは外面に、フッ素樹脂粒子に起因する凹凸が生じやすいため好ましくない。なお、上記フッ素樹脂粉末の平均粒径の測定方法はレーザ回析式粒度測定装置(ASLD−2100:島津製作所社製)やレーザ回析/散乱式粒度分布測定装置(LA−920:堀場製作所社製)で測定することが出来る。   If the average particle size is less than 0.1 μm, the particles are likely to agglomerate. If the average particle size is more than 100 μm, irregularities due to the fluororesin particles are likely to occur on the inner surface or outer surface of the tubular object. In addition, the measuring method of the average particle diameter of the said fluororesin powder is a laser diffraction type particle size measuring device (ASLD-2100: manufactured by Shimadzu Corporation) or a laser diffraction / scattering type particle size distribution measuring device (LA-920: Horiba, Ltd.). Manufactured).

前記のフッ素樹脂粒子の大きさを整えるため、ポリイミド前駆体溶液とフッ素樹脂粒子との混合溶液を金型外面に塗布する前に、前記混合溶液をフィルターで濾過し、フッ素樹脂粒子の粗大粒子を除去することが好ましい。   In order to adjust the size of the fluororesin particles, before applying the mixed solution of the polyimide precursor solution and the fluororesin particles to the outer surface of the mold, the mixed solution is filtered with a filter, and the coarse particles of the fluororesin particles are removed. It is preferable to remove.

また、本発明の管状物体は、ポリイミドを主成分とする管状物体であり、フッ素樹脂とポリイミド前駆体溶液を混合しシームレス状にキャスティング成形後、加熱イミド化したものである。前記ポリイミド前駆体溶液は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの略等モルを有機極性溶媒中で反応させて得ることができる。   Moreover, the tubular body of the present invention is a tubular body having polyimide as a main component, and is obtained by mixing a fluororesin and a polyimide precursor solution, casting seamlessly, and then heating imidization. The polyimide precursor solution can be obtained by reacting approximately equimolar amounts of an aromatic tetracarboxylic dianhydride and an aromatic diamine in an organic polar solvent.

前記、芳香族テトラカルボン酸二無水物の代表例としては、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物、2,3,3′,4−ビフェニルテトラカルボン酸二無水物、3,3′,4,4′−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,2′−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ペリレン−3,4,9,10−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物等があげられる。   Representative examples of the aromatic tetracarboxylic dianhydride include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, pyromellitic dianhydride, 2,3,3 ′, 4- Biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8- Naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) propane dianhydride, perylene-3,4, Examples include 9,10-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, and the like.

また、前記芳香族ジアミンの代表例としては、4,4′−ジアミノジフェニルエーテル、p−フェニレンジアミン、m−フェニレンジアミン、1,5−ジアミノナフタレン、3,3′−ジクロロベンジジン、3,3′−ジアミノジフェニルメタン、4,4′−ジアミノジフェニルメタン、3,3′−ジメチル−4,4′−ビフェニルジアミン、4,4′−ジアミノジフェニルスルフィド−3,3′−ジアミノジフェニルスルホン、ベンジジン、3,3′−ジメチルベンジジン、4,4′−ジアミノフェニルスルホン、4,4′−ジアミノジフェニルプロパン、m−キシリレンジアミン、ヘキサメチレンジアミン、ジアミノプロピルテトラメチレン、3−メチルヘプタメチレンジアミン、等があげられる。   Representative examples of the aromatic diamine include 4,4'-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 1,5-diaminonaphthalene, 3,3'-dichlorobenzidine, 3,3'- Diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-biphenyldiamine, 4,4'-diaminodiphenyl sulfide-3,3'-diaminodiphenylsulfone, benzidine, 3,3 ' -Dimethylbenzidine, 4,4'-diaminophenylsulfone, 4,4'-diaminodiphenylpropane, m-xylylenediamine, hexamethylenediamine, diaminopropyltetramethylene, 3-methylheptamethylenediamine and the like.

これら芳香族テトラカルボン酸二無水物及び芳香族ジアミンは、単独であるいは混合して使用することができる。またポリイミド前駆体溶液まで完成させてそれらの前駆体を混合して使用することもできる。   These aromatic tetracarboxylic dianhydrides and aromatic diamines can be used alone or in combination. It is also possible to complete the polyimide precursor solution and use the precursors mixed.

前記芳香族テトラカルボン酸二無水物と芳香族ジアミンの組み合わせの中では、ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンの組み合わせが好ましい。この前駆体から得られたポリイミドは、ポリマーの構造がリジッドであり、フッ素樹脂の溶融温度でフッ素樹脂を外側に押出しやすい構造となる。   Among the combinations of the aromatic tetracarboxylic dianhydride and the aromatic diamine, a combination of biphenyltetracarboxylic dianhydride and paraphenylenediamine is preferable. The polyimide obtained from this precursor has a rigid polymer structure and has a structure in which the fluororesin can be easily extruded outward at the melting temperature of the fluororesin.

前記芳香族テトラカルボン酸二無水物と芳香族ジアミンを反応させる有機極性溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、ピリジン、ジメチルテトラメチレンスルホン、テトラメチレンスルホン等があげられる。これらの有機極性溶媒はフェノール、キシレン、ヘキサン、トルエン等を混合することもできる。   Examples of the organic polar solvent for reacting the aromatic tetracarboxylic dianhydride and the aromatic diamine include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide. N, N-diethylacetamide, dimethyl sulfoxide, hexamethyl phosphortriamide, pyridine, dimethyltetramethylene sulfone, tetramethylene sulfone and the like. These organic polar solvents can also be mixed with phenol, xylene, hexane, toluene and the like.

上記、ポリイミド前駆体溶液は、前記芳香族テトラカルボン酸二無水物と芳香族ジアミンとを有機極性溶媒中で通常は90℃以下で反応させることによって得られ、溶媒中の固形分濃度は、最終のポリイミド管状物体の仕様や加工条件によって設定することができるが10〜30質量%である。   The polyimide precursor solution is obtained by reacting the aromatic tetracarboxylic dianhydride and the aromatic diamine in an organic polar solvent usually at 90 ° C. or lower, and the solid content concentration in the solvent is the final concentration. Although it can be set according to the specifications and processing conditions of the polyimide tubular object, it is 10 to 30% by mass.

また、有機極性溶媒中で芳香族テトラカルボン酸二無水物と芳香族ジアミンとを反応させると、その重合状況によって溶液の粘度が上昇するが、使用に際しては所定の粘度に希釈して使用することができる。製造条件や作業条件によって通常1〜5000ポイズの粘度で使用される。   In addition, when aromatic tetracarboxylic dianhydride and aromatic diamine are reacted in an organic polar solvent, the viscosity of the solution increases depending on the polymerization conditions. Can do. It is usually used at a viscosity of 1 to 5000 poise depending on manufacturing conditions and working conditions.

本発明の製造方法において、管状物体の少なくとも外面にフッ素樹脂層を析出させることができる温度は、フッ素樹脂の融点を越える温度に加熱する必要がある。イミド化の最高温度は、混合したフッ素樹脂の融点より10℃以上高い温度でイミド化を完成させることが好ましい。   In the production method of the present invention, the temperature at which the fluororesin layer can be deposited on at least the outer surface of the tubular object needs to be heated to a temperature exceeding the melting point of the fluororesin. It is preferable that the imidization is completed at a temperature that is 10 ° C. or more higher than the melting point of the mixed fluororesin.

また、前記管状物体の内外面にフッ素樹脂を析出させるために必要な加熱時間は、イミド化の最高温度がフッ素樹脂の融点を越える温度に到達してから30分以内の時間であることが好ましい。30分以上の加熱時間になると、フッ素樹脂の熱分解や、ポリイミドの機械的特性が低下するおそれがある。   Further, the heating time necessary for precipitating the fluororesin on the inner and outer surfaces of the tubular body is preferably within 30 minutes after the maximum temperature of imidization reaches a temperature exceeding the melting point of the fluororesin. . If the heating time is 30 minutes or longer, the thermal decomposition of the fluororesin or the mechanical properties of the polyimide may be reduced.

本発明の管状物体は例えば次のような方法で得ることができる。所定の外径(管状物体の内径に相当する径)の金型表面にフッ素樹脂混合ポリイミド前駆体溶液を塗布し、外側にダイスを用いてキャスト成形し、加熱装置に導き、100〜150℃の比較的低い温度で重合溶媒を乾燥させ、その後、イミド化反応を進め、最終的にはフッ素樹脂の融点を越える温度で所定時間加熱してイミド化を完成させる。その後冷却して、前記金型から管状物体を取り外す。   The tubular object of the present invention can be obtained, for example, by the following method. A fluororesin mixed polyimide precursor solution is applied to a mold surface having a predetermined outer diameter (a diameter corresponding to the inner diameter of a tubular object), casted using a die on the outside, guided to a heating device, and heated at 100 to 150 ° C. The polymerization solvent is dried at a relatively low temperature, and then the imidization reaction proceeds. Finally, the imidization is completed by heating at a temperature exceeding the melting point of the fluororesin for a predetermined time. Thereafter, the tube is cooled and the tubular object is removed from the mold.

