JP2006254470A - Television camera - Google Patents

Television camera Download PDF

Info

Publication number
JP2006254470A
JP2006254470A JP2006080229A JP2006080229A JP2006254470A JP 2006254470 A JP2006254470 A JP 2006254470A JP 2006080229 A JP2006080229 A JP 2006080229A JP 2006080229 A JP2006080229 A JP 2006080229A JP 2006254470 A JP2006254470 A JP 2006254470A
Authority
JP
Japan
Prior art keywords
video signal
short
exposure
flicker
exposure video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006080229A
Other languages
Japanese (ja)
Other versions
JP4322264B2 (en
Inventor
Kazuhiro Igarashi
和広 五十嵐
Akira Fukushima
明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2006080229A priority Critical patent/JP4322264B2/en
Publication of JP2006254470A publication Critical patent/JP2006254470A/en
Application granted granted Critical
Publication of JP4322264B2 publication Critical patent/JP4322264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain image of a wide dynamic range, when subjects having large differences in luminance level, such as the inside and the outside of a tunnel in the daytime are mixed at the same time, and to provide an image which an observer easily sees without a flicker by outputting an image of only of the standard exposure video signal by sensing the flickers generated in a short time exposure video signal, when the differences in the luminance level become small at night, or conversely when the outdoors is dark and the inside of the tunnel is bright a situation opposite to daytime. <P>SOLUTION: The situation of the generation of flickers is detected by the situation of average illuminance level of the short time exposure video signal. When fluctuations in the average luminance level is detected by at least the prescribed number of times, switchover to the standard exposure signal is performed and this is output. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、標準露光映像信号と短時間露光映像信号とを時分割出力できる固体撮像素子を有し、広ダイナミックレンジ化した映像信号を得られるテレビジョンカメラ装置に関し、特に夜間発生する蛍光灯やナトリウム灯等のフリッカを除去する方法に関わるものである。   The present invention relates to a television camera apparatus having a solid-state imaging device capable of time-division output of a standard exposure video signal and a short exposure video signal, and capable of obtaining a video signal with a wide dynamic range. The present invention relates to a method for removing flicker such as a sodium lamp.

従来、標準露光映像信号と短時間露光映像信号とを時分割出力できる固体撮像素子を有し、広ダイナミックレンジの映像信号を得るテレビジョンカメラは、トンネル出入り口の監視のように輝度レベル差の大きい被写体条件の場合、オートアイリスレンズは標準露光時間の信号が適正になるように制御するので、図2のように昼間は輝度レベルの高い屋外の信号成分が短露光側に存在し、トンネル内の信号成分が標準露光側に存在する。しかし、日没後の夜間になると短露光側に存在した屋外の信号成分がトンネル内の信号成分より暗くなるため、図3のように昼間とは反対にトンネル内の信号成分が短露光側、屋外の信号成分が標準露光側に存在するようになる。または、夕方のようにトンネル内と屋外の輝度レベルの差が少なくなり、トンネル内信号成分と屋外の信号成分が短露光側と標準露光側の両方に存在することもある。   Conventionally, a television camera that has a solid-state imaging device capable of time-division output of a standard exposure video signal and a short-time exposure video signal and obtains a video signal with a wide dynamic range has a large luminance level difference as in monitoring of a tunnel entrance and exit. In the case of subject conditions, the auto iris lens controls so that the signal of the standard exposure time is appropriate, so that an outdoor signal component with a high luminance level exists on the short exposure side in the daytime as shown in FIG. The component is present on the standard exposure side. However, at night after sunset, the outdoor signal components that existed on the short exposure side become darker than the signal components in the tunnel, so that the signal components in the tunnel are on the short exposure side, outdoors, as opposed to daytime, as shown in FIG. Signal components are present on the standard exposure side. Alternatively, the difference in brightness level between the inside and outside of the tunnel is reduced as in the evening, and the signal component inside the tunnel and the signal component outside the tunnel may exist on both the short exposure side and the standard exposure side.

