JP2006253266A - Circuit and method for driving light emitting device and optical transmission device - Google Patents

Circuit and method for driving light emitting device and optical transmission device Download PDF

Info

Publication number
JP2006253266A
JP2006253266A JP2005065084A JP2005065084A JP2006253266A JP 2006253266 A JP2006253266 A JP 2006253266A JP 2005065084 A JP2005065084 A JP 2005065084A JP 2005065084 A JP2005065084 A JP 2005065084A JP 2006253266 A JP2006253266 A JP 2006253266A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
current
modulation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005065084A
Other languages
Japanese (ja)
Inventor
Shinichi Moriyama
慎一 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005065084A priority Critical patent/JP2006253266A/en
Publication of JP2006253266A publication Critical patent/JP2006253266A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that when the light output intensity of a light emitting device decreases with the passage of time, modulation current Imod is kept as it were before the decrease of the light output intensity, even if the light output intensity of the light emitting device is kept constant by APC circuit, which causes the amplitude of a superimposed signal to become relatively small and reduces the amplitude of light output of the light emitting device. <P>SOLUTION: In a light emitting device driving circuit including the APC circuit 40, three current sources 26, 27, and 28 which are connected in parallel are arranged as sources of modulation current. An arbitrary temperature characteristic of the light emitting device is set with respect to the modulation current Imod by the ratio of temperature characteristics of the current sources 26 and 27. When the light output intensity of the light emitting device 10 decreases and then the light emitting device 10 is controlled by the APC circuit 40, in such a direction that bias current Ibias may increase; the magnitude of the modulation current Imod which adds modulation to the light emitting device 10 is controlled (compensated) by the current source 28 according to the bias current Ibias. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光素子駆動回路、発光素子駆動方法および光送信装置に関する。   The present invention relates to a light emitting element driving circuit, a light emitting element driving method, and an optical transmitter.

通常、発光素子駆動回路には、発光素子の光出力強度(発光強度)が常に一定になるように、発光素子の光出力強度を受光素子でモニタし、発光素子のバイアス電流に対してフィードバック制御を行うAPC(Auto Power Control;自動光出力制御)回路が設けられている。このAPC回路の作用により、発光素子の温度特性や経時変化による光出力強度の劣化を補償し、安定した光出力強度を得ることができる。   Usually, in the light emitting element drive circuit, the light output intensity of the light emitting element is monitored by the light receiving element so that the light output intensity (light emitting intensity) of the light emitting element is always constant, and feedback control is performed on the bias current of the light emitting element. An APC (Auto Power Control) circuit for performing the above is provided. By the action of the APC circuit, it is possible to compensate for the deterioration of the light output intensity due to the temperature characteristics of the light emitting element and the change with time, and to obtain a stable light output intensity.

また、発光素子に対してクロックやデータ等の信号を重畳する変調回路は、APC回路とは独立に構成されている。この変調回路は、温度特性を持たずに一定強度となるように構成されるか、あるいは発光素子の微分効率、微分抵抗の温度特性を補償するように構成されている(例えば、特許文献1参照)。   In addition, a modulation circuit that superimposes a signal such as a clock or data on the light emitting element is configured independently of the APC circuit. This modulation circuit is configured to have a constant intensity without having temperature characteristics, or is configured to compensate for the temperature characteristics of the differential efficiency and differential resistance of the light emitting element (see, for example, Patent Document 1). ).