本発明の一実施例においてポリイミド前駆体溶液にフッ素樹脂(PTFE)粉末を混合し、キャスト成形し、ポリイミドのイミド化温度が300℃のときの管状物体10の概略拡大断面図を図1に示す。この段階まではポリイミドフィルム層11の内部にフッ素樹脂粉末12は分散されており、表層面はほとんどポリイミド層で覆われている。この段階では水の接触角も低い。15は金型である。   FIG. 1 is a schematic enlarged cross-sectional view of a tubular object 10 when a polyimide precursor solution is mixed with a polyimide precursor solution, cast-molded, and the polyimide imidization temperature is 300 ° C. in one embodiment of the present invention. . Up to this stage, the fluororesin powder 12 is dispersed inside the polyimide film layer 11, and the surface layer is almost covered with the polyimide layer. At this stage, the water contact angle is also low. Reference numeral 15 denotes a mold.

次に、イミド化温度を400℃にすると、図2に示すように、フッ素樹脂粉末は溶融し、ポリイミド表面から染み出すように空気側表面層に析出する。13は溶融して染み出したフッ素樹脂である。14は金型側の内表面側に溶融して析出したフッ素樹脂である。この状態になると水の接触角は高くなる。フッ素樹脂はポリイミドとの関係においては、非相溶で海島構造(海がポリイミド、島がフッ素樹脂)であり、かつ溶融したフッ素樹脂はポリイミド表面から部分的に析出している。   Next, when the imidization temperature is set to 400 ° C., as shown in FIG. 2, the fluororesin powder is melted and deposited on the air-side surface layer so as to exude from the polyimide surface. Reference numeral 13 denotes a fluororesin that melts and exudes. 14 is a fluororesin which is melted and deposited on the inner surface side on the mold side. In this state, the water contact angle increases. In the relationship with the polyimide, the fluororesin is incompatible and has a sea-island structure (the sea is polyimide and the island is fluororesin), and the molten fluororesin is partially deposited from the polyimide surface.

図3はポリイミド前駆体溶液にFEP(融点260℃)粒子のみを単独で混合し、キャスト成形し、ポリイミドのイミド化温度を400℃にしたときの管状物体の概略拡大断面図である。ポリイミドフィルム層21の内部にFEP粉末22は分散されており、外表層面にFEPが溶融流動して析出し、部分的又は全面にフッ素樹脂被膜23を形成している。30は内表面に溶融析出したFEP樹脂である。28は金型である。   FIG. 3 is a schematic enlarged cross-sectional view of a tubular object when only FEP (melting point: 260 ° C.) particles are mixed alone with a polyimide precursor solution, cast-molded, and the imidization temperature of polyimide is 400 ° C. The FEP powder 22 is dispersed inside the polyimide film layer 21, and FEP melts and flows on the outer surface layer surface to form a fluororesin coating 23 partially or entirely. Reference numeral 30 denotes an FEP resin melt-deposited on the inner surface. Reference numeral 28 denotes a mold.

図4はポリイミド前駆体溶液にPTFE(融点327℃)粒子とFEP(融点260℃)粒子を50:50の割合で混合し、キャスト成形し、ポリイミドのイミド化温度を400℃にしたときの管状物体の概略拡大断面図である。ポリイミドフィルム層21の内部にFEP粉末22とPTFE粉末24は分散されており、表層面にFEPとPTFEが溶融流動して析出し、部分的又は全面にフッ素樹脂被膜(23,25)を形成している。28は金型である。   FIG. 4 shows a tubular structure when PTFE (melting point: 327 ° C.) particles and FEP (melting point: 260 ° C.) particles are mixed in a ratio of 50:50 in a polyimide precursor solution, cast-molded, and the polyimide imidization temperature is set to 400 ° C. It is a general | schematic expanded sectional view of an object. The FEP powder 22 and the PTFE powder 24 are dispersed inside the polyimide film layer 21, and FEP and PTFE are melt-flowed and deposited on the surface layer to form a fluororesin coating (23, 25) partially or entirely. ing. Reference numeral 28 denotes a mold.

以下、実施例に基づき本発明を更に詳細に説明する。なお、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. In addition, this invention is not limited to the following Example.

下記の実施例及び比較例において、ビフェニルテトラカルボン酸二無水物は「BPDA」と略記し、パラフェニレンジアミンは「PPD」と略記し、ピロメリット酸二無水物は「PMDA」と略記し、4,4’−ジアミノジフェニルエーテルは「ODA」とN−メチル−2−ピロリドンは「NMP」と略記する。   In the following Examples and Comparative Examples, biphenyltetracarboxylic dianhydride is abbreviated as “BPDA”, paraphenylenediamine is abbreviated as “PPD”, and pyromellitic dianhydride is abbreviated as “PMDA”. , 4′-diaminodiphenyl ether is abbreviated as “ODA” and N-methyl-2-pyrrolidone is abbreviated as “NMP”.

また、本発明で得られた管状物体の動摩擦係数及び、これらの材料で得たフィルムの純水に対する接触角は下記の方法で測定した。
(1)動摩擦係数の測定方法(図12に示す)
動摩擦係数の測定はJISK7125に準じて行った。水平なテーブル64の上に幅80mm長さ200mmの大きさの試験フィルム62を固定した。その上に幅63mm、長さ63mm(面積40cm2)の大きさで固定した試験フィルム62と同材質の試験フィルム61を重ね、さらにその上に幅63mm、長さ63mm(面積40cm2)、重さ200gの重り63を置き、重ねた試験フィルムを100mm/分の速度で水平に滑らし、その荷重(動摩擦力)を測定し下記の式により動摩擦係数を計算した。65はワイヤ、66は滑車、67は引っ張り試験機のロードセルでZの方向に巻き上げる。
動摩擦係数μD=FD/FP
D:動摩擦力(N)
P:すべり片の質量によって生じる方線力(=1.96N)
(2)接触角の測定
協和界面化学(株)製“FACE CA−Z”測定器を用いて、23℃の純水に対する接触角を測定した。
Moreover, the dynamic friction coefficient of the tubular object obtained by this invention and the contact angle with respect to the pure water of the film obtained by these materials were measured with the following method.
(1) Method for measuring coefficient of dynamic friction (shown in FIG. 12)
The dynamic friction coefficient was measured according to JISK7125. A test film 62 having a width of 80 mm and a length of 200 mm was fixed on a horizontal table 64. A test film 62 fixed to a size of 63 mm in width and 63 mm in length (area 40 cm 2 ) is overlaid thereon, and a test film 61 made of the same material as that of the test film 62 is stacked thereon, and further, 63 mm in width and 63 mm in length (area 40 cm 2 ) A weight 63 having a weight of 200 g was placed, the stacked test films were slid horizontally at a speed of 100 mm / min, the load (dynamic friction force) was measured, and the dynamic friction coefficient was calculated by the following equation. 65 is a wire, 66 is a pulley, 67 is a load cell of a tensile tester, and is wound in the Z direction.
Coefficient of dynamic friction μ D = F D / F P
F D : Dynamic friction force (N)
F P : A linear force generated by the mass of the sliding piece (= 1.96 N)
(2) Measurement of contact angle The contact angle with respect to 23 degreeC pure water was measured using the "FACE CA-Z" measuring device by Kyowa Interface Chemical Co., Ltd.