また、図5のように昼間は輝度レベルが高く色温度も高い屋外の信号成分が短時間露光側に存在し、トンネル内の色温度の低い信号成分が標準露光側に存在する。このとき短時間露光側の色温度は12,000〜6000K(ケルビン)付近になる。標準露光側に存在するナトリウム灯の色温度は2,000〜2,500K付近である。しかし、日没近くになると徐々に屋外の色温度は下がり、4,000〜3,000Kになり、短時間露光側に存在した高色温度の屋外の信号成分がトンネル内の信号成分より暗くなるため、図5のように昼間とは反対にトンネル内の低色温度信号成分が短時間露光側、屋外の信号成分が標準露光側に存在するようになる。または、トンネル内と屋外の輝度レベルの差が少なくなり、トンネル内信号成分と屋外の信号成分が短時間露光側と標準露光側の両方に存在することもある。このときは短時間露光側と標準露光側の色温度は同等になる。   Further, as shown in FIG. 5, an outdoor signal component having a high luminance level and a high color temperature is present on the short-time exposure side during daytime, and a signal component having a low color temperature in the tunnel is present on the standard exposure side. At this time, the color temperature on the short-time exposure side is in the vicinity of 12,000 to 6000 K (Kelvin). The color temperature of the sodium lamp existing on the standard exposure side is around 2,000 to 2,500K. However, when it is near sunset, the outdoor color temperature gradually decreases to 4,000 to 3,000 K, and the high color temperature outdoor signal component existing on the short exposure side becomes darker than the signal component in the tunnel. Therefore, as shown in FIG. 5, the low color temperature signal component in the tunnel exists on the short-time exposure side and the outdoor signal component on the standard exposure side as opposed to daytime. Alternatively, the difference in brightness level between the inside and outside of the tunnel is reduced, and the signal component inside the tunnel and the signal component outside the tunnel may exist on both the short-time exposure side and the standard exposure side. At this time, the color temperatures of the short-time exposure side and the standard exposure side are equal.

これらのナトリウム灯が短時間露光側になる場合、ナトリウム灯等の放電管照明器具は電源周波数毎に点滅するので短時間露光映像信号の高速シャッター(例えば、1/2000秒)との間にタイミングのズレが生じて短時間露光映像信号のトンネル内信号成分にフリッカが発生する。例えば、電源周波数が50Hzの場合、100回/秒で点滅する。このような被写体条件になる場所での監視には、フリッカを防止することが優先されるため従来のワイドダイナミック機能付きカメラは使用せず、100回/秒で点滅を繰り返す光源にあわせて露光を行なう、1/100秒のシャッタ速度を持つカメラを使用していた。   When these sodium lamps are on the short exposure side, discharge lamps such as sodium lamps flash at every power supply frequency, so the timing between the high-speed shutter (for example, 1/2000 second) of the short-exposure video signal. This causes a flicker in the signal component in the tunnel of the short exposure video signal. For example, when the power supply frequency is 50 Hz, it blinks at 100 times / second. For monitoring in such subject conditions, priority is given to prevention of flicker, so a conventional camera with a wide dynamic function is not used, and exposure is performed according to a light source that repeatedly blinks at 100 times / second. I used a camera with a shutter speed of 1/100 second.

本発明の目的は、上述のような昼間、トンネル内と屋外のような輝度レベル差が大きい被写体が同時に混在するときは広ダイナミックレンジの映像が得られ、夜間、輝度レベルの差が少なくなるか、昼間と反対に屋外が暗くなり、トンネル内の方が明るいような場合には、短時間露光映像信号に発生するフリッカを検知し、標準露光映像信号のみの映像を出力することにより、フリッカを除去し、観測者に見やすい映像を提供することにある。   The object of the present invention is to obtain a video with a wide dynamic range when a subject with a large difference in brightness level is mixed at the same time such as in the daytime and in the tunnel as described above, and whether the difference in brightness level is reduced at night. When the outside is darker and the inside of the tunnel is brighter than in the daytime, flicker generated in the short-exposure video signal is detected, and only the standard exposure video signal is output. The purpose is to provide an image that is easy to see for the observer.