特開平3−133187号公報JP-A-3-133187

図5は、従来例に係る発光素子駆動回路の構成例を示す回路図である。図5において、発光素子100に対して変調回路200がコンデンサCを介してAC結合されている。変調回路200は、バッファ201と、エミッタが共通に接続され、各ベースがバッファ201の正相出力端、逆相出力端にそれぞれ接続された差動対トランジスタ202,203と、差動対トランジスタ202,203の各コレクタと電源VCCとの間にそれぞれ接続された抵抗204,205と、差動対トランジスタ202,203のエミッタ共通接続ノードとグランドの間に並列に接続された2つの変調電流源206,207とによって構成されている。   FIG. 5 is a circuit diagram showing a configuration example of a light emitting element driving circuit according to a conventional example. In FIG. 5, the modulation circuit 200 is AC coupled to the light emitting element 100 via a capacitor C. The modulation circuit 200 includes a buffer 201 and a differential pair transistor 202 and 203 whose emitters are connected in common and whose bases are respectively connected to the positive phase output terminal and the negative phase output terminal of the buffer 201, and the differential pair transistor 202. , 203, resistors 204 and 205 connected between the collector and the power supply VCC, respectively, and two modulation current sources 206 connected in parallel between the emitter common connection node of the differential pair transistors 202 and 203 and the ground. , 207.

この変調回路200は、入力信号をバッファ201でバッファリングし、変調電流源206,207の出力振幅で発光素子100を駆動する。この例では、一方の変調電流源206として温度特性を持たない(0ppm)電流源を用い、他方の変調電流源207として例えば5000ppmの温度特性を持つ電流源を用いている。これら電流源206,207の温度特性の比により、変調電流Imodに対して任意の温度特性を設定することができる。   The modulation circuit 200 buffers the input signal with the buffer 201 and drives the light emitting element 100 with the output amplitude of the modulation current sources 206 and 207. In this example, a current source having no temperature characteristic (0 ppm) is used as one modulation current source 206, and a current source having a temperature characteristic of 5000 ppm, for example, is used as the other modulation current source 207. An arbitrary temperature characteristic can be set for the modulation current Imod by the ratio of the temperature characteristics of the current sources 206 and 207.

発光素子100の近傍には、受光素子300がモニタ素子として配置されている。受光素子300は、発光素子100の光出力強度をモニタし、その光出力強度に比例したモニタ信号をAPC回路400に出力する。APC回路400は、発光素子100に対してインダクタLを介して直列に接続されたバイアス電流源401と、受光素子300の出力電圧をAPC設定電圧と比較し、その差分電圧に応じてバイアス電流源401のバイアス電流Ibiasを制御する差動アンプ402とによって構成され、受光素子300の出力が一定になるようにバイアス電流源401を制御する。   In the vicinity of the light emitting element 100, a light receiving element 300 is arranged as a monitor element. The light receiving element 300 monitors the light output intensity of the light emitting element 100 and outputs a monitor signal proportional to the light output intensity to the APC circuit 400. The APC circuit 400 compares the output voltage of the light receiving element 300 with the bias current source 401 connected in series to the light emitting element 100 via the inductor L with the APC set voltage, and according to the difference voltage, the bias current source The bias current source 401 is controlled so that the output of the light receiving element 300 becomes constant. The differential amplifier 402 controls the bias current Ibias 401.

上述した変調回路200およびAPC回路300の作用により、図6に示すような発光素子の温度特性を補償し、広い温度特性に亘って光出力強度(発光強度)と重畳された信号の振幅を一定に保つことができる。   By the operation of the modulation circuit 200 and the APC circuit 300 described above, the temperature characteristic of the light emitting element as shown in FIG. 6 is compensated, and the light output intensity (light emission intensity) and the amplitude of the superimposed signal are constant over a wide temperature characteristic. Can be kept in.

ところで、図7に示すように、発光素子は経時変化により、その光出力強度が劣化していく。このとき、上記従来技術では、APC回路400により、バイアス電流Ibiasが増加する方向にバイアス電流源401の制御が行われることで、発光素子100の光出力強度が一定に保たれる。   By the way, as shown in FIG. 7, the light output intensity of the light emitting element is deteriorated due to a change with time. At this time, in the above-described conventional technique, the APC circuit 400 controls the bias current source 401 in a direction in which the bias current Ibias increases, so that the light output intensity of the light emitting element 100 is kept constant.

