JP2006254581A - Open/close driving method of sliding door and open/close unit - Google Patents

Open/close driving method of sliding door and open/close unit Download PDF

Info

Publication number
JP2006254581A
JP2006254581A JP2005066766A JP2005066766A JP2006254581A JP 2006254581 A JP2006254581 A JP 2006254581A JP 2005066766 A JP2005066766 A JP 2005066766A JP 2005066766 A JP2005066766 A JP 2005066766A JP 2006254581 A JP2006254581 A JP 2006254581A
Authority
JP
Japan
Prior art keywords
sliding door
phase air
magnetic pole
core coil
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066766A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kataoka
詳博 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIITEKKU KK
Original Assignee
NIITEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIITEKKU KK filed Critical NIITEKKU KK
Priority to JP2005066766A priority Critical patent/JP2006254581A/en
Publication of JP2006254581A publication Critical patent/JP2006254581A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motor mechanism suitable for performing open/close driving of a sliding door 10 electromagnetically. <P>SOLUTION: An air core coil array is arranged alternately with first phase air-core coils 5a, 5b, 5c and second phase air-core coils 6a, 6b, 6c at pitch P while being shifted by P/2 and located at a lintel (not shown). On the other hand, a pole array 4 is arranged with poles (N, S) alternately at pitch P and secured to a sliding door (not shown). Movement of the sliding door is detected by means of a photosensor 8 or a magnetic sensor 9. An automatic control circuit 22 switches conducting direction of the air-core coil array depending on the movement of the sliding door. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建具である引戸を電動で開閉する技術に係り、特に小型軽量で、しかも実用に十分な駆動力を発揮し得るように改良したものである。   The present invention relates to a technique for electrically opening and closing a sliding door, which is a fitting, and is improved particularly so as to be small and light and yet exhibit a driving force sufficient for practical use.

この種の電動ドア駆動装置としては、種々の装置が公知であるが、いずれも構造が複雑で、大型大重量の機器である。特に、鉄芯に絶縁電線を巻回したコイルが用いられているため、この鉄芯が重量を増大させている。
特表2003−529303号公報 特開2003−244928号公報 特開平8−42249号公報
Various devices are known as this type of electric door drive device, but all of them are complicated and have large and heavy equipment. In particular, since a coil in which an insulated wire is wound around an iron core is used, the iron core increases the weight.
Special table 2003-529303 gazette Japanese Patent Laid-Open No. 2003-244928 JP-A-8-42249

本発明は以上に述べた事情に鑑みて為されたものであって、その目的とするところは、鉄芯コイルを用いない、小型軽量で構造簡単な引戸用の電動技術を提供するにある。   The present invention has been made in view of the circumstances described above, and an object of the present invention is to provide an electric technique for a sliding door that does not use an iron core coil and is small, light, and simple in structure.

本発明は、新たに作り出したリニアモータを駆動源とする。図1は、その作動原理を説明するための模式的な平面図である。
説明の便宜上、直交3軸X,Y,Zを想定する。引戸(10)は磁極列4の下方に位置し、該磁極列4に結合されている。該引戸はX−Z面と平行に支承され、X軸方向に開閉操作される。従って、電磁駆動力はX軸方向に発生するようになっている。
図1(A)に示すように、磁極列4の上方に第1相空芯コイル5aが設けられていて、建造物(例えば鴨居)に固着されている。
The present invention uses a newly created linear motor as a drive source. FIG. 1 is a schematic plan view for explaining the operating principle.
For convenience of explanation, orthogonal three axes X, Y, and Z are assumed. The sliding door (10) is located below the magnetic pole row 4 and is coupled to the magnetic pole row 4. The sliding door is supported in parallel with the XZ plane and is opened and closed in the X-axis direction. Therefore, the electromagnetic driving force is generated in the X-axis direction.
As shown in FIG. 1A, a first-phase air-core coil 5a is provided above the magnetic pole row 4 and is fixed to a building (for example, Kamoi).

上記第1相空芯コイル5aに電流Caを通電して、付記S,Nのように磁性を生じさせると、「引」、「押」と付記したように引力と斥力とが働き、磁極列4は図の左方へ動かされる。
磁極列4が半ピッチ(p/2)だけ右方に動いて図1(B)の状態になると、磁極列4に対してX軸方向の力は働かなくなる。
そこで図1(C)のように、前記第1相空芯コイル5aから半ピッチ(p/2)だけずらせて第2相空芯コイル6aを設け、この(C)図に付記した引力(引),斥力(押)を作用させる。
When a current Ca is applied to the first phase air-core coil 5a to generate magnetism as indicated by the supplementary notes S and N, an attractive force and a repulsive force act as indicated by “pull” and “push”, and the magnetic pole array 4 is moved to the left in the figure.
When the magnetic pole row 4 moves to the right by a half pitch (p / 2) and enters the state shown in FIG. 1B, no force in the X-axis direction acts on the magnetic pole row 4.
Therefore, as shown in FIG. 1 (C), the second phase air-core coil 6a is provided by being shifted from the first phase air-core coil 5a by a half pitch (p / 2), and the attractive force (attraction force) indicated in FIG. 1 (C) is provided. ), Repulsive force (push) is applied.

この図1(A)には2個の第1相空芯コイル5a,5bが描かれているが、要するに複数個の第1相空芯コイルを、磁極配列のピッチp(もしくは、その整数倍)で配列することが、本発明の目的を達成するための要件の一つである。
そして、前述のごとく半ピッチ離して第1相空芯コイル5a,5bと第2相空芯コイル6a,6bとを配列することも、目的を達成するための要件の一つである。
FIG. 1A shows two first-phase air-core coils 5a and 5b. In short, a plurality of first-phase air-core coils are arranged at a pitch p (or an integer multiple thereof) of the magnetic pole array. ) Is one of the requirements for achieving the object of the present invention.
As described above, arranging the first phase air-core coils 5a and 5b and the second phase air-core coils 6a and 6b at a half pitch apart is one of the requirements for achieving the object.

さらに磁極列4が図の右方に移動して図1(D)のようになった状態を、前記(A)図に比較して考察すると、
第1相空芯コイル5aがN磁極とS磁極との境界上に位置していることは類似である。
しかし、対向している磁極の極性が反対である。
このため、(A)における通電方向(Ca)と反対方向(Cc)に通電して、(D)に付記したN,S方向の磁性を発生させ、(D)に付記した引力(引),斥力(押)を作用させなければならない。このように、通電方向を交互に反転させることも、目的を達成するための要件の一つである。
Further, when the state in which the magnetic pole row 4 moves to the right side of the figure and becomes as shown in FIG. 1D is compared with the above-mentioned figure (A),
It is similar that the first phase air-core coil 5a is located on the boundary between the N magnetic pole and the S magnetic pole.
However, the polarities of the opposing magnetic poles are opposite.
Therefore, energization is performed in the direction (Cc) opposite to the energization direction (Ca) in (A) to generate magnetism in the N and S directions indicated in (D), and the attractive force (attraction) indicated in (D), A repulsive force (push) must be applied. Thus, alternately reversing the energization direction is one of the requirements for achieving the object.