本発明は、上記の目的を達成するために、異なる露光条件により、標準的な明るさの被写体が適正レベルとなるようにして得た標準露光映像信号と、所定値より明るい被写体が適正レベルとなるようにして得た短時間露光映像信号とを合成して、広ダイナミックレンジの映像信号を生成するテレビジョンカメラにおいて、フリッカの発生状況に応じて上記広ダイナミックレンジ映像信号と上記標準露光映像信号のいずれかを切り替えて出力する手段を有するものである。   In order to achieve the above object, the present invention provides a standard exposure video signal obtained by setting an object with standard brightness to an appropriate level under different exposure conditions, and an object having a brightness level that is brighter than a predetermined value. In a television camera that generates a wide dynamic range video signal by combining the short-time exposure video signal obtained as described above, the wide dynamic range video signal and the standard exposure video signal according to the occurrence of flicker. There are means for switching and outputting either of the above.

また、上記フリッカの発生状況を、前記短時間露光映像信号の平均輝度レベル状況により検知し、該平均輝度レベルの変動を所定回数以上検出した場合、上記標準露光映像信号に切り替えて出力するものである。   Further, the occurrence of the flicker is detected based on the average luminance level of the short-time exposure video signal, and when the fluctuation of the average luminance level is detected a predetermined number of times or more, the standard exposure video signal is switched and output. is there.

また、前記フリッカの発生状況を、短時間露光映像信号の輝度レベルにより検知し、該輝度レベルが所定値以下の場合、上記標準露光映像信号に切り替えて出力するものである。   Further, the occurrence state of the flicker is detected based on the luminance level of the short-time exposure video signal, and when the luminance level is a predetermined value or less, it is switched to the standard exposure video signal and output.

さらに、前記フリッカの発生状況を、短時間露光映像信号の色温度により検知し、該色温度が所定値以下の場合、上記標準露光映像信号に切り替えて出力するものである。   Further, the occurrence state of the flicker is detected by the color temperature of the short-time exposure video signal, and when the color temperature is not more than a predetermined value, it is switched to the standard exposure video signal and output.

本発明によれば、フリッカがある時には自動的に標準露光のみの映像になり、フリッカが無くなると広ダイナミックレンジな映像を得ることのできるテレビジョンカメラを実現することができ、観測者が監視しやすくなる。   According to the present invention, it is possible to realize a television camera that automatically obtains an image of only standard exposure when flicker is present, and obtains a wide dynamic range image when flicker is eliminated. It becomes easy.