しかしながら、変調電流Imodは、発光素子100の劣化前の大きさのままである。このため、重畳された信号の振幅が相対的に小さくなり、その結果、発光素子100の光出力の振幅が減少してしまうことになる。特に、光通信の場合には、発光素子が発する光出力の振幅不足が通信エラーの発生原因となる。したがって、発光素子の光出力強度の劣化後にも当該発光素子の光出力振幅を一定に保つ技術が必要となる。   However, the modulation current Imod remains the magnitude before the deterioration of the light emitting element 100. For this reason, the amplitude of the superimposed signal becomes relatively small, and as a result, the amplitude of the light output of the light emitting element 100 decreases. In particular, in the case of optical communication, a shortage of light output from the light emitting element causes a communication error. Therefore, a technique for keeping the light output amplitude of the light emitting element constant even after the light output intensity of the light emitting element is deteriorated is required.

そこで、本発明は、発光素子の光出力強度の劣化後にも当該発光素子の光出力振幅を一定に保つことが可能な発光素子駆動回路、発光素子駆動方法および光送信装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a light emitting element driving circuit, a light emitting element driving method, and an optical transmission device capable of keeping the light output amplitude of the light emitting element constant even after the light output intensity of the light emitting element is deteriorated. And

上記目的を達成するために、本発明では、入力信号に応じて発光素子に変調電流を流すとともに、前記発光素子の光出力強度が一定になるように、当該発光素子のバイアス電流を制御し、前記発光素子の光出力強度の劣化時に前記バイアス電流が増加する方向に制御されたときに、当該バイアス電流に応じて前記変調電流の大きさを制御する構成を採っている。   In order to achieve the above object, in the present invention, a modulation current is supplied to the light emitting element in accordance with an input signal, and the bias current of the light emitting element is controlled so that the light output intensity of the light emitting element is constant, When the bias current is controlled to increase when the light output intensity of the light emitting element is deteriorated, the modulation current is controlled in accordance with the bias current.

上記の構成において、発光素子の光出力強度が劣化し、バイアス電流が増加する方向に制御されたとき、発光素子に変調を加える変調電流の大きさをバイアス電流に応じて制御することで、発光素子の光出力強度が劣化しても、重畳される信号の振幅が相対的に小さくなるのを防止できる。   In the above configuration, when the light output intensity of the light emitting element is deteriorated and the bias current is controlled to increase, light emission is controlled by controlling the magnitude of the modulation current that modulates the light emitting element according to the bias current. Even if the light output intensity of the element deteriorates, it is possible to prevent the amplitude of the superimposed signal from becoming relatively small.

本発明によれば、発光素子の光出力強度が劣化しても、重畳される信号の振幅が相対的に小さくなるのを防止できるため、発光素子の光出力強度の劣化後にも光出力振幅を一定に保つことができる。   According to the present invention, even if the light output intensity of the light emitting element is deteriorated, the amplitude of the superimposed signal can be prevented from becoming relatively small. Therefore, the light output amplitude can be reduced even after the light output intensity of the light emitting element is deteriorated. Can be kept constant.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1実施形態]
図1は、本発明の第1実施形態に係る発光素子駆動回路の構成を示す回路図である。図1において、レーザダイオード等の発光素子100は、励起電流のしきい値電流Ith以上の電流を変化することによって直接変調ができる。したがって、発光素子100は、適当なバイアス電流Ibiasで動作点が決められ、当該バイアス電流Ibiasにクロックやデータ等の信号が振幅変調として変調回路20によって重畳されることで、電流の変化にほぼ直線的に比例した被変調出力光を出力する。
[First Embodiment]
FIG. 1 is a circuit diagram showing a configuration of a light emitting element driving circuit according to the first embodiment of the present invention. In FIG. 1, a light emitting element 100 such as a laser diode can be directly modulated by changing a current equal to or higher than a threshold current Ith of an excitation current. Accordingly, the operating point of the light emitting element 100 is determined by an appropriate bias current Ibias, and a signal such as a clock or data is superimposed on the bias current Ibias as amplitude modulation by the modulation circuit 20, so that the change in current is almost linear. Output modulated output light proportionally proportionally.

