JP2006255504A - Method and apparatus for treating waste water - Google Patents

Method and apparatus for treating waste water Download PDF

Info

Publication number
JP2006255504A
JP2006255504A JP2005072777A JP2005072777A JP2006255504A JP 2006255504 A JP2006255504 A JP 2006255504A JP 2005072777 A JP2005072777 A JP 2005072777A JP 2005072777 A JP2005072777 A JP 2005072777A JP 2006255504 A JP2006255504 A JP 2006255504A
Authority
JP
Japan
Prior art keywords
tank
aeration
wastewater
waste water
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005072777A
Other languages
Japanese (ja)
Inventor
Hiroshi Obara
洋 小原
Takashi Sakakibara
隆司 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005072777A priority Critical patent/JP2006255504A/en
Publication of JP2006255504A publication Critical patent/JP2006255504A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for treating waste water, in which the quality of the treated waste water to be discharged to the outside can be made better/lower to satisfy the various water quality standards and consequently the waste of energy can be restrained. <P>SOLUTION: The apparatus for treating waste water has an aeration tank 10, a solid-liquid separation tank 20 and a discharge tank 30 which are arranged in this order and the adjacent ones of which are connected to each other by a flow passage. The waste water to be treated is introduced into the aeration tank 10, aerated and treated with a microbe. The aerated/treated waste water is introduced into the solid-liquid separation tank 20 and separated into sludge and treated waste water by solid-liquid separation. The treated waste water is introduced into the discharge tank 30 and then discharged to the outside from the discharge tank 30. The aeration tank 10 is connected to the discharge tank 30 by a bypass flow passage. A water quality adjusting means is arranged for adjusting the quality of the treated waste water to be discharged to the outside by supplying a part or the whole of at least one of the waste water to be introduced into the aeration tank and the waste water being aerated/treated in the aeration tank to the discharge tank 30 through the bypass flow passage and mixing the waste water supplied through the bypass flow passage with the treated waste water in the discharge tank. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排水の処理方法および排水の処理装置に関する。   The present invention relates to a wastewater treatment method and a wastewater treatment apparatus.

現在、多くの排水処理装置においては、好気性生物処理によって排水の浄化が行われている。これは、前記好気性生物処理が微生物の代謝作用を利用するため、処理効率が高く、経済的であるからである。つぎに、前記好気性生物処理について説明する。   Currently, in many wastewater treatment apparatuses, wastewater is purified by aerobic biological treatment. This is because the aerobic biological treatment uses the metabolic action of microorganisms, so that the treatment efficiency is high and economical. Next, the aerobic biological treatment will be described.

先ず、排水は、曝気槽へと連続的に供給され、そこで好気性微生物の集団と接触する。これにより、排水の基質(BOD成分)は、前記好気性微生物の集団によって酸化分解される。この好気性微生物の集団は、一般に「活性汚泥」と呼ばれる。前記曝気槽で処理された排水は、前記好気性微生物の集団と共に固液分離槽に流入する。   First, waste water is continuously fed to the aeration tank where it comes into contact with a population of aerobic microorganisms. As a result, the wastewater substrate (BOD component) is oxidatively decomposed by the aerobic microorganism population. This population of aerobic microorganisms is commonly referred to as “activated sludge”. The wastewater treated in the aeration tank flows into the solid-liquid separation tank together with the aerobic microorganism population.

前記固液分離槽では、前記好気性微生物の集団は、凝集してフロックとなり、沈降する。一方、上澄み(処理排水)は外部に放流される。前記固液分離槽に沈降した好気性微生物の集団、即ち、汚泥は、返送流路を介して前記曝気槽に返送され(返送汚泥)、再び基質(BOD成分)の酸化分解を行う。   In the solid-liquid separation tank, the aerobic microorganism population aggregates into flocs and settles. On the other hand, the supernatant (treated wastewater) is discharged to the outside. A group of aerobic microorganisms settled in the solid-liquid separation tank, that is, sludge is returned to the aeration tank via a return flow path (return sludge), and oxidative decomposition of the substrate (BOD component) is performed again.

但し、前記好気性微生物は増殖するため、前記汚泥を全て返送すると、前記曝気槽で酸素不足となったり、前記固液分離槽で固液分離が困難になったりする。このため、増殖した分は、余剰汚泥として系外に取り出される(例えば、特許文献1、2参照)。
特開2002−219481号公報 特開2004−337811号公報
However, since the aerobic microorganisms multiply, if all of the sludge is returned, oxygen shortage occurs in the aeration tank or solid-liquid separation becomes difficult in the solid-liquid separation tank. For this reason, the part which grew is taken out out of the system as surplus sludge (for example, refer to patent documents 1 and 2).
JP 2002-219482 A JP 2004-337811 A

しかしながら、前述のような従来の排水処理装置では、外部に放流する処理排水の水質を、例えば、下水道への流入水の水質基準や、河川放流水の水質基準など、種々の水質基準に合わせて変更することは困難であり、曝気等の処理を過剰に行うことでエネルギーを浪費するという問題があった。   However, in the conventional wastewater treatment apparatus as described above, the quality of the treated wastewater discharged to the outside is adjusted to various water quality standards such as the quality standard of the inflow water to the sewer and the quality standard of the river discharge water. It is difficult to change, and there is a problem that energy is wasted by excessively performing processing such as aeration.

そこで、本発明の目的は、種々の水質基準に合わせて外部に放流する処理排水の水質を調整することが可能であり、この結果、曝気に使用するブロア・モータ等のエネルギーの浪費を抑制できる排水の処理方法および排水の処理装置を提供することである。   Therefore, an object of the present invention is to adjust the water quality of the treated wastewater discharged to the outside according to various water quality standards, and as a result, it is possible to suppress waste of energy such as a blower motor used for aeration. A wastewater treatment method and a wastewater treatment apparatus are provided.

前記目的を達成するために、本発明の処理方法は、排水の処理方法であって、処理対象である排水を曝気槽に導入して微生物により曝気処理する曝気工程と、曝気処理した前記排水を固液分離槽に導入して汚泥と処理排水とに固液分離する固液分離工程と、前記処理排水を放流槽に導入した後、前記処理排水を外部に放流する放流工程とを有し、さらに、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の一部若しくは全部を、前記放流工程における前記処理排水に供給して混合することにより、外部に放流する前記処理排水の水質を調整する水質調整工程を有する処理方法である。   In order to achieve the above object, the treatment method of the present invention is a wastewater treatment method, wherein an aeration process in which wastewater to be treated is introduced into an aeration tank and aerated by microorganisms, and the wastewater subjected to aeration treatment is treated. A solid-liquid separation step of introducing into the solid-liquid separation tank to separate into solid and liquid sludge and treated wastewater, and a discharge step of discharging the treated wastewater to the outside after introducing the treated wastewater into the discharge tank, Furthermore, a part or all of at least one of the waste water before the introduction of the aeration tank and the waste water during the aeration treatment is supplied to and mixed with the treated waste water in the discharge step, whereby the treated waste water to be discharged to the outside. It is the processing method which has a water quality adjustment process which adjusts water quality.

また、本発明の処理装置は、排水の処理装置であって、少なくとも、曝気槽と、固液分離槽と、放流槽とを有し、これらは前記順序で流路により連結され、前記曝気槽において、処理対象である排水が導入されて微生物により曝気処理され、前記固液分離槽において、曝気処理された前記排水が導入されて汚泥と処理排水とに固液分離され、前記放流槽において、前記処理排水が導入された後、前記放流槽から前記処理排水が外部に放流され、さらに、前記曝気槽と前記放流槽とがバイパス流路により連結されており、このバイパス流路により、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の一部若しくは全部が、前記放流槽における前記処理排水に供給されて混合されることにより、外部に放流される前記処理排水の水質が調整される水質調整手段を有する処理装置である。   The treatment apparatus of the present invention is a wastewater treatment apparatus, and includes at least an aeration tank, a solid-liquid separation tank, and a discharge tank, which are connected by a flow path in the order described above, and the aeration tank In the above, the waste water to be treated is introduced and aerated by microorganisms, and in the solid-liquid separation tank, the waste water subjected to aeration treatment is introduced and separated into sludge and treated waste water, and in the discharge tank, After the treatment wastewater is introduced, the treatment wastewater is discharged from the discharge tank to the outside, and the aeration tank and the discharge tank are connected by a bypass flow path. At least one or all of the waste water before introduction and the waste water during aeration treatment is supplied to the treated waste water in the discharge tank and mixed to thereby discharge the treated waste water to the outside. A processor having a water conditioning means quality of is adjusted.

このように、本発明の処理方法および処理装置では、曝気槽導入前の排水および曝気処理中の排水の少なくとも一方の一部若しくは全部を、放流工程若しくは放流槽における処理排水に供給して混合することできるから、外部に放流する処理排水の水質を調整することが可能である。従って、種々の水質基準に合わせて外部に放流する処理排水の水質を調整することが可能であり、この結果、曝気に使用するブロア・モータ等のエネルギーの浪費を抑制できる。また、本発明の処理方法および処理装置は、既存の排水処理装置にバイパス流路を付加するだけでよいので安価で後付けが可能である。   Thus, in the treatment method and the treatment apparatus of the present invention, at least one part or all of the waste water before the introduction of the aeration tank and the waste water during the aeration treatment is supplied to and mixed with the treatment waste water in the discharge step or the discharge tank. Therefore, it is possible to adjust the quality of the treated wastewater discharged to the outside. Therefore, it is possible to adjust the water quality of the treated wastewater discharged to the outside in accordance with various water quality standards, and as a result, waste of energy such as a blower motor used for aeration can be suppressed. Further, the treatment method and the treatment apparatus of the present invention can be retrofitted at low cost because it is only necessary to add a bypass channel to the existing wastewater treatment apparatus.

本発明の処理方法において、前記水質の調整の指標は、特に制限されず、例えば、浮遊物質(SS)、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、全有機炭素(TOC)、全窒素(T−N)、全リン(T−P)、n−ヘキサン抽出物質などが挙げられる。これらの中でも、浮遊物質(SS)、生物化学的酸素要求量(BOD)が好ましい。なお、前記水質の調整の指標は、1種類であってもよいし、2種類以上であってもよい。   In the treatment method of the present invention, the water quality adjustment index is not particularly limited. For example, suspended matter (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), n-hexane extract and the like. Among these, suspended solids (SS) and biochemical oxygen demand (BOD) are preferable. The water quality adjustment index may be one type or two or more types.

本発明の処理方法において、外部に放流する前記処理排水の浮遊物質(SS)の基準値および生物化学的酸素要求量(BOD)の基準値を予め設定し、前記放流工程において、前記処理排水中の浮遊物質(SS)および生物化学的酸素要求量(BOD)の少なくとも一方を検出し、この検出値若しくはこれらの検出値と、前記基準値とを比較して、前記水質調整工程における曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の供給割合を決定することが好ましい。   In the treatment method of the present invention, a reference value of suspended matter (SS) and biochemical oxygen demand (BOD) of the treated wastewater discharged to the outside are set in advance, and in the treated wastewater, At least one of suspended matter (SS) and biochemical oxygen demand (BOD) is detected, and the detected value or these detected values are compared with the reference value to introduce the aeration tank in the water quality adjustment step It is preferable to determine a supply ratio of at least one of the previous waste water and the waste water during the aeration treatment.