以下、本発明の一実施例の回路構成について、図1を用いて説明する。図1において、被写体からの光はオートアイリスレンズ1を通して固体撮像素子(CCD)2に入射される。CCD2は1水平走査期間に、例えば、1/2000秒間に撮像光を露光して得られた短時間露光映像信号と、その短時間露光映像信号より長く電源周波数による光源の点滅周期にあわせた、例えば電源周波数が50Hzの時には1/100秒間に撮像光を露光して得られた標準露光映像信号とを出力する。CCD2から出力された映像信号はCDS3でサンプルホールドされ、信号が所要のレベルとなるようにAGC4で自動利得制御し、さらにA/D変換器5でアナログ映像信号からデジタル映像信号に変換される。6は、A/D変換器5からのデジタル映像信号を1水平走査期間毎にそのデジタル映像信号の標準露光映像信号と短時間露光映像信号とを分離し、それぞれ1水平走査期間に時間伸張して、それらを同期化してそれぞれ同時に出力するようにした同期化回路である。同期化回路6から出力された標準露光映像信号は標準露光用映像信号処理回路7へ入力され、一方、同じく同期化回路6から出力された短時間露光映像信号は短時間露光用映像信号処理回路8へ入力される。これら標準露光用映像信号処理回路7および短時間露光用映像信号処理回路8は入力された映像信号に各々所定の映像信号処理を施し、例えばガンマ補正、エンハンサ処理やホワイトバランス処理などを施す。所定の映像信号処理を施された標準露光映像信号と短時間露光映像信号は合成・階調補正処理回路9で広ダイナミックレンジ映像信号として出力切り換え回路11へ出力される。出力切り換え回路11は、後段に説明する判断処理による結果を基に、合成された広ダイナミックレンジ映像信号か長露光映像信号のどちらかを切り換えて出力する。マイクロコンピュータ(CPU)10はAGC4、標準露光用映像信号処理回路7、短時間露光用映像信号処理回路8および合成・階調補正処理回路9の制御を施すものであり、例えば自動利得制御処理、ホワイトバランス処理、合成処理等のソフトウェアを内蔵する。   The circuit configuration of one embodiment of the present invention will be described below with reference to FIG. In FIG. 1, light from a subject enters a solid-state imaging device (CCD) 2 through an auto iris lens 1. In one horizontal scanning period, for example, the CCD 2 matches a short-exposure video signal obtained by exposing the imaging light for 1/2000 seconds and a light source blinking period longer than the short-exposure video signal by a power supply frequency. For example, when the power supply frequency is 50 Hz, a standard exposure video signal obtained by exposing the imaging light for 1/100 second is output. The video signal output from the CCD 2 is sampled and held by the CDS 3, automatic gain control is performed by the AGC 4 so that the signal becomes a required level, and the analog video signal is converted into a digital video signal by the A / D converter 5. 6 separates the digital video signal from the A / D converter 5 from the standard exposure video signal and the short-time exposure video signal of the digital video signal for each horizontal scanning period, and each time-expands each horizontal scanning period. The synchronization circuit synchronizes them and outputs them simultaneously. The standard exposure video signal output from the synchronization circuit 6 is input to the standard exposure video signal processing circuit 7, while the short exposure video signal output from the synchronization circuit 6 is also the short exposure video signal processing circuit. 8 is input. The standard exposure video signal processing circuit 7 and the short exposure video signal processing circuit 8 each perform predetermined video signal processing on the input video signal, for example, gamma correction, enhancer processing, white balance processing, and the like. The standard exposure video signal and the short-time exposure video signal that have undergone predetermined video signal processing are output to the output switching circuit 11 as a wide dynamic range video signal by the synthesis / tone correction processing circuit 9. The output switching circuit 11 switches and outputs either the synthesized wide dynamic range video signal or the long exposure video signal based on the result of the determination process described later. The microcomputer (CPU) 10 controls the AGC 4, the standard exposure video signal processing circuit 7, the short-time exposure video signal processing circuit 8, and the synthesis / tone correction processing circuit 9, for example, automatic gain control processing, Built-in software for white balance processing and composition processing.