変調回路20は、バッファ21と、エミッタが共通に接続され、各ベースがバッファ21の正相出力端、逆相出力端にそれぞれ接続された差動対トランジスタ22,23と、差動対トランジスタ22,23の各コレクタと電源VCCとの間にそれぞれ接続された抵抗24,25と、差動対トランジスタ22,23のエミッタ共通接続ノードとグランドの間に並列に接続された3つの変調電流源26,27,28とを有し、回路出力端、即ちトランジスタ23のコレクタがコンデンサCを介して発光素子10のカソードにAC結合された構成となっている。   The modulation circuit 20 includes a differential pair transistors 22 and 23 each having a buffer 21 and an emitter connected in common and each base connected to the positive phase output terminal and the negative phase output terminal of the buffer 21, respectively. , 23 and resistors 24 and 25 respectively connected between the power supply VCC and three modulation current sources 26 connected in parallel between the emitter common connection node of the differential pair transistors 22 and 23 and the ground. 27, 28, and the circuit output end, that is, the collector of the transistor 23 is AC coupled to the cathode of the light emitting element 10 via the capacitor C.

受光素子30は、例えばフォトダイオードであり、発光素子10の近傍にモニタ素子として配置されており、発光素子10の光出力強度をモニタし、その光出力強度に比例したモニタ信号をAPC回路40に出力する。APC回路40は、発光素子10に対してインダクタLを介して直列に接続されたバイアス電流源41と、受光素子30の出力電圧をAPC設定電圧と比較し、その差分電圧に応じてバイアス電流源41のバイアス電流Ibiasを制御する差動アンプ42とによって構成され、受光素子30の出力が一定になるようにバイアス電流源41を制御する。   The light receiving element 30 is, for example, a photodiode, and is disposed as a monitor element in the vicinity of the light emitting element 10. The light receiving element 30 monitors the light output intensity of the light emitting element 10 and sends a monitor signal proportional to the light output intensity to the APC circuit 40. Output. The APC circuit 40 compares the output voltage of the light receiving element 30 with the bias current source 41 connected in series to the light emitting element 10 via the inductor L, and the bias current source according to the difference voltage. The bias current source 41 is controlled such that the output of the light receiving element 30 is constant. The differential amplifier 42 controls the bias current Ibias 41.

上記構成の発光素子駆動回路において、本実施形態では、変調電流Imodを流す変調電流源として、温度特性を持たない(0ppm)電流源26と、例えば5000ppmの温度特性を持つ電流源27に加えて、バイアス電流Ibiasに比例した電流、具体的にはバイアス電流Ibiasの1/n倍の電流を流す電流源28を有することを特徴としている。この電流源28は、バイアス電流源41とカレントミラー回路を構成することで、バイアス電流Ibiasに応じて変調電流Imodを制御する変調電流制御手段を構成している。   In the light emitting element driving circuit having the above configuration, in this embodiment, in addition to the current source 26 having no temperature characteristic (0 ppm) and the current source 27 having a temperature characteristic of 5000 ppm, for example, as a modulation current source for passing the modulation current Imod. And a current source 28 for supplying a current proportional to the bias current Ibias, specifically, a current 1 / n times the bias current Ibias. The current source 28 forms a current mirror circuit with the bias current source 41, thereby constituting a modulation current control means for controlling the modulation current Imod according to the bias current Ibias.

電流源28は、発光素子10の経時変化によって当該発光素子10の光出力強度が劣化し、APC回路40により、バイアス電流Ibiasが増加する方向にバイアス電流源401の制御が行われたときに、バイアス電流Ibiasに応じて変調電流Imodを制御する、具体的にはバイアス電流Ibiasに比例した適当な電流(本例では、1/n倍の電流)を変調電流Imodに加算する作用をなす。この電流源28の作用により、発光素子10の光出力強度が劣化しても、重畳される信号の振幅が相対的に小さくなるのを防止できるため、発光素子10の劣化後にも当該発光素子10の光出力振幅を一定に保つことが可能となる。   When the bias current source 401 is controlled in the direction in which the bias current Ibias is increased by the APC circuit 40, the current source 28 is deteriorated in light output intensity of the light emitting element 10 due to the temporal change of the light emitting element 10. The modulation current Imod is controlled according to the bias current Ibias. Specifically, an appropriate current proportional to the bias current Ibias (in this example, a current 1 / n times) is added to the modulation current Imod. By the action of the current source 28, even if the light output intensity of the light emitting element 10 is deteriorated, the amplitude of the superimposed signal can be prevented from becoming relatively small. Therefore, even after the light emitting element 10 is deteriorated, the light emitting element 10 It is possible to keep the light output amplitude of the constant.