本発明の処理方法において、外部に放流する前記処理排水の浮遊物質の基準値(SSBase)、生物化学的酸素要求量の基準値(BODBase)および排出流量(F2)を予め決めておき、前記曝気工程において、曝気槽における前記排水中の浮遊物質(MLSS)および生物化学的酸素要求量(BOD1)を検出し、前記固液分離工程において、固液分離槽における前記処理排水中の浮遊物質(SS1)を検出し、前記放流工程において、放流槽における前記処理排水中の生物化学的酸素要求量(BOD2)を検出し、下記式(1)および(2)を用い、前記水質調整工程において、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の一部若しくは全部の2つの供給量(F1SS、F1BOD)を求め、前記2つの供給量のうち小さい方を採用し、この採用された供給量に基き、外部に放流する前記処理排水の水質を調整することが好ましい。

1SS={(SSBase−SS1)×F2}/(MLSS−SS1) ・・・(1)
1SS:曝気槽から放流槽への排水の供給量(m3/日)
MLSS:曝気槽における排水中の浮遊物質の検出値(mg/L)
SS1:固液分離槽における処理排水中の浮遊物質の検出値(mg/L)
SSBase:予め決めておいた外部に放流する処理排水の浮遊物質の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)

1BOD={(BODBase−BOD2)×F2}/(BOD1−BOD2) ・・・(2)
1BOD:曝気槽から放流槽への排水の供給量(m3/日)
BOD1:曝気槽における排水中の生物化学的酸素要求量の検出値(mg/L)
BOD2:放流槽における処理排水中の生物化学的酸素要求量の検出値(mg/L)
BODBase:予め決めておいた外部に放流する処理排水の生物化学的酸素要求量の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)
In the treatment method of the present invention, the reference value (SS Base ), the reference value (BOD Base ) of the biochemical oxygen demand and the discharge flow rate (F 2 ) are determined in advance. In the aeration step, suspended substances (MLSS) and biochemical oxygen demand (BOD1) in the wastewater in the aeration tank are detected, and in the solid-liquid separation step, the floating in the treated wastewater in the solid-liquid separation tank The substance (SS1) is detected, and in the discharge step, the biochemical oxygen demand (BOD2) in the treated wastewater in the discharge tank is detected, and the water quality adjustment step is performed using the following formulas (1) and (2) in the two supply amount of said at least one of a portion of the effluent or all in the drainage and aeration before aeration tank introduction (F 1SS, F 1BOD) seeking, among the two supply amount Adopted again how, based on the adopted feed amount, it is preferable to adjust the process wastewater quality that discharged to the outside.

F 1SS = {(SS Base -SS1 ) × F 2} / (MLSS-SS1) ··· (1)
F 1SS : Supply amount of drainage from aeration tank to discharge tank (m 3 / day)
MLSS: Detection value of suspended solids in waste water in aeration tank (mg / L)
SS1: Detection value (mg / L) of suspended solids in the treated wastewater in the solid-liquid separation tank
SS Base : Pre-determined reference value (mg / L) of suspended matter in treated wastewater discharged to the outside
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.

F 1BOD = {(BOD Base -BOD2 ) × F 2} / (BOD1-BOD2) ··· (2)
F 1BOD : Amount of wastewater supplied from the aeration tank to the discharge tank (m 3 / day)
BOD1: Detection value of biochemical oxygen demand in waste water in aeration tank (mg / L)
BOD2: Detection value (mg / L) of biochemical oxygen demand in the treated wastewater in the discharge tank
BOD Base : A predetermined reference value (mg / L) of biochemical oxygen demand for treated wastewater discharged to the outside.
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.

本発明の処理方法において、前記2つの浮遊物質(MLSS、SS1)および前記2つの生物化学的酸素要求量(BOD1、BOD2)のいずれか一方のみを検出し、前記2つの供給量(F1SS、F1BOD)のいずれか一方のみを算出し、この算出された供給量に基づき、外部に放流する前記処理排水の水質を調整してもよい。 In the treatment method of the present invention, only one of the two suspended solids (MLSS, SS1) and the two biochemical oxygen demands (BOD1, BOD2) is detected, and the two supply amounts (F 1SS , F 1 BOD ) alone may be calculated, and the quality of the treated wastewater discharged to the outside may be adjusted based on the calculated supply amount.

本発明の処理方法において、前記2つの生物化学的酸素要求量(BOD1、BOD2)は、前記曝気槽および前記放流槽において溶存酸素量(DO)を検出し、前記検出値を生物化学的酸素要求量(BOD1、BOD2)に換算した値であることが好ましい。   In the treatment method of the present invention, the two biochemical oxygen demands (BOD1, BOD2) detect the dissolved oxygen quantity (DO) in the aeration tank and the discharge tank, and the detected value is used as the biochemical oxygen demand. It is preferably a value converted into an amount (BOD1, BOD2).

本発明の処理方法では、前記固液分離工程において、前記汚泥の一部は、前記曝気工程に返送され、前記汚泥の残部は、余剰汚泥として処理され、前記曝気工程において、曝気槽における曝気処理中の前記排水の浮遊物質の基準値(MLSSBase)を予め設定し、かつ曝気処理中の前記排水の浮遊物質(MLSS)を検出し、この検出値と前記基準値とを比較することにより、前記固液分離工程における余剰汚泥の処理量を決定することが好ましい。 In the treatment method of the present invention, in the solid-liquid separation step, a part of the sludge is returned to the aeration step, and the remainder of the sludge is treated as surplus sludge. In the aeration step, the aeration treatment in the aeration tank is performed. By previously setting the reference value (MLSS Base ) of the suspended matter in the waste water in the inside, and detecting the suspended matter (MLSS) in the waste water during the aeration process, and comparing this detected value with the reference value, It is preferable to determine the amount of excess sludge treated in the solid-liquid separation step.

本発明の処理方法では、前記曝気工程において、曝気槽における生物化学的酸素要求量の基準値(BOD1Base)を予め設定し、かつ曝気処理中の前記排水の生物化学的酸素要求量(BOD1)を検出し、この検出値と前記基準値とを比較することにより、前記曝気工程における曝気量を調整することが好ましい。前記曝気量は、例えば、後述のブロア・モータの出力によって調整される。前記曝気量が、前記ブロア・モータの出力によって調整される場合には、例えば、前記ブロア・モータの連続運転や間欠運転によって調整することが可能である。 In the treatment method of the present invention, in the aeration step, a reference value (BOD1 Base ) of the biochemical oxygen demand in the aeration tank is set in advance, and the biochemical oxygen demand (BOD1) of the waste water during the aeration treatment is set. It is preferable to adjust the amount of aeration in the aeration step by detecting the detected value and comparing the detected value with the reference value. The aeration amount is adjusted by, for example, an output of a blower motor described later. When the amount of aeration is adjusted by the output of the blower motor, it can be adjusted by, for example, continuous operation or intermittent operation of the blower motor.

本発明の処理方法では、前記曝気工程において、前記曝気槽を複数に分割することによって曝気処理中の前記排水を曝気処理程度により分け、前記水質調整工程において、前記分割された曝気槽の少なくとも一つから曝気処理中の前記排水を前記放流工程における前記処理排水に供給してもよい。   In the treatment method of the present invention, in the aeration step, the waste water in the aeration process is divided by dividing the aeration tank into a plurality of parts, and in the water quality adjustment step, at least one of the divided aeration tanks. The waste water during the aeration process may be supplied to the treated waste water in the discharge step.

本発明の処理装置において、前記水質の調整の指標は、前述と同様に、特に制限されず、例えば、浮遊物質(SS)、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、全有機炭素(TOC)、全窒素(T−N)、全リン(T−P)、n−ヘキサン抽出物質などが挙げられる。これらの中でも、浮遊物質(SS)、生物化学的酸素要求量(BOD)が好ましい。なお、前記水質の調整の指標は、1種類であってもよいし、2種類以上であってもよい。   In the treatment apparatus of the present invention, the index for adjusting the water quality is not particularly limited as described above, and for example, suspended matter (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD) ), Total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), n-hexane extract and the like. Among these, suspended solids (SS) and biochemical oxygen demand (BOD) are preferable. The water quality adjustment index may be one type or two or more types.

本発明の処理装置において、前記放流槽は、前記処理排水中の浮遊物質(SS)および生物化学的酸素要求量(BOD)の少なくとも一方を検出する検出手段を有し、前記水質調整手段は、前記検出手段で検出された検出値と、予め設定された外部に放流する前記処理排水の浮遊物質(SS)の基準値および生物化学的酸素要求量(BOD)の基準値とを比較して、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の供給割合を決定することが好ましい。   In the treatment apparatus of the present invention, the discharge tank has detection means for detecting at least one of suspended matter (SS) and biochemical oxygen demand (BOD) in the treatment waste water, and the water quality adjustment means is: The detection value detected by the detection means is compared with a preset reference value of suspended matter (SS) and biochemical oxygen demand (BOD) of the treated wastewater discharged to the outside in advance, It is preferable to determine a supply ratio of at least one of the waste water before the introduction of the aeration tank and the waste water during the aeration treatment.

本発明の処理装置において、前記曝気槽は、曝気槽における前記排水中の浮遊物質(MLSS)および生物化学的酸素要求量(BOD1)を検出する検出手段を有し、前記固液分離槽は、この固液分離槽における前記処理排水中の浮遊物質(SS1)を検出する検出手段を有し、前記放流槽は、放流槽における前記処理排水中の生物化学的酸素要求量(BOD2)を検出する検出手段を有し、前記水質調整手段は、前述と同様に、予め設定された外部に放流する前記処理排水の浮遊物質の基準値(SSBase)、生物化学的酸素要求量の基準値(BODBase)および排出流量(F2)と、前記各検出手段で検出された検出値とから、下記式(1)および(2)を用い、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の少なくとも一部若しくは全部の2つの供給量(F1SS、F1BOD)を求め、前記2つの供給量のうち小さい方を採用し、この採用された供給量に基き、外部に放流する前記処理排水の水質を調整することが好ましい。

1SS={(SSBase−SS1)×F2}/(MLSS−SS1) ・・・(1)
1SS:曝気槽から放流槽への排水の供給量(m3/日)
MLSS:曝気槽における排水中の浮遊物質の検出値(mg/L)
SS1:固液分離槽における処理排水中の浮遊物質の検出値(mg/L)
SSBase:予め決めておいた外部に放流する処理排水の浮遊物質の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)

1BOD={(BODBase−BOD2)×F2}/(BOD1−BOD2) ・・・(2)
1BOD:曝気槽から放流槽への排水の供給量(m3/日)
BOD1:曝気槽における排水中の生物化学的酸素要求量の検出値(mg/L)
BOD2:放流槽における処理排水中の生物化学的酸素要求量の検出値(mg/L)
BODBase:予め決めておいた外部に放流する処理排水の生物化学的酸素要求量の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)
In the treatment apparatus of the present invention, the aeration tank has detection means for detecting suspended solids (MLSS) and biochemical oxygen demand (BOD1) in the waste water in the aeration tank, and the solid-liquid separation tank is The solid-liquid separation tank has detection means for detecting suspended solids (SS1) in the treated wastewater, and the discharge tank detects a biochemical oxygen demand (BOD2) in the treated wastewater in the discharge tank. In the same manner as described above, the water quality adjusting means includes a reference value (SS Base ) of the suspended matter in the treated wastewater discharged to the outside and a reference value (BOD) of the biochemical oxygen demand. Base ) and the discharge flow rate (F 2 ) and the detected values detected by the detection means, using the following formulas (1) and (2), the drainage before the introduction of the aeration tank and the drainage during the aeration treatment Less than at least one of Ku and a part or all of the two supply amount (F 1SS, F 1BOD) sought, the two adopted smaller of the supply amount, based on the adopted supply amount, the process wastewater discharged to the outside It is preferable to adjust the water quality.

F 1SS = {(SS Base -SS1 ) × F 2} / (MLSS-SS1) ··· (1)
F 1SS : Supply amount of drainage from aeration tank to discharge tank (m 3 / day)
MLSS: Detection value of suspended solids in waste water in aeration tank (mg / L)
SS1: Detection value (mg / L) of suspended solids in the treated wastewater in the solid-liquid separation tank
SS Base : Pre-determined reference value (mg / L) of suspended matter in treated wastewater discharged to the outside
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.

F 1BOD = {(BOD Base -BOD2 ) × F 2} / (BOD1-BOD2) ··· (2)
F 1BOD : Amount of wastewater supplied from the aeration tank to the discharge tank (m 3 / day)
BOD1: Detection value of biochemical oxygen demand in waste water in aeration tank (mg / L)
BOD2: Detection value (mg / L) of biochemical oxygen demand in the treated wastewater in the discharge tank
BOD Base : A predetermined reference value (mg / L) of biochemical oxygen demand for treated wastewater discharged to the outside.
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.

本発明の処理装置において、前記水質調整手段は、前述と同様に、前記2つの浮遊物質(MLSS、SS1)および前記2つの生物化学的酸素要求量(BOD1、BOD2)のいずれか一方のみを検出し、前記2つの供給量(F1SS、F1BOD)のいずれか一方のみを算出し、この算出された供給量に基き、外部に放流する前記処理排水の水質を調整してもよい。 In the treatment apparatus of the present invention, the water quality adjusting means detects only one of the two suspended substances (MLSS, SS1) and the two biochemical oxygen demands (BOD1, BOD2) as described above. Then, only one of the two supply amounts (F 1SS , F 1BOD ) may be calculated, and the quality of the treated wastewater discharged to the outside may be adjusted based on the calculated supply amount.

本発明の処理装置において、前記2つの生物化学的酸素要求量(BOD1、BOD2)の検出手段は、前記曝気槽および前記放流槽において溶存酸素量(DO)を検出し、前記検出値を生物化学的酸素要求量(BOD1、BOD2)に換算する手段であることが好ましい。   In the treatment apparatus of the present invention, the two biochemical oxygen demand (BOD1, BOD2) detecting means detects the dissolved oxygen amount (DO) in the aeration tank and the discharge tank, and the detected value is biochemically detected. It is preferable to use a means for converting into the required oxygen demand (BOD1, BOD2).

本発明の処理装置において、前記バイパス流路の途中にバイパス流量調整弁が取り付けられており、前記水質調整手段は、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の供給割合を、前記バイパス流量調整弁で調整することが好ましい。   In the treatment apparatus of the present invention, a bypass flow rate adjusting valve is attached in the middle of the bypass flow path, and the water quality adjusting means supplies at least one of the waste water before the introduction of the aeration tank and the waste water during the aeration treatment. Is preferably adjusted with the bypass flow rate adjusting valve.

本発明の処理装置において、前記曝気槽と前記固液分離槽とが返送流路によっても連結され、前記固液分離槽には、余剰汚泥の抜き取り流路が連結され、前記固液分離槽において、前記汚泥の一部は、前記返送流路により前記曝気槽に返送され、前記汚泥の残部は、前記余剰汚泥抜き取り流路により抜き取られ、前記曝気槽は、曝気処理中の前記排水の浮遊物質(MLSS)を検出する検出手段を有し、前記水質調整手段は、予め設定された曝気槽における曝気処理中の前記排水の浮遊物質の基準値(MLSSBase)と、前記検出手段で検出された検出値とを比較することにより、前記固液分離槽における余剰汚泥の抜き取り量を決定することが好ましい。 In the processing apparatus of the present invention, the aeration tank and the solid-liquid separation tank are also connected by a return flow path, and an excess sludge extraction flow path is connected to the solid-liquid separation tank, in the solid-liquid separation tank A part of the sludge is returned to the aeration tank by the return flow path, and the remainder of the sludge is extracted by the surplus sludge extraction flow path, and the aeration tank is a floating substance of the waste water during the aeration process. (MLSS) detecting means, and the water quality adjusting means is detected by the detection means and a reference value (MLSS Base ) of suspended matter in the waste water during aeration processing in a preset aeration tank It is preferable to determine the amount of excess sludge to be extracted from the solid-liquid separation tank by comparing the detected value.

本発明の処理装置において、前記曝気槽は、曝気処理中の前記排水の生物化学的酸素要求量(BOD1)を検出する検出手段を有し、前記水質調整手段は、前述と同様に、予め設定された曝気槽における生物化学的酸素要求量の基準値(BOD1Base)と、前記検出手段により検出された検出値とを比較することにより、前記曝気槽における曝気量を調整することが好ましい。前記曝気量は、例えば、後述のブロア・モータの出力によって調整される。前記曝気量が、前記ブロア・モータの出力によって調整される場合には、例えば、前記ブロア・モータの連続運転や間欠運転によって調整することが可能である。 In the treatment apparatus of the present invention, the aeration tank has detection means for detecting the biochemical oxygen demand (BOD1) of the waste water during the aeration treatment, and the water quality adjustment means is preset in the same manner as described above. It is preferable to adjust the amount of aeration in the aeration tank by comparing the reference value (BOD1 Base ) of the biochemical oxygen demand in the aerated tank and the detection value detected by the detection means. The aeration amount is adjusted by, for example, an output of a blower motor described later. When the amount of aeration is adjusted by the output of the blower motor, it can be adjusted by, for example, continuous operation or intermittent operation of the blower motor.

本発明の処理装置において、前記曝気槽が複数に分割され、これにより曝気処理中の前記排水を曝気処理程度により分けており、前記水質調整手段は、前記分割された曝気槽の少なくとも一つから曝気処理中の前記排水を前記放流槽における前記処理排水に供給してもよい。   In the treatment apparatus of the present invention, the aeration tank is divided into a plurality of parts, whereby the waste water during the aeration process is divided according to the degree of aeration treatment, and the water quality adjusting means is provided from at least one of the divided aeration tanks. You may supply the said waste_water | drain in aeration process to the said treated waste_water | drain in the said discharge tank.

本発明の処理装置において、さらに、浮遊物質(SS)および生物化学的酸素要求量(BOD)の検出手段を備える測定槽を有し、この測定槽に、前記曝気槽における曝気処理中の前記排水、前記固液分離槽における前記処理排水および前記放流槽における前記処理排水の少なくとも一つの排水が導入され、前記測定槽の前記検出手段により、前記測定槽に導入された前記排水の浮遊物質(SS)および生物化学的酸素要求量(BOD)の少なくとも一方を検出することが好ましい。   In the treatment apparatus of the present invention, the treatment apparatus further includes a measurement tank provided with means for detecting suspended solids (SS) and biochemical oxygen demand (BOD), and the waste water during the aeration process in the aeration tank is provided in the measurement tank. At least one drainage of the treated wastewater in the solid-liquid separation tank and the treated wastewater in the discharge tank is introduced, and the suspended matter (SS) of the wastewater introduced into the measurement tank by the detection means of the measurement tank ) And biochemical oxygen demand (BOD).

つぎに、本発明の処理方法および処理装置の例について、図面に基づき説明する。ただし、本発明は、以下の例に制限されない。   Next, examples of the processing method and the processing apparatus of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.

図1に、本発明の処理装置の構成の一例を示す。図示のように、この装置は、曝気槽10と、固液分離槽20と、放流槽30とを主要構成要素として有し、これらが前記順序で流路(例えば、パイプ)により連結されている。前記固液分離槽20には、余剰汚泥の抜き取り流路(例えば、パイプ)が連結され、前記余剰汚泥抜き取り流路は、汚泥貯留槽40に連結されている。さらに、前記曝気槽10と前記放流槽30とは、バイパス流路(例えば、パイプ)により連結されている。これらの各流路には、搬送用のポンプが取り付けられていてもよい。前記曝気槽10は、溶存酸素検出手段11、浮遊物質検出手段12、およびブロア・モータ80を有する。前記固液分離槽20は、浮遊物質検出手段22を有する。前記放流槽30は、溶存酸素検出手段31および浮遊物質検出手段32を有する。前記バイパス流路の途中には、バイパス流量調整弁(バルブ)60およびバイパス流量検出手段50が取り付けられている。前記余剰汚泥抜き取り流路には、引抜汚泥流量調整弁(バルブ)70が設けられている。前記放流槽30は、排出流路と連結しており、前記排出流路には、排出流量検出手段51が取り付けられている。前記各検出手段には、その用途に応じ、各種センサーが使用可能である。さらに、この装置は、水質調整手段として、データ入力部90、比較部100、演算部110および出力部120を有する。前記データ入力部90は、浮遊物質入力部91、溶存酸素入力部92、換算部93および流量入力部94から構成される。つぎに、この装置を用いた排水の処理の一例について、各工程別に説明する。   FIG. 1 shows an example of the configuration of the processing apparatus of the present invention. As shown in the figure, this apparatus has an aeration tank 10, a solid-liquid separation tank 20, and a discharge tank 30 as main components, which are connected by a flow path (for example, a pipe) in the above order. . The solid-liquid separation tank 20 is connected to an excess sludge extraction channel (for example, a pipe), and the excess sludge extraction channel is connected to a sludge storage tank 40. Furthermore, the aeration tank 10 and the discharge tank 30 are connected by a bypass channel (for example, a pipe). A transport pump may be attached to each of these channels. The aeration tank 10 includes dissolved oxygen detection means 11, suspended substance detection means 12, and a blower motor 80. The solid-liquid separation tank 20 has floating substance detection means 22. The discharge tank 30 includes dissolved oxygen detection means 31 and suspended substance detection means 32. A bypass flow rate adjustment valve (valve) 60 and a bypass flow rate detection means 50 are attached in the middle of the bypass flow path. An extraction sludge flow rate adjusting valve (valve) 70 is provided in the excess sludge removal flow path. The discharge tank 30 is connected to a discharge channel, and a discharge flow rate detecting means 51 is attached to the discharge channel. Various sensors can be used for each detection means according to the application. Furthermore, this apparatus has a data input unit 90, a comparison unit 100, a calculation unit 110, and an output unit 120 as water quality adjusting means. The data input unit 90 includes a suspended matter input unit 91, a dissolved oxygen input unit 92, a conversion unit 93, and a flow rate input unit 94. Next, an example of wastewater treatment using this apparatus will be described for each process.

まず、処理対象である排水を、曝気槽10に導入する。ここで、前記排水の浮遊物質(MLSS)が前記浮遊物質検出手段12で検出され、その検出値が、前記浮遊物質入力部91に送られる。また、前記排水の溶存酸素量(DO1)が、前記溶存酸素検出手段11で検出され、その検出値が、前記溶存酸素入力部92に送られ、さらに、前記換算部93へと送られる。   First, wastewater to be treated is introduced into the aeration tank 10. Here, the suspended matter (MLSS) in the waste water is detected by the suspended matter detection means 12, and the detected value is sent to the suspended matter input unit 91. Further, the dissolved oxygen amount (DO1) of the waste water is detected by the dissolved oxygen detecting means 11, and the detected value is sent to the dissolved oxygen input unit 92 and further sent to the conversion unit 93.

前記曝気槽10において、前記排水中の基質(BOD成分)は、前記曝気槽10内の微生物によって曝気処理され、酸化分解される。なお、前述のとおり、前記曝気槽10における曝気量は、前記ブロア・モータ80の出力によって調整される。   In the aeration tank 10, the substrate (BOD component) in the waste water is aerated by microorganisms in the aeration tank 10 and is oxidatively decomposed. As described above, the amount of aeration in the aeration tank 10 is adjusted by the output of the blower motor 80.

つぎに、曝気処理された前記排水を前記固液分離槽20に導入し、ここで、汚泥と処理排水とに固液分離する。前記固液分離は、例えば、前記汚泥の沈降によるものであってもよいし、膜分離により行うものであってもよい。前記汚泥は、余剰汚泥として前記余剰汚泥抜き取り流路により抜き取られ、前記汚泥貯留槽40へと導入される。前記汚泥貯留槽40に導入された汚泥は、系外に取り出され、所定の手段で処理される。なお、前記曝気槽10と前記固液分離槽20とを連結する返送流路(例えば、パイプ)を設け、前記汚泥の一部を前記曝気槽10へと返送してもよい。この場合には、前記曝気槽10に返送された汚泥(返送汚泥)は、再度、曝気処理に利用される。また、前記処理排水の浮遊物質(SS1)が前記浮遊物質検出手段22で検出され、その検出結果が、前記浮遊物質入力部91に送られる。   Next, the waste water that has been subjected to aeration treatment is introduced into the solid-liquid separation tank 20, where it is separated into sludge and treated waste water. The solid-liquid separation may be performed by, for example, sedimentation of the sludge, or may be performed by membrane separation. The sludge is extracted as excess sludge through the excess sludge extraction channel, and is introduced into the sludge storage tank 40. The sludge introduced into the sludge storage tank 40 is taken out of the system and processed by a predetermined means. A return flow path (for example, a pipe) that connects the aeration tank 10 and the solid-liquid separation tank 20 may be provided, and a part of the sludge may be returned to the aeration tank 10. In this case, the sludge returned to the aeration tank 10 (return sludge) is used again for the aeration process. The suspended matter (SS1) in the treated wastewater is detected by the suspended matter detection means 22 and the detection result is sent to the suspended matter input unit 91.

つぎに、前記処理排水を、放流槽30に導入する。ここで、前記処理排水の浮遊物質(SS2)が前記浮遊物質検出手段32で検出され、その検出結果が、前記浮遊物質入力部91に送られる。また、前記処理排水の溶存酸素量(DO2)が、前記溶存酸素検出手段31で検出され、その検出結果が、前記溶存酸素入力部92に送られ、さらに、前記換算部93に送られる。   Next, the treated waste water is introduced into the discharge tank 30. Here, the suspended matter (SS2) in the treated waste water is detected by the suspended matter detection means 32, and the detection result is sent to the suspended matter input unit 91. Further, the dissolved oxygen amount (DO2) of the treated waste water is detected by the dissolved oxygen detection means 31, and the detection result is sent to the dissolved oxygen input unit 92 and further sent to the conversion unit 93.

つぎに、前記換算部93において、前記曝気槽の溶存酸素検出手段11の検出値から、曝気槽における酸素利用速度(Rr1)を算出する。なお、前記曝気槽の溶存酸素検出手段11による検出は、例えば、時間をおいて二度行う。前記曝気槽における酸素利用速度(Rr1)は、下記式(3)によって算出される。   Next, the conversion unit 93 calculates an oxygen utilization rate (Rr1) in the aeration tank from the detection value of the dissolved oxygen detection means 11 in the aeration tank. In addition, the detection by the dissolved oxygen detection means 11 of the aeration tank is performed twice with time, for example. The oxygen utilization rate (Rr1) in the aeration tank is calculated by the following equation (3).

Rr1=(DO12−DO11)/Δt12-11 ・・・(3)
Rr1:曝気槽における酸素利用速度(mg/L・時間)
DO11:一回目の曝気槽の溶存酸素検出手段の検出値(mg/L)
DO12:二回目の曝気槽の溶存酸素検出手段の検出値(mg/L)
Δt12-11:曝気槽での一回目の検出と二回目の検出の間の時間(時間)
Rr1 = (DO12−DO11) / Δt 12-11 (3)
Rr1: Oxygen utilization rate in the aeration tank (mg / L · hour)
DO11: Detection value (mg / L) of the dissolved oxygen detection means in the first aeration tank
DO12: Detection value (mg / L) of the dissolved oxygen detection means in the second aeration tank
Δt 12-11 : Time (time) between the first detection and the second detection in the aeration tank

また、前記換算部93において、前記放流槽の溶存酸素検出手段31の検出値から、放流槽における酸素利用速度(Rr2)を算出する。なお、前記放流槽の溶存酸素検出手段31による検出は、例えば、時間をおいて二度行う。前記放流槽における酸素利用速度(Rr2)は、下記式(4)によって算出される。   Further, the conversion unit 93 calculates the oxygen utilization rate (Rr2) in the discharge tank from the detection value of the dissolved oxygen detection means 31 in the discharge tank. In addition, the detection by the dissolved oxygen detection means 31 of the said discharge tank is performed twice at intervals, for example. The oxygen utilization rate (Rr2) in the discharge tank is calculated by the following formula (4).

Rr2=(DO22−DO21)/Δt22-21 ・・・(4)
Rr2:放流槽における酸素利用速度(mg/L・時間)
DO21:一回目の放流槽の溶存酸素検出手段の検出値(mg/L)
DO22:二回目の放流槽の溶存酸素検出手段の検出値(mg/L)
Δt22-21:放流槽での一回目の検出と二回目の検出の間の時間(時間)
Rr2 = (DO22−DO21) / Δt 22-21 (4)
Rr2: Oxygen utilization rate in the discharge tank (mg / L · hour)
DO21: Detection value (mg / L) of the dissolved oxygen detection means in the first discharge tank
DO22: Detection value (mg / L) of the dissolved oxygen detection means in the second discharge tank
Δt 22-21 : Time (time) between the first detection and the second detection in the discharge tank

そして、前記換算部93において、前記曝気槽における酸素利用速度(Rr1)から、曝気槽における前記排水中の生物化学的酸素要求量(BOD1)を算出する。曝気槽における前記排水中の生物化学的酸素要求量(BOD1)は、下記式(5)によって算出される。   And in the said conversion part 93, the biochemical oxygen demand (BOD1) in the said waste_water | drain in an aeration tank is calculated from the oxygen utilization rate (Rr1) in the said aeration tank. The biochemical oxygen demand (BOD1) in the waste water in the aeration tank is calculated by the following equation (5).

BOD1=Rr1×α1 ・・・(5)
BOD1:曝気槽における排水中の生物化学的酸素要求量(mg/L)
Rr1:曝気槽における酸素利用速度(mg/L・時間)
α1:定数(時間)
BOD1 = Rr1 × α1 (5)
BOD1: Biochemical oxygen demand in waste water in aeration tank (mg / L)
Rr1: Oxygen utilization rate in the aeration tank (mg / L · hour)
α1: Constant (time)

上記式(5)において、α1は、装置毎に異なる定数であり、例えば、経験値を使用でき、若しくは実験によって求められる。具体的には、前記定数α1は、例えば、予め調整した生物化学的酸素要求量(BOD)の異なる処理排水を曝気槽に投入し、その排水ごとに曝気槽における酸素利用速度(Rr1)を測定し、前記BODと前記Rr1との相関を求めることで導き出すことができる。   In the above formula (5), α1 is a constant different for each apparatus, and for example, an empirical value can be used or is obtained by experiment. Specifically, the constant α1 is measured, for example, by introducing treated wastewater having different biochemical oxygen demand (BOD) adjusted in advance into the aeration tank, and measuring the oxygen utilization rate (Rr1) in the aeration tank for each wastewater. It can be derived by obtaining the correlation between the BOD and the Rr1.

例えば、前記Rr1が10mg/L・時間であり、前記定数α1が150時間である場合、曝気槽における前記排水中の生物化学的酸素要求量(BOD1)は、上記式(5)より、1500mg/Lとなる。   For example, when the Rr1 is 10 mg / L · hour and the constant α1 is 150 hours, the biochemical oxygen demand (BOD1) in the waste water in the aeration tank is 1500 mg / L from the above formula (5). L.

さらに、前記換算部93において、前記放流槽における酸素利用速度(Rr2)から、放流槽における前記処理排水中の生物化学的酸素要求量(BOD2)を算出する。放流槽における前記処理排水中の生物化学的酸素要求量(BOD2)は、下記式(6)によって算出される。   Further, the conversion unit 93 calculates the biochemical oxygen demand (BOD2) in the treated wastewater in the discharge tank from the oxygen utilization rate (Rr2) in the discharge tank. The biochemical oxygen demand (BOD2) in the treated waste water in the discharge tank is calculated by the following formula (6).

BOD2=Rr2×α2 ・・・(6)
BOD2:放流槽における処理排水中の生物化学的酸素要求量(mg/L)
Rr2:放流槽における酸素利用速度(mg/L・時間)
α2:定数(時間)
BOD2 = Rr2 × α2 (6)
BOD2: Biochemical oxygen demand in the treated wastewater in the discharge tank (mg / L)
Rr2: Oxygen utilization rate in the discharge tank (mg / L · hour)
α2: Constant (time)

上記式(6)において、α2は、装置毎に異なる定数であり、例えば、経験値を使用でき、若しくは実験によって求められる。具体的には、前記定数α2は、例えば、予め調整した生物化学的酸素要求量(BOD)の異なる処理排水を放流槽に投入し、その処理排水ごとに放流槽における酸素利用速度(Rr2)を測定し、前記BODと前記Rr2との相関を求めることで導き出すことができる。   In the above formula (6), α2 is a constant different for each apparatus, and for example, an empirical value can be used or is obtained by experiment. Specifically, the constant α2 is, for example, that treated wastewater having different biochemical oxygen demand (BOD) adjusted in advance is introduced into the discharge tank, and the oxygen utilization rate (Rr2) in the discharge tank is set for each treated wastewater. It can be derived by measuring and calculating the correlation between the BOD and the Rr2.

例えば、前記Rr2が2mg/L・時間であり、前記定数α2が150時間である場合、前記放流槽における生物化学的酸素要求量(BOD2)は、上記式(6)より、300mg/Lとなる。   For example, when the Rr2 is 2 mg / L · hour and the constant α2 is 150 hours, the biochemical oxygen demand (BOD2) in the discharge tank is 300 mg / L from the above formula (6). .

ここで、外部に放流する前記処理排水の浮遊物質(SS)の基準値および生物化学的酸素要求量(BOD)の基準値を予め設定しておき、前記放流槽の浮遊物質検出手段32の検出値(SS2)および放流槽における前記処理排水中の生物化学的酸素要求量(BOD2)の少なくとも一方が、前記各基準値と略等しいときには、前記バイパス流量調整弁60の開度を変えない。一方、前記SS2および前記BOD2が双方とも前記各基準値と異なる場合には、前記バイパス流量調整弁60の開度の調整を行う。つぎに、前記バイパス流量調整弁60の開度の調整方法の一例について説明する。   Here, a reference value of suspended matter (SS) and biochemical oxygen demand (BOD) of the treated wastewater discharged to the outside is set in advance, and detection by the suspended matter detection means 32 of the discharge tank is performed. When at least one of the value (SS2) and the biochemical oxygen demand (BOD2) in the treated wastewater in the discharge tank is substantially equal to the respective reference values, the opening degree of the bypass flow rate adjustment valve 60 is not changed. On the other hand, when both SS2 and BOD2 are different from the respective reference values, the opening degree of the bypass flow rate adjustment valve 60 is adjusted. Next, an example of a method for adjusting the opening degree of the bypass flow rate adjusting valve 60 will be described.

まず、外部に放流する前記処理排水の浮遊物質の基準値(SSBase)および排出流量(F2)を予め決めておき、前記浮遊物質入力部91において、前記各基準値および前記曝気槽の浮遊物質検出手段12の検出値、前記固液分離槽の浮遊物質検出手段22の検出値から、バイパス流量(F1SS)を算出する。前記バイパス流量(F1SS)は、下記式(7)によって算出される。 First, the reference value (SS Base ) and the discharge flow rate (F 2 ) of the suspended matter in the treated wastewater discharged to the outside are determined in advance, and in the suspended matter input unit 91, the reference value and the floating amount of the aeration tank are determined. The bypass flow rate (F 1SS ) is calculated from the detection value of the substance detection means 12 and the detection value of the floating substance detection means 22 of the solid-liquid separation tank. The bypass flow rate (F 1SS ) is calculated by the following equation (7).

1SS={(SSBase−SS1)×F2}/(MLSS−SS1) ・・・(7)
1SS:バイパス流量(m3/日)
MLSS:曝気槽の浮遊物質検出手段の検出値(mg/L)
SS1:固液分離槽の浮遊物質検出手段の検出値(mg/L)
SSBase:予め決めておいた外部に放流する処理排水における浮遊物質の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)
F 1SS = {(SS Base -SS1 ) × F 2} / (MLSS-SS1) ··· (7)
F 1SS : Bypass flow rate (m 3 / day)
MLSS: Detection value (mg / L) of floating substance detection means in the aeration tank
SS1: Detection value (mg / L) of suspended solids detection means in the solid-liquid separation tank
SS Base : A predetermined reference value (mg / L) of suspended solids in treated wastewater discharged to the outside.
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.

例えば、前記SSBaseを300mg/L、前記F2を100m3/日とし、前記MLSSが3000mg/L、前記SS1が0mg/Lであった場合、前記バイパス流量F1SSは、上記式(7)より、10m3/日となる。 For example, when the SS Base is 300 mg / L, the F 2 is 100 m 3 / day, the MLSS is 3000 mg / L, and the SS1 is 0 mg / L, the bypass flow rate F 1SS is expressed by the above formula (7) Therefore, it becomes 10 m 3 / day.

前記バイパス流量F1SSの算出結果は、前記比較部100へと送られる。 The calculation result of the bypass flow rate F 1SS is sent to the comparison unit 100.

さらに、外部に放流する前記処理排水の生物化学的酸素要求量の基準値(BODBase)および排出流量(F2)を予め決めておき、前記換算部93において、前記各基準値および曝気槽における前記排水中の生物化学的酸素要求量(BOD1)、放流槽における前記処理排水中の生物化学的酸素要求量(BOD2)から、バイパス流量(F1BOD)を算出する。前記バイパス流量(F1BOD)は、下記式(8)によって算出される。 Further, a reference value (BOD Base ) and a discharge flow rate (F 2 ) of the biochemical oxygen demand of the treated wastewater discharged to the outside are determined in advance, and in the conversion unit 93, each reference value and the aeration tank A bypass flow rate (F 1BOD ) is calculated from the biochemical oxygen demand (BOD1) in the wastewater and the biochemical oxygen demand (BOD2) in the treated wastewater in the discharge tank. The bypass flow rate (F 1BOD ) is calculated by the following equation (8).

1BOD={(BODBase−BOD2)×F2}/(BOD1−BOD2) ・・・(8)
1BOD:バイパス流量(m3/日)
BOD1:曝気槽における排水中の生物化学的酸素要求量(mg/L)
BOD2:放流槽における処理排水中の生物化学的酸素要求量(mg/L)
BODBase:予め決めておいた外部に放流する処理排水の生物化学的酸素要求量の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)
F 1BOD = {(BOD Base -BOD2 ) × F 2} / (BOD1-BOD2) ··· (8)
F 1BOD : Bypass flow rate (m 3 / day)
BOD1: Biochemical oxygen demand in waste water in aeration tank (mg / L)
BOD2: Biochemical oxygen demand in the treated wastewater in the discharge tank (mg / L)
BOD Base : A predetermined reference value (mg / L) of biochemical oxygen demand for treated wastewater discharged to the outside.
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.

例えば、前記BODBaseを300mg/L、前記F2を100m3/日とし、前記BOD1が1500mg/L、前記BOD2が0mg/Lであった場合、前記バイパス流量F1BODは、上記式(8)より、20m3/日となる。 For example, when the BOD Base is 300 mg / L, the F 2 is 100 m 3 / day, the BOD 1 is 1500 mg / L, and the BOD 2 is 0 mg / L, the bypass flow rate F 1BOD is expressed by the above formula (8) Therefore, it becomes 20 m 3 / day.

前記バイパス流量F1BODの算出結果は、前記比較部100へと送られる。 The calculation result of the bypass flow rate F 1BOD is sent to the comparison unit 100.

つぎに、前記比較部100において、送られてきた2つの前記バイパス流量F1SSおよびF1BODの比較が行われ、より小さい方が前記演算部110へと送られる。 Next, the comparison unit 100 compares the two bypass flow rates F 1SS and F 1BOD that have been sent, and the smaller one is sent to the calculation unit 110.

つぎに、前記バイパス流量検出手段50により、バイパス流量の実測値が検出され、その検出値が、前記流量入力部94に送られ、さらに、前記演算部110に送られる。   Next, the bypass flow rate detection means 50 detects an actual measurement value of the bypass flow rate, and the detected value is sent to the flow rate input unit 94 and further sent to the calculation unit 110.

つぎに、前記演算部110において、前記バイパス流量F1SSおよびF1BODのより小さい方と、前記バイパス流量検出手段50によるバイパス流量の実測値とから、前記バイパス流量調整弁60の適当な開度が演算され、その演算結果が前記出力部120に送られる。 Next, in the calculation unit 110, an appropriate opening degree of the bypass flow rate adjusting valve 60 is determined from the smaller one of the bypass flow rates F 1SS and F 1BOD and the actual measured value of the bypass flow rate by the bypass flow rate detecting means 50. The calculation result is sent to the output unit 120.

つぎに、前記出力部120から、前記バイパス流量調整弁60に出力情報が送られ、前記バイパス流量調整弁60の開度が調整される。これにより、予め決めておいた外部に放流する前記処理排水の浮遊物質の基準値(SSBase)および予め決めておいた外部に放流する前記処理排水の生物化学的酸素要求量の基準値(BODBase)のいずれか一方の値になるように、前記バイパス流路により、前記曝気槽10から前記放流槽30へと曝気処理中の前記排水が供給され、前記処理排水と混合される。この結果、水質基準に応じた排水処理が可能となる。なお、前記バイパス流路は、曝気処理中の前記排水のみならず、曝気槽導入前の前記排水にも適用される。このようにして、水質が調整された前記処理排水が、前記放流槽30から、前記排出流路により、外部へと放流される。この際、前記バイパス流路により供給された前記排水に含まれる浮遊物質の分だけ、前記固液分離工程若しくは前記固液分離槽において抜き取られる余剰汚泥の量を少なくできる。 Next, output information is sent from the output unit 120 to the bypass flow rate adjustment valve 60, and the opening degree of the bypass flow rate adjustment valve 60 is adjusted. Thereby, the predetermined reference value (SS Base ) of the suspended matter of the treated wastewater to be discharged to the outside and the predetermined reference value (BOD) of the biochemical oxygen demand of the treated wastewater to be discharged to the outside. The waste water during the aeration process is supplied from the aeration tank 10 to the discharge tank 30 and mixed with the treated waste water by the bypass channel so that one of the values of Base ) is obtained. As a result, wastewater treatment according to the water quality standard becomes possible. In addition, the said bypass flow path is applied not only to the said waste_water | drain during aeration process but the said waste_water | drain before introduction of an aeration tank. In this way, the treated wastewater whose water quality has been adjusted is discharged from the discharge tank 30 to the outside through the discharge channel. At this time, the amount of excess sludge extracted in the solid-liquid separation step or the solid-liquid separation tank can be reduced by the amount of floating substances contained in the wastewater supplied by the bypass channel.

なお、前記2つの浮遊物質(MLSS、SS1)および前記2つの生物化学的酸素要求量(BOD1、BOD2)のいずれか一方のみを検出し、前記2つのバイパス流量(F1SS、F1BOD)のいずれか一方のみを算出し、この算出された供給量と前記バイパス流量検出手段50によるバイパス流量の実測値とから、前記バイパス流量調整弁60の適当な開度を演算することで、前記バイパス流量調整弁60の開度を調整してもよい。 Only one of the two suspended substances (MLSS, SS1) and the two biochemical oxygen demands (BOD1, BOD2) is detected, and any of the two bypass flow rates (F 1SS , F 1BOD ) is detected. By calculating only one of them, and calculating the appropriate opening degree of the bypass flow rate adjusting valve 60 from the calculated supply amount and the actual measured value of the bypass flow rate by the bypass flow rate detection means 50, the bypass flow rate adjustment The opening degree of the valve 60 may be adjusted.

また、前記曝気槽10と前記固液分離槽20とが返送流路によっても連結されている場合には、曝気槽における曝気処理中の前記排水の浮遊物質の基準値(MLSSBase)を予め設定しておき、前記浮遊物質検出手段12での浮遊物質の実測値(MLSS)が、前記基準値を超える場合には、前記実測値を監視しながら、前記基準値となるまで、前記引抜汚泥流量調整弁70を少し開けて、前記余剰汚泥抜き取り流路により、前記汚泥貯留槽40へと余剰汚泥を抜き取ることが好ましい。これにより、前記汚泥を前記曝気槽10に返送しすぎて、前記曝気槽10で酸素不足となり、処理効率が落ちることや、前記汚泥貯留槽40に余剰汚泥を抜き取りすぎてしまい、前記余剰汚泥の処理コストが増大するのを防止することできる。なお、この場合においては、前記余剰汚泥抜き取り流路に流量計を設け、前記実測値が前記基準値を超えた分の浮遊物質を含む量だけ前記余剰汚泥を抜き取ることが好ましい。例えば、前記基準値を3000mg/Lとし、前記実測値が3500mg/Lであった場合、前記曝気槽10の体積が10m3(=104L)であれば、(3500−3000)mg/L×104L=5×106mgの浮遊物質を含む量だけ前記余剰汚泥を抜き取ればよい。ここで、前記曝気槽10において前記実測値(3500mg/L)である曝気処理中の前記排水が、前記固液分離槽20において2倍に濃縮されるとすれば、5×106mg/3500×2mg/L≒700Lの前記余剰汚泥を抜き取ればよい。 In addition, when the aeration tank 10 and the solid-liquid separation tank 20 are also connected by a return channel, a reference value (MLSS Base ) of the suspended matter in the waste water during the aeration process in the aeration tank is set in advance. In addition, when the actual measurement value (MLSS) of the suspended matter in the suspended matter detection means 12 exceeds the reference value, the extraction sludge flow rate is monitored until the reference value is reached while monitoring the actual measurement value. It is preferable to open the regulating valve 70 a little and extract excess sludge to the sludge storage tank 40 by the excess sludge removal flow path. As a result, the sludge is excessively returned to the aeration tank 10, oxygen becomes insufficient in the aeration tank 10, and the processing efficiency is lowered, or excessive sludge is excessively extracted in the sludge storage tank 40. It is possible to prevent the processing cost from increasing. In this case, it is preferable that a flow meter is provided in the surplus sludge extraction flow path, and the surplus sludge is extracted by an amount including suspended solids for the measured value exceeding the reference value. For example, when the reference value is 3000 mg / L and the actual measurement value is 3500 mg / L, if the volume of the aeration tank 10 is 10 m 3 (= 10 4 L), (3500-3000) mg / L What is necessary is just to extract the said excess sludge by the quantity containing the floating substance of * 10 < 4 > L = 5 * 10 < 6 > mg. Here, if the waste water during the aeration process which is the actual measurement value (3500 mg / L) in the aeration tank 10 is concentrated twice in the solid-liquid separation tank 20, it is 5 × 10 6 mg / 3500. What is necessary is just to extract the said excess sludge of x2mg / L ≒ 700L.

そして、前記バイパス流量調整弁60の開度の調整に加えて、前記ブロア・モータ80の出力を制御することでも、外部に放流する前記処理排水の水質を調整することが可能である。すなわち、曝気槽における生物化学的酸素要求量に基準値(BODBase)を予め設定しておき、曝気槽における前記排水中の生物化学的酸素要求量(BOD1)が、前記基準値を超える場合には、前記ブロア・モータ80の出力を大きくすることにより、前記曝気槽10内の微生物による曝気処理を促進する。この結果、外部に放流する前記処理排水の水質を調整することが可能となる。一方、前記BOD1が前記基準値を超えない場合には、前記ブロア・モータ80の出力を抑えることで、電気代などの前記ブロア・モータ80の運転コストを抑えることができる。 In addition to adjusting the opening degree of the bypass flow rate adjusting valve 60, the quality of the treated waste water discharged to the outside can be adjusted by controlling the output of the blower motor 80. That is, a reference value (BOD Base ) is set in advance for the biochemical oxygen demand in the aeration tank, and the biochemical oxygen demand (BOD1) in the waste water in the aeration tank exceeds the reference value. Increases the output of the blower motor 80 to promote the aeration process by microorganisms in the aeration tank 10. As a result, it is possible to adjust the water quality of the treated wastewater discharged to the outside. On the other hand, when the BOD1 does not exceed the reference value, by suppressing the output of the blower motor 80, the operating cost of the blower motor 80 such as electricity bill can be suppressed.

つぎに、本発明の処理装置の別の例について、図2に基づき説明する。なお、図2において、図1と同一部分には同一符号を付している。   Next, another example of the processing apparatus of the present invention will be described with reference to FIG. In FIG. 2, the same parts as those in FIG.

この装置は、測定槽130を有し、この測定槽130で、各溶存酸素量と浮遊物質とを一括して測定する。前記測定槽130は、溶存酸素検出手段131および浮遊物質測定手段132を有する。図示のように、ポンプ133により、前記曝気槽10から前記測定槽130に溶存酸素量および浮遊物質測定用の曝気処理中の前記排水が導入される。ここで、曝気処理中の前記排水の溶存酸素量が、前記溶存酸素検出手段131で検出され、その検出値が、溶存酸素入力部92に送られ、さらに、換算部93へと送られる。また、曝気処理中の前記排水の浮遊物質が前記浮遊物質検出手段132で検出され、その検出値が、浮遊物質入力部91に送られる。同様に、前記固液分離槽20からはポンプ134により、前記放流槽30からはポンプ135により、それぞれ溶存酸素量および浮遊物質測定用の前記処理排水を前記測定槽130導入することができ、前記測定槽130において、前記それぞれの処理排水の溶存酸素量および浮遊物質を測定することができる。これにより、溶存酸素検出手段および浮遊物質検出手段の共用化が可能となり、各槽にそれぞれ高価な検出手段を設ける必要がなくなる。その他の工程の操作および条件等は、図1に示した装置と同様である。   This apparatus has a measurement tank 130, and in this measurement tank 130, each dissolved oxygen amount and suspended solids are measured together. The measurement tank 130 includes dissolved oxygen detection means 131 and suspended substance measurement means 132. As shown in the figure, the waste water during the aeration process for measuring the amount of dissolved oxygen and suspended solids is introduced from the aeration tank 10 into the measurement tank 130 by the pump 133. Here, the amount of dissolved oxygen in the waste water during the aeration process is detected by the dissolved oxygen detecting means 131, and the detected value is sent to the dissolved oxygen input unit 92 and further sent to the conversion unit 93. Further, the suspended matter in the waste water during the aeration process is detected by the suspended matter detection means 132, and the detected value is sent to the suspended matter input unit 91. Similarly, the treatment tank 130 can introduce the treated wastewater for measuring the amount of dissolved oxygen and suspended solids from the solid-liquid separation tank 20 by the pump 134 and from the discharge tank 30 by the pump 135, respectively. In the measurement tank 130, the amount of dissolved oxygen and suspended substances in each of the treatment wastewaters can be measured. This makes it possible to share the dissolved oxygen detection means and suspended solids detection means, eliminating the need to provide expensive detection means for each tank. The operation and conditions of other processes are the same as those of the apparatus shown in FIG.

なお、図1および図2に示した装置において、前記曝気槽10を複数に分割することができ、例えば、図3に示すような構成とすることができる。すなわち、図示のとおり、曝気槽10を、排水の導入される側から、上流、中流、下流の3つに分割し、各部分からバイパス流路を引き出し、その3つのバイパス流路にそれぞれバイパス流量調整弁(61〜63)を設け、その先で前記3つのバイパス流路を合流させる。これにより、状況に応じて、バイパス流路への曝気処理中の前記排水の取り出し位置を変えることができるようになる。例えば、放流槽における前記処理排水の生物化学的酸素要求量(BOD2)が、放流槽における前記処理排水中の浮遊物質(SS2)より大きい場合には、微生物による曝気処理が進み生物化学的酸素要求量(BOD)がより小さくなっている前記曝気槽10の下流側の前記バイパス流量調整弁63から、前記放流槽へと続くバイパス流路に曝気処理中の前記排水を取り込む。一方、例えば、放流槽における前記処理排水の生物化学的酸素要求量(BOD2)が、放流槽における前記処理排水の浮遊物質(SS2)より小さい場合には、微生物による曝気処理があまり進んでおらず生物化学的酸素要求量(BOD)の大きい前記曝気槽10の上流側の前記バイパス流量調整弁61から、前記放流槽へと続くバイパス流路に曝気処理中の前記排水を取り込む。なお、図3には、前記曝気槽10を3つの部分に分割した場合を示したが、曝気槽10の分割は、3つに限られるものではなく、上流、下流の2つに分割することもできるし、4つ以上に分割することも可能である。   In the apparatus shown in FIGS. 1 and 2, the aeration tank 10 can be divided into a plurality of pieces, for example, a configuration as shown in FIG. That is, as shown in the figure, the aeration tank 10 is divided into an upstream, a middle stream, and a downstream from the side where drainage is introduced, and a bypass flow path is drawn out from each part, and the bypass flow rate is set to each of the three bypass flow paths. An adjustment valve (61-63) is provided, and the three bypass flow paths are merged at the tip. Thereby, according to a condition, the taking-out position of the said waste_water | drain during the aeration process to a bypass flow path can be changed now. For example, when the biochemical oxygen demand (BOD2) of the treated wastewater in the discharge tank is larger than the suspended solids (SS2) in the treated wastewater in the discharge tank, the aeration treatment by the microorganism proceeds and the biochemical oxygen demand is increased. From the bypass flow rate adjustment valve 63 on the downstream side of the aeration tank 10 having a smaller amount (BOD), the waste water being subjected to the aeration process is taken into the bypass flow path that continues to the discharge tank. On the other hand, for example, when the biochemical oxygen demand (BOD2) of the treated wastewater in the discharge tank is smaller than the suspended solids (SS2) of the treated wastewater in the discharge tank, the aeration treatment with microorganisms has not progressed much. From the bypass flow rate adjustment valve 61 on the upstream side of the aeration tank 10 having a large biochemical oxygen demand (BOD), the waste water being subjected to the aeration process is taken into the bypass flow path that continues to the discharge tank. FIG. 3 shows the case where the aeration tank 10 is divided into three parts. However, the division of the aeration tank 10 is not limited to three, and it is divided into two upstream and downstream. It can also be divided into four or more.

本発明の排水の処理方法および処理装置は、その用途は制限されず、例えば、有機性排水の処理に適用できる。   The use method of the wastewater treatment method and treatment apparatus of the present invention is not limited, and can be applied to the treatment of organic wastewater, for example.

図1は、本発明の処理装置の一例の構成図である。FIG. 1 is a configuration diagram of an example of a processing apparatus of the present invention. 図2は、本発明の処理装置のその他の例の構成図である。FIG. 2 is a configuration diagram of another example of the processing apparatus of the present invention. 図3は、本発明の曝気槽の一例の構成図である。FIG. 3 is a configuration diagram of an example of the aeration tank of the present invention.

符号の説明Explanation of symbols

10 曝気槽
11、31、131 溶存酸素検出手段
12、22、32、132 浮遊物質検出手段
20 固液分離槽
30 放流槽
40 汚泥貯留槽
50 バイパス流量検出手段
51 排出流量検出手段
60、61、62、63 バイパス流量調整弁
70 引抜汚泥流量調整弁
80 ブロア・モータ
90 データ入力部
91 浮遊物質入力部
92 溶存酸素入力部
93 換算部
94 流量入力部
100 比較部
110 演算部
120 出力部
130 測定槽
133、134、135 ポンプ
DESCRIPTION OF SYMBOLS 10 Aeration tank 11, 31, 131 Dissolved oxygen detection means 12, 22, 32, 132 Suspended substance detection means 20 Solid-liquid separation tank 30 Drain tank 40 Sludge storage tank 50 Bypass flow rate detection means 51 Discharge flow rate detection means 60, 61, 62 63 Bypass flow rate adjustment valve 70 Extraction sludge flow rate adjustment valve 80 Blower motor 90 Data input unit 91 Floating substance input unit 92 Dissolved oxygen input unit 93 Conversion unit 94 Flow rate input unit 100 Comparison unit 110 Calculation unit 120 Output unit 130 Measurement tank 133 , 134, 135 Pump

Claims (20)

排水の処理方法であって、処理対象である排水を曝気槽に導入して微生物により曝気処理する曝気工程と、曝気処理した前記排水を固液分離槽に導入して汚泥と処理排水とに固液分離する固液分離工程と、前記処理排水を放流槽に導入した後、前記処理排水を外部に放流する放流工程とを有し、さらに、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の一部若しくは全部を、前記放流工程における前記処理排水に供給して混合することにより、外部に放流する前記処理排水の水質を調整する水質調整工程を有する排水の処理方法。   A wastewater treatment method, in which a wastewater to be treated is introduced into an aeration tank and aerated by microorganisms, and the aerated wastewater is introduced into a solid-liquid separation tank and solidified into sludge and treated wastewater. A solid-liquid separation step for liquid separation, and a discharge step for discharging the treated wastewater to the outside after introducing the treated wastewater into the discharge tank, and further, the wastewater before the introduction of the aeration tank and the aeration treatment A wastewater treatment method comprising a water quality adjusting step of adjusting the water quality of the treated wastewater discharged to the outside by supplying and mixing at least one part or all of the wastewater to the treated wastewater in the discharge step. 前記水質の調整の指標が、浮遊物質(SS)および生物化学的酸素要求量(BOD)の少なくとも一方である請求項1記載の排水の処理方法。   The wastewater treatment method according to claim 1, wherein the water quality adjustment index is at least one of suspended solids (SS) and biochemical oxygen demand (BOD). 外部に放流する前記処理排水の浮遊物質(SS)の基準値および生物化学的酸素要求量(BOD)の基準値を予め設定し、前記放流工程において、前記処理排水中の浮遊物質(SS)および生物化学的酸素要求量(BOD)の少なくとも一方を検出し、この検出値若しくはこれらの検出値と、前記基準値とを比較して、前記水質調整工程における曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の供給割合を決定する請求項1記載の排水の処理方法。   A reference value for suspended solids (SS) and biochemical oxygen demand (BOD) in the treated wastewater discharged to the outside is set in advance, and in the discharge step, suspended solids (SS) in the treated wastewater and Detecting at least one of biochemical oxygen demand (BOD), comparing this detected value or these detected values with the reference value, and the drainage and aeration treatment before introducing the aeration tank in the water quality adjustment step The wastewater treatment method according to claim 1, wherein a supply ratio of at least one of the wastewater is determined. 外部に放流する前記処理排水の浮遊物質の基準値(SSBase)、生物化学的酸素要求量の基準値(BODBase)および排出流量(F2)を予め決めておき、前記曝気工程において、曝気槽における前記排水中の浮遊物質(MLSS)および生物化学的酸素要求量(BOD1)を検出し、前記固液分離工程において、固液分離槽における前記処理排水中の浮遊物質(SS1)を検出し、前記放流工程において、放流槽における前記処理排水中の生物化学的酸素要求量(BOD2)を検出し、前記各基準値および前記各検出により得られた検出値から、下記式(1)および(2)を用い、前記水質調整工程において、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の一部若しくは全部の2つの供給量(F1SS、F1BOD)を求め、前記2つの供給量のうち小さい方を採用し、この採用された供給量に基き、外部に放流する前記処理排水の水質を調整する請求項1記載の排水の処理方法。

1SS={(SSBase−SS1)×F2}/(MLSS−SS1) ・・・(1)
1SS:曝気槽から放流槽への排水の供給量(m3/日)
MLSS:曝気槽における排水中の浮遊物質の検出値(mg/L)
SS1:固液分離槽における処理排水中の浮遊物質の検出値(mg/L)
SSBase:予め決めておいた外部に放流する処理排水の浮遊物質の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)

1BOD={(BODBase−BOD2)×F2}/(BOD1−BOD2) ・・・(2)
1BOD:曝気槽から放流槽への排水の供給量(m3/日)
BOD1:曝気槽における排水中の生物化学的酸素要求量の検出値(mg/L)
BOD2:放流槽における処理排水中の生物化学的酸素要求量の検出値(mg/L)
BODBase:予め決めておいた外部に放流する処理排水の生物化学的酸素要求量の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)
The reference value (SS Base ), the biochemical oxygen demand reference value (BOD Base ) and the discharge flow rate (F 2 ) of the treated wastewater discharged to the outside are determined in advance, and in the aeration process, aeration The suspended matter (MLSS) and biochemical oxygen demand (BOD1) in the wastewater in the tank are detected, and the suspended matter (SS1) in the treated wastewater in the solid-liquid separation tank is detected in the solid-liquid separation step. In the discharge step, the biochemical oxygen demand (BOD2) in the treated wastewater in the discharge tank is detected, and from the reference values and the detection values obtained by the detection, the following formulas (1) and ( with 2), in the water conditioning process, the waste water and the two supply amount of at least one of a part or all of the waste water in the aeration treatment prior to the aeration tank introduction (F 1SS, the F 1BOD) Because, the two adopted smaller of the supply amount, based on the adopted feed rate processing method of waste water according to claim 1, wherein adjusting the quality of the wastewater to be discharged to the outside.

F 1SS = {(SS Base -SS1 ) × F 2} / (MLSS-SS1) ··· (1)
F 1SS : Supply amount of drainage from aeration tank to discharge tank (m 3 / day)
MLSS: Detection value of suspended solids in waste water in aeration tank (mg / L)
SS1: Detection value (mg / L) of suspended solids in the treated wastewater in the solid-liquid separation tank
SS Base : Pre-determined reference value (mg / L) of suspended matter in treated wastewater discharged to the outside
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.

F 1BOD = {(BOD Base -BOD2 ) × F 2} / (BOD1-BOD2) ··· (2)
F 1BOD : Amount of wastewater supplied from the aeration tank to the discharge tank (m 3 / day)
BOD1: Detection value of biochemical oxygen demand in waste water in aeration tank (mg / L)
BOD2: Detection value (mg / L) of biochemical oxygen demand in the treated wastewater in the discharge tank
BOD Base : A predetermined reference value (mg / L) of biochemical oxygen demand for treated wastewater discharged to the outside.
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.
前記2つの浮遊物質(MLSS、SS1)および前記2つの生物化学的酸素要求量(BOD1、BOD2)のいずれか一方のみを検出し、前記2つの供給量(F1SS、F1BOD)のいずれか一方のみを算出し、この算出された供給量に基き、外部に放流する前記処理排水の水質を調整する請求項4記載の排水の処理方法。 Only one of the two suspended solids (MLSS, SS1) and the two biochemical oxygen demands (BOD1, BOD2) is detected, and one of the two supply amounts (F 1SS , F 1BOD ) The wastewater treatment method according to claim 4, wherein only the water quality is calculated and the quality of the treated wastewater discharged to the outside is adjusted based on the calculated supply amount. 前記2つの生物化学的酸素要求量(BOD1、BOD2)が、前記曝気槽および前記放流槽において溶存酸素量(DO)を検出し、前記検出値を生物化学的酸素要求量(BOD1、BOD2)に換算した値である請求項4記載の排水の処理方法。   The two biochemical oxygen demands (BOD1, BOD2) detect the dissolved oxygen quantity (DO) in the aeration tank and the discharge tank, and the detected value is converted into the biochemical oxygen demand (BOD1, BOD2). The wastewater treatment method according to claim 4, which is a converted value. 前記固液分離工程において、前記汚泥の一部は、前記曝気工程に返送され、前記汚泥の残部は、余剰汚泥として処理され、前記曝気工程において、曝気槽における曝気処理中の前記排水の浮遊物質の基準値(MLSSBase)を予め設定し、かつ曝気処理中の前記排水の浮遊物質(MLSS)を検出し、この検出値と前記基準値とを比較することにより、前記固液分離工程における余剰汚泥の処理量を決定する請求項1記載の排水の処理方法。 In the solid-liquid separation step, a part of the sludge is returned to the aeration step, and the remainder of the sludge is treated as surplus sludge. In the aeration step, the suspended matter in the waste water during the aeration treatment in the aeration tank By setting the reference value (MLSS Base ) of the wastewater in advance and detecting the suspended solids (MLSS) of the waste water during the aeration process, the detected value is compared with the reference value, thereby surplus in the solid-liquid separation step. The wastewater treatment method according to claim 1, wherein the amount of sludge treatment is determined. 前記曝気工程において、曝気槽における生物化学的酸素要求量の基準値(BOD1Base)を予め設定し、かつ曝気処理中の前記排水の生物化学的酸素要求量(BOD1)を検出し、この検出値と前記基準値とを比較することにより、前記曝気工程における曝気量を調整する請求項1記載の排水の処理方法。 In the aeration step, a reference value (BOD1 Base ) of the biochemical oxygen demand in the aeration tank is set in advance, and the biochemical oxygen demand (BOD1) of the waste water during the aeration treatment is detected, and this detected value The waste water treatment method according to claim 1, wherein an aeration amount in the aeration process is adjusted by comparing the reference value with the reference value. 前記曝気工程において、前記曝気槽を複数に分割することによって曝気処理中の前記排水を曝気処理程度により分け、前記水質調整工程において、前記分割された曝気槽の少なくとも一つから曝気処理中の前記排水を前記放流工程における前記処理排水に供給する請求項1記載の排水の処理方法。   In the aeration step, the waste water in the aeration process is divided by the aeration process by dividing the aeration tank into a plurality of parts, and in the water quality adjustment step, the waste water in the aeration process from at least one of the divided aeration tanks. The wastewater treatment method according to claim 1, wherein wastewater is supplied to the treated wastewater in the discharge step. 排水の処理装置であって、少なくとも、曝気槽と、固液分離槽と、放流槽とを有し、これらは前記順序で流路により連結され、前記曝気槽において、処理対象である排水が導入されて微生物により曝気処理され、前記固液分離槽において、曝気処理された前記排水が導入されて汚泥と処理排水とに固液分離され、前記放流槽において、前記処理排水が導入された後、前記放流槽から前記処理排水が外部に放流され、さらに、前記曝気槽と前記放流槽とがバイパス流路により連結されており、このバイパス流路により、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の一部若しくは全部が、前記放流槽における前記処理排水に供給されて混合されることにより、外部に放流される前記処理排水の水質が調整される水質調整手段を有する排水の処理装置。   A wastewater treatment apparatus having at least an aeration tank, a solid-liquid separation tank, and a discharge tank, which are connected by a flow path in the order described above, and the wastewater to be treated is introduced into the aeration tank. And aeration treatment by microorganisms, in the solid-liquid separation tank, the waste water subjected to aeration treatment is introduced into solid and liquid separation into sludge and treatment waste water, and after the treatment waste water is introduced in the discharge tank, The treated waste water is discharged to the outside from the discharge tank, and the aeration tank and the discharge tank are connected by a bypass flow path, and the waste water and the aeration process before the introduction of the aeration tank are performed by the bypass flow path. A water quality control in which the quality of the treated wastewater discharged to the outside is adjusted by supplying a part or all of at least one of the wastewater to the treated wastewater in the discharge tank and mixing it. Wastewater treatment apparatus having means. 前記水質の調整の指標が、浮遊物質(SS)および生物化学的酸素要求量(BOD)の少なくとも一方である請求項10記載の排水の処理装置。   The wastewater treatment apparatus according to claim 10, wherein the index for adjusting the water quality is at least one of suspended solids (SS) and biochemical oxygen demand (BOD). 前記放流槽が、前記処理排水中の浮遊物質(SS)および生物化学的酸素要求量(BOD)の少なくとも一方を検出する検出手段を有し、前記水質調整手段は、前記検出手段で検出された検出値と、予め設定された外部に放流する前記処理排水の浮遊物質(SS)の基準値および生物化学的酸素要求量(BOD)の基準値とを比較して、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の供給割合を決定する請求項10記載の排水の処理装置。   The discharge tank has detection means for detecting at least one of suspended matter (SS) and biochemical oxygen demand (BOD) in the treated wastewater, and the water quality adjustment means is detected by the detection means. Compare the detected value with the standard value of suspended matter (SS) and biochemical oxygen demand (BOD) of the treated wastewater discharged to the outside in advance, and the wastewater before introduction of the aeration tank The wastewater treatment apparatus according to claim 10, wherein a supply ratio of at least one of the wastewater during aeration treatment is determined. 前記曝気槽が、曝気槽における前記排水中の浮遊物質(MLSS)および生物化学的酸素要求量(BOD1)を検出する検出手段を有し、前記固液分離槽が、固液分離槽における前記処理排水中の浮遊物質(SS1)を検出する検出手段を有し、前記放流槽が、放流槽における前記処理排水中の生物化学的酸素要求量(BOD2)を検出する検出手段を有し、前記水質調整手段は、予め設定された外部に放流する前記処理排水の浮遊物質の基準値(SSBase)、生物化学的酸素要求量の基準値(BODBase)および排出流量(F2)と、前記各検出手段で検出された検出値とから、下記式(1)および(2)を用い、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の一部若しくは全部の2つの供給量(F1SS、F1BOD)を求め、前記2つの供給量のうち小さい方を採用し、この採用された供給量に基き、外部に放流する前記処理排水の水質を調整する請求項10記載の排水の処理装置。

1SS={(SSBase−SS1)×F2}/(MLSS−SS1) ・・・(1)
1SS:曝気槽から放流槽への排水の供給量(m3/日)
MLSS:曝気槽における排水中の浮遊物質の検出値(mg/L)
SS1:固液分離槽における処理排水中の浮遊物質の検出値(mg/L)
SSBase:予め決めておいた外部に放流する処理排水の浮遊物質の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)

1BOD={(BODBase−BOD2)×F2}/(BOD1−BOD2) ・・・(2)
1BOD:曝気槽から放流槽への排水の供給量(m3/日)
BOD1:曝気槽における排水中の生物化学的酸素要求量の検出値(mg/L)
BOD2:放流槽における処理排水中の生物化学的酸素要求量の検出値(mg/L)
BODBase:予め決めておいた外部に放流する処理排水の生物化学的酸素要求量の基準値(mg/L)
2:予め決めておいた外部に放流する処理排水の排出流量(m3/日)
The aeration tank has detection means for detecting suspended solids (MLSS) and biochemical oxygen demand (BOD1) in the waste water in the aeration tank, and the solid-liquid separation tank is the treatment in the solid-liquid separation tank A detection means for detecting suspended solids (SS1) in the wastewater, wherein the discharge tank has a detection means for detecting a biochemical oxygen demand (BOD2) in the treated wastewater in the discharge tank; The adjustment means includes a preset reference value (SS Base ), a reference value (BOD Base ) of biochemical oxygen demand and a discharge flow rate (F 2 ) of the suspended matter of the treated wastewater to be discharged to the outside. From the detected values detected by the detection means, using the following formulas (1) and (2), two supply amounts of a part or all of at least one of the waste water before the introduction of the aeration tank and the waste water during the aeration treatment (F 1SS, F 1BOD Look, the two adopted smaller of the supply amount, based on the adopted feed rate wastewater processing apparatus according to claim 10, wherein adjusting the process wastewater quality that discharged to the outside.

F 1SS = {(SS Base -SS1 ) × F 2} / (MLSS-SS1) ··· (1)
F 1SS : Supply amount of drainage from aeration tank to discharge tank (m 3 / day)
MLSS: Detection value of suspended solids in waste water in aeration tank (mg / L)
SS1: Detection value (mg / L) of suspended solids in the treated wastewater in the solid-liquid separation tank
SS Base : Pre-determined reference value (mg / L) of suspended matter in treated wastewater discharged to the outside
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.

F 1BOD = {(BOD Base -BOD2 ) × F 2} / (BOD1-BOD2) ··· (2)
F 1BOD : Amount of wastewater supplied from the aeration tank to the discharge tank (m 3 / day)
BOD1: Detection value of biochemical oxygen demand in waste water in aeration tank (mg / L)
BOD2: Detection value (mg / L) of biochemical oxygen demand in the treated wastewater in the discharge tank
BOD Base : A predetermined reference value (mg / L) of biochemical oxygen demand for treated wastewater discharged to the outside.
F 2 : Discharge flow rate (m 3 / day) of treated wastewater to be discharged to the outside.
前記水質調整手段は、前記2つの浮遊物質(MLSS、SS1)および前記2つの生物化学的酸素要求量(BOD1、BOD2)のいずれか一方のみを検出し、前記2つの供給量(F1SS、F1BOD)のいずれか一方のみを算出し、この算出された供給量に基き、外部に放流する前記処理排水の水質を調整する請求項13記載の排水の処理装置。 The water quality adjusting means detects only one of the two suspended substances (MLSS, SS1) and the two biochemical oxygen demands (BOD1, BOD2), and supplies the two supply amounts (F 1SS , F1). 14. The wastewater treatment apparatus according to claim 13, wherein only one of ( 1BOD ) is calculated, and the quality of the treated wastewater discharged to the outside is adjusted based on the calculated supply amount. 前記2つの生物化学的酸素要求量(BOD1、BOD2)の検出手段が、前記曝気槽および前記放流槽において溶存酸素量(DO)を検出し、前記検出値を生物化学的酸素要求量(BOD1、BOD2)に換算する手段である請求項13記載の排水の処理装置。   The means for detecting the two biochemical oxygen demands (BOD1, BOD2) detects the dissolved oxygen quantity (DO) in the aeration tank and the discharge tank, and the detected value is used as the biochemical oxygen demand (BOD1, The wastewater treatment apparatus according to claim 13, which is means for converting to BOD2). 前記バイパス流路の途中にバイパス流量調整弁が取り付けられており、前記水質調整手段は、曝気槽導入前の前記排水および曝気処理中の前記排水の少なくとも一方の供給割合を、前記バイパス流量調整弁で調整する請求項10記載の排水の処理装置。   A bypass flow rate adjustment valve is attached in the middle of the bypass flow path, and the water quality adjustment means determines the supply ratio of at least one of the waste water before the introduction of the aeration tank and the waste water during the aeration treatment, by the bypass flow rate adjustment valve. The wastewater treatment apparatus according to claim 10, wherein the wastewater treatment apparatus is adjusted by the step. 前記曝気槽と前記固液分離槽とが返送流路によっても連結され、前記固液分離槽には、余剰汚泥の抜き取り流路が連結され、前記固液分離槽において、前記汚泥の一部は、前記返送流路により前記曝気槽に返送され、前記汚泥の残部は、前記余剰汚泥抜き取り流路により抜き取られ、前記曝気槽が、曝気処理中の前記排水の浮遊物質(MLSS)を検出する検出手段を有し、前記水質調整手段は、予め設定された曝気槽における曝気処理中の前記排水の浮遊物質の基準値(MLSSBase)と、前記検出手段で検出された検出値とを比較することにより、前記固液分離槽における余剰汚泥の抜き取り量を決定する請求項10記載の排水の処理装置。 The aeration tank and the solid-liquid separation tank are also connected by a return flow path, and the solid-liquid separation tank is connected to a discharge path for excess sludge, and in the solid-liquid separation tank, a part of the sludge is , Returned to the aeration tank by the return flow path, the remainder of the sludge is extracted by the excess sludge extraction flow path, and the aeration tank detects the suspended matter (MLSS) of the waste water during the aeration process. The water quality adjusting means compares a reference value (MLSS Base ) of the suspended matter of the waste water during the aeration treatment in a preset aeration tank with the detection value detected by the detection means. The waste water treatment apparatus according to claim 10, wherein an amount of excess sludge withdrawn in the solid-liquid separation tank is determined. 前記曝気槽が、曝気処理中の前記排水の生物化学的酸素要求量(BOD1)を検出する検出手段を有し、前記水質調整手段は、予め設定された曝気槽における生物化学的酸素要求量の基準値(BOD1Base)と、前記検出手段により検出された検出値とを比較することにより、前記曝気槽における曝気量を調整する請求項10記載の排水の処理装置。 The aeration tank has a detection means for detecting the biochemical oxygen demand (BOD1) of the waste water during the aeration treatment, and the water quality adjustment means is configured to set a biochemical oxygen demand in a preset aeration tank. The waste water treatment apparatus according to claim 10, wherein the aeration amount in the aeration tank is adjusted by comparing a reference value (BOD1 Base ) with a detection value detected by the detection means. 前記曝気槽が複数に分割され、これにより曝気処理中の前記排水を曝気処理程度により分けており、前記水質調整手段は、前記分割された曝気槽の少なくとも一つから曝気処理中の前記排水を前記放流槽における前記処理排水に供給する請求項10記載の排水の処理装置。   The aeration tank is divided into a plurality of parts, whereby the waste water during the aeration process is divided according to the degree of the aeration process, and the water quality adjusting means removes the waste water during the aeration process from at least one of the divided aeration tanks. The wastewater treatment apparatus according to claim 10, wherein the wastewater treatment apparatus supplies the treated wastewater in the discharge tank. さらに、浮遊物質(SS)および生物化学的酸素要求量(BOD)の検出手段を備える測定槽を有し、この測定槽に、前記曝気槽における曝気処理中の前記排水、前記固液分離槽における前記処理排水および前記放流槽における前記処理排水の少なくとも一つの排水が導入され、前記測定槽の前記検出手段により、前記測定槽に導入された前記排水の浮遊物質(SS)および生物化学的酸素要求量(BOD)の少なくとも一方を検出する請求項13記載の排水の処理装置。   Furthermore, it has a measuring tank provided with a means for detecting suspended solids (SS) and biochemical oxygen demand (BOD). In this measuring tank, the waste water during the aeration process in the aeration tank, and the solid-liquid separation tank At least one wastewater of the treated wastewater and the treated wastewater in the discharge tank is introduced, and the suspended matter (SS) and biochemical oxygen demand of the wastewater introduced into the measurement tank by the detection means of the measurement tank The wastewater treatment apparatus according to claim 13, wherein at least one of the amounts (BOD) is detected.
JP2005072777A 2005-03-15 2005-03-15 Method and apparatus for treating waste water Withdrawn JP2006255504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072777A JP2006255504A (en) 2005-03-15 2005-03-15 Method and apparatus for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072777A JP2006255504A (en) 2005-03-15 2005-03-15 Method and apparatus for treating waste water

Publications (1)

Publication Number Publication Date
JP2006255504A true JP2006255504A (en) 2006-09-28

Family

ID=37095299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072777A Withdrawn JP2006255504A (en) 2005-03-15 2005-03-15 Method and apparatus for treating waste water

Country Status (1)

Country Link
JP (1) JP2006255504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178792A (en) * 2007-01-24 2008-08-07 Sharp Corp Biological reaction method and biological reaction apparatus
JP2013039538A (en) * 2011-08-18 2013-02-28 Hitachi Plant Technologies Ltd Wastewater treatment apparatus
WO2014034827A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Fresh water generation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178792A (en) * 2007-01-24 2008-08-07 Sharp Corp Biological reaction method and biological reaction apparatus
JP2013039538A (en) * 2011-08-18 2013-02-28 Hitachi Plant Technologies Ltd Wastewater treatment apparatus
WO2014034827A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Fresh water generation method
JPWO2014034827A1 (en) * 2012-08-31 2016-08-08 東レ株式会社 Fresh water generation method

Similar Documents

Publication Publication Date Title
EP0854843A1 (en) Controlling wastewater treatment by monitoring oxygen utilisation rates
JP2003200190A (en) Device for controlling quality of water at sewage treatment plant
JPH11169866A (en) Method for computing injection rate of flocculating agent in water treatment process and apparatus therefor
US20180002208A1 (en) Wastewater Treatment System
JP5956372B2 (en) Water treatment apparatus and water treatment method
KR100661455B1 (en) Apparatus for treating waste water and method of using
JP4008694B2 (en) Sewage treatment plant water quality controller
JP2006255504A (en) Method and apparatus for treating waste water
JP2006315004A (en) Water quality control unit for sewage disposal plant
WO2016009650A1 (en) Aeration calculation device and water treatment system
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
KR20150064574A (en) Energy-saving system for treatment of wastewater and method for control of the same
JP6533676B2 (en) Water treatment apparatus and water treatment method
JPH0938682A (en) Biological water treatment
Niu et al. Modification of a plant-scale semi-centralized wastewater treatment system to enhance nitrogen and phosphorus removal from black water
JP2011139982A (en) Method and apparatus for treating nitrogen-containing water biologically
JP2000263086A (en) Waste water treatment apparatus
KR20150142665A (en) Advanced wastewater treatment apparatus for increasing removal efficiency of total phosphorous and treatment method thereof
CN103508625B (en) A kind for the treatment of facility of removing fluoride and calcium ion in coal chemical industry sewage
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JP7437144B2 (en) water treatment plant
KR102587787B1 (en) Intelligent control system of mbr wastewater treatment device
EP3527539B1 (en) Wastewater treatment system and process
JP2019063716A (en) Methane fermentation system
JP3303475B2 (en) Operation control method of activated sludge circulation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603