まず、短時間露光映像信号のフリッカ発生を検出する第一の実施例を説明する。図7は広ダイナミックレンジ映像切替え処理のフローチャート、図8はフリッカ検出処理を示すフローチャートであり、符号は処理ステップを示すものである。また、図8は図7のステップ72の詳細な動作を示すものである。前記図7、8を参照しながら、図1に沿って説明する。短時間露光用映像信号処理回路8に入力された映像信号の平均輝度レベルをCPU10内で例えば、3フィールド分検出する(ステップ81)。この3フィールドの輝度レベル変化のパターンが図4に示す6種類のフリッカパターンと一致するかを調べて(ステップ82、83、84、85)、所定時間内にある回数以上フリッカパターン一致したかをカウントする(ステップ73)。例えば、ステップ81で検出した3フィールド分の平均輝度レベルが、第1フィールド=第2フィールド<第3フィールドの関係にある場合は図4に示すパターンAと一致するためフリッカがあると判定される。また、第1フィールド=第3フィールド<第2フィールドの関係にある場合は図4に示すパターンBと一致するためフリッカがあると判定される。所定回数以上一致したときには、フリッカがあると判断して合成・階調補正処理回路9で合成・階調補正せずに標準露光用映像信号のみを後段へ出力する(ステップ75)。また、一致した回数が所定値よりも少ない時には、フリッカは無いと判断してカウンタをクリアし、はじめからカウントをやり直し、所定の映像信号処理を施し、標準露光映像信号と短時間露光映像信号を合成・階調補正処理回路9で広ダイナミックレンジ映像信号として後段へ出力する(ステップ76)。その結果、フリッカがある時には自動的に標準露光のみの映像になり、フリッカが無くなると広ダイナミックレンジの映像が得られるようになる。標準露光映像信号は前述したとおり、電源周波数による光源の点滅周期にあわせた露光を行なっているため、フリッカの発生を防止することができる。   First, a first embodiment for detecting occurrence of flicker in a short exposure video signal will be described. FIG. 7 is a flowchart of the wide dynamic range video switching process, FIG. 8 is a flowchart showing the flicker detection process, and the reference numerals indicate processing steps. FIG. 8 shows the detailed operation of step 72 in FIG. With reference to FIG. 7 and FIG. The average luminance level of the video signal input to the short-exposure video signal processing circuit 8 is detected in the CPU 10 for, for example, three fields (step 81). It is checked whether or not the three-field luminance level change patterns match the six types of flicker patterns shown in FIG. 4 (steps 82, 83, 84, and 85). Count (step 73). For example, if the average luminance level for three fields detected in step 81 is in the relationship of first field = second field <third field, it is determined that there is flicker because it matches pattern A shown in FIG. . If the relationship of the first field = the third field <the second field is satisfied, it is determined that there is flicker because it matches the pattern B shown in FIG. If the number of coincidence is equal to or greater than the predetermined number, it is determined that there is flicker, and only the standard exposure video signal is output to the subsequent stage without being synthesized and tone corrected by the synthesis and tone correction processing circuit 9 (step 75). If the number of matches is less than the predetermined value, it is determined that there is no flicker, the counter is cleared, the count is restarted from the beginning, the predetermined video signal processing is performed, and the standard exposure video signal and the short exposure video signal are obtained. The composition / tone correction processing circuit 9 outputs the wide dynamic range video signal to the subsequent stage (step 76). As a result, when there is flicker, an image with only standard exposure is automatically obtained, and when there is no flicker, an image with a wide dynamic range can be obtained. As described above, since the standard exposure video signal is exposed in accordance with the blinking cycle of the light source according to the power supply frequency, the occurrence of flicker can be prevented.