因みに、APC回路40による通常の制御(以下、「APC制御」と記す)時においても、発光素子10の光出力強度の変動に応じてバイアス電流Ibiasの電流値が変化することになるが、このときの変化分は僅かであって最終的にAPC設定電圧に対応した一定値に収束するものである。したがって、電流源28は、APC制御時にもバイアス電流Ibiasの変化に応じて変調電流Imodを制御することになるが、この変調電流Imodも最終的には一定値のバイアス電流Ibiasに対応した電流値に収束することになる。   Incidentally, even during normal control by the APC circuit 40 (hereinafter referred to as “APC control”), the current value of the bias current Ibias changes in accordance with the fluctuation of the light output intensity of the light emitting element 10. The amount of change at that time is slight and finally converges to a constant value corresponding to the APC set voltage. Therefore, the current source 28 controls the modulation current Imod according to the change of the bias current Ibias even during the APC control. This modulation current Imod also finally has a current value corresponding to the bias current Ibias having a constant value. Will converge to.

これに対して、発光素子10の経時変化によって当該発光素子10の光出力強度が劣化したときには、APC回路40により、バイアス電流Ibiasが増加する方向にバイアス電流源41の制御が行われ、バイアス電流Ibiasの収束値が変更されることで、発光素子10の光出力強度が一定に保たれる。そして、電流源28は変調電流Imodを、APC回路40による制御によって変更された後のバイアス電流Ibiasの収束値に対応した電流値(本例では、1/n倍)に設定することになる。   On the other hand, when the light output intensity of the light emitting element 10 deteriorates due to the change of the light emitting element 10 with time, the APC circuit 40 controls the bias current source 41 in the direction in which the bias current Ibias increases, and the bias current By changing the convergence value of Ibias, the light output intensity of the light emitting element 10 is kept constant. The current source 28 sets the modulation current Imod to a current value (in this example, 1 / n times) corresponding to the convergence value of the bias current Ibias after being changed by the control by the APC circuit 40.

このように、APC回路40を有する発光素子駆動回路において、変調電流源として、互いに並列に接続された3つの電流源26,27,28を用意し、電流源26,27の温度特性の比によって変調電流Imodに対して任意の温度特性を設定するとともに、発光素子10の光出力強度が劣化し、APC回路40によってバイアス電流Ibiasが増加する方向に制御されたときは、発光素子10に変調を加える変調電流Imodの大きさを電流源28によってバイアス電流Ibiasに応じて制御(補償)することで、図6に示すような発光素子の温度特性を補償し、広い温度特性に亘って光出力強度(発光強度)と重畳された信号の振幅を一定に保つことができるとともに、発光素子10の劣化後にも光出力振幅を一定に保つことができる。   Thus, in the light emitting element driving circuit having the APC circuit 40, three current sources 26, 27, and 28 connected in parallel to each other are prepared as modulation current sources, and the ratio of the temperature characteristics of the current sources 26 and 27 is determined. Arbitrary temperature characteristics are set for the modulation current Imod, and the light output intensity of the light emitting element 10 is deteriorated. When the APC circuit 40 controls the bias current Ibias to increase, the light emitting element 10 is modulated. By controlling (compensating) the magnitude of the modulation current Imod to be applied according to the bias current Ibias by the current source 28, the temperature characteristic of the light emitting element as shown in FIG. 6 is