(実施例1)
(1)フッ素樹脂混合ポリイミド前駆体溶液の製作
BPDA100質量部に対してPPD39質量部をフラスコ中でNMPに溶解(モノマー濃度18.2質量%)し、23℃の温度で6時間攪拌しながら反応させてポリイミド前駆体溶液を得た。このポリイミド前駆体溶液の回転粘度は1200ポイズであった。なお、回転粘度は温度23℃においてB型粘度計で測定した値である。次に、前記ポリイミド前駆体溶液に平均粒子径3.0μmのPTFE粉末(融点327℃:デュポン社製商品名“Zonyl MP1100”)をポリイミド前駆体溶液中の固形分に対して20質量%の割合になるように添加して攪拌し、さらに平均粒子径35μmのFEP粉末(融点260℃:デュポン社製商品名"532−8110")をポリイミド前駆体溶液中の固形分に対して4.0質量%の割合になるように添加して攪拌し、均一に分散させた。その後250メッシュのステンレス金網を用いて粗い異物を濾過し、フッ素樹脂粉末混合ポリイミド前駆体溶液を用意した。
(2)管状物体の製作
外径が24mm、長さ500mmのアルミニウム製金型の表面に酸化ケイ素コーティング剤をディッピング法によりコーティングし焼付け、酸化ケイ素膜を被覆した。
Example 1
(1) Production of fluororesin mixed polyimide precursor solution 39 parts by mass of PPD is dissolved in NMP (monomer concentration: 18.2% by mass) in a flask with respect to 100 parts by mass of BPDA, and the reaction is performed while stirring at a temperature of 23 ° C. for 6 hours. To obtain a polyimide precursor solution. The rotational viscosity of this polyimide precursor solution was 1200 poise. The rotational viscosity is a value measured with a B-type viscometer at a temperature of 23 ° C. Next, a PTFE powder having an average particle size of 3.0 μm (melting point: 327 ° C., trade name “Zonyl MP1100” manufactured by DuPont) is added to the polyimide precursor solution at a ratio of 20% by mass with respect to the solid content in the polyimide precursor solution. The FEP powder having an average particle size of 35 μm (melting point: 260 ° C., trade name “532-8110” manufactured by DuPont) is further added to the solid content in the polyimide precursor solution to 4.0 mass. % Was added and stirred, and uniformly dispersed. Thereafter, coarse foreign matters were filtered using a 250 mesh stainless steel wire mesh to prepare a fluorine resin powder mixed polyimide precursor solution.
(2) Production of tubular object A silicon oxide coating agent was coated on the surface of an aluminum mold having an outer diameter of 24 mm and a length of 500 mm by a dipping method and baked to coat a silicon oxide film.

次いで図5に示すように、前記のフッ素樹脂粉末混合ポリイミド前駆体溶液4に金型1を先端から400mm部分まで浸漬し、塗布したのち、内径25mmのリング状ダイス2を前記金型の上部から挿入し走行させ、前記金型の表面に500μmの厚みのキャスト膜3を成形した。   Next, as shown in FIG. 5, the mold 1 is immersed in the fluororesin powder mixed polyimide precursor solution 4 from the tip to a 400 mm portion and coated, and then a ring-shaped die 2 having an inner diameter of 25 mm is applied from the top of the mold. The cast film 3 having a thickness of 500 μm was formed on the surface of the mold.

その後、前記金型1ごと120℃のオーブンに入れ60分間乾燥後、200℃の温度まで40分間で昇温させ、同温度で20分間保持し、最終イミド化処理として250℃の温度で10分間加熱した後、400℃の温度まで15分で昇温し、同温度で10分間加熱してイミド化を完了させ、室温(25℃)に冷却後、金型から管状物体を取り外した。   Thereafter, the mold 1 is placed in an oven at 120 ° C. and dried for 60 minutes, then heated to a temperature of 200 ° C. over 40 minutes, held at the same temperature for 20 minutes, and as a final imidization treatment at a temperature of 250 ° C. for 10 minutes. After heating, the temperature was raised to a temperature of 400 ° C. over 15 minutes, heated at the same temperature for 10 minutes to complete imidization, and after cooling to room temperature (25 ° C.), the tubular object was removed from the mold.

得られた管状物体の厚みは55μmであり両端部をカットし、長さ240mm(A4サイズ)とし内径24mmの管状物体を得た。   The thickness of the obtained tubular object was 55 μm, and both ends were cut to obtain a tubular object having a length of 240 mm (A4 size) and an inner diameter of 24 mm.

この管状物体の内外面の動摩擦係数の測定結果を後の表1に示す。また、デジタルマイクロスコープ(キーエンス社製VHX−100)による1000倍の外面の観察写真を図9に示す。外面の白く斑点状に見える部分がPTFE樹脂粒子であり、そのまわりに流動したような状態で析出している部分がFEP樹脂である。全体としてフッ素樹脂被膜面は、フッ素樹脂粒子に起因する粒状模様を有していることが確認できる。また、この管状物体の内面の同写真を図10に示す。黒く斑点状に見える部分はPTFE樹脂が析出ものであり、まわりの白く見える部分はFEP樹脂が溶融して流動している部分である。   The measurement results of the dynamic friction coefficients of the inner and outer surfaces of this tubular object are shown in Table 1 below. Further, FIG. 9 shows an observation photograph of the outer surface of 1000 times with a digital microscope (VHX-100 manufactured by Keyence Corporation). The portion of the outer surface that appears white and spotted is PTFE resin particles, and the portion that is precipitated in a state of flowing around it is FEP resin. It can be confirmed that the fluororesin coating surface as a whole has a granular pattern due to the fluororesin particles. Moreover, the same photograph of the inner surface of this tubular object is shown in FIG. A black spot-like portion is a precipitate of PTFE resin, and a surrounding white portion is a portion where the FEP resin melts and flows.

このポリイミド管状物体を図6に示す毎分10枚の定着が可能なレーザービームプリンターの定着ベルトとして装着し画像定着を行った結果、良好な画像が得られた。   This polyimide tubular object was mounted as a fixing belt of a laser beam printer capable of fixing 10 sheets per minute as shown in FIG. 6 and image fixing was performed. As a result, a good image was obtained.

(比較例1)
実施例1の条件でポリイミド前駆体溶液にフッ素樹脂粉末を混合しない以外は実施例1と同様の条件でポリイミド管状物体を得た。この管状物体の内面の動摩擦係数の測定結果を後の表1に示す。
(Comparative Example 1)
A polyimide tubular body was obtained under the same conditions as in Example 1 except that the fluororesin powder was not mixed with the polyimide precursor solution under the conditions of Example 1. Table 1 below shows the measurement results of the dynamic friction coefficient of the inner surface of this tubular object.

(実施例2)
実施例1で調合したBPDA/PPDからなるポリイミド前駆体単体溶液にフッ素樹脂粉末として平均粒子径35μmのFEP粉末(デュポン社製商品名“532−8110”)のみをポリイミド前駆体溶液中の固形分に対して23質量%の割合になるように添加し混合しフッ素樹脂混合ポリイミド前駆体溶液を用意した。
(Example 2)
Only the FEP powder (trade name “532-8110” manufactured by DuPont) having an average particle size of 35 μm as a fluororesin powder was added to the polyimide precursor single solution composed of BPDA / PPD prepared in Example 1 as a solid content in the polyimide precursor solution. It added and mixed so that it might become a ratio of 23 mass% with respect to the fluororesin mixed polyimide precursor solution.

その後実施例1と同様に金型の表面にポリイミド前駆体溶液を塗布し、キャスト成形し、実施例1と同様にイミド化処理を実施し、最終イミド化処理として250℃の温度で10分加熱した後、300℃の温度まで5分で昇温させ350℃の温度で15分間加熱し、冷却してポリイミド管状物体を得た。   Thereafter, a polyimide precursor solution is applied to the surface of the mold in the same manner as in Example 1, cast, and imidized in the same manner as in Example 1, and heated at a temperature of 250 ° C. for 10 minutes as the final imidized treatment. Then, the temperature was raised to a temperature of 300 ° C. in 5 minutes, heated at a temperature of 350 ° C. for 15 minutes, and cooled to obtain a polyimide tubular body.

この管状物体の動摩擦係数の測定結果を表1に示す。また、図6に示す毎分10枚の定着が可能レーザービームプリンターの定着ベルトとして装着し画像定着を行った結果、良好な画像が得られた。図6において、31は定着ベルト(ポリイミド樹脂管状物体)、32はベルトガイド、33はセラミックヒーター、34は駆動源を持つ加圧ロール、35はサーミスタ、36は加圧ロールの芯金、37は複写紙、38は定着前のトナー像、39は定着後のトナー像、Nはニップ点である。   Table 1 shows the measurement results of the dynamic friction coefficient of this tubular object. Further, 10 images can be fixed per minute as shown in FIG. 6. As a result of mounting the image as a fixing belt of a laser beam printer and fixing the image, a good image was obtained. In FIG. 6, 31 is a fixing belt (polyimide resin tubular object), 32 is a belt guide, 33 is a ceramic heater, 34 is a pressure roll having a drive source, 35 is a thermistor, 36 is a core metal of the pressure roll, 37 is Copy paper, 38 is a toner image before fixing, 39 is a toner image after fixing, and N is a nip point.

(実施例3)
実施例1で調合したBPDA/PPDからなるポリイミド前駆体単体溶液にフッ素樹脂粉末として平均粒子径28μmのPFA樹脂粉末(三井デュポンフロロケミカル社製商品名PFA MP102)のみをポリイミド前駆体溶液中の固形分に対して24質量%の割合になるように添加し混合しフッ素樹脂混合ポリイミド前駆体溶液を用意した。
(Example 3)
Only a PFA resin powder (trade name: PFA MP102, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) having an average particle size of 28 μm as a fluororesin powder was added to the polyimide precursor single solution composed of BPDA / PPD prepared in Example 1 in the polyimide precursor solution. It added and mixed so that it might become a ratio of 24 mass% with respect to minutes, and prepared the fluororesin mixed polyimide precursor solution.

その後実施例1と同様に金型表面ポリイミド前駆体溶液をキャスト成型し実施例1と同様の条件でイミド化の最高温度を400℃で処理してポリイミド管状物体を得た。ただし、前記金型は外径30mmの金型を使用した。   Thereafter, a mold surface polyimide precursor solution was cast and molded in the same manner as in Example 1 and treated at 400 ° C. under the same conditions as in Example 1 to obtain a polyimide tubular body. However, a mold having an outer diameter of 30 mm was used as the mold.

この管状物体の動摩擦係数の測定結果を表1に示す。また、図7に示す毎分6枚の定着が可能レーザービームプリンターの加圧ベルトとして装着し画像定着を行った結果、良好な画像が得られた。図7において、51は加圧ベルト、52は押圧ガイド、53は押圧パッド、54は定着ロール、55は熱源、56は定着前のトナー像、57は複写紙である。   Table 1 shows the measurement results of the dynamic friction coefficient of this tubular object. Further, the fixing of 6 sheets per minute shown in FIG. 7 was possible. As a result of image fixing by mounting as a pressure belt of a laser beam printer, a good image was obtained. In FIG. 7, 51 is a pressure belt, 52 is a pressure guide, 53 is a pressure pad, 54 is a fixing roll, 55 is a heat source, 56 is a toner image before fixing, and 57 is a copy paper.

(実施例4)
PMDA100質量部に対してODA75質量部をフラスコ中でNMPに溶解(モノマー濃度18.0質量%)し、23℃の温度で6時間攪拌しながら反応させてポリイミド前駆体溶液を得た。このポリイミド前駆体溶液の回転粘度は1500ポイズであった。回転粘度は温度23℃においてB型粘度計で測定した値である。次に平均粒子径35μmのFEP粉末(融点270℃デュポン社製商品名“532−8110”)のみをポリイミド前駆体溶液中の固形分に対して26質量%の割合になるように添加し混合しフッ素樹脂混合ポリイミド前駆体溶液を用意した。
Example 4
75 parts by mass of ODA was dissolved in NMP (monomer concentration: 18.0% by mass) in a flask with respect to 100 parts by mass of PMDA, and reacted with stirring at a temperature of 23 ° C. for 6 hours to obtain a polyimide precursor solution. The rotational viscosity of this polyimide precursor solution was 1500 poise. The rotational viscosity is a value measured with a B-type viscometer at a temperature of 23 ° C. Next, only FEP powder having an average particle diameter of 35 μm (melting point: 270 ° C., product name “532-8110” manufactured by DuPont) is added and mixed in a proportion of 26 mass% with respect to the solid content in the polyimide precursor solution. A fluororesin mixed polyimide precursor solution was prepared.

その後実施例1と同様に金型の表面にポリイミド前駆体溶液を液状成形した。その後120℃のオーブンで60分間乾燥し、200℃まで20分間で昇温し、同温度で20分間加熱し、最終イミド化処理として250℃の温度で10分加熱した後、400℃の温度まで10分で昇温させ400℃の温度で10分間加熱し、冷却してポリイミド管状物体を得た。   Thereafter, in the same manner as in Example 1, a polyimide precursor solution was liquid molded on the surface of the mold. Then, it is dried in an oven at 120 ° C. for 60 minutes, heated to 200 ° C. for 20 minutes, heated at the same temperature for 20 minutes, and heated at 250 ° C. for 10 minutes as the final imidization treatment, and then to 400 ° C. The temperature was raised in 10 minutes, heated at a temperature of 400 ° C. for 10 minutes, and then cooled to obtain a polyimide tubular body.

この管状物体の動摩擦係数の測定結果を表1に示す。また、図6に示す毎分6枚の定着が可能レーザービームプリンターの定着ベルトとして装着し画像定着を行った結果、良好な画像が得られた。   Table 1 shows the measurement results of the dynamic friction coefficient of this tubular object. In addition, it was possible to fix 6 sheets per minute as shown in FIG. 6 and as a fixing belt of a laser beam printer, image fixing was performed. As a result, a good image was obtained.

(比較例2)
実施例1の条件で最終のイミド化温度を250℃に変更した以外は実施例1と同様の条件でポリイミド管状物体を得た。この管状物体の内外面の動摩擦係数の測定結果を表1に示す。
(Comparative Example 2)
A polyimide tubular body was obtained under the same conditions as in Example 1 except that the final imidization temperature was changed to 250 ° C. under the conditions of Example 1. Table 1 shows the measurement results of the dynamic friction coefficients of the inner and outer surfaces of this tubular object.

各実施例および各比較例で調整したフッ素樹脂混合ポリイミド前駆体溶液を300mm□(縦:300mm、横:300mm)のガラス板上に80μmの厚みになるようキャスト成形し、表1の最高イミド化温度でイミド化を完成させポリイミドフィルムを得た。その後、各フィルムの純水に対する接触角を測定した結果を表1に示す。   The fluororesin mixed polyimide precursor solution prepared in each example and each comparative example was cast on a 300 mm □ (length: 300 mm, width: 300 mm) glass plate to a thickness of 80 μm, and the maximum imidization shown in Table 1 Imidization was completed at temperature to obtain a polyimide film. Then, the result of having measured the contact angle with respect to the pure water of each film is shown in Table 1.

(実施例5)
図8に示す管状物体の成形装置を用い、ポリイミド前駆体の吐出スリット部分72の内径が230.2mmで、吐出スリット開口幅1.4mmの吐出口を有する吐出スリットヘッド70を前記成形装置に装着した。また成形金型71として外径229mm、長さ500mmのアルミニウム製金型を用意し、金型表面に酸化ケイ素コーティング剤をディッピング法によりコーティングし焼付け、酸化ケイ素膜で被覆した金型を用い、金型の上端が吐出スリット部の内側にくるように設置した。前記金型の平均表面粗度は(Rz)2.2μmであった。
(Example 5)
The tubular object molding apparatus shown in FIG. 8 is used, and a discharge slit head 70 having a discharge slit opening 72 having a discharge slit opening width of 1.4 mm and an inner diameter of a discharge slit portion 72 of polyimide precursor is attached to the molding apparatus. did. In addition, an aluminum mold having an outer diameter of 229 mm and a length of 500 mm is prepared as the molding mold 71, and a mold in which a silicon oxide coating agent is coated and baked by a dipping method on the mold surface and coated with a silicon oxide film is used. The mold was installed so that the upper end of the mold was inside the discharge slit. The average surface roughness of the mold was (Rz) 2.2 μm.

次に実施例1で調合したBPDA/PPDよりなるポリイミド前駆体単体溶液に平均粒子径3.0μmのPTFE粉末(融点327℃:デュポン社製商品名“Zonyl MP1100”)をポリイミド前駆体溶液中の固形分に対して23質量%の割合になるように添加して攪拌し、均一に分散させた。その後250メッシュのステンレス金網を用いて粗い異物を濾過し、PTFE粉末混合ポリイミド前駆体溶液を用意した。   Next, PTFE powder having an average particle diameter of 3.0 μm (melting point: 327 ° C .: trade name “Zonyl MP1100” manufactured by DuPont) was added to the polyimide precursor single solution composed of BPDA / PPD prepared in Example 1 in the polyimide precursor solution. The mixture was added so as to have a ratio of 23% by mass with respect to the solid content and stirred to be uniformly dispersed. Thereafter, coarse foreign matters were filtered using a 250 mesh stainless steel wire mesh to prepare a PTFE powder mixed polyimide precursor solution.

その後前記PTFE粉末混合ポリイミド前駆体溶液にさらに、酸性カーボンブラック(三菱化学(株)製、商品名「MA78」、DBP吸収量:70cm3、比表面積100m2/g当りの揮発分:2.6重量%)をポリイミド樹脂に対して14.5質量%添加しポリイミド、PTFE,及びカーボンブラックの3成分を混合分散させたポリイミド前駆体を製作した。 Thereafter, acidic carbon black (trade name “MA78”, manufactured by Mitsubishi Chemical Corporation), DBP absorption: 70 cm 3 , volatile content per specific surface area of 100 m 2 / g: 2.6 was added to the PTFE powder mixed polyimide precursor solution. (1 wt%) was added to the polyimide resin in an amount of 14.5% by mass to prepare a polyimide precursor in which three components of polyimide, PTFE, and carbon black were mixed and dispersed.

その後前記PTFE混合前駆体溶液74を貯蔵タンク73に投入し、スラリーポンプ77を回転させ、所定量のポリイミド前駆体溶液を分岐ユニット78で24箇所に分配し、配管79,80(他の配管は図示せず)を用いて吐出スリッドヘッド70の配管コネクターに接続し、吐出スリット開口部まで圧送した。同時に金型を矢印Yの方向に垂直に上昇させ金型71の最上部から下方向に50mmの位置が、吐出スリット部を通過した時点でスラリーポンプ77からポリイミド前駆体溶液を圧送させ、金型71の外表面に600μmの厚みでポリイミド前駆体溶液81をキャスト成形した。75は送液パイプ、76はバルブである。スラリーポンプ77の圧送速度と、金型71の上昇速度は予め実験によりポリイミド前駆体溶液の粘度、金型71の外径、液状成形厚み等のデータから算出し所定の条件を設定した。金型71の最下端部から50mmの位置が吐出スリット部を通過した時点でスラリーポンプからの圧送を停止し、金型71の表面に約400mmの長さで液状成形を完了させた。その後、前記金型をそのままオーブンに入れ120℃で60分間乾燥後、200℃の温度まで40分間で昇温させ同温度で20分間保持した。次いで300℃まで20分間で昇温させ30分間保持しさらに340℃まで15分間で昇温し、同温度で20分間加熱しイミド化を完了させた後オーブンから取出し冷却後、金型から脱型してポリイミド樹脂管状物体を作製した。   Thereafter, the PTFE mixed precursor solution 74 is put into the storage tank 73, the slurry pump 77 is rotated, a predetermined amount of the polyimide precursor solution is distributed to 24 locations by the branch unit 78, and pipes 79 and 80 (the other pipes are connected). (Not shown) was connected to the pipe connector of the discharge slide head 70 and was pumped to the discharge slit opening. At the same time, the mold is raised vertically in the direction of the arrow Y, and when the position of 50 mm downward from the uppermost part of the mold 71 passes through the discharge slit portion, the polyimide precursor solution is pumped from the slurry pump 77, and the mold A polyimide precursor solution 81 was cast on the outer surface of 71 with a thickness of 600 μm. 75 is a liquid feed pipe, and 76 is a valve. The pumping speed of the slurry pump 77 and the ascending speed of the mold 71 were calculated in advance from data such as the viscosity of the polyimide precursor solution, the outer diameter of the mold 71, and the liquid molding thickness, and predetermined conditions were set. When the position of 50 mm from the lowermost end of the mold 71 passed through the discharge slit, the pumping from the slurry pump was stopped, and liquid molding was completed on the surface of the mold 71 with a length of about 400 mm. Thereafter, the mold was placed in an oven as it was, dried at 120 ° C. for 60 minutes, heated to a temperature of 200 ° C. over 40 minutes, and held at that temperature for 20 minutes. Next, the temperature is raised to 300 ° C. for 20 minutes, held for 30 minutes, further heated to 340 ° C. for 15 minutes, heated at the same temperature for 20 minutes to complete imidization, taken out from the oven, cooled, and then removed from the mold Thus, a polyimide resin tubular body was produced.

この管状物体の厚さは57μmであり、印加電圧500vにおける体積抵抗率は1.1×108Ω・cmであった。また前駆体溶液に混合した前記PTFE樹脂は管状物体の内外面に溶融析出していたが、動摩擦係数のデータでは内面よりも外面に多く析出している結果が得られた。 The thickness of this tubular object was 57 μm, and the volume resistivity at an applied voltage of 500 v was 1.1 × 10 8 Ω · cm. The PTFE resin mixed in the precursor solution melted and precipitated on the inner and outer surfaces of the tubular body. However, the dynamic friction coefficient data showed that the PTFE resin was precipitated more on the outer surface than on the inner surface.

この管状物体について、デジタルマイクロスコープ(キーエンス社製VHX−100)による1000倍の外面の観察写真を図11に示す。白く斑点状に見える部分がPTFE樹脂粒子であり、フッ素樹脂粒子に起因する粒状模様を有していることが確認できる。   FIG. 11 shows an observation photograph of the outer surface of this tubular object with a digital microscope (VHX-100 manufactured by Keyence Corporation) at a magnification of 1000 times. It can be confirmed that the white spots appear to be PTFE resin particles and have a granular pattern due to the fluororesin particles.

この管状物体の動摩擦係数及び接触角の測定結果を表1に示す。この管状物体をフルカラーのタンデム型レーザービームプリンターの中間転写ベルトとして使用した結果、ベルト表面に形成したカラートナー像を複写紙に転写した後、転写ベルト上に残存するトナーをウレタンゴム製ブレードにより除去する場合、前記ブレードと転写ベルト表面の摺動抵抗が低く残存するトナーを確実に除去でき、鮮明な画像と十分な耐久性が得られた。また前記管状物体の内面にはフッ素樹脂の析出が少ないため、転写ベルトの内面に配置している駆動ロール間でスリップもなく確実な回転が伝達でき、トナー像が乱れることがなく、画像ぶれの発生が防止できた。体積抵抗率は、JIS C2151の方法に従って、アドバンテスト社製のデジタル超高抵抗/微少電流計R8340/R8340Aを使用し、印加時間30秒で測定した。   Table 1 shows the measurement results of the dynamic friction coefficient and the contact angle of this tubular object. As a result of using this tubular object as an intermediate transfer belt for a full-color tandem laser beam printer, the color toner image formed on the belt surface is transferred to copy paper, and then the toner remaining on the transfer belt is removed with a urethane rubber blade. In this case, the remaining toner having a low sliding resistance between the blade and the transfer belt surface can be surely removed, and a clear image and sufficient durability can be obtained. Further, since the fluororesin is hardly deposited on the inner surface of the tubular object, the rotation can be reliably transmitted between the driving rolls arranged on the inner surface of the transfer belt without slipping, the toner image is not disturbed, and the image blurring is not caused. Occurrence could be prevented. The volume resistivity was measured at an application time of 30 seconds using a digital ultrahigh resistance / microammeter R8340 / R8340A manufactured by Advantest Corporation according to the method of JIS C2151.

(実施例6)
(1)多層構造管状物体の1層目(内層)の製作
実施例1で調製したBPDA/PPDからなるポリイミド前駆体単体溶液に、窒化ホウ素粉末(三井化学(株)MBN−010T)を前記ポリイミド前駆体溶液の固形分濃度に対して30質量%混合して窒化ホウ素粉末混合ポリイミド前駆体溶液を作製した。次いで実施例1で用いた金型の表面に、リング状ダイスを用いイミド化後の被膜厚みが35μmになるよう塗布しキャスト成形し、120℃で乾燥後250℃の温度でイミド化の中間処理を行い、窒化ホウ素粉末が混合されたポリイミド被膜からなる管状物体の1層目の被膜成形を行った。
(2)多層構造管状物の2層目(外層)に用いるポリイミド前駆体溶液の製作
実施例1で調製したBPDA/PPDからなるポリイミド前駆体単体溶液に、平均粒子径3.0μmのPTFE粉末(融点327℃:SUMMIT PRECISION POLYMERS CORPORATION製"SP-Powdered PTFE")をポリイミド前駆体溶液中の固形分に対して70質量%、とカーボンファイバー(昭和電工社製"VGCF-H")を5質量%の割合で添加して攪拌し、均一に分散させた。その後250メッシュのステンレス金網を用いて粗い異物を濾過し、フッ素樹脂粉末とカーボンファイバー混合ポリイミド前駆体溶液を用意した。
(3)多層構造管状物体の2層目(外層)の成形及びイミド化の完結
前記(1)項で製作した1層目の管状物体の表面に前記(2)項で調製したフッ素樹脂粉末とカーボンファイバー混合ポリイミド前駆体溶液をイミド化後の被膜厚みが20μmになるようにリング状ダイスを用いてキャスト成形し、120℃の温度で乾燥した後、250℃の温度で一次イミド化処理を行い、さらに、400℃の温度まで15分で昇温し、同温度で20分間加熱してイミド化を完了させ、ポリイミドに窒化ホウ素粉末を混合した内層と、同じくポリイミドにフッ素樹脂粉末とカーボンファイバーを混合した外層を有する2層構造のポリイミド管状物体を得た。この管状物体の内径は24mmで総厚みは54μmであり、1層目と2層目はイミド化によって強固に接着され剥離することはできなかった。また、管状物体の外面には、混合したフッ素樹脂が溶融して析出しており、フッ素樹脂の優れた離型性及び低い摩擦特性を有していた。この管状物体の内外面の動摩擦係数の測定結果を表1に示す。この管状物体は1層目と2層目がイミド化によって一体化された構造であり、1層目(内層)は管状物体として必要とされる機械的特性を有し、2層目(外層)は多量に混合したフッ素樹脂が溶融して析出し、十分な厚みの離型層が得られ優れた耐久性が得られた。
(Example 6)
(1) Production of first layer (inner layer) of multilayer structure tubular object Boron nitride powder (Mitsui Chemicals, Inc., MBN-010T) was added to the polyimide precursor single solution consisting of BPDA / PPD prepared in Example 1. 30% by mass with respect to the solid content concentration of the precursor solution was mixed to prepare a boron nitride powder mixed polyimide precursor solution. Next, the surface of the mold used in Example 1 was applied using a ring die so that the film thickness after imidization was 35 μm, cast-molded, dried at 120 ° C., and then subjected to an imidation intermediate treatment at a temperature of 250 ° C. The first layer of a tubular object made of a polyimide film mixed with boron nitride powder was formed.
(2) Manufacture of polyimide precursor solution used for second layer (outer layer) of multilayer structure tubular product PTFE powder having an average particle size of 3.0 μm was added to the polyimide precursor single solution composed of BPDA / PPD prepared in Example 1 ( Melting point 327 ° C .: “SP-Powdered PTFE” manufactured by SUMMIT PRECISION POLYMERS CORPORATION) is 70% by mass with respect to the solid content in the polyimide precursor solution, and 5% by mass of carbon fiber (“VGCF-H” manufactured by Showa Denko KK). The mixture was added at a ratio of and stirred and dispersed uniformly. Thereafter, coarse foreign matters were filtered using a 250 mesh stainless steel wire mesh to prepare a fluororesin powder and a carbon fiber mixed polyimide precursor solution.
(3) Completion of molding and imidization of the second layer (outer layer) of the multi-layered tubular object The fluororesin powder prepared in the above (2) and the surface of the first layered tubular object manufactured in the above (1) The carbon fiber mixed polyimide precursor solution is cast using a ring die so that the film thickness after imidization is 20 μm, dried at a temperature of 120 ° C., and then subjected to a primary imidization treatment at a temperature of 250 ° C. Further, the temperature is raised to a temperature of 400 ° C. in 15 minutes, heated at the same temperature for 20 minutes to complete imidization, and an inner layer in which boron nitride powder is mixed with polyimide, and fluorine resin powder and carbon fiber are also mixed with polyimide. A two-layer polyimide tubular body having a mixed outer layer was obtained. The tubular body had an inner diameter of 24 mm and a total thickness of 54 μm. The first and second layers were firmly bonded by imidization and could not be peeled off. Further, the mixed fluororesin melted and deposited on the outer surface of the tubular body, and had excellent release properties and low friction characteristics of the fluororesin. Table 1 shows the measurement results of the dynamic friction coefficients of the inner and outer surfaces of this tubular object. This tubular object has a structure in which the first layer and the second layer are integrated by imidization, and the first layer (inner layer) has mechanical properties required as a tubular object, and the second layer (outer layer). In this case, the fluororesin mixed in a large amount melts and precipitates, and a release layer having a sufficient thickness is obtained, resulting in excellent durability.

また、1層目に混合した窒化ホウ素と、2層目に混合したカーボンファイバーによって管状物体の厚み方向の熱伝導性が改良され、同時に最外層に析出したフッ素樹脂層の表面抵抗は800Ω/□であり、毎分14枚の定着が可能な図6に示すレーザービームプリンターの定着ベルトとして装着し、画像定着を行った結果、オフセットの発生もなく良好な画像が得られた。   Further, the boron nitride mixed in the first layer and the carbon fiber mixed in the second layer improve the thermal conductivity in the thickness direction of the tubular body, and at the same time, the surface resistance of the fluororesin layer deposited on the outermost layer is 800Ω / □. As a result of attaching the fixing belt of the laser beam printer shown in FIG. 6 capable of fixing 14 sheets per minute and performing image fixing, a good image was obtained without occurrence of offset.

(実施例7)
(1)多層構造管状物体の1層目(内層)の製作
実施例1で調製したBPDA/PPDからなるポリイミド前駆体単体溶液に、平均粒子径3.0μmのPTFE粉末(融点327℃:デュポン社製商品名"Zonyl MP1100")を15質量%混合してフッ素樹脂とポリイミド前駆体の混合溶液を調合した。次いで実施例3で用いた金型の表面にリング状ダイスを用いイミド化後の被膜厚みが35μmになるように塗布し、キャスト成形し、120℃で乾燥後250℃の温度でイミド化の中間処理を行い、前記混合溶液からなる1層目の被膜を成形した。
(2)多層構造管状物の2層目(外層)に用いるポリイミド前駆体溶液の製作
実施例1で調製したBPDA/PPDからなるポリイミド前駆体単体溶液に平均粒子径3.0μmのPTFE粉末(融点327℃:SUMMIT PRECISION POLYMERS CORPORATION製"SP-Powdered PTFE"をポリイミド前駆体溶液中の固形分に対して55質量%、カーボンファイバー(昭和電工社製"VGCF-H")を5質量%の割合になるように添加して攪拌し、均一に分散させた。その後250メッシュのステンレス金網を用いて粗い異物を濾過し、フッ素樹脂粉末とカーボンファイバー混合ポリイミド前駆体溶液を用意した。
(3)多層構造管状物体の2層目(外層)の成形、及びイミド化の完結
前記(1)項で製作した1層目の管状物体の表面に前記(2)項で調合した、フッ素樹脂粉末とカーボンファイバー混合ポリイミド前駆体溶液をイミド化後の被膜厚みが20μmになるように、リング状ダイスを用いてキャスト成形し、120℃の温度で乾燥した後、250℃の温度で一次イミド化処理を行い、さらに、400℃の温度まで15分で昇温し、同温度で20分間加熱してイミド化を完了させ、ポリイミドにフッ素樹脂を混合した内層と、同じくポリイミドにフッ素樹脂粉末とカーボンファイバーを混合した外層を有する2層構造のポリイミド管状物体を得た。この管状物体の内径は24mmで総厚みは55μmであり、1層目と2層目はイミド化によって強固に接着されていた。また、管状物体の外面、及び内面にもフッ素樹脂が溶融して析出しており、フッ素樹脂の優れた離型性及び低い摩擦特性を有していた。この管状物体の内外面の動摩擦係数の測定結果を表1に示す。この管状物体の最外層に析出したフッ素樹脂層の表面抵抗は815Ω/□であり、図7に示す定着装置を装着したレーザービームプリンターの加圧ベルトとして用い、画像定着を行った結果、オフセットの発生もなく良好な画像が得られた。
(Example 7)
(1) Production of first layer (inner layer) of multilayer structure tubular object PTFE powder having an average particle size of 3.0 μm (melting point: 327 ° C .: DuPont) was added to the polyimide precursor single solution made of BPDA / PPD prepared in Example 1. A mixed solution of a fluororesin and a polyimide precursor was prepared by mixing 15% by mass of a product name “Zonyl MP1100”). Next, the surface of the mold used in Example 3 was coated with a ring die so that the film thickness after imidization was 35 μm, cast-molded, dried at 120 ° C., and then imidized at a temperature of 250 ° C. Processing was performed to form a first layer film composed of the mixed solution.
(2) Manufacture of a polyimide precursor solution used for the second layer (outer layer) of the multilayer structure tubular material PTFE powder (melting point) having an average particle size of 3.0 μm was added to the polyimide precursor single solution made of BPDA / PPD prepared in Example 1. 327 ° C .: “SP-Powdered PTFE” manufactured by SUMMIT PRECISION POLYMERS CORPORATION at a ratio of 55% by mass with respect to the solid content in the polyimide precursor solution, and carbon fiber (“VGCF-H” manufactured by Showa Denko KK) at a ratio of 5% by mass. The mixture was stirred and dispersed uniformly, and then coarse foreign matters were filtered using a 250 mesh stainless steel wire mesh to prepare a fluororesin powder and a carbon fiber mixed polyimide precursor solution.
(3) Molding of second layer (outer layer) of multilayer structure tubular object and completion of imidization Fluorine resin prepared in (2) above on the surface of first layer tubular object manufactured in (1) above The powder and carbon fiber mixed polyimide precursor solution is cast using a ring die so that the film thickness after imidization is 20 μm, dried at a temperature of 120 ° C., and then primary imidized at a temperature of 250 ° C. Then, the temperature is raised to a temperature of 400 ° C. in 15 minutes, heated at the same temperature for 20 minutes to complete imidization, and an inner layer in which a fluororesin is mixed with polyimide, and a fluororesin powder and carbon are also mixed with polyimide. A polyimide tubular body having a two-layer structure having an outer layer mixed with fibers was obtained. The tubular body had an inner diameter of 24 mm and a total thickness of 55 μm, and the first and second layers were firmly bonded by imidization. Further, the fluororesin melted and precipitated on the outer surface and the inner surface of the tubular body, and had excellent release properties and low friction characteristics of the fluororesin. Table 1 shows the measurement results of the dynamic friction coefficients of the inner and outer surfaces of this tubular object. The surface resistance of the fluororesin layer deposited on the outermost layer of this tubular object is 815Ω / □, and as a result of image fixing using a pressure belt of a laser beam printer equipped with the fixing device shown in FIG. A good image was obtained without occurrence.

Figure 2006256323
Figure 2006256323

表1から明らかなとおり、本発明の管状物体は、動摩擦係数が低く、フィルム状成形物の接触角も低かった。また、電子顕微鏡写真による観察結果から、ポリイミド管状物体の表面にフッ素樹脂が析出していることが確認できた。さらに、レーザービームプリンターの定着ベルトとして装着し、画像定着を行った結果、良好な画像が得られた。   As is apparent from Table 1, the tubular object of the present invention had a low coefficient of dynamic friction and a low contact angle of the film-like molded product. Moreover, it has confirmed that the fluororesin had deposited on the surface of the polyimide tubular body from the observation result by an electron micrograph. Furthermore, as a result of fixing as a fixing belt of a laser beam printer and performing image fixing, a good image was obtained.

図1は本発明の一実施例におけるイミド化完結前の管状物体の概略断面図。FIG. 1 is a schematic cross-sectional view of a tubular object before imidization is completed in an embodiment of the present invention. 図2は本発明の一実施例におけるイミド化完結後の管状物体の概略断面図。FIG. 2 is a schematic cross-sectional view of a tubular object after imidization is completed in an embodiment of the present invention. 図3は本発明の一実施例におけるFEP添加の場合の被膜形成を示す概略断面図。FIG. 3 is a schematic cross-sectional view showing film formation when FEP is added in one embodiment of the present invention. 図4は本発明の一実施例におけるFEPとPTFE混合添加の場合の比較形成を示す概略断面図。FIG. 4 is a schematic cross-sectional view showing comparative formation in the case of FEP and PTFE mixed addition in one example of the present invention. 図5は本発明の一実施例におけるキャスト成形の方法を示す断面図。FIG. 5 is a cross-sectional view showing a casting method in one embodiment of the present invention. 図6は本発明の一実施例で用いたレーザービームプリンター定着装置を示す概略断面図。FIG. 6 is a schematic sectional view showing a laser beam printer fixing device used in one embodiment of the present invention. 図7は本発明の別の実施例で用いたレーザービームプリンター定着装置を示す概略断面図。FIG. 7 is a schematic sectional view showing a laser beam printer fixing device used in another embodiment of the present invention. 図8は本発明の別の実施例におけるキャスト成形の方法を示す断面図。FIG. 8 is a cross-sectional view showing a casting method according to another embodiment of the present invention. 図9は本発明の実施例1におけるポリイミド管状物体の外表面の顕微鏡写真。FIG. 9 is a photomicrograph of the outer surface of the polyimide tubular object in Example 1 of the present invention. 図10は本発明の実施例1におけるポリイミド管状物体の内表面の顕微鏡写真。FIG. 10 is a photomicrograph of the inner surface of the polyimide tubular object in Example 1 of the present invention. 図11は本発明の実施例5におけるポリイミド管状物体の外表面の顕微鏡写真。FIG. 11 is a photomicrograph of the outer surface of a polyimide tubular object in Example 5 of the present invention. 図12は本発明の一実施例で用いた動摩擦係数の測定装置を示す概略断面図。FIG. 12 is a schematic sectional view showing a dynamic friction coefficient measuring apparatus used in one embodiment of the present invention.

符号の説明Explanation of symbols

1,15,28,71 金型
2, ダイス
3,81 キャスト膜
4,74 フッ素樹脂粉末混合ポリイミド前駆体溶液
10,51 ポリイミド管状物体
11,21 ポリイミドフィルム層
12,24 PTFE粒子
13,25 外表面側に溶融析出したPTFE
14,29 内表面側に溶融析出したPTFE
22 熱可塑性フッ素樹脂粒子
23 外表面に溶融析出した熱可塑性フッ素樹脂粒子
30 内表面に溶融析出した熱可塑性フッ素樹脂粒子
31 定着ベルト
32 ベルトガイド
33 セラミックスヒーター
34 加圧ロール
35 サーミスタ
36 加圧ローラの芯金
37 複写紙
38 トナー
39 トナー像

1,15,28,71 Mold 2, Die 3,81 Cast film 4,74 Fluororesin powder mixed polyimide precursor solution 10,51 Polyimide tubular object 11,21 Polyimide film layer 12,24 PTFE particles 13,25 Outer surface PTFE melted and deposited on the side
14,29 PTFE melted and precipitated on the inner surface side
22 Thermoplastic fluororesin particles 23 Thermoplastic fluororesin particles 30 melted and precipitated on the outer surface Thermoplastic fluororesin particles 31 melted and precipitated on the inner surface 31 Fixing belt 32 Belt guide 33 Ceramic heater 34 Pressure roll 35 Thermistor 36 Pressure roller Core metal 37 Copy paper 38 Toner 39 Toner image

Claims (15)

ポリイミドとフッ素樹脂粒子とを含む混合物が成形され加熱硬化された管状物体であって、
前記管状物体の表層近傍に存在する少なくとも一部のフッ素樹脂粒子は、前記管状物体の外面又は内外面に溶融流動して析出し、部分的又は全面にフッ素樹脂被膜を形成していることを特徴とする管状物体。
A tubular object molded and heat-cured of a mixture containing polyimide and fluororesin particles,
At least some of the fluororesin particles present in the vicinity of the surface layer of the tubular object are melt-flowed and deposited on the outer surface or inner / outer surface of the tubular object, and a fluororesin coating is formed partially or entirely. A tubular object.
前記フッ素樹脂被膜面は、フッ素樹脂粒子に起因する粒状模様を有している請求項1に記載の管状物体。   The tubular object according to claim 1, wherein the fluororesin coating surface has a granular pattern resulting from the fluororesin particles. 前記管状物体は、ポリイミドとフッ素樹脂粒子を含む単体層である請求項1又は2に記載の管状物体。   The tubular object according to claim 1 or 2, wherein the tubular object is a single layer containing polyimide and fluororesin particles. 前記管状物体は、フッ素樹脂粒子を含まない内層、又は、外層よりもフッ素樹脂の存在量が少ない内層と、前記内層よりもフッ素樹脂の存在量が大きい外層で形成されている請求項1又は2に記載の管状物体。   The tubular body is formed of an inner layer that does not contain fluororesin particles, or an inner layer that contains less fluororesin than the outer layer, and an outer layer that contains greater fluororesin than the inner layer. A tubular object according to claim 1. 前記ポリイミドとフッ素樹脂粒子とを含む層のフッ素樹脂粒子の存在量は、10〜90質量%である請求項1〜4のいずれかに記載の管状物体。   The tubular object according to any one of claims 1 to 4, wherein the amount of the fluororesin particles in the layer containing the polyimide and the fluororesin particles is 10 to 90% by mass. 前記フッ素樹脂粒子は、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(PETFE)から選ばれる少なくとも一つのフッ素樹脂である請求項1〜5のいずれかに記載の管状物体。   The fluororesin particles include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP). The tubular object according to claim 1, which is at least one fluororesin selected from tetrafluoroethylene-ethylene copolymer (PETFE). 前記フッ素樹脂の平均粒子径は、0.1〜100μmである請求項1〜6のいずれかに記載の管状物体。   The tubular object according to any one of claims 1 to 6, wherein an average particle diameter of the fluororesin is 0.1 to 100 µm. 前記ポリイミドは、少なくとも1種の芳香族テトラカルボン酸二無水物と、少なくとも1種の芳香族ジアミンからなるポリイミド前駆体溶液を加熱イミド化したポリイミドである請求項1、3又は5に記載の管状物体。   The tubular according to claim 1, 3 or 5, wherein the polyimide is a polyimide obtained by heating and imidizing a polyimide precursor solution comprising at least one aromatic tetracarboxylic dianhydride and at least one aromatic diamine. object. ポリイミド前駆体溶液と溶融流動するフッ素樹脂粒子との混合溶液を金型外面に塗布し所定の厚みにキャスト成形し、
加熱してイミド化し、前記イミド化の最高温度をフッ素樹脂の融点を越える温度とし、
冷却後、前記金型と管状物体を分離することにより、
前記管状物体の表層近傍に存在する少なくとも一部のフッ素樹脂粒子を前記管状物体の外面又は内外面に溶融流動して析出させ、部分的又は全面にフッ素樹脂被膜を形成させることを特徴とする管状物体の製造方法。
A mixed solution of a polyimide precursor solution and melt-flowing fluororesin particles is applied to the outer surface of the mold and cast to a predetermined thickness,
Heating to imidize, the maximum temperature of the imidization exceeds the melting point of the fluororesin,
After cooling, by separating the mold and the tubular object,
At least a part of the fluororesin particles existing in the vicinity of the surface layer of the tubular object is melt-flowed and deposited on the outer surface or the inner / outer surface of the tubular object to form a fluororesin film partially or entirely. A method for manufacturing an object.
前記混合溶液を金型外面に塗布して所定の厚みにキャスト成形する前に、予め金型外面にポリイミド前駆体溶液を塗布し所定の厚みにキャスト成形しておき、
イミド化する前又は完結後に、前記混合溶液を金型外面に塗布し所定の厚みにキャスト成形する請求項9に記載の管状物体の製造方法。
Before the mixed solution is applied to the outer surface of the mold and cast to a predetermined thickness, the polyimide precursor solution is applied to the outer surface of the mold in advance and cast to a predetermined thickness,
The method for producing a tubular object according to claim 9, wherein the mixed solution is applied to an outer surface of a mold and cast to a predetermined thickness before or after imidization.
前記ポリイミドとフッ素樹脂粒子とを含む層のフッ素樹脂粒子の存在量は、10〜90質量%である請求項9又は10に記載の管状物体の製造方法。   The method for producing a tubular object according to claim 9 or 10, wherein the amount of the fluororesin particles in the layer containing the polyimide and the fluororesin particles is 10 to 90% by mass. 前記フッ素樹脂粒子は、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(PETFE)から選ばれる少なくとも一つのフッ素樹脂である9〜11のいずれかに記載の管状物体の製造方法。   The fluororesin particles include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP). ), A method for producing a tubular object according to any one of 9 to 11, which is at least one fluororesin selected from tetrafluoroethylene-ethylene copolymer (PETFE). 前記フッ素樹脂の平均粒子径は、0.1〜100μmである請求項9〜12のいずれかに記載の管状物体の製造方法。   The method for producing a tubular object according to any one of claims 9 to 12, wherein an average particle diameter of the fluororesin is 0.1 to 100 µm. 前記ポリイミドは、少なくとも1種の芳香族テトラカルボン酸二無水物と、少なくとも1種の芳香族ジアミンからなるポリイミド前駆体溶液を加熱イミド化したポリイミドである請求項9〜11のいずれかに記載の管状物体の製造方法。   12. The polyimide according to claim 9, wherein the polyimide is a polyimide obtained by heating and imidizing a polyimide precursor solution composed of at least one aromatic tetracarboxylic dianhydride and at least one aromatic diamine. A method for manufacturing a tubular object. 前記ポリイミドは、ビフェニルテトラカルボン酸二無水物と、パラフェニレンジアミンからなるポリイミド前駆体溶液を加熱イミド化したポリイミドである請求項14に記載の管状物体の製造方法。   The method for producing a tubular object according to claim 14, wherein the polyimide is a polyimide obtained by heating and imidizing a polyimide precursor solution composed of biphenyltetracarboxylic dianhydride and paraphenylenediamine.
JP2006042221A 2005-02-21 2006-02-20 Tubular object and its manufacturing process Withdrawn JP2006256323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042221A JP2006256323A (en) 2005-02-21 2006-02-20 Tubular object and its manufacturing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005044426 2005-02-21
JP2006042221A JP2006256323A (en) 2005-02-21 2006-02-20 Tubular object and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2006256323A true JP2006256323A (en) 2006-09-28

Family

ID=37096036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042221A Withdrawn JP2006256323A (en) 2005-02-21 2006-02-20 Tubular object and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2006256323A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169761A (en) * 2009-01-20 2010-08-05 Sharp Corp Fixing device and image forming apparatus provided with the same
JP2010176124A (en) * 2009-01-28 2010-08-12 Xerox Corp Electrophotographic member and method of manufacturing the same
JP2011180349A (en) * 2010-03-01 2011-09-15 Yodogawa Hu-Tech Kk Multilayer belt
JP2012047960A (en) * 2010-08-26 2012-03-08 Fuji Xerox Co Ltd Tubular body, tubular body unit, intermediate transfer body, and image forming apparatus
JP2016048381A (en) * 2015-10-26 2016-04-07 富士ゼロックス株式会社 Cylindrical molding, cylindrical molding unit, member for image forming apparatus, and image forming apparatus
JP2018133994A (en) * 2018-05-01 2018-08-23 株式会社ニコン Sliding body, vibration actuator and optical member
JP2019158928A (en) * 2018-03-07 2019-09-19 富士ゼロックス株式会社 Fixing belt member, fixing device, and image forming apparatus
CN114933810A (en) * 2022-04-28 2022-08-23 宁夏鑫睿途道路工程技术有限公司 Warm-mixed asphalt mixture and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169761A (en) * 2009-01-20 2010-08-05 Sharp Corp Fixing device and image forming apparatus provided with the same
JP4685172B2 (en) * 2009-01-20 2011-05-18 シャープ株式会社 Fixing apparatus and image forming apparatus having the same
JP2010176124A (en) * 2009-01-28 2010-08-12 Xerox Corp Electrophotographic member and method of manufacturing the same
JP2011180349A (en) * 2010-03-01 2011-09-15 Yodogawa Hu-Tech Kk Multilayer belt
JP2012047960A (en) * 2010-08-26 2012-03-08 Fuji Xerox Co Ltd Tubular body, tubular body unit, intermediate transfer body, and image forming apparatus
JP2016048381A (en) * 2015-10-26 2016-04-07 富士ゼロックス株式会社 Cylindrical molding, cylindrical molding unit, member for image forming apparatus, and image forming apparatus
JP2019158928A (en) * 2018-03-07 2019-09-19 富士ゼロックス株式会社 Fixing belt member, fixing device, and image forming apparatus
JP7098968B2 (en) 2018-03-07 2022-07-12 富士フイルムビジネスイノベーション株式会社 Fixing belt member, fixing device, and image forming device
JP2018133994A (en) * 2018-05-01 2018-08-23 株式会社ニコン Sliding body, vibration actuator and optical member
CN114933810A (en) * 2022-04-28 2022-08-23 宁夏鑫睿途道路工程技术有限公司 Warm-mixed asphalt mixture and preparation method thereof
CN114933810B (en) * 2022-04-28 2023-10-13 宁夏鑫睿途道路工程技术有限公司 Warm mix asphalt mixture and preparation method thereof

Similar Documents

Publication Publication Date Title
KR20070104898A (en) Tubing and process for production thereof
JP5491031B2 (en) Polyimide tube, method for producing the same, method for producing polyimide varnish, and fixing belt
JP4680979B2 (en) Polyimide tube, manufacturing method thereof, and fixing belt
JP2006256323A (en) Tubular object and its manufacturing process
JP2007030501A (en) Polyimide composite film and its manufacturing process
JP3240435B2 (en) Thermal conductive polyimide film, method for producing the same and use thereof
JP2006323081A (en) Fixing belt for color image
JP2006205151A (en) Composite tubular product and method for manufacturing the same
JP2006259248A (en) Transfer fixing belt
JP5129059B2 (en) Polyimide tubular body and method for producing the same
JP5768725B2 (en) Endless heating element, heating belt and fixing device
JP2011209578A (en) Tubular body and method for manufacturing the same
JP5101137B2 (en) Polyimide belt and manufacturing method thereof
JP2001040102A (en) Tubular article
JP4849359B2 (en) MULTILAYER POLYIMIDE TUBE, ITS MANUFACTURING METHOD, AND RESIN TUBE MANUFACTURING DEVICE
JP2004279458A (en) Fixing belt
CN115298617A (en) Fixing belt
JP2983484B2 (en) Fixing film
JP2012225990A (en) Polyimide tube and fixing belt
JP2006301196A (en) Seamless belt
JP2001215821A (en) Fixing belt and method of producing the same
JP4222909B2 (en) Composite tubular body
JP2003177630A (en) Transferring and fixing belt
JP2003280406A (en) Transferring fixing belt
JP2000338797A (en) Fixing belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091030