次に、短時間露光映像信号の輝度レベルを検知する第2の実施例を説明する。図9は輝度レベル検出処理を示すフローチャートであり、符号は処理ステップを示すものである。前記図9を参照しながら、図1に沿って説明する。CPU10では、短時間露光用映像信号処理回路8に入力された映像信号の輝度レベルデータYを毎フィールド検出を行う(ステップ91)。この検出された輝度レベルデータYと所定のしきい値データXとを毎フィールド比較する(ステップ92)。この比較処理でY<Xの場合、標準露光映像信号出力に切り換えるためのカウンタAの値が+1されるとともに、広ダイナミックレンジ信号出力に切り換えるためのカウンタBの値を0クリアする(ステップ93)。このカウンタAの値が規定値に達すると(ステップ95)出力切り換え回路11に対して標準露光映像信号を出力するための処理が行われる(ステップ97)。逆に、この比較処理でY≧Xの場合、標準露光映像信号出力に切り換えるためのカウンタAの値が0クリアされるとともに、広ダイナミックレンジ信号出力に切り換えるためのカウンタBの値を+1する(ステップ94)。このカウンタBの値が規定値に達すると(ステップ96)出力切り換え回路11に対して広ダイナミックレンジ信号を出力するための処理が行われる(ステップ98)。その結果、短時間露光映像信号の輝度が小さくなると自動的に標準露光のみの映像出力に切り替わり、逆に輝度が大きいときは広ダイナミックレンジ映像出力に自動的に切り替わる。すなわち昼間の輝度レベルが高い、屋外の信号成分が短時間露光側に存在している時は広ダイナミックレンジ映像出力に切り替わり、夜間になると短露光側に存在した屋外の映像信号成分が屋内の映像信号成分より暗くなるため、昼間とは反対に屋内の信号成分が短露光側に存在するようになり輝度レベルが低下し標準露光のみの映像出力に切り替わる。つまり、フリッカがある時には自動的に標準露光のみの映像になり、フリッカが無くなると広ダイナミックレンジな映像が得られるようになる。標準露光映像信号は前述したとおり、電源周波数による光源の点滅の周期にあわせた露光を行なっているため、フリッカの発生を防止することができる。   Next, a second embodiment for detecting the luminance level of the short exposure video signal will be described. FIG. 9 is a flowchart showing the luminance level detection processing, and the reference numerals indicate processing steps. With reference to FIG. 9, the description will be made along FIG. The CPU 10 detects the luminance level data Y of the video signal input to the short-exposure video signal processing circuit 8 every field (step 91). The detected luminance level data Y and predetermined threshold data X are compared for each field (step 92). If Y <X in this comparison processing, the value of the counter A for switching to the standard exposure video signal output is incremented by 1, and the value of the counter B for switching to the wide dynamic range signal output is cleared to 0 (step 93). . When the value of the counter A reaches a specified value (step 95), processing for outputting a standard exposure video signal to the output switching circuit 11 is performed (step 97). Conversely, if Y ≧ X in this comparison processing, the value of the counter A for switching to the standard exposure video signal output is cleared to 0, and the value of the counter B for switching to the wide dynamic range signal output is incremented by 1 ( Step 94). When the value of the counter B reaches a specified value (step 96), processing for outputting a wide dynamic range signal to the output switching circuit 11 is performed (step 98). As a result, when the luminance of the short-time exposure video signal decreases, the video output is automatically switched to the standard exposure only, whereas when the luminance is high, the video signal is automatically switched to the wide dynamic range video output. That is, when the daytime luminance level is high and the outdoor signal component exists on the short exposure side, it switches to wide dynamic range video output, and at night, the outdoor video signal component that exists on the short exposure side changes to indoor video. Since it becomes darker than the signal component, the indoor signal component exists on the short exposure side as opposed to the daytime, and the luminance level is lowered and the video output is switched to the standard exposure only. In other words, when there is flicker, the image automatically becomes only the standard exposure, and when there is no flicker, an image with a wide dynamic range can be obtained. As described above, the standard exposure video signal is exposed in accordance with the blinking cycle of the light source by the power supply frequency, and therefore flicker can be prevented.

次に、短時間露光映像信号の色温度を検出する第3の実施例を説明する。図10は色温度検出処理を示すフローチャートであり、符号は処理ステップを示すものである。前記図10を参照しながら、図1に沿って説明する。短時間露光用映像信号処理回路8に入力された映像信号の色温度をCPU10内で検出する(ステップ101)。短時間露光側の色温度が、ある値(例えば4,000K)よりも低下したときは(ステップ102)、ナトリウム灯等の色温度の低い光源のもとで撮像した映像、すなわちフリッカが発生している映像と判断して合成・階調補正処理回路9で合成・階調補正せずに標準露光用映像信号のみを後段へ出力する(ステップ103)。また、短時間露光側の色温度がある値よりも高いときには(ステップ102)、太陽光などの色温度の高い光源のもとで撮像した映像、すなわちフリッカが発生していない映像と判断して、所定の映像信号処理を施し、標準露光映像信号と短時間露光映像信号を合成・階調補正処理回路9でワイドダイナミックレンジ映像信号として後段へ出力する(ステップ104)。その結果、フリッカがある時には自動的に標準露光のみの映像になり、フリッカが無くなると広ダイナミックレンジな映像が得られるようになる。標準露光映像信号は前述したとおり、電源周波数による光源の点滅の周期にあわせた露光を行なっているため、フリッカの発生を防止することができる。   Next, a third embodiment for detecting the color temperature of the short-time exposure video signal will be described. FIG. 10 is a flowchart showing the color temperature detection process, and the reference numerals indicate processing steps. A description will be given along FIG. 1 with reference to FIG. The color temperature of the video signal input to the short-exposure video signal processing circuit 8 is detected in the CPU 10 (step 101). When the color temperature on the short-time exposure side falls below a certain value (for example, 4,000 K) (step 102), an image captured under a light source having a low color temperature such as a sodium lamp, that is, flicker occurs. Only the standard exposure video signal is output to the subsequent stage without being synthesized and gradation corrected by the composition and gradation correction processing circuit 9 (step 103). When the color temperature on the short exposure side is higher than a certain value (step 102), it is determined that the image is captured under a light source having a high color temperature such as sunlight, that is, an image in which flicker is not generated. Then, predetermined video signal processing is performed, and the standard exposure video signal and the short-time exposure video signal are output to the subsequent stage as a wide dynamic range video signal by the synthesis / tone correction processing circuit 9 (step 104). As a result, when there is flicker, an image with only standard exposure is automatically obtained, and when there is no flicker, an image with a wide dynamic range can be obtained. As described above, the standard exposure video signal is exposed in accordance with the blinking cycle of the light source by the power supply frequency, and therefore flicker can be prevented.

本発明の一実施例によるテレビジョンカメラの構成を示すブロック図。The block diagram which shows the structure of the television camera by one Example of this invention. 昼間の輝度レベル分布の一例を示す図。The figure which shows an example of a luminance level distribution in the daytime. 夜間の輝度レベル分布の一例を示す図。The figure which shows an example of the luminance level distribution at night. フリッカのパターンを示す図。The figure which shows the pattern of a flicker. 昼間の色温度分布の一例を示す図。The figure which shows an example of daytime color temperature distribution. 夜間の色温度分布の一例を示す図。The figure which shows an example of the color temperature distribution at night. 広ダイナミックレンジ映像切替え処理のフローチャート。The flowchart of a wide dynamic range video switching process. フリッカ検出処理を示すフローチャート。The flowchart which shows a flicker detection process. 輝度レベル検出処理を示すフローチャート。The flowchart which shows a luminance level detection process. 色温度検出処理を示すフローチャート。5 is a flowchart showing color temperature detection processing.

符号の説明Explanation of symbols

1:オートアイリスレンズ、 2:固体撮像素子(CCD)、3:CDS、4:AGC、5:A/D変換器 6:同期化回路、7:標準露光用映像信号処理回路、8:短時間露光用映像信号処理回路、9:合成・階調補正処理回路、10:マイクロコンピュータ(CPU)。   1: auto iris lens, 2: solid-state imaging device (CCD), 3: CDS, 4: AGC, 5: A / D converter 6: synchronization circuit, 7: video signal processing circuit for standard exposure, 8: short exposure Video signal processing circuit, 9: synthesis / tone correction processing circuit, 10: microcomputer (CPU).

Claims (1)

標準的な明るさの被写体が適正レベルとなるようにして得た標準露光映像信号と、所定値より明るい被写体が適正レベルとなるようにして得た短時間露光映像信号とを合成して、広ダイナミックレンジの映像信号を生成するテレビジョンカメラにおいて、
前記短時間露光映像信号の所定のフィールド数の輝度レベル変化と所定のフリッカパターンとを比較して前記短時間露光映像信号のフリッカの有無を判定することを特徴とするテレビジョンカメラ。
A standard exposure video signal obtained so that a subject with standard brightness is at an appropriate level and a short exposure video signal obtained so that an object brighter than a predetermined value is at an appropriate level are combined to produce a wide In a television camera that generates dynamic range video signals,
A television camera characterized in that the presence or absence of flicker in the short-time exposure video signal is determined by comparing a change in luminance level of a predetermined number of fields of the short-time exposure video signal with a predetermined flicker pattern.
JP2006080229A 2006-03-23 2006-03-23 Television camera Expired - Fee Related JP4322264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080229A JP4322264B2 (en) 2006-03-23 2006-03-23 Television camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080229A JP4322264B2 (en) 2006-03-23 2006-03-23 Television camera

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002073103A Division JP2003274278A (en) 2002-03-15 2002-03-15 Television camera

Publications (2)

Publication Number Publication Date
JP2006254470A true JP2006254470A (en) 2006-09-21
JP4322264B2 JP4322264B2 (en) 2009-08-26

Family

ID=37094371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080229A Expired - Fee Related JP4322264B2 (en) 2006-03-23 2006-03-23 Television camera

Country Status (1)

Country Link
JP (1) JP4322264B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103634A (en) * 2008-10-21 2010-05-06 Sony Corp Imaging apparatus, imaging method, and program
JP2011176880A (en) * 2011-05-30 2011-09-08 Sony Corp Imaging apparatus, imaging method and program
JP2014050042A (en) * 2012-09-03 2014-03-17 Toshiba Corp Image processor and solid-state imaging device
WO2017195459A1 (en) * 2016-05-10 2017-11-16 ソニー株式会社 Imaging device and imaging method
KR101932542B1 (en) 2012-12-04 2018-12-27 한화테크윈 주식회사 Apparatus and method of calculating flicker-evaluation value

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103634A (en) * 2008-10-21 2010-05-06 Sony Corp Imaging apparatus, imaging method, and program
CN101729789A (en) * 2008-10-21 2010-06-09 索尼株式会社 Imaging apparatus, imaging method and program
US8194153B2 (en) 2008-10-21 2012-06-05 Sony Corporation Imaging apparatus, imaging method and program
JP2011176880A (en) * 2011-05-30 2011-09-08 Sony Corp Imaging apparatus, imaging method and program
JP2014050042A (en) * 2012-09-03 2014-03-17 Toshiba Corp Image processor and solid-state imaging device
KR101932542B1 (en) 2012-12-04 2018-12-27 한화테크윈 주식회사 Apparatus and method of calculating flicker-evaluation value
WO2017195459A1 (en) * 2016-05-10 2017-11-16 ソニー株式会社 Imaging device and imaging method
US10771711B2 (en) 2016-05-10 2020-09-08 Sony Corporation Imaging apparatus and imaging method for control of exposure amounts of images to calculate a characteristic amount of a subject

Also Published As

Publication number Publication date
JP4322264B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4106554B2 (en) Imaging environment determination method and imaging apparatus
JP2007174537A (en) Imaging apparatus
JPH04373365A (en) Television camera
JPH07298286A (en) Image pickup device
EP3474537A1 (en) Imaging control device, imaging control method, and program
JP2005223898A (en) Image processing method and imaging apparatus
JP4322264B2 (en) Television camera
KR100422085B1 (en) Backlight detection method, backlight detection device, and imaging camera
JP2011119875A (en) Image processing device and image processing method
JP5331766B2 (en) Imaging device
JP6149826B2 (en) Imaging apparatus and scene determination method
WO2018146945A1 (en) Moving body monitoring device and moving body monitoring system
EP3474544B1 (en) Image processing device, image processing method, and program
JP2003274278A (en) Television camera
JP3469305B2 (en) Video camera white balance device
KR100867595B1 (en) Method for controlling wide dynamic range in camera
JP2004112403A (en) Imaging apparatus
JPH1169217A (en) Electronic camera and its electronic shutter control method
JP2000032352A (en) Video camera device
JPH08280041A (en) Image pickup device
JP2007329604A (en) Fluorescent light flicker detection circuit
JP4958732B2 (en) Flicker correction device
JP3932601B2 (en) Color imaging device
JP2005136854A (en) White balance control apparatus and electronic apparatus
JPH1195278A (en) Image pickup device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees