JP2006255746A - Method and tool for manufacturing laminated heat exchanger - Google Patents

Method and tool for manufacturing laminated heat exchanger Download PDF

Info

Publication number
JP2006255746A
JP2006255746A JP2005075560A JP2005075560A JP2006255746A JP 2006255746 A JP2006255746 A JP 2006255746A JP 2005075560 A JP2005075560 A JP 2005075560A JP 2005075560 A JP2005075560 A JP 2005075560A JP 2006255746 A JP2006255746 A JP 2006255746A
Authority
JP
Japan
Prior art keywords
heat exchanger
manufacturing
metal plates
jig
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005075560A
Other languages
Japanese (ja)
Inventor
Kazumi Minoda
和美 蓑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2005075560A priority Critical patent/JP2006255746A/en
Publication of JP2006255746A publication Critical patent/JP2006255746A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • F28F3/14Elements constructed in the shape of a hollow panel, e.g. with channels by separating portions of a pair of joined sheets to form channels, e.g. by inflation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a laminated heat exchanger which has high reliability and can keep strong joinability. <P>SOLUTION: In the manufacturing method of the laminated heat exchanger comprising a core part 11 in which flow passages 15 of heat exchanging fluid are formed between two laminated metallic sheets 1A, 1B and tank parts 12 on the inlet side and the outlet side which are arranged on both ends of the core part so as to communicate to the flow passages 12, before laminating two metallic sheets and forming recessed groove parts on the surface of the metallic sheet of at least one side in places where are non-joined parts, by performing diffusion joining after laminating the metallic sheets by taking the recessed groove parts as the inside, the metallic sheets are joined each other while leaving the recessed groove parts as the non-joined parts. After performing the diffusion joining, the metallic sheets in the portions of the non-joined parts are plastically deformed and bulged by introducing a pressurized fluid into the non-joined parts. In this way, the flow passage parts in the core part and the tank parts 12 are formed at the same time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、積層型熱交換器の製造方法及びその製造用治具に関するものである。   The present invention relates to a method for manufacturing a laminated heat exchanger and a jig for manufacturing the same.

従来、複数枚の金属板を重ね合わせ、選択された箇所で金属板相互を拡散接合し、接合されていない部分(非接合部)の金属板を、内部への加圧ガスの導入により塑性変形させて膨らませ、それにより、非接合部に熱交換流体(冷媒)の通路を形成した積層型熱交換器、及び、その製造方法が知られている(例えば、特許文献1参照)。   Conventionally, a plurality of metal plates are overlapped, and metal plates are diffusion-bonded at selected locations, and the unbonded portion (non-joined portion) metal plate is plastically deformed by introducing pressurized gas into the interior. A stacked heat exchanger in which a passage of a heat exchange fluid (refrigerant) is formed in a non-joined part and a manufacturing method thereof is known (for example, see Patent Document 1).

図9、図10はそのように製造する場合の従来例を示し、図9(a)は完成した熱交換器の分解斜視図、(b)は加圧ガスの導入により塑性変形させる前の段階の金属板の積層状態を示す図、図10(a)はできあがった熱交換器の全体構成を示す斜視図、図10(b)及び(c)はその要部断面図である。   FIGS. 9 and 10 show a conventional example in such a case, FIG. 9A is an exploded perspective view of the completed heat exchanger, and FIG. 9B is a stage before plastic deformation by introduction of pressurized gas. FIG. 10 (a) is a perspective view showing the overall configuration of the completed heat exchanger, and FIGS. 10 (b) and 10 (c) are main part cross-sectional views.

図10に示すように、この熱交換器は、2枚の金属板1A、1Bを重ね合わせ、それら2枚の金属板1A、1Bの間に互いに平行に延びる多数本の流通路15を形成したコア部11と、そのコア部11の両端に設けられたタンク部12と、を有するものである。   As shown in FIG. 10, in this heat exchanger, two metal plates 1A and 1B are overlapped, and a plurality of flow passages 15 extending in parallel with each other are formed between the two metal plates 1A and 1B. It has a core part 11 and tank parts 12 provided at both ends of the core part 11.

両端のタンク部12の一方は、熱交換流体をコア部11の各流通路15に分配する入口側のタンク部、他方は、流通路15を通ってきた熱交換流体を外部に排出するために合流させる出口側のタンク部であり、熱交換流体は、矢印F1で示すように入口側のタンク部12から流入して、コア部11の流通路15を通過した後、矢印F2で示すように出口側のタンク部12から外部に流出する。   One of the tank portions 12 at both ends is an inlet side tank portion that distributes the heat exchange fluid to each flow passage 15 of the core portion 11, and the other is for discharging the heat exchange fluid that has passed through the flow passage 15 to the outside. As shown by an arrow F2, the heat exchange fluid flows from the tank part 12 on the inlet side as shown by an arrow F1 and passes through the flow passage 15 of the core part 11 as shown by an arrow F1. It flows out from the tank part 12 on the outlet side to the outside.

なお、この種の熱交換器は、チタン、ステンレス、アルミニウム等により形成されている。   This type of heat exchanger is formed of titanium, stainless steel, aluminum, or the like.

この熱交換器を作る場合は、図9(b)に示すように、2枚の金属板1A、1Bを重ね合わせる前に、流通路15を形成する部分に、印刷等の手段によって接合防止剤(例えば、バインダーと溶剤を混ぜた酸化イットリウム等)2を塗布しておき、その状態で2枚の金属板1A、1Bを重ね合わせる。そして、金属板1A、1B間に外部から圧力を加えながら所定温度まで加熱して、金属板1A、1B同士を拡散接合する。   In the case of making this heat exchanger, as shown in FIG. 9B, before the two metal plates 1A and 1B are overlapped, the joining preventive agent is formed on the portion where the flow passage 15 is formed by means such as printing. (For example, yttrium oxide in which a binder and a solvent are mixed) 2 is applied, and in this state, the two metal plates 1A and 1B are overlapped. And it heats to predetermined temperature, applying the pressure from the exterior between metal plate 1A, 1B, and metal plate 1A, 1B is diffusion-bonded.

いま、図9(b)において、Hで示す領域に接合防止剤2を介在させているので、それ以外のSで示す領域が互いに拡散接合によって接合される。従って、拡散接合後、接合防止剤2が介在していた部分は非接合部として残る。   In FIG. 9B, since the bonding inhibitor 2 is interposed in the region indicated by H, the other regions indicated by S are bonded to each other by diffusion bonding. Therefore, after diffusion bonding, the portion where the bonding inhibitor 2 is interposed remains as a non-bonded portion.

拡散接合したら、次に、金属板1A、1Bを変形しやすい温度まで加熱すると共に、非接合部にArガスを導入し、そのガス圧で非接合部の部分の金属板1A、1Bを塑性変形(膨張)させて、流通路15を有するコア部11を成形する。   After diffusion bonding, next, the metal plates 1A and 1B are heated to a temperature at which they can be easily deformed, Ar gas is introduced into the non-bonded portion, and the metal plates 1A and 1B in the non-bonded portion are plastically deformed by the gas pressure. (Expand) to form the core portion 11 having the flow passage 15.

続いて、コア部11の両端にタンク形成部材3をロウ付け接合することでタンク部12を構成し、熱交換器を完成させる。
特公平7−58158号公報
Subsequently, the tank forming member 3 is brazed and joined to both ends of the core portion 11 to constitute the tank portion 12 to complete the heat exchanger.
Japanese Examined Patent Publication No. 7-58158

ところで、従来では、図9(b)に示すように、シルクスクリーン印刷法等によって、非接合部となる部分に接合防止剤2を塗布しているが、塗布した部位(H)が僅かではあるが凸状に盛り上がるので、拡散接合時に、接合させたい部位(S)に高い面圧がかかりにくくなり、その結果、接合性が低下するおそれがあった。   By the way, conventionally, as shown in FIG. 9B, the bonding inhibitor 2 is applied to a portion to be a non-bonded portion by a silk screen printing method or the like, but the applied portion (H) is slight. Is raised in a convex shape, it is difficult to apply a high surface pressure to the part (S) to be joined at the time of diffusion joining, and as a result, the joining property may be lowered.

本発明は、上記事情を考慮し、強固な接合性を維持できる信頼性の高い積層型熱交換器を製造する方法、及び、その方法に使用する製造用治具を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method for manufacturing a highly reliable stacked heat exchanger that can maintain strong bondability, and a manufacturing jig used in the method. .

請求項1の発明の積層型熱交換器の製造方法は、重ね合わせた2枚の金属板の間に熱交換流体の流通路を形成したコア部と、該コア部の両端に前記流通路に連通するように配され、且つ、外部から導入された熱交換流体を前記各流通路に分配する入口側のタンク部、及び、前記流通路を通ってきた熱交換流体を外部に排出するために合流させる出口側のタンク部と、を有する積層型熱交換器の製造方法において、前記2枚の金属板を重ね合わせる前に、非接合部となる箇所の少なくとも一方の金属板の表面に凹溝部を形成し、その凹溝部を内側にして前記2枚の金属板を重ね合わせ、その状態で2枚の金属板を拡散接合することにより、前記凹溝部を非接合部として残しながら前記金属板を互いに接合し、拡散接合後に、前記非接合部に加圧流体を導入することにより、前記非接合部の部分の金属板を塑性変形させて膨らませ、それにより前記コア部の流通路を形成することを特徴とする。   According to a first aspect of the present invention, there is provided a laminated heat exchanger manufacturing method comprising: a core portion in which a heat exchange fluid flow passage is formed between two stacked metal plates; and the flow passage at both ends of the core portion. The tank portion on the inlet side that distributes the heat exchange fluid introduced from the outside to each of the flow passages, and the heat exchange fluid that has passed through the flow passages join together to be discharged to the outside. In a method for manufacturing a stacked heat exchanger having an outlet-side tank portion, a groove portion is formed on the surface of at least one of the metal plates that are to be non-joined before the two metal plates are overlapped. Then, the two metal plates are overlapped with the concave groove portion inside, and the two metal plates are diffusion-bonded in this state, thereby joining the metal plates to each other while leaving the concave groove portion as a non-joined portion. And pressurizing the non-bonded part after diffusion bonding By introducing the body, inflated a metal plate portion of said non-joined portion by plastically deforming, thereby and forming a flow passage of the core portion.

請求項2の発明は、請求項1に記載の積層型熱交換器の製造方法であって、前記2枚の金属板の拡散接合後の温度下降過程で、前記非接合部に加圧流体を導入して、前記コア部の流通路を形成することを特徴とする。   Invention of Claim 2 is a manufacturing method of the laminated heat exchanger of Claim 1, Comprising: Pressurized fluid is applied to the said non-joining part in the temperature fall process after the diffusion joining of the said 2 metal plate. It introduce | transduces and forms the flow path of the said core part, It is characterized by the above-mentioned.

請求項3の発明は、請求項1または2に記載の積層型熱交換器の製造方法であって、前記2枚の金属板の拡散接合後に、前記非接合部に加圧流体を導入することによって、前記コア部の流通路と同時に、同じ金属板の塑性変形により前記タンク部を形成することを特徴とする。   Invention of Claim 3 is a manufacturing method of the lamination | stacking type heat exchanger of Claim 1 or 2, Comprising: A pressurized fluid is introduce | transduced into the said non-joining part after the diffusion joining of the said 2 metal plate. Thus, the tank portion is formed by plastic deformation of the same metal plate simultaneously with the flow passage of the core portion.

請求項4の発明は、請求項3に記載の積層型熱交換器の製造方法であって、前記非接合部に加圧流体を導入することによって前記コア部の流通路と前記タンク部を形成する際に、コア部形成用キャビティ及びタンク部形成用キャビティを有する塑性加工用の金型間に前記2枚の金属板を配置した状態で、前記加圧流体を導入することにより、コア部の外形及びタンク部の外形を前記キャビティによって成形することを特徴とする。   A fourth aspect of the present invention is the method for manufacturing a stacked heat exchanger according to the third aspect, wherein the flow path of the core portion and the tank portion are formed by introducing a pressurized fluid into the non-joined portion. In this case, by introducing the pressurized fluid in a state where the two metal plates are arranged between the molds for plastic working having the cavity for forming the core part and the cavity for forming the tank part, The outer shape and the outer shape of the tank part are formed by the cavity.

請求項5の発明は、請求項4に記載の積層型熱交換器の製造方法であって、前記塑性加工用の金型の対向面に前記キャビティを隠すように加圧治具を装着することで、前記金型及び加圧治具によって拡散接合用の治具を構成し、この拡散接合用の治具により前記2枚の金属板に外側から圧力を加えながら拡散接合を実施し、その後、前記加圧治具を取り外して前記キャビティを露出させ、その状態で前記非接合部に加圧流体を導入することによって、前記コア部の流通路と前記タンク部を形成することを特徴とする。   A fifth aspect of the present invention is the method for manufacturing a stacked heat exchanger according to the fourth aspect, wherein a pressure jig is mounted so as to hide the cavity on the opposing surface of the mold for plastic working. Then, a diffusion bonding jig is constituted by the mold and the pressure jig, and diffusion bonding is performed while applying pressure from the outside to the two metal plates by the diffusion bonding jig. The pressurizing jig is removed to expose the cavity, and in that state, a pressurized fluid is introduced into the non-joining portion, thereby forming the flow passage of the core portion and the tank portion.

請求項6の発明は、請求項5に記載の積層型熱交換器の製造方法であって、前記金型に前記加圧治具を、前記キャビティを隠す位置と前記キャビティを露出させる位置との間でスライド可能に設けたことを特徴とする。   Invention of Claim 6 is a manufacturing method of the laminated heat exchanger of Claim 5, Comprising: The said pressurization jig | tool is set to the said metal mold | die, The position which conceals the said cavity, The position which exposes the said cavity It is characterized by being slidable between.

請求項7の発明は、少なくとも請求項1〜6のいずれか一つに記載の積層型熱交換器の製造方法であって、前記加圧流体として、不活性ガスを導入することを特徴とする。   A seventh aspect of the invention is a method for manufacturing a stacked heat exchanger according to any one of the first to sixth aspects, wherein an inert gas is introduced as the pressurized fluid. .

請求項8の発明は、少なくとも請求項1〜6のいずれか一つに記載の積層型熱交換器の製造方法であって、前記加圧流体として、液体を導入することを特徴とする。   The invention of claim 8 is a method for manufacturing a stacked heat exchanger according to any one of claims 1 to 6, wherein a liquid is introduced as the pressurized fluid.

請求項9の発明の積層型熱交換器の製造用治具は、重ね合わせた2枚の金属板を拡散接合し、次に、2枚の金属板の非接合部に加圧流体を導入し、前記非接合部の金属板を塑性変形して膨らませることにより、熱交換流体の流通路を有したコア部と、該コア部の両端の入口側及び出口側のタンク部とを形成してなる積層型熱交換器の製造用治具であって、コア部形成用キャビティ及びタンク部形成用キャビティを有する塑性加工用の一対の金型と、該金型の対向面に前記キャビティを隠すように着脱自在に装着されることで拡散接合用の治具を構成する加圧治具とを備え、前記加圧治具は、前記キャビティを隠す位置と前記キャビティを露出させる位置との間でスライド可能に設けられていることを特徴とする。   According to a ninth aspect of the present invention, there is provided a manufacturing tool for a laminated heat exchanger, wherein two superposed metal plates are diffusion-bonded, and then a pressurized fluid is introduced into a non-joined portion of the two metal plates. Then, by plastically deforming and expanding the metal plate of the non-joined portion, a core portion having a heat exchange fluid flow path and tank portions on both the inlet side and the outlet side of the core portion are formed. A jig for manufacturing a laminated heat exchanger comprising: a pair of plastic working molds having a core part forming cavity and a tank part forming cavity, and concealing the cavity on an opposing surface of the mold A pressure jig that constitutes a diffusion bonding jig by being detachably attached to the pressure jig, and the pressure jig slides between a position where the cavity is hidden and a position where the cavity is exposed. It is possible to be provided.

請求項1の発明によれば、予め金属板の表面に凹溝部を形成しておき、その凹溝部が拡散接合時に非接合部を形成するので、予め金属板の表面に接合防止剤を塗布しておく必要がない。従って、金属板の対向面間に接合防止剤を介在させずに済むことから、拡散接合の際に、接合すべき部位に対して十分な面圧を加えることができ、良好な接合を行うことができる。   According to the first aspect of the present invention, since the concave groove portion is formed in advance on the surface of the metal plate, and the concave groove portion forms a non-joined portion at the time of diffusion bonding, a bonding inhibitor is applied to the surface of the metal plate in advance. There is no need to keep it. Therefore, since it is not necessary to interpose a bonding inhibitor between the opposing surfaces of the metal plate, a sufficient surface pressure can be applied to the parts to be bonded at the time of diffusion bonding, and good bonding is performed. Can do.

請求項2の発明によれば、拡散接合後の温度下降過程で加圧流体導入による塑性加工を行うので、拡散接合後に再加熱する必要がなく、生産性の向上が図れると共に、再加熱による熱歪みを防止することができる。   According to the invention of claim 2, since plastic working is performed by introducing a pressurized fluid in the temperature lowering process after diffusion bonding, there is no need to reheat after diffusion bonding, productivity can be improved, and heat due to reheating can be achieved. Distortion can be prevented.

請求項3の発明によれば、2枚の金属板だけで、コア部とタンク部を同時に形成するので、タンク部を後付けする必要がなく、工程を簡略化することができる。   According to the invention of claim 3, since the core portion and the tank portion are formed simultaneously with only two metal plates, it is not necessary to retrofit the tank portion, and the process can be simplified.

請求項4の発明によれば、加圧流体の導入による塑性変形時に、金型のキャビティによってコア部とタンク部の外形を規制するので、局部的に金属板が膨らむようなことがなく、形状精度の高い熱交換器を製造することができる。   According to the invention of claim 4, since the outer shape of the core portion and the tank portion is regulated by the cavity of the mold at the time of plastic deformation due to the introduction of the pressurized fluid, the shape of the metal plate is not locally expanded. A highly accurate heat exchanger can be manufactured.

請求項5の発明によれば、金型の対向面に加圧治具を装着してキャビティを隠すか、加圧治具を取り外してキャビティを露出させるかで、拡散接合用金型(拡散接合仕様)と塑性加工用金型(塑性加工仕様)となるので、製造装置の主要部分を共通化することができ、コスト削減に寄与することができる。   According to the fifth aspect of the present invention, the diffusion bonding mold (diffusion bonding) can be determined by mounting the pressure jig on the opposite surface of the mold to hide the cavity, or removing the pressure jig to expose the cavity. Specifications) and plastic working molds (plastic working specifications), the main parts of the manufacturing apparatus can be made common, which contributes to cost reduction.

請求項6の発明によれば、加圧治具をスライドさせるだけで、拡散接合用金型(拡散接合仕様)と塑性加工用金型(塑性加工仕様)にもなるので、拡散接合後にすぐに塑性加工できる状態に移行することができる。   According to the invention of claim 6, simply by sliding the pressure jig, it becomes a diffusion bonding die (diffusion bonding specification) and a plastic working die (plastic processing specification). It is possible to shift to a state where plastic working is possible.

請求項7の発明によれば、加圧流体として不活性ガスを導入するので、容易に塑性加工を行うことができると共に、クリーニング等の後処理が楽にできる。   According to the seventh aspect of the invention, since the inert gas is introduced as the pressurized fluid, plastic processing can be easily performed, and post-processing such as cleaning can be facilitated.

請求項8の発明によれば、加圧流体として液体を導入するので、冷間加工することができ、加熱による歪みなどの影響を無くすことができる。   According to invention of Claim 8, since a liquid is introduce | transduced as a pressurized fluid, it can cold-work and can eliminate influences, such as distortion by heating.

請求項9の発明によれば、金型の対向面に加圧治具を装着してキャビティを隠すか、加圧治具を取り外してキャビティを露出させるかで、拡散接合用金型(拡散接合仕様)と塑性加工用金型(塑性加工仕様)にもなるので、製造用治具の主要部分を共通化することができ、コスト削減に寄与することができる。   According to the ninth aspect of the present invention, the diffusion bonding mold (diffusion bonding) is determined by mounting the pressure jig on the opposite surface of the mold to hide the cavity, or by removing the pressure jig to expose the cavity. Specifications) and plastic working molds (plastic working specifications), the main parts of the manufacturing jig can be made common, contributing to cost reduction.

以下、図面を参照しながら本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態の製造方法により製造した積層型熱交換器の構成を示す図、図2は熱交換器を構成するための金属板の構成を示す図、図3は2枚の金属板を重ねた状態を示す図、図4はその断面図である。   FIG. 1 is a diagram showing the configuration of a stacked heat exchanger manufactured by the manufacturing method of the embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a metal plate for configuring the heat exchanger, and FIG. The figure which shows the state which accumulated the metal plate, FIG. 4 is the sectional drawing.

図1に示すように、ここで製造しようとする積層型熱交換器は、重ね合わせた2枚の金属板1A、1Bの間に熱交換流体(冷媒)の流通路15を形成した板状のコア部11と、該コア部11の両端のタンク部12と、を有するものである。   As shown in FIG. 1, the laminated heat exchanger to be manufactured here has a plate-like shape in which a heat exchange fluid (refrigerant) flow passage 15 is formed between two stacked metal plates 1A and 1B. It has a core part 11 and tank parts 12 at both ends of the core part 11.

両端のタンク部12の一方は、熱交換流体をコア部11の各流通路15に分配する入口側のタンク部、他方は、流通路15を通ってきた熱交換流体を外部に排出するために合流させる出口側のタンク部であり、これら両端のタンク部12は、後述するように、コア部11を構成する2枚の金属板1A、1Bによって一体に形成されている。ここで、金属板1A、1Bは、例えばチタン、ステンレス、アルミニウム等の材料よりなるもので、コアプレートとも呼ばれる。   One of the tank portions 12 at both ends is an inlet side tank portion that distributes the heat exchange fluid to each flow passage 15 of the core portion 11, and the other is for discharging the heat exchange fluid that has passed through the flow passage 15 to the outside. It is a tank part on the exit side to be joined, and the tank parts 12 at both ends are integrally formed by two metal plates 1A and 1B constituting the core part 11, as will be described later. Here, the metal plates 1A and 1B are made of materials such as titanium, stainless steel, and aluminum, for example, and are also called core plates.

次に、この熱交換器を得るための本発明の実施形態の製造方法について説明する。   Next, the manufacturing method of embodiment of this invention for obtaining this heat exchanger is demonstrated.

この熱交換器を得る場合には、まず、2枚の金属板1A、1Bを重ね合わせるのであるが、2枚の金属板1A、1Bを重ね合わせる前に、図2に示すように、予め、非接合部Hとなる箇所の少なくとも一方(本例では両方)の金属板1A、1Bの表面に、エッチング加工等により凹溝部5を形成しておく。凹溝部5の凹み量dは、金属板1A、1Bの板厚tの3〜4%以上に設定しておくのが好ましい。   When obtaining this heat exchanger, first, the two metal plates 1A, 1B are overlapped, but before the two metal plates 1A, 1B are overlapped, as shown in FIG. A concave groove 5 is formed on the surface of at least one (both in this example) of the metal plates 1A and 1B where the non-joining portion H is formed by etching or the like. It is preferable to set the dent amount d of the groove portion 5 to 3 to 4% or more of the plate thickness t of the metal plates 1A and 1B.

次に、図3に示すように、その凹溝部5を内側にして、2枚の金属板1A、1Bを重ね合わせる。重ね合わせた状態の断面を図4に示す。図4の(a)はタンク部12となる部分の断面図、(b)はコア部の流通路となる部分の断面図である。   Next, as shown in FIG. 3, the two metal plates 1 </ b> A and 1 </ b> B are overlapped with the concave groove portion 5 facing inward. FIG. 4 shows a cross section in a superposed state. 4A is a cross-sectional view of a portion that becomes the tank portion 12, and FIG. 4B is a cross-sectional view of a portion that becomes the flow passage of the core portion.

2枚の金属板1A、1Bを互いに位置決めして重ね合わせたら、これを拡散接合用の治具にセットする。   When the two metal plates 1A and 1B are positioned and overlap each other, they are set on a jig for diffusion bonding.

ここでは、拡散接合用の治具と、その後の工程で使用する塑性変形用の金型とが一緒になった、図5〜図7に示すような共用型の製造用治具を使用する。   Here, a common manufacturing jig as shown in FIGS. 5 to 7 is used, in which a diffusion bonding jig and a plastic deformation mold used in the subsequent steps are combined.

この製造用治具は、図6に下側のみの構成を示すように、コア部形成用キャビティ22b(21b)及びタンク部形成用キャビティ22a(21a)を、対向する合わせ面に有する塑性加工用の上下一対の金型21、22を主要素とし、これら金型21、22に外部から型閉め力を作用させることができるものであり、その付属的な要素として、拡散接合時に使用する加圧治具30が、上下の金型21、22にそれぞれ移動可能に備わっている。   As shown in FIG. 6, the manufacturing jig has a core part forming cavity 22b (21b) and a tank part forming cavity 22a (21a) on the opposing mating surfaces. A pair of upper and lower molds 21 and 22 are used as main elements, and a mold closing force can be applied to these molds 21 and 22 from the outside. A jig 30 is provided on each of the upper and lower molds 21 and 22 so as to be movable.

加圧治具30は、塑性加工用の金型21、22の対向面に、キャビティ22b(21b)、22a(21a)を隠すように装着されることにより、金型21、22と共に拡散接合用の治具(拡散接合用金型)を構成するものであり、図5(a)、(b)及び図7(a)に示すように、拡散接合位置にセットされることで、空洞であるキャビティ22b(21b)、22a(21a)に影響されずに、対向する金型21、22の加圧面を、拡散接合に要求される面形状(例えばフラット面)にする。   The pressurizing jig 30 is attached to the opposing surfaces of the plastic working dies 21 and 22 so as to hide the cavities 22b (21b) and 22a (21a), thereby being used together with the dies 21 and 22 for diffusion bonding. The jig (diffusion bonding mold) is configured as shown in FIGS. 5 (a), 5 (b), and 7 (a). The pressure surfaces of the opposed molds 21 and 22 are made to have a surface shape required for diffusion bonding (for example, a flat surface) without being affected by the cavities 22b (21b) and 22a (21a).

加圧治具30は、コア部11の幅方向に対応する方向に二分割された2つの部材31によって構成されており、拡散接合時にキャビティ22b(21b)、22a(21a)を隠す拡散接合位置と、加圧流体導入時にキャビティ22b(21b)、22a(21a)を露出させる塑性変形位置〔図5(c)、(d)及び図7(b)参照〕との間で、スライド可能に設けられている。   The pressurizing jig 30 is constituted by two members 31 divided in two in a direction corresponding to the width direction of the core portion 11, and a diffusion bonding position that hides the cavities 22b (21b) and 22a (21a) at the time of diffusion bonding. And a plastic deformation position that exposes the cavities 22b (21b) and 22a (21a) when a pressurized fluid is introduced (see FIGS. 5C, 5D, and 7B). It has been.

図6は、塑性変形位置に加圧治具30をセットした状態を示し、図中の矢印が、加圧治具30を構成する2つの部材31のスライド方向を示している。   FIG. 6 shows a state in which the pressing jig 30 is set at the plastic deformation position, and the arrows in the drawing indicate the sliding directions of the two members 31 constituting the pressing jig 30.

引き続いて、積層型熱交換器の製造方法の手順について説明すると、まず、製造用治具の上下の金型21、22の対向面に、図5(a)、(b)及び図7(a)に示すように、キャビティ22b(21b)、22a(21a)を隠すように加圧治具30をスライドさせてセットし、拡散接合用金型とする。   Subsequently, the procedure of the manufacturing method of the laminated heat exchanger will be described. First, FIGS. 5A, 5B and 7A are formed on the opposing surfaces of the upper and lower molds 21 and 22 of the manufacturing jig. ), The pressure jig 30 is slid and set so as to hide the cavities 22b (21b) and 22a (21a) to obtain a diffusion bonding die.

そしてその状態で、上下の加圧治具30の間に、2枚の金属板1A、1Bを重ねて配置し、型閉めを行い、2枚の金属板1A、1Bに外側から圧力を加えながら、拡散接合温度まで昇温させて拡散接合を実施する。ステンレスの場合、拡散接合温度は約1100℃である。   In this state, the two metal plates 1A and 1B are arranged in an overlapping manner between the upper and lower pressure jigs 30 and the molds are closed, and pressure is applied to the two metal plates 1A and 1B from the outside. Then, the diffusion bonding is performed by raising the temperature to the diffusion bonding temperature. In the case of stainless steel, the diffusion bonding temperature is about 1100 ° C.

拡散接合すると、凹溝部5のある位置は接合されないので、図4に示すように非接合部Hとして残り、他の部分だけが接合部Sとなる。   When the diffusion bonding is performed, the position where the concave groove portion 5 is located is not bonded, so that it remains as the non-bonded portion H as shown in FIG.

拡散接合が終了したら、いったん金型21、22を開いて、加圧治具30を、キャビティ22b(21b)、22a(21a)を隠す拡散接合位置から、図7(b)に示すように、塑性変形の邪魔にならない塑性変形位置までスライドさせ、キャビティ22b(21b)、22a(21a)を露出させて、塑性変形用金型とする。   When the diffusion bonding is completed, the molds 21 and 22 are once opened, and the pressing jig 30 is moved from the diffusion bonding position that hides the cavities 22b (21b) and 22a (21a) as shown in FIG. The mold is slid to a plastic deformation position that does not interfere with plastic deformation, and the cavities 22b (21b) and 22a (21a) are exposed to form a plastic deformation mold.

そして、再び金型21、22を閉めた状態とし、図8に示すように、ある所定温度まで温度が低下した段階で、即ち、拡散接合後の温度下降過程において金属がまだ柔らかい800〜900℃のレベルまで温度が下降した段階Pで、金属板1A、1B間の非接合部Hに、加圧流体としてArガス等の不活性ガスを導入し、それによって、非接合部Hの部分の金属板1A、1Bを塑性変形させて膨らませ、コア部11の流通路15とタンク部12を同時に形成する。   Then, the molds 21 and 22 are closed again, and as shown in FIG. 8, the metal is still soft at a stage where the temperature is lowered to a predetermined temperature, that is, in the temperature lowering process after the diffusion bonding. At the stage P where the temperature has dropped to the level of, an inert gas such as Ar gas is introduced as a pressurized fluid into the non-joined portion H between the metal plates 1A and 1B. The plates 1A and 1B are plastically deformed and expanded to form the flow passage 15 and the tank portion 12 of the core portion 11 at the same time.

これにより、図1の熱交換器が得られる。   Thereby, the heat exchanger of FIG. 1 is obtained.

なお、加圧ガスの注入箇所は、製品に応じて設定するものとする。本例では、一方のタンク部12に相当する位置で注入し、他方のタンク部12に相当する位置で排出する。また、図8の拡散接合温度パターンにおいて、a区間が拡散接合工程に相当し、b区間が塑性変形工程に相当する。   In addition, the injection | pouring location of pressurized gas shall be set according to a product. In this example, the liquid is injected at a position corresponding to one tank portion 12 and discharged at a position corresponding to the other tank portion 12. Further, in the diffusion bonding temperature pattern of FIG. 8, the a section corresponds to the diffusion bonding process, and the b section corresponds to the plastic deformation process.

以上のように、上記実施形態の製造方法では、予め金属板1A、1Bの表面に凹溝部5を形成しておき、その凹溝部5によって拡散接合時に非接合部Hを形成するので、従来のように金属板1A、1Bの表面に接合防止剤を塗布しておく必要がない。従って、金属板1A、1Bの対向面間に接合防止剤を介在させずに済むことから、拡散接合の際に、接合すべき部位に対して十分な面圧を加えることができ、良好な接合を行うことができる。   As described above, in the manufacturing method of the above-described embodiment, the groove portion 5 is formed in advance on the surfaces of the metal plates 1A and 1B, and the non-joint portion H is formed by the groove portion 5 at the time of diffusion bonding. Thus, it is not necessary to apply a bonding inhibitor to the surfaces of the metal plates 1A and 1B. Therefore, since it is not necessary to interpose a bonding inhibitor between the opposing surfaces of the metal plates 1A and 1B, a sufficient surface pressure can be applied to the parts to be bonded during diffusion bonding, and good bonding is achieved. It can be performed.

また、拡散接合後の温度下降過程で加圧流体導入による塑性加工を行うので、拡散接合後に再加熱する必要がなく、生産性の向上が図れると共に、再加熱による熱歪みを防止することができる。   In addition, since plastic processing is performed by introducing a pressurized fluid in the temperature lowering process after diffusion bonding, there is no need to reheat after diffusion bonding, productivity can be improved, and thermal distortion due to reheating can be prevented. .

また、2枚の金属板1A、1Bだけで、コア部11とタンク部12を同時に形成するので、従来のようにタンク部12を後付けする必要がなく、工程を簡略化することができる。   Moreover, since the core part 11 and the tank part 12 are formed simultaneously only by the two metal plates 1A and 1B, it is not necessary to retrofit the tank part 12 as in the prior art, and the process can be simplified.

また、加圧流体の導入による塑性変形時に、金型21、22のキャビティ21a、21b、22a、22bによってコア部11とタンク部15の外形を規制するので、局部的に金属板1A、1Bが膨らむようなことがなく、形状精度の高い適正な形状の熱交換器を製造することができる。   Moreover, since the outer shape of the core part 11 and the tank part 15 is regulated by the cavities 21a, 21b, 22a, and 22b of the molds 21 and 22 at the time of plastic deformation due to introduction of the pressurized fluid, the metal plates 1A and 1B are locally provided. A heat exchanger having an appropriate shape with high shape accuracy can be produced without swelling.

また、金型21、22の対向面に加圧治具30を装着してキャビティ21a、21b、22a、22bを隠すか、加圧治具30を取り外してキャビティ21a、21b、22a、22bを露出させるかで、拡散接合用金型(拡散接合仕様)と塑性加工用金型(塑性加工仕様)にもなるので、製造装置の主要部分を共通化することができ、コスト削減に寄与することができる。   Further, a pressure jig 30 is attached to the opposing surfaces of the molds 21 and 22 to hide the cavities 21a, 21b, 22a and 22b, or the pressure jig 30 is removed to expose the cavities 21a, 21b, 22a and 22b. By doing so, it becomes a diffusion bonding mold (diffusion bonding specification) and a plastic working mold (plastic processing specification), so that the main parts of the manufacturing equipment can be shared, contributing to cost reduction. it can.

また、加圧治具30をスライドさせるだけで、拡散接合用金型(拡散接合仕様)と塑性加工用金型(塑性加工仕様)にもなるので、拡散接合後にすぐに塑性加工できる状態に移行することができる。   In addition, by simply sliding the pressure jig 30, it becomes a diffusion bonding mold (diffusion bonding specification) and a plastic processing mold (plastic processing specification), so that it is ready for plastic processing immediately after diffusion bonding. can do.

また、加圧流体としてArガス等の不活性ガスを導入するので、容易に塑性加工を行うことができると共に、クリーニング等の後処理が楽にできる。   In addition, since an inert gas such as Ar gas is introduced as the pressurized fluid, plastic processing can be easily performed, and post-processing such as cleaning can be facilitated.

なお、加圧ガスの代わりに液体を導入して、金属板1A、1Bに塑性変形を与えてもよい。液体の圧力を利用して加工する場合、高温に加熱しないで冷間加工することができるので、余計な加熱による歪みなどの影響を無くすことができるし、加工の時期も拡散接合工程に影響されずに自由に設定できる。   In addition, a liquid may be introduced instead of the pressurized gas to plastically deform the metal plates 1A and 1B. When processing using liquid pressure, it is possible to perform cold processing without heating to a high temperature, eliminating the effects of distortion due to extra heating, and the timing of processing is also affected by the diffusion bonding process. You can set it freely.

本発明の実施形態の製造方法により製造した積層型熱交換器の構成図であり、(a)は全体構成を示す斜視図、(b)、(c)はそれぞれ(a)のIb−Ib矢視断面図及びIc−Ic矢視断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the laminated heat exchanger manufactured by the manufacturing method of embodiment of this invention, (a) is a perspective view which shows the whole structure, (b), (c) is Ib-Ib arrow of (a), respectively. It is a sectional view and Ic-Ic arrow sectional view. 実施形態の方法により熱交換器を製造する場合に用意する金属板の構成図で、(a)は平面図、(b)は(a)のIIb−IIb矢視断面図である。It is a block diagram of the metal plate prepared when manufacturing a heat exchanger by the method of embodiment, (a) is a top view, (b) is IIb-IIb arrow sectional drawing of (a). 図2に示した2枚の金属板を重ねた状態を示す図で、(a)は斜視図、(b)は平面図である。It is a figure which shows the state which piled up the two metal plates shown in FIG. 2, (a) is a perspective view, (b) is a top view. (a)、(b)は、それぞれ図3のIVa−IVa矢視断面図及びIVb−IVb矢視断面図である。(A), (b) is respectively IVa-IVa arrow sectional drawing and IVb-IVb arrow sectional drawing of FIG. 実施形態の製造方法の工程(a)〜(d)の説明図である。It is explanatory drawing of process (a)-(d) of the manufacturing method of embodiment. 実施形態の製造方法で使用する製造用治具の一部構成を示す斜視図である。It is a perspective view which shows a partial structure of the manufacturing jig | tool used with the manufacturing method of embodiment. 実施形態の製造方法で使用する製造用治具の説明図で、(a)は拡散接合仕様、(b)は塑性変形仕様に設定したときの状態を示す図である。It is explanatory drawing of the jig | tool for manufacture used with the manufacturing method of embodiment, (a) is a figure which shows a state when set to a diffusion joining specification and (b) to a plastic deformation specification. 実施形態の製造方法にて工程を実施する場合の温度パターンを示す図である。It is a figure which shows the temperature pattern in the case of implementing a process with the manufacturing method of embodiment. 従来の製造方法の説明に使用する図で、(a)は完成した熱交換器の分解斜視図、(b)は加圧ガスの導入により塑性変形させる前の段階の金属板の積層状態を示す図である。It is a figure used for description of the conventional manufacturing method, (a) is an exploded perspective view of the completed heat exchanger, (b) shows the laminated state of the metal plate in the stage before plastically deforming by introduction of pressurized gas. FIG. 従来の熱交換器の説明図で、(a)はできあがった熱交換器の全体構成を示す斜視図、(b)は(a)のXa−Xa矢視断面図、(c)は(a)のXb−Xb矢視断面図である。It is explanatory drawing of the conventional heat exchanger, (a) is a perspective view which shows the whole structure of the completed heat exchanger, (b) is Xa-Xa arrow sectional drawing of (a), (c) is (a). It is Xb-Xb arrow sectional drawing of.

符号の説明Explanation of symbols

1A,1B…金属板
5…凹溝部
11…コア部
12…タンク部
20…製造用治具
21,22…金型
21a,22a…タンク部形成用キャビティ
21b,22b…コア部形成用キャビティ
30…加圧治具
S…接合部
H…非接合部
DESCRIPTION OF SYMBOLS 1A, 1B ... Metal plate 5 ... Groove part 11 ... Core part 12 ... Tank part 20 ... Manufacturing jig 21, 22 ... Mold 21a, 22a ... Cavity for tank part formation 21b, 22b ... Cavity for core part formation 30 ... Pressurizing jig S ... Joint part H ... Non-joint part

Claims (9)

重ね合わせた2枚の金属板(1A、1B)の間に熱交換流体の流通路(15)を形成したコア部(11)と、該コア部(11)の両端に前記流通路(15)に連通するように配され、且つ、外部から導入された熱交換流体を前記各流通路(15)に分配する入口側のタンク部(12)、及び、前記流通路(15)を通ってきた熱交換流体を外部に排出するために合流させる出口側のタンク部(12)と、を有する積層型熱交換器の製造方法において、
前記2枚の金属板(1A、1B)を重ね合わせる前に、非接合部(H)となる箇所の少なくとも一方の金属板(1A、1B)の表面に凹溝部(5)を形成し、その凹溝部(5)を内側にして前記2枚の金属板(1A、1B)を重ね合わせ、その状態で2枚の金属板(1A、1B)を拡散接合することにより、前記凹溝部を非接合部として残しながら前記金属板(1A、1B)を互いに接合し、
拡散接合後に、前記非接合部(H)に加圧流体を導入することにより、前記非接合部(H)の部分の金属板(1A、1B)を塑性変形させて膨らませ、それにより前記コア部(11)の流通路(15)を形成する
ことを特徴とする積層型熱交換器の製造方法。
A core part (11) in which a heat exchange fluid flow path (15) is formed between the two stacked metal plates (1A, 1B), and the flow path (15) at both ends of the core part (11). And the tank portion (12) on the inlet side for distributing the heat exchange fluid introduced from the outside to each flow passage (15) and the flow passage (15). In the manufacturing method of the stacked heat exchanger having a tank part (12) on the outlet side that joins the heat exchange fluid to discharge to the outside,
Before the two metal plates (1A, 1B) are overlaid, a concave groove (5) is formed on the surface of at least one of the metal plates (1A, 1B) where the non-joint portion (H) is formed. The two metal plates (1A, 1B) are overlapped with the concave groove portion (5) on the inside, and in this state, the two metal plates (1A, 1B) are diffusion bonded to each other so that the concave groove portion is not bonded. The metal plates (1A, 1B) are joined together while leaving as a part,
After diffusion bonding, by introducing a pressurized fluid into the non-bonded portion (H), the metal plate (1A, 1B) of the non-bonded portion (H) is plastically deformed and thereby expanded, thereby the core portion. The flow path (15) of (11) is formed. The manufacturing method of a laminated heat exchanger characterized by the above-mentioned.
請求項1に記載の積層型熱交換器の製造方法であって、
前記2枚の金属板(1A、1B)の拡散接合後の温度下降過程で、前記非接合部(H)に加圧流体を導入して、前記コア部(11)の流通路(15)を形成する
ことを特徴とする積層型熱交換器の製造方法。
It is a manufacturing method of the lamination type heat exchanger according to claim 1,
In the temperature lowering process after diffusion joining of the two metal plates (1A, 1B), a pressurized fluid is introduced into the non-joining part (H), and the flow path (15) of the core part (11) is formed. A method of manufacturing a laminated heat exchanger, characterized in that the method is formed.
請求項1または2に記載の積層型熱交換器の製造方法であって、
前記2枚の金属板(1A、1B)の拡散接合後に、前記非接合部(H)に加圧流体を導入することによって、前記コア部(11)の流通路(15)と同時に、同じ金属板(1A、1B)の塑性変形により前記タンク部(12)を形成する
ことを特徴とする積層型熱交換器の製造方法。
It is a manufacturing method of the lamination type heat exchanger according to claim 1 or 2,
After diffusion joining of the two metal plates (1A, 1B), by introducing a pressurized fluid into the non-joining part (H), the same metal as the flow path (15) of the core part (11) is used. The said tank part (12) is formed by plastic deformation of a board (1A, 1B). The manufacturing method of a laminated heat exchanger characterized by the above-mentioned.
請求項3に記載の積層型熱交換器の製造方法であって、
前記非接合部(H)に加圧流体を導入することによって前記コア部(11)の流通路(15)と前記タンク部(12)を形成する際に、コア部形成用キャビティ(21b、22b)及びタンク部形成用キャビティ(21a、22a)を有する塑性加工用の金型(21、22)間に前記2枚の金属板(1A、1B)を配置した状態で、前記加圧流体を導入することにより、コア部(11)の外形及びタンク部(12)の外形を前記キャビティ(21a、21b、22a、22b)によって成形する
ことを特徴とする積層型熱交換器の製造方法。
It is a manufacturing method of the lamination type heat exchanger according to claim 3,
When forming the flow path (15) of the core part (11) and the tank part (12) by introducing a pressurized fluid into the non-joining part (H), the core part forming cavities (21b, 22b) ) And the two metal plates (1A, 1B) are placed between the molds (21, 22) for plastic working having the cavity (21a, 22a) for forming the tank portion, and the pressurized fluid is introduced. Thus, the outer shape of the core portion (11) and the outer shape of the tank portion (12) are formed by the cavities (21a, 21b, 22a, 22b).
請求項4に記載の積層型熱交換器の製造方法であって、
前記塑性加工用の金型(21、22)の対向面に前記キャビティ(21a、21b、22a、22b)を隠すように加圧治具(30)を装着することで、前記金型(21、22)及び加圧治具(30)によって拡散接合用の治具を構成し、この拡散接合用の治具により前記2枚の金属板(1A、1B)に外側から圧力を加えながら拡散接合を実施し、その後、前記加圧治具(30)を取り外して前記キャビティ(21a、21b、22a、22b)を露出させ、その状態で前記非接合部(H)に加圧流体を導入することによって、前記コア部(11)の流通路(15)と前記タンク部(12)を形成する
ことを特徴とする積層型熱交換器の製造方法。
It is a manufacturing method of the lamination type heat exchanger according to claim 4,
By attaching a pressing jig (30) so as to hide the cavities (21a, 21b, 22a, 22b) on the opposing surfaces of the plastic working dies (21, 22), the molds (21, 22) 22) and a pressure jig (30) constitute a diffusion bonding jig, and diffusion bonding is performed by applying pressure from the outside to the two metal plates (1A, 1B) by the diffusion bonding jig. After that, by removing the pressurizing jig (30) to expose the cavities (21a, 21b, 22a, 22b) and introducing a pressurized fluid into the non-joining part (H) in that state The flow path (15) of the core part (11) and the tank part (12) are formed. A method for manufacturing a stacked heat exchanger, wherein:
請求項5に記載の積層型熱交換器の製造方法であって、
前記金型(21、22)に前記加圧治具(30)を、前記キャビティ(21a、21b、22a、22b)を隠す位置と前記キャビティ(21a、21b、22a、22b)を露出させる位置との間でスライド可能に設けた
ことを特徴とする積層型熱交換器の製造方法。
It is a manufacturing method of the lamination type heat exchanger according to claim 5,
A position for hiding the cavity (21a, 21b, 22a, 22b) and a position for exposing the cavity (21a, 21b, 22a, 22b), the pressure jig (30) on the mold (21, 22); A method for manufacturing a stacked heat exchanger, characterized in that the slide heat exchanger is slidable between the two.
少なくとも請求項1〜6のいずれか一つに記載の積層型熱交換器の製造方法であって、
前記加圧流体として、不活性ガスを導入する
ことを特徴とする積層型熱交換器の製造方法。
It is a manufacturing method of the lamination type heat exchanger according to any one of claims 1 to 6,
An inert gas is introduced as the pressurized fluid. A method for manufacturing a laminated heat exchanger.
少なくとも請求項1〜6のいずれか一つに記載の積層型熱交換器の製造方法であって、
前記加圧流体として、液体を導入する
ことを特徴とする積層型熱交換器の製造方法。
It is a manufacturing method of the lamination type heat exchanger according to any one of claims 1 to 6,
A liquid is introduced as the pressurized fluid. A method for manufacturing a stacked heat exchanger, wherein:
重ね合わせた2枚の金属板(1A、1B)を拡散接合し、次に、2枚の金属板(1A、1B)の非接合部(H)に加圧流体を導入し、前記非接合部(H)の金属板(1A、1B)を塑性変形して膨らませることにより、熱交換流体の流通路(15)を有したコア部(11)と、該コア部(11)の両端の入口側及び出口側のタンク部(12)とを形成してなる積層型熱交換器の製造用治具であって、
コア部形成用キャビティ(21b、22b)及びタンク部形成用キャビティ(21a、22b)を有する塑性加工用の一対の金型(21、22)と、該金型(21、22)の対向面に前記キャビティ(21a、21b、22a、22b)を隠すように着脱自在に装着されることで拡散接合用の治具を構成する加圧治具(30)と、を備え、
前記加圧治具(30)は、前記キャビティ(21a、21b、22a、22b)を隠す位置と前記キャビティ(21a、21b、22a、22b)を露出させる位置との間でスライド可能に設けられている
ことを特徴とする積層型熱交換器の製造用治具。
The two metal plates (1A, 1B) overlapped are diffusion-bonded, and then a pressurized fluid is introduced into the non-bonded portion (H) of the two metal plates (1A, 1B), and the non-bonded portion The metal plate (1A, 1B) of (H) is plastically deformed to expand, thereby providing a core portion (11) having a heat exchange fluid flow passage (15) and inlets at both ends of the core portion (11). A laminated heat exchanger manufacturing jig formed by forming a tank part (12) on the side and the outlet side,
A pair of molds (21, 22) for plastic working having core part forming cavities (21b, 22b) and tank part forming cavities (21a, 22b), and opposing surfaces of the molds (21, 22) A pressure jig (30) constituting a jig for diffusion bonding by being detachably mounted so as to hide the cavities (21a, 21b, 22a, 22b),
The pressure jig (30) is slidably provided between a position where the cavity (21a, 21b, 22a, 22b) is hidden and a position where the cavity (21a, 21b, 22a, 22b) is exposed. A jig for manufacturing a laminated heat exchanger, characterized in that:
JP2005075560A 2005-03-16 2005-03-16 Method and tool for manufacturing laminated heat exchanger Pending JP2006255746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075560A JP2006255746A (en) 2005-03-16 2005-03-16 Method and tool for manufacturing laminated heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075560A JP2006255746A (en) 2005-03-16 2005-03-16 Method and tool for manufacturing laminated heat exchanger

Publications (1)

Publication Number Publication Date
JP2006255746A true JP2006255746A (en) 2006-09-28

Family

ID=37095513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075560A Pending JP2006255746A (en) 2005-03-16 2005-03-16 Method and tool for manufacturing laminated heat exchanger

Country Status (1)

Country Link
JP (1) JP2006255746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094683A (en) * 2008-10-14 2010-04-30 Panasonic Corp Diffusion bonding method of aluminum alloy
JP2010243125A (en) * 2009-04-09 2010-10-28 Maruyasu Industries Co Ltd Multitubular heat exchanger
JP5613257B2 (en) * 2010-10-29 2014-10-22 株式会社Welcon container
CN105258405A (en) * 2015-09-18 2016-01-20 浙江万享科技股份有限公司 Dual-cooling type condenser
WO2024028552A1 (en) * 2022-08-02 2024-02-08 Safran Nacelles Method for manufacturing ducts for a heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094683A (en) * 2008-10-14 2010-04-30 Panasonic Corp Diffusion bonding method of aluminum alloy
JP2010243125A (en) * 2009-04-09 2010-10-28 Maruyasu Industries Co Ltd Multitubular heat exchanger
JP5613257B2 (en) * 2010-10-29 2014-10-22 株式会社Welcon container
US8991656B2 (en) 2010-10-29 2015-03-31 Welcon Inc. Container
CN105258405A (en) * 2015-09-18 2016-01-20 浙江万享科技股份有限公司 Dual-cooling type condenser
WO2024028552A1 (en) * 2022-08-02 2024-02-08 Safran Nacelles Method for manufacturing ducts for a heat exchanger
FR3138689A1 (en) * 2022-08-02 2024-02-09 Safran Nacelles Process for manufacturing pipes for a heat exchanger

Similar Documents

Publication Publication Date Title
JP5620498B2 (en) Method for manufacturing a module with a hollow region by hot isostatic pressing
JP4509935B2 (en) Manufacturing apparatus for microchannel device, manufacturing method thereof, and method for performing unit operation
JP2006255746A (en) Method and tool for manufacturing laminated heat exchanger
JP5911801B2 (en) Method for making a module having a hollow area, preferably a hollow area for circulation of fluids
US6571450B2 (en) Process for the monolithic molding of superplastic material
US5287918A (en) Heat exchangers
JP5941617B2 (en) Metal composite and method for producing metal composite
KR102268451B1 (en) Plate-type heat exchanger and method for producing same
JP6174058B2 (en) MICROSTRUCTURE COMPONENT AND METHOD FOR PRODUCING THE MICROSTRUCTURE COMPONENT
CN107429976B (en) Heat exchanger with plate having surface pattern for improving flatness and method of manufacturing the same
JP2022008275A (en) Heat exchanger
JP4972292B2 (en) Superplastic / Diffusion Bonding Panel Forming Method
EP3078929B1 (en) Method of producing a plate heat exchanger
JPH03174931A (en) Heat exchanger and its manufacture
JP2009297741A (en) Die for hot press
JP6425897B2 (en) Plate type heat exchanger and method of manufacturing the same
JP2006297450A (en) Composite material, plate type heat exchanger, and brazing method for composite material
US6068179A (en) Heat exchanger manufacture
JP6007041B2 (en) Plate heat exchanger
JP2019531457A (en) Titanium plate heat exchanger
JP2009000658A (en) Hydrogen permeable membrane module
JP2008045804A (en) Method of manufacturing heat exchanger
JPH0732939B2 (en) METHOD AND APPARATUS FOR MANUFACTURING A RING PLATE COMPONENT FOR FORMING A CYLINDRICAL COLLECTION TUBE STRUCTURE OF HEAT EXCHANGER
EP3819064A1 (en) Method for the manufacture of monolithic multi-tube hydraulic devices, in particular heat exchangers
CN109641297A (en) For manufacturing the method with the plate heat exchanger block for the brazing material being targetedly applied on especially fin and strip of paper used for sealing