図1を参照して以上に説明した原理に基づく具体的な構成として請求項1に係る発明方法は、
(図1参照)引戸(10)を電動で開閉する方法において、
該引戸の開閉方向をX軸とし、引戸の厚さ方向をZ軸とし、上下方向をZ軸とする直交3軸X,Y,Zを想定し、
上記の引戸に、N極とS極とを一定のピッチpで交互に並べた磁極列(4)を、X軸方向に設置し、
一方、複数個の第1相空芯コイル(5a,5b)を間隔寸法p又はその整数倍でX軸方向に並べるとともに、複数個の第二相空芯コイル(6a,6b)を間隔寸法p又はその整数倍でX軸方向に並べ、かつ上記第1相空芯コイルと第2相空芯コイルとをX軸方向にp/2だけ偏らせてコイル列を形成し、
(図4参照)前記の磁極列(4)に対向せしめて、上記のコイル列(13)を建造物(例えば鴨居19)に取り付け、
(図1(A),(D)参照)前記の第1相空芯コイル(5a,5b)に対する直流の通電方向を交互に反転させるとともに、
前記の第2相空芯コイル(6a,6b)に対する直流の通電方向を、第1相空芯コイルに比して1/4サイクルの位相差で交互に反転させることを特徴とする。
The inventive method according to claim 1 as a specific configuration based on the principle described above with reference to FIG.
(See FIG. 1) In the method of opening and closing the sliding door (10) electrically,
Assuming orthogonal three axes X, Y, and Z with the opening / closing direction of the sliding door as the X axis, the thickness direction of the sliding door as the Z axis, and the vertical direction as the Z axis,
A magnetic pole array (4) in which N poles and S poles are alternately arranged at a constant pitch p is installed in the X-axis direction on the sliding door,
On the other hand, a plurality of first-phase air-core coils (5a, 5b) are arranged in the X-axis direction with a spacing dimension p or an integer multiple thereof, and a plurality of second-phase air-core coils (6a, 6b) are spaced with a spacing dimension p. Or an integer multiple of them arranged in the X-axis direction, and the first-phase air-core coil and the second-phase air-core coil are biased by p / 2 in the X-axis direction to form a coil array,
(See FIG. 4) The coil array (13) is attached to a building (for example, Kamoi 19) so as to face the magnetic pole array (4),
(Refer to FIGS. 1 (A) and 1 (D)) While alternately reversing the DC energization direction to the first phase air-core coils (5a, 5b),
The direction of direct current application to the second phase air-core coils (6a, 6b) is alternately reversed with a phase difference of 1/4 cycle as compared with the first phase air-core coil.

請求項2に係る発明方法の構成は、前記請求項1の発明方法の構成要件に加えて、(図2参照)
前記第1相空芯コイル(5a,5b,5c)、および第2相空芯コイル(6a,6b,6c)の通電方向を反転するタイミングは、
引戸に取り付けた光学的メジャー(7)を光センサ(8)で読み取った検出信号に基づいて行ない、
又は、磁極列(4)の移動を磁気センサ(9)で読み取った検出信号に基づいて行なうことを特徴とする。
The configuration of the inventive method according to claim 2 is in addition to the constituent features of the inventive method of claim 1 (see FIG. 2).
The timing of reversing the energization direction of the first phase air-core coils (5a, 5b, 5c) and the second phase air-core coils (6a, 6b, 6c)
Based on the detection signal obtained by reading the optical measure (7) attached to the sliding door with the optical sensor (8),
Alternatively, the magnetic pole row (4) is moved based on a detection signal read by the magnetic sensor (9).

請求項3に係る発明装置の構成は、
(図3参照)引戸(10)を電動で開閉する装置において、
該引戸の開閉方向をX軸とし、引戸の厚さ方向をY軸とし、上下方向をZ軸とする直交3軸X,Y,Zを想定し、
(図1と第2図とを参照)一定のピッチpでN極とS極とをX軸方向に交互に並べた磁極列(4)が、前記の引戸に設置されていて、
複数個の第1相空芯コイル(5a,5b)を間隔寸法p又はその整数倍でX軸方向に並べるとともに、複数個の第二相空芯コイル(6a,6b)を間隔寸法p又はその整数倍ででX軸方向に並べ、かつ上記第1相空芯コイルと第2相空芯コイルとをX軸方向にp/2だけ偏らせて成るコイル列(図3において符号13)が、建造物に取り付けられて前記の磁極列(4)に対向しており、
かつ、前記の第1相空芯コイルに対する直流の通電方向を交互に反転させるとともに、前記の第2相空芯コイルに対する直流の通電方向を、第1相空芯コイルに比して1/4サイクルの位相差で交互に反転させる自動制御回路(22)が設けられていることを特徴とする。
The configuration of the inventive device according to claim 3 is as follows:
(See FIG. 3) In a device for electrically opening and closing the sliding door (10),
Assuming orthogonal three axes X, Y, Z with the opening / closing direction of the sliding door as the X axis, the thickness direction of the sliding door as the Y axis, and the vertical direction as the Z axis,
(See FIG. 1 and FIG. 2) A magnetic pole row (4) in which N poles and S poles are alternately arranged in the X-axis direction at a constant pitch p is installed in the sliding door,
A plurality of first phase air-core coils (5a, 5b) are arranged in the X-axis direction with a spacing dimension p or an integer multiple thereof, and a plurality of second-phase air core coils (6a, 6b) are spaced with a spacing dimension p or A coil array (reference numeral 13 in FIG. 3), which is an integer multiple and arranged in the X-axis direction, and the first-phase air-core coil and the second-phase air-core coil are offset by p / 2 in the X-axis direction, It is attached to the building and faces the magnetic pole row (4),
In addition, the direction of direct current flow to the first phase air-core coil is alternately reversed, and the direction of direct current flow to the second phase air-core coil is set to ¼ that of the first phase air-core coil. An automatic control circuit (22) for alternately inverting with a cycle phase difference is provided.

請求項4に係る発明装置の構成は、前記請求項3の発明装置の構成要件に加えて、
(図2参照)前記の引戸に取り付けられて、磁極列(4)と一緒にX軸方向に移動する光学的メジャー(7)と、上記メジャーを読み取って磁極列の位置を検知する光センサ(8)とを具備しており、
又は、前記磁極列(4)の磁気に感応して、該磁極列の位置を検知する磁気センサ(9)を具備していて、
かつ、上記光センサの検出信号、または上記磁気センサの検出信号が、自動制御回路(22)に入力されるようになっていることを特徴とする。
The configuration of the inventive device according to claim 4 is in addition to the configuration requirements of the inventive device of claim 3,
(See FIG. 2) An optical measure (7) that is attached to the sliding door and moves in the X-axis direction together with the magnetic pole row (4), and an optical sensor that reads the measure and detects the position of the magnetic pole row ( 8) and
Or a magnetic sensor (9) for detecting the position of the magnetic pole row in response to the magnetism of the magnetic pole row (4),
And the detection signal of the said optical sensor or the detection signal of the said magnetic sensor is input into an automatic control circuit (22), It is characterized by the above-mentioned.

請求項5に係る発明装置の構成は、前記請求項3または請求項4の発明装置の構成要件に加えて、
(図3参照)磁極列(4)と戸車(11)とが、X軸方向の連結シャフト(18)により連結されていて、磁極列に発生した電磁的駆動力が、主として連結シャフトを介して戸車に与えられるようになっていることを特徴とする。
The configuration of the inventive device according to claim 5 is in addition to the configuration requirements of the inventive device of claim 3 or claim 4,
(See FIG. 3) The magnetic pole array (4) and the door wheel (11) are connected by a connecting shaft (18) in the X-axis direction, and the electromagnetic driving force generated in the magnetic pole array is mainly transmitted through the connecting shaft. It is characterized by being given to the doorcar.

請求項6に係る発明装置の構成は、
(図3参照)引戸(10)を電動で開閉する装置において、
レール(12)および戸車(11)と、
一定のピッチpでN極とS極とをX軸方向に交互に並べた磁極列(4)と、
複数個の第1相空芯コイルを間隔寸法pで並べるとともに、複数個の第二相空芯コイルを間隔寸法pで並べ、かつ上記第1相空芯コイルと第2相空芯コイルとをp/2だけ偏らせて成るコイル列(13)と、
上記第1相空芯コイルおよび第2相空芯コイルの通電方向を、磁極列の動きに応じて反転させる機能を有する自動制御回路(図2において符号22)とが組合わされて、既設の建造物および/または建具に装着し得る組部品を成していることを特徴とする。
The configuration of the inventive device according to claim 6 is as follows:
(See FIG. 3) In a device for electrically opening and closing the sliding door (10),
A rail (12) and a doorwheel (11);
A magnetic pole array (4) in which N poles and S poles are alternately arranged in the X-axis direction at a constant pitch p;
A plurality of first-phase air-core coils are arranged at a spacing dimension p, a plurality of second-phase air-core coils are arranged at a spacing dimension p, and the first-phase air-core coil and the second-phase air-core coil are a coil array (13) biased by p / 2,
An existing construction is combined with an automatic control circuit (reference numeral 22 in FIG. 2) having a function of reversing the energizing directions of the first phase air core coil and the second phase air core coil in accordance with the movement of the magnetic pole row. It is characterized in that it constitutes an assembly part that can be attached to an object and / or joinery.

請求項7に係る発明装置の構成は、前記請求項6の発明装置の構成要件に加えて、
(図2参照)前記の組部品に、(イ)前記磁極列に組つけられるメジャー(7)の動きを読み取って電気的信号を出力する光センサ(8)、または、(ロ)磁極列の磁気に感応し、該磁極列の動きを読み取って電気的信号を出力する磁気センサ(9)が加えられていることを特徴とする。
The configuration of the inventive device according to claim 7 is in addition to the configuration requirements of the inventive device of claim 6,
(See FIG. 2) The optical sensor (8) that reads the movement of the measure (7) assembled to the magnetic pole row and outputs an electrical signal to the assembled component (b), or (b) A magnetic sensor (9) that is sensitive to magnetism, reads the movement of the magnetic pole row, and outputs an electrical signal is added.

請求項1の発明方法によると、小型軽量で簡単な部材を用いて引戸を開閉駆動することができる。
その上、高精度の制御を必要としないので安価な制御手段で足り、制御ミスによるトラブルを発生する虞れ無く、作動信頼性が高い。
さらに、可動部材に通電する必要が無いので配線機構が簡単で、接触不良や漏電などの電気的な事故を生じる虞れが無く、安全である。
しかも、既設の建造物や建具類に対して適用することもできるので適用範囲が広範である。
According to the first aspect of the invention, the sliding door can be driven to open and close using a small, light and simple member.
In addition, since high-precision control is not required, an inexpensive control means is sufficient, and there is no possibility of causing a trouble due to a control error, and the operation reliability is high.
Furthermore, since it is not necessary to energize the movable member, the wiring mechanism is simple, and there is no possibility of causing electrical accidents such as poor contact or electric leakage, which is safe.
Moreover, since it can be applied to existing buildings and joinery, the range of application is wide.

請求項2の発明方法によると、可動部分の動きを光センサまたは磁気センサで検知し、空芯コイルの通電を切替え制御することができる。機械的に作動する電気接点を用いる必要が無い。このため、接点の焼損や接触不良などのトラブルを発生する虞れが無く、作動信頼性が高い。   According to the second aspect of the invention, the movement of the movable part can be detected by the optical sensor or the magnetic sensor, and the energization of the air-core coil can be switched and controlled. There is no need to use mechanically actuated electrical contacts. For this reason, there is no possibility that troubles such as contact burnout and contact failure occur, and the operation reliability is high.

請求項3の発明装置を適用すると、電磁力によって開閉駆動力を発生する部材が小型軽量であり、特に薄型・幅狭であるから、建造物と建具との間に設置するに適している。
その上、構造が簡単である。構造が簡単であることにより、製作が容易で製造コストが低廉であるのみでなく、作動が確実で耐久性に優れている。
さらに、通電を必要とする部分が固定部材で構成されていて、可動部材には通電を要しない。このため、通電機構が簡単で接触不良や焼損といった電気部品のトラブルを生じる虞れが無い。
しかも、電気的制御が簡単で高精度を要しないから、作動信頼性が高く、メンティナンスフリーである。
When the invention device of claim 3 is applied, the member that generates the opening / closing driving force by the electromagnetic force is small and lightweight, and particularly thin and narrow, and therefore, it is suitable for installation between a building and a fitting.
Moreover, the structure is simple. Due to the simple structure, not only is the manufacturing easy and the manufacturing cost is low, but the operation is reliable and the durability is excellent.
Further, the portion that needs to be energized is composed of a fixed member, and the movable member does not need to be energized. For this reason, the energization mechanism is simple, and there is no possibility of causing troubles in electrical parts such as poor contact and burnout.
In addition, since the electrical control is simple and does not require high accuracy, the operation reliability is high and maintenance is free.

請求項4の発明装置によると、引戸に固定された磁極列の移動を、光センサまたは磁気センサで検出するので、機械的に作動する接点スイッチなどを設ける必要が無く、機械的作動部分の誤作動や損耗といったトラブルを生じない上に、作動音を発生しない。
さらに、電気接点を設けたリミットスイッチに特有の応差(ONする点とOFFする点との間の誤差)が無い。
According to the fourth aspect of the present invention, since the movement of the magnetic pole array fixed to the sliding door is detected by the optical sensor or the magnetic sensor, it is not necessary to provide a mechanically operated contact switch or the like, and an error in the mechanically operated part is detected. Troubles such as operation and wear do not occur, and operation noise is not generated.
Furthermore, there is no hysteresis (error between the ON point and the OFF point) peculiar to the limit switch provided with the electrical contact.

請求項5の発明装置によると、磁極列と戸車とが連結シャフトを介して接続されているので、磁極列に発生したX軸方向の駆動力が戸車に伝動される。このため、磁極列と引戸との取り付け部に無理な力が掛からず、円滑な開閉作動ができる。
上記のような構成であるから、本請求項5の発明を実施する場合、引戸と戸車とは市販の既製品を用い、この戸車に対して本発明に係る連結シャフトを介して磁極列を取り付けることにより、迅速,容易に本発明装置を製作することができる。
According to the fifth aspect of the invention, since the magnetic pole row and the door wheel are connected via the connecting shaft, the driving force in the X-axis direction generated in the magnetic pole row is transmitted to the door wheel. For this reason, an excessive force is not applied to the attachment part of the magnetic pole row and the sliding door, and a smooth opening / closing operation can be performed.
Since it is the above structures, when carrying out the invention of claim 5, the sliding door and the door cart use commercially available off-the-shelf products, and the magnetic pole row is attached to the door wheel via the connecting shaft according to the present invention. Thus, the device of the present invention can be manufactured quickly and easily.

請求項6の発明装置は、本発明方法を実施するに必要な構成部材がアッセンブリとして
纏められているので、本発明の工業化,普及に有効である。
すなわち、生産者の側から見れば、本発明の実施に必要不可欠な部品を高品質低コストで大量生産して供給することにより、事業の拡大,発展を図ることができる。
またユーザーの側から見れば、高性能の開閉駆動装置を安価に購入して、所望の箇所に装着することにより、本発明の恩恵を享受することができる。
以上に考察したように、本請求項6を適用して、本発明方法を実施するに必要な構成部材がアッセンブリとして供給することにより、本発明の汎用性が格段に拡大される。
本発明装置は、引戸の箇所駆動用として創作したものであるが、その適用範囲は語句に縛られない。すなわち、引戸以外に適用しても本発明の技術的範囲に属する。
The invention apparatus of claim 6 is effective for industrialization and widespread use of the present invention since the structural members necessary for carrying out the method of the present invention are assembled as an assembly.
That is, from the viewpoint of the producer, the business can be expanded and developed by mass-producing and supplying the parts indispensable for the implementation of the present invention with high quality and low cost.
From the user's perspective, the benefits of the present invention can be enjoyed by purchasing a high-performance opening / closing drive device at a low cost and mounting it at a desired location.
As discussed above, the versatility of the present invention is remarkably expanded by applying the present claim 6 and supplying the components necessary for carrying out the method of the present invention as an assembly.
The device of the present invention was created for driving a sliding door, but the application range is not limited to words. That is, even if applied to other than sliding doors, it belongs to the technical scope of the present invention.

請求項7の発明装置によると、電気的信号を出力するセンサ機器を固定側の部材(例えば鴨居などの静止部材)に装着して空芯コイルの通電を制御することができる。
すなわち可動側の部材(例えば引戸などの被駆動部材)にセンサを設ける必要が無いから、信号配線が簡単容易である。配線が簡単容易であることにより、作業コストが低廉であるのみならず、作動信頼性が高い。
その上、本請求項7の構成において用いるセンサは光学的または電磁的に作動し、機械的に作動する電気接点を有していないので、接点の接触不良や接点の焼損などのトラブルを生じる虞れが無い。
According to the seventh aspect of the present invention, it is possible to control the energization of the air-core coil by mounting a sensor device that outputs an electrical signal to a stationary member (for example, a stationary member such as a duck).
That is, since it is not necessary to provide a sensor on a movable member (for example, a driven member such as a sliding door), signal wiring is simple and easy. The simple and easy wiring not only lowers the operating cost, but also increases the operational reliability.
In addition, since the sensor used in the configuration of claim 7 operates optically or electromagnetically and does not have mechanically operated electrical contacts, there is a risk of causing problems such as contact failure or contact burnout. There is no.

図3は、本発明を引戸の開閉に適用した実施形態における模式的な正面図である。
説明の便宜上、図示のように座標軸X,Y,Zを想定する。Z軸は上下方向、X軸は引戸の開閉操作方向であり、Y軸は紙面に直交している。
レール12は鴨居などの建造物に、X軸方向に固定される。引戸10には戸車11が取り付けられており、該戸車はレールに案内されてX軸方向に走行する。
上記の引戸10には、スライダ17が取り付けられており、該スライダには磁極列4がX軸方向に設置されている。この磁極列については、図1を参照して後に詳しく述べる。 前記のレール12にコイル列13が固定されて、磁極列4に対向している。このコイル列の構造についても、図1,図2を参照して後に詳しく述べる。
本例においては引戸を開閉駆動するように構成したが、本発明の適用対象は引戸に限定されず、引戸以外の物体を駆動するように構成することもできる。上記の磁極列とコイル列との対偶が本発明の本質的な構成部分であって、本発明に係る構成の磁極列とコイル列とを設ければ、必ずしも引戸や戸車を用いなくても本発明と均等である。
FIG. 3 is a schematic front view of an embodiment in which the present invention is applied to opening and closing of a sliding door.
For convenience of explanation, coordinate axes X, Y, and Z are assumed as illustrated. The Z axis is the vertical direction, the X axis is the sliding door opening / closing operation direction, and the Y axis is orthogonal to the paper surface.
The rail 12 is fixed to a building such as Kamoi in the X-axis direction. A sliding door 10 has a door 11 attached thereto, which is guided by a rail and travels in the X-axis direction.
A slider 17 is attached to the sliding door 10, and the magnetic pole row 4 is installed in the X-axis direction on the slider. This magnetic pole row will be described in detail later with reference to FIG. A coil array 13 is fixed to the rail 12 and faces the magnetic pole array 4. The structure of this coil array will also be described in detail later with reference to FIGS.
In the present example, the sliding door is configured to open and close, but the application target of the present invention is not limited to the sliding door, and may be configured to drive an object other than the sliding door. The pair of the magnetic pole array and the coil array is an essential component of the present invention, and if the magnetic pole array and the coil array having the configuration according to the present invention are provided, the present invention is not necessarily required without using a sliding door or a door wheel. It is equivalent to the invention.

図1は本発明の原理を説明するための模式図である。 第1の永久磁石Ma,第2の永久磁石Mb,第3の永久磁石Mc,第4の永久磁石Md…がX軸方向に配列されて磁極列4を形成している。
前記多数の永久磁石Ma〜Mdは一定のピッチpで配列され、隣接する永久磁石は極性が交互に反転している。
先に図3で述べたコイル列13は、第1相空芯コイル5a,5b…と第2相空芯コイル6a,b…とがX軸方向に列設されて成っている。これら空芯コイルの構成と作用とについて、図1(A)〜図1(D)を参照しつつ、以下に順次説明する。
FIG. 1 is a schematic diagram for explaining the principle of the present invention. The first permanent magnet Ma, the second permanent magnet Mb, the third permanent magnet Mc, the fourth permanent magnet Md... Are arranged in the X-axis direction to form the magnetic pole row 4.
The plurality of permanent magnets Ma to Md are arranged at a constant pitch p, and adjacent permanent magnets are alternately reversed in polarity.
The coil array 13 described above with reference to FIG. 3 includes first phase air-core coils 5a, 5b... And second phase air-core coils 6a, b. The configuration and operation of these air-core coils will be sequentially described below with reference to FIGS. 1 (A) to 1 (D).

図1(A)参照:第1相空芯コイル5a,5bは静止部材であり、磁極列4はX軸方向に移動する。この(A)図のように、永久磁石Maと永久磁石Mbとの境界が第1相空芯コイル5aに対向している状態について考察する。
この第1相空芯コイル5aに電流(矢印Ca)を通電して、付記したN,Sのように磁性を生じさせると、
永久磁石Maは矢印「引」のように斜め右方に引かれ、永久磁石Mcは矢印「押」のように斜め右方に押され、これらの作用が総合されて磁極列4は図の右方に駆動される。
1A: The first phase air-core coils 5a and 5b are stationary members, and the magnetic pole row 4 moves in the X-axis direction. Consider the state where the boundary between the permanent magnet Ma and the permanent magnet Mb faces the first phase air-core coil 5a as shown in FIG.
When a current (arrow Ca) is energized to the first phase air-core coil 5a to generate magnetism as indicated by N and S,
The permanent magnet Ma is pulled diagonally to the right as shown by the arrow “pull”, and the permanent magnet Mc is pushed diagonally to the right as shown by the arrow “push”. Driven towards.

引戸10に固着された磁極列4が右方に移動して、(B)図のように永久磁石Mbが第1相空芯コイル5aの真下にくると、両者に間には上下方向の引斥力(この場合は引力)が働いて、X軸方向の駆動力は消失する。
図1(A),(B)を対比して理解されるように、2個の永久磁石の境界上に空芯コイルが位置していないとX軸方向の駆動力が発生しない。
そこで、(C)図のように第1相空芯コイル5aから半ピッチ(p/2)離して第2相空芯コイル6aを設けておき、矢印Cbのように通電して電磁的な引斥力を発生させることにより、磁極列4を更に右方へ駆動する。
When the magnetic pole row 4 fixed to the sliding door 10 moves to the right and the permanent magnet Mb comes directly under the first phase air-core coil 5a as shown in FIG. The repulsive force (in this case, attractive force) works, and the driving force in the X-axis direction disappears.
As understood by comparing FIGS. 1A and 1B, if the air-core coil is not positioned on the boundary between the two permanent magnets, the driving force in the X-axis direction is not generated.
Therefore, a second phase air-core coil 6a is provided at a half pitch (p / 2) from the first phase air-core coil 5a as shown in FIG. By generating a repulsive force, the magnetic pole row 4 is further driven rightward.

以上に説明した図1(A)と(B)とを対比して理解されるように、第1相空芯コイル5aに対する通電(矢印Ca)と第2相空芯コイル6aに対する通電(矢印Cb)とは時間差を与えられている。この時間差は、X軸方向の距離に換算すると半ピッチ(p/2)である。また、(D)図を参照して後述するように1/4サイクルに相当する。
(C)図の状態から、第2相空芯コイル6aの作用で磁極列4が右方へp/2だけ移動して(D)図のようになると、該第2相空芯コイル6aの駆動力が消失する。
このとき、磁極境界の上方に第1相空芯コイル5aが位置しているので、この第1相空芯コイル5aに通電することにより、磁極列4の駆動を継続する。
ただし、図1(A),(D)を対比して明らかなように、第1相空芯コイル5aが対向している磁極境界の極性が変わっている。このため、(D)図の状態では、(A)図におけると反対に矢印Cc方向に通電しなければ成らない。
As can be understood by comparing FIGS. 1A and 1B described above, energization to the first phase air-core coil 5a (arrow Ca) and energization to the second-phase air-core coil 6a (arrow Cb). ) Is given a time difference. This time difference is a half pitch (p / 2) when converted to a distance in the X-axis direction. Further, as will be described later with reference to FIG.
(C) From the state shown in the figure, when the magnetic pole row 4 is moved to the right by p / 2 by the action of the second phase air-core coil 6a, as shown in FIG. (D), the second-phase air-core coil 6a The driving force disappears.
At this time, since the first phase air-core coil 5a is located above the magnetic pole boundary, the drive of the magnetic pole row 4 is continued by energizing the first phase air-core coil 5a.
However, as is clear by comparing FIGS. 1A and 1D, the polarity of the magnetic pole boundary where the first-phase air-core coil 5a faces is changed. For this reason, in the state of (D) figure, it has to energize in the direction of arrow Cc contrary to the figure in (A) figure.

2個の永久磁石(例えばMbとMc)がピッチpだけ離れて配置されている。従って、空芯コイルに対する通電方向は、磁極列が寸法pだけ移動するごとに反転させる。
つまり、ピッチ寸法pが、矩形波交流の半サイクルに相当する。すなわち、1サイクルは2ピッチに相当する。
図1(A)参照:2個の第1相空芯コイル5a,5bは、この例では2ピッチ離して配置されている。
1ピッチ離して配置することも可能であるが、間隔寸法を磁極ピッチ寸法(p)の整数倍にすることが必要条件である。
Two permanent magnets (for example, Mb and Mc) are arranged apart by a pitch p. Therefore, the energization direction for the air-core coil is reversed every time the magnetic pole row moves by the dimension p.
That is, the pitch dimension p corresponds to a half cycle of rectangular wave alternating current. That is, one cycle corresponds to two pitches.
See FIG. 1A: The two first-phase air-core coils 5a and 5b are arranged at a pitch of 2 in this example.
Although it is possible to arrange them one pitch apart, it is a necessary condition that the interval dimension is an integral multiple of the magnetic pole pitch dimension (p).

複数の第1相空芯コイル5a,5b…が間隔寸法pまたはその整数倍で配列されるのと同様に、複数の第2相空芯コイル6a,6b…も間隔寸法pまたはその整数倍で配列される。
そして、第1相空芯コイル5a,5bと複数の第2相空芯コイル6a,6bとは相互に半ピッチ(p/2)ずらせて配列される。
前記複数の第1相空芯コイル5a,5bは磁極列4の移動に対応させて通電方向を反転させ、それよりも1/4サイクルの位相差で複数の第2相空芯コイル6a,6bの通電方向を反転させる。
In the same manner that the plurality of first phase air-core coils 5a, 5b,... Are arranged with a spacing dimension p or an integer multiple thereof, the plurality of second phase air-core coils 6a, 6b. Arranged.
The first phase air-core coils 5a and 5b and the plurality of second phase air-core coils 6a and 6b are arranged so as to be shifted from each other by a half pitch (p / 2).
The plurality of first phase air-core coils 5a and 5b reverse the energization direction in accordance with the movement of the magnetic pole row 4, and the plurality of second phase air-core coils 6a and 6b with a phase difference of 1/4 cycle. Reverse the energizing direction.

上述のごとく磁極列4の動きに応じて空芯コイルの通電を切り替えるためには、磁極列の動きを検出しなければならない。
図2は磁極列の位置を検出する機構を説明するための模式的な系統図である。
磁極列4は先にのべたように引戸(図外)に固定されている。上記の引戸に、光学的なメジャー7が固定的に取り付けられる。機構的には磁極列4に対して光学的なメジャー7の位置が固定される。磁極列が引戸と一緒に移動すると、メジャー7も一緒に移動する。すなわち、メジャーは移動側の部材である。
上記メジャー7に対向せしめて光センサ8が、固定側の部材(例えば静止部材であるレール、または鴨居などの建造物もしくは静止建具)に設置される。
As described above, in order to switch the energization of the air-core coil in accordance with the movement of the magnetic pole row 4, the movement of the magnetic pole row must be detected.
FIG. 2 is a schematic system diagram for explaining a mechanism for detecting the position of the magnetic pole row.
The magnetic pole row 4 is fixed to the sliding door (not shown) as described above. An optical measure 7 is fixedly attached to the sliding door. Mechanically, the position of the optical measure 7 is fixed with respect to the magnetic pole row 4. When the magnetic pole row moves with the sliding door, the measure 7 moves with it. That is, the measure is a member on the moving side.
The optical sensor 8 is installed on a fixed member (for example, a rail that is a stationary member, or a building or stationary fixture such as a duck, etc.) facing the measure 7.

先に図1を参照して説明した構造機能から容易に理解されるように、本発明における空芯コイルの通電切り替えのタイミングは、マイクロ秒を争うような高精度をを要しない。このため、前記光センサ8の解像度もミクロン単位の精密さを要しない。従って、比較的に安価な機器で足りる。
上記と異なる実施形態として、磁極列4に対向せしめて磁気センサ(例えばホール素子)9を設けることも推奨される。この場合は光学的なメジャーを設けることを要せず、該磁気センサ9は磁極列4の磁束を感知して、磁極列の位置を表す電気的信号を出力する。
As can be easily understood from the structural function described above with reference to FIG. 1, the timing of switching the energization of the air-core coil in the present invention does not require such high accuracy as to compete for microseconds. For this reason, the resolution of the optical sensor 8 does not require precision in micron units. Therefore, a relatively inexpensive device is sufficient.
As an embodiment different from the above, it is also recommended to provide a magnetic sensor (for example, a Hall element) 9 facing the magnetic pole row 4. In this case, it is not necessary to provide an optical measure, and the magnetic sensor 9 senses the magnetic flux of the magnetic pole row 4 and outputs an electrical signal indicating the position of the magnetic pole row.

光センサ8の出力信号、または磁気センサ9の出力信号は自動制御回路22に入力される。該自動制御回路は磁極列4の位置を算定して、操作スイッチ23の指令に基づいて第1相空芯コイル5a,5b,5cの通電および第2相空芯コイル6a,6b,6cの通電を切り替えて磁極列4をX軸方向に往復駆動する。
この図2の例では光学的メジャー7の目盛りを、1ピッチ当たり6個としたが、本発明を実施する際、メジャー7の目盛り寸法は任意に設定することができる。本実施例におけるピッチ寸法は30ミリメートルであり、1目盛り5ミリメートルである。いずれにせよ、この程度の比較的ラフな制御精度で足りることは本発明の長所の一つでありる。
The output signal of the optical sensor 8 or the output signal of the magnetic sensor 9 is input to the automatic control circuit 22. The automatic control circuit calculates the position of the magnetic pole row 4 and energizes the first phase air-core coils 5a, 5b, 5c and the second phase air-core coils 6a, 6b, 6c based on the command of the operation switch 23. And the magnetic pole row 4 is driven to reciprocate in the X-axis direction.
In the example of FIG. 2, the scale of the optical measure 7 is 6 per pitch. However, when the present invention is implemented, the scale size of the measure 7 can be arbitrarily set. In this embodiment, the pitch dimension is 30 millimeters and the scale is 5 millimeters. In any case, it is one of the advantages of the present invention that such a relatively rough control accuracy is sufficient.

図4は実体的な構造を示す模式図であって、図4(A)は図3のA−A断面に相当し、図4(B)は図3のB−B断面に相当する。
(A)の断面においては、引戸10の上縁に戸車11が取り付けられており、該戸車はレール12によって支持され案内されている。
上記のレールは鴨居19に固着されている。
(B)の断面においては引戸10に対し、スライダ17を介して磁極列4が設置されている。符号21を付して示したのはバックヨークである。バックヨークを設けることにより、磁極列4の磁束密度が大きくなり、駆動力が増大する。
4A and 4B are schematic views showing a substantial structure. FIG. 4A corresponds to the AA cross section of FIG. 3, and FIG. 4B corresponds to the BB cross section of FIG.
In the cross section of (A), a door wheel 11 is attached to the upper edge of the sliding door 10, and the door wheel is supported and guided by a rail 12.
The rail is fixed to the Kamoi 19.
In the cross section of (B), the magnetic pole row 4 is installed via the slider 17 with respect to the sliding door 10. Reference numeral 21 denotes a back yoke. Providing the back yoke increases the magnetic flux density of the magnetic pole row 4 and increases the driving force.

(B)の断面においては、レール12の天井壁に対し、コイルプレート20を介して空芯コイル5,6が固着されている。上記のコイルプレートは、合成樹脂のような非磁性体で構成することもでき、電気鉄板のような強磁性体で構成することもできる。   In the cross section of (B), air-core coils 5 and 6 are fixed to the ceiling wall of the rail 12 via the coil plate 20. The coil plate can be made of a non-magnetic material such as a synthetic resin, or can be made of a ferromagnetic material such as an electric iron plate.

図4に表されている構成部材の中で、鴨居19は他の静止部材で代替することもでき、引戸10は他の可動部材で代替することができる。
図4に表されている構成部材の中で、鴨居19や引戸10以外の部材、すなわちレール12、空芯コイル5,6、磁極列4、スライダ17、および戸車11をアッセンブリ(組部品)として生産,供給されると、ユーザーは、このアッセンブリを購入して所望の家具,建具に装着することにより、迅速容易に本発明を実用に供することができる(この場合のユーザーとは、最終ユーザーに限らず、建築業者全般が含まれる)。このような実施の態様は、本発明の請求項6に相当する。この場合、「引戸」という字句によって本発明の技術的範囲を限定的に解釈してはならない。
Among the components shown in FIG. 4, the head 19 can be replaced with another stationary member, and the sliding door 10 can be replaced with another movable member.
Among the components shown in FIG. 4, members other than Kamoi 19 and sliding door 10, that is, rail 12, air-core coils 5 and 6, magnetic pole array 4, slider 17, and door pulley 11 are used as an assembly (assembled part). Once produced and supplied, the user can quickly and easily put the present invention into practical use by purchasing this assembly and mounting it on the desired furniture and fittings (the user in this case is the end user) Including all contractors). Such an embodiment corresponds to claim 6 of the present invention. In this case, the technical scope of the present invention should not be interpreted in a limited manner by the phrase “sliding door”.

本発明の原理を説明するための模式図Schematic diagram for explaining the principle of the present invention 本発明の1実施形態における制御系統図Control system diagram in one embodiment of the present invention 本発明の1実施形態における模式的なX−Z断面図Schematic XZ sectional view in one embodiment of the present invention 本発明の1実施形態における模式的なY−Z断面図Schematic YZ sectional view in one embodiment of the present invention

符号の説明Explanation of symbols

4…磁極列
5…第1相空芯コイル
6…第2相空芯コイル
7…メジャー
8…光センサ
9…磁気センサ
10…引戸
12…レール
13…コイル列
17…連結シャフト
18…連結シャフト
19…鴨居
20…コイルプレート
21…バックヨーク
22…自動制御回路
23…操作スイッチ
4 ... Magnetic pole array 5 ... First phase air-core coil 6 ... Second phase air-core coil 7 ... Major 8 ... Optical sensor 9 ... Magnetic sensor 10 ... Sliding door 12 ... Rail
13 ... Coil array
17 ... Connecting shaft
18 ... Connecting shaft
19 ... Kamoi
20 ... Coil plate
21 ... Back yoke
22 ... Automatic control circuit
23 ... Operation switch

Claims (7)

引戸を電動で開閉する方法において、
該引戸の開閉方向をX軸とし、引戸の厚さ方向をZ軸とし、上下方向をZ軸とする直交3軸X,Y,Zを想定し、
上記の引戸に、N極とS極とを一定のピッチpで交互に並べた磁極列を、X軸方向に設置し、
一方、複数個の第1相空芯コイルを間隔寸法p又はその整数倍でX軸方向に並べるとともに、複数個の第二相空芯コイルを間隔寸法p又はその整数倍でX軸方向に並べ、かつ上記第1相空芯コイルと第2相空芯コイルとをX軸方向にp/2だけ偏らせてコイル列を形成し、
前記の磁極列に対向せしめて、上記のコイル列を建造物に取り付け、
前記の第1相空芯コイルに対する直流の通電方向を交互に反転させるとともに、
前記の第2相空芯コイルに対する直流の通電方向を、第1相空芯コイルに比して1/4サイクルの位相差で交互に反転させることを特徴とする、引戸の開閉駆動方法。
In the method of opening and closing the sliding doors electrically,
Assuming orthogonal three axes X, Y, and Z with the opening / closing direction of the sliding door as the X axis, the thickness direction of the sliding door as the Z axis, and the vertical direction as the Z axis,
In the above sliding door, a magnetic pole array in which N poles and S poles are alternately arranged at a constant pitch p is installed in the X-axis direction,
On the other hand, a plurality of first-phase air-core coils are arranged in the X-axis direction with a spacing dimension p or an integer multiple thereof, and a plurality of second-phase air-core coils are arranged in the X-axis direction with a spacing dimension p or an integer multiple thereof. And the first phase air-core coil and the second phase air-core coil are biased by p / 2 in the X-axis direction to form a coil array,
Attach the above coil row to the building, facing the magnetic pole row,
Alternately reversing the direction of direct current to the first phase air-core coil,
A sliding door opening / closing drive method, wherein the direction of direct current application to the second phase air-core coil is alternately reversed with a phase difference of 1/4 cycle as compared with the first phase air-core coil.
前記第1相空芯コイル、および第2相空芯コイルの通電方向を反転するタイミングは、
引戸に取り付けた光学的メジャーを光センサで読み取った検出信号に基づいて行ない、
又は、前記磁極列の移動を磁気センサで読み取った検出信号に基づいて行なうことを特徴とする、請求項1に記載した引戸の開閉駆動方法。
The timing for reversing the energization direction of the first phase air-core coil and the second phase air-core coil is as follows:
Based on the detection signal read by the optical sensor optical measure attached to the sliding door,
2. The sliding door opening / closing driving method according to claim 1, wherein the magnetic pole row is moved based on a detection signal read by a magnetic sensor.
引戸を電動で開閉する装置において、
該引戸の開閉方向をX軸とし、引戸の厚さ方向をY軸とし、上下方向をZ軸とする直交3軸X,Y,Zを想定し、
一定のピッチpでN極とS極とをX軸方向に交互に並べた磁極列が、前記の引戸に設置されていて、
複数個の第1相空芯コイルを間隔寸法p又はその整数倍でX軸方向に並べるとともに、複数個の第二相空芯コイルを間隔寸法p又はその整数倍ででX軸方向に並べ、かつ上記第1相空芯コイルと第2相空芯コイルとをX軸方向にp/2だけ偏らせて成るコイル列が、建造物に取り付けられて前記の磁極列に対向しており、
かつ、前記の第1相空芯コイルに対する直流の通電方向を交互に反転させるとともに、前記の第2相空芯コイルに対する直流の通電方向を、第1相空芯コイルに比して1/4サイクルの位相差で交互に反転させる自動制御回路が設けられていることを特徴とする、引戸の開閉駆動装置。
In the device that electrically opens and closes the sliding door,
Assuming orthogonal three axes X, Y, Z with the opening / closing direction of the sliding door as the X axis, the thickness direction of the sliding door as the Y axis, and the vertical direction as the Z axis,
A magnetic pole array in which N poles and S poles are alternately arranged in the X-axis direction at a constant pitch p is installed in the sliding door,
A plurality of first-phase air-core coils are arranged in the X-axis direction with a spacing dimension p or an integer multiple thereof, and a plurality of second-phase air-core coils are arranged in the X-axis direction with a spacing dimension p or an integer multiple thereof, A coil array formed by biasing the first-phase air-core coil and the second-phase air-core coil by p / 2 in the X-axis direction is attached to the building and faces the magnetic pole array,
In addition, the direction of direct current flow to the first phase air-core coil is alternately reversed, and the direction of direct current flow to the second phase air-core coil is set to ¼ that of the first phase air-core coil. A sliding door opening / closing drive device, characterized in that an automatic control circuit for alternately inverting the phase with a cycle phase difference is provided.
前記の引戸に取り付けられて、磁極列と一緒にX軸方向に移動する光学的メジャーと、上記メジャーを読み取って磁極列の位置を検知する光センサとを具備しており、
又は、前記磁極列の磁気に感応して、該磁極列の位置を検知する磁気センサを具備していて、
かつ、上記光センサの検出信号、または上記磁気センサの検出信号が、前記の自動制御回路に入力されるようになっていることを特徴とする、請求項3に記載した引戸の開閉駆動装置。
An optical measure attached to the sliding door and moving in the X-axis direction together with the magnetic pole row; and an optical sensor for detecting the position of the magnetic pole row by reading the measure.
Or a magnetic sensor that detects the position of the magnetic pole row in response to the magnetism of the magnetic pole row,
4. The sliding door opening / closing drive device according to claim 3, wherein a detection signal of the optical sensor or a detection signal of the magnetic sensor is input to the automatic control circuit.
前記の磁極列と戸車とが、X軸方向の連結シャフトにより連結されていて、磁極列に発生した電磁的駆動力が、主として連結シャフトを介して戸車に与えられるようになっていることを特徴とする、請求項3または請求項4に記載した引戸の開閉駆動装置。   The magnetic pole row and the door wheel are connected by a connecting shaft in the X-axis direction, and an electromagnetic driving force generated in the magnetic pole row is mainly applied to the door wheel through the connecting shaft. The sliding door opening and closing drive device according to claim 3 or 4. 引戸を電動で開閉する装置において、
レールおよび戸車と、
一定のピッチpでN極とS極とをX軸方向に交互に並べた磁極列と、
複数個の第1相空芯コイルを間隔寸法pまたはその整数倍で並べるとともに、複数個の第二相空芯コイルを間隔寸法pまたはその整数倍で並べ、かつ上記第1相空芯コイルと第2相空芯コイルとをp/2だけ偏らせて成るコイル列と、
上記第1相空芯コイルおよび第2相空芯コイルの通電方向を、磁極列の動きに応じて反転させる機能を有する自動制御回路とが組合わされて、既設の建造物および/または建具に装着し得る組部品を成していることを特徴とする、引戸の開閉駆動装置。
In the device that electrically opens and closes the sliding door,
With rails and doors,
A magnetic pole array in which N poles and S poles are alternately arranged in the X-axis direction at a constant pitch p;
A plurality of first phase air-core coils are arranged at a spacing dimension p or an integer multiple thereof, and a plurality of second phase air-core coils are arranged at a spacing dimension p or an integer multiple thereof, A coil array formed by biasing the second phase air-core coil by p / 2,
Attached to an existing building and / or joinery in combination with an automatic control circuit having a function of reversing the energizing directions of the first phase air core coil and the second phase air core coil in accordance with the movement of the magnetic pole row A sliding door opening and closing drive device, characterized in that the sliding door is formed of a pair of parts that can be operated.
前記の組部品に、(イ)前記磁極列に組つけられるメジャーの動きを読み取って電気的信号を出力する光センサ、または、(ロ)前記磁極列の磁気に感応し、該磁極列の動きを読み取って電気的信号を出力する磁気センサが加えられていることを特徴とする、請求項6に記載した引戸の開閉駆動装置。   (B) an optical sensor that reads the movement of a measure assembled to the magnetic pole row and outputs an electrical signal; or (b) the movement of the magnetic pole row in response to the magnetism of the magnetic pole row. 7. A sliding door opening / closing drive device according to claim 6, further comprising a magnetic sensor that reads an electric signal and outputs an electrical signal.
JP2005066766A 2005-03-10 2005-03-10 Open/close driving method of sliding door and open/close unit Pending JP2006254581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066766A JP2006254581A (en) 2005-03-10 2005-03-10 Open/close driving method of sliding door and open/close unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066766A JP2006254581A (en) 2005-03-10 2005-03-10 Open/close driving method of sliding door and open/close unit

Publications (1)

Publication Number Publication Date
JP2006254581A true JP2006254581A (en) 2006-09-21

Family

ID=37094472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066766A Pending JP2006254581A (en) 2005-03-10 2005-03-10 Open/close driving method of sliding door and open/close unit

Country Status (1)

Country Link
JP (1) JP2006254581A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950094B1 (en) 2009-10-22 2010-03-26 (주)알파오메가종합건축사사무소 Eco-friendly automatic equipment for opening or shutting for corridor windows in an apartment house
KR101040431B1 (en) * 2010-02-01 2011-06-09 박언용 Fittings without step using magnetic force
WO2013076584A2 (en) * 2011-11-21 2013-05-30 Jackson Global Pte. Ltd. Motor-driven curtain or blind assembly
CN105774827A (en) * 2016-05-06 2016-07-20 重庆公共运输职业学院 Rail transit train door with electromagnetic force serving as driving power
CN106100283A (en) * 2016-07-21 2016-11-09 南京航空航天大学 Independent winding dual-side flat plate type permanent-magnetism linear motor
US9587431B2 (en) 2013-03-15 2017-03-07 Jackson Global Pte. Ltd. Motorized window covering assembly
CN108386094A (en) * 2018-02-05 2018-08-10 东南大学 A kind of permanent magnetic linear synchronous motor is double to open automatic door control method
CN110130776A (en) * 2019-05-09 2019-08-16 江苏德普尔门控科技有限公司 Straight line motor drive type translation door and its control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473190U (en) * 1990-11-07 1992-06-26
JP2001197718A (en) * 2000-01-14 2001-07-19 Yaskawa Electric Corp Coreless linear motor
JP2001220952A (en) * 2000-02-07 2001-08-17 Matsushita Electric Works Ltd Sliding door opening-closing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473190U (en) * 1990-11-07 1992-06-26
JP2001197718A (en) * 2000-01-14 2001-07-19 Yaskawa Electric Corp Coreless linear motor
JP2001220952A (en) * 2000-02-07 2001-08-17 Matsushita Electric Works Ltd Sliding door opening-closing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950094B1 (en) 2009-10-22 2010-03-26 (주)알파오메가종합건축사사무소 Eco-friendly automatic equipment for opening or shutting for corridor windows in an apartment house
KR101040431B1 (en) * 2010-02-01 2011-06-09 박언용 Fittings without step using magnetic force
WO2013076584A2 (en) * 2011-11-21 2013-05-30 Jackson Global Pte. Ltd. Motor-driven curtain or blind assembly
WO2013076584A3 (en) * 2011-11-21 2013-09-12 Jackson Global Pte. Ltd. Motor-driven curtain or blind assembly
US9072398B2 (en) 2011-11-21 2015-07-07 Jackson Global Pte. Ltd. Motor-driven curtain or blind assembly
US9587431B2 (en) 2013-03-15 2017-03-07 Jackson Global Pte. Ltd. Motorized window covering assembly
CN105774827A (en) * 2016-05-06 2016-07-20 重庆公共运输职业学院 Rail transit train door with electromagnetic force serving as driving power
CN106100283A (en) * 2016-07-21 2016-11-09 南京航空航天大学 Independent winding dual-side flat plate type permanent-magnetism linear motor
CN108386094A (en) * 2018-02-05 2018-08-10 东南大学 A kind of permanent magnetic linear synchronous motor is double to open automatic door control method
CN108386094B (en) * 2018-02-05 2019-08-20 东南大学 A kind of permanent magnetic linear synchronous motor is double to open automatic door control method
CN110130776A (en) * 2019-05-09 2019-08-16 江苏德普尔门控科技有限公司 Straight line motor drive type translation door and its control method

Similar Documents

Publication Publication Date Title
JP2006254581A (en) Open/close driving method of sliding door and open/close unit
US7592720B2 (en) Sliding door comprising a magnetic drive system provided with a path measuring system
JPH0745745Y2 (en) Moving magnet linear motor for automatic doors
JP4094799B2 (en) Slide device with built-in movable magnet type linear motor
US6917126B2 (en) Sliding means with built-in moving-magnet linear motor
US4318038A (en) Moving-coil linear motor
WO1991012648A1 (en) Linear dc motor
JP2010130740A (en) Movable magnet-type linear motor
JPH08275500A (en) Linear motor
US6903494B2 (en) Actuator optical fiber moving apparatus, and optical switch
JP2007123470A (en) Solenoid actuator and biaxial actuator
JP2976809B2 (en) Magnet movable DC linear motor
US20060087194A1 (en) Motor using rectangular waveform conductor
US7453172B2 (en) Linear slide apparatus
KR100784430B1 (en) Method and apparatus for driving open and shut of sliding door
JP6576285B2 (en) Thrust measuring device and thrust measuring method
JPH08168232A (en) Linear encoder device
JP2013072742A (en) Encoder and actuator
JPS619161A (en) Coreless linear dc motor
JPH08275497A (en) Linear motor
JPH05211798A (en) Method for controlling brake of brushless dc linear motor
JP2617323B2 (en) Movable magnet type linear DC brushless motor with multiple movers
JPH0817567B2 (en) Movable magnet type linear DC brushless motor with two movers
JP2005080317A (en) Small slide device
JPH05146135A (en) Linear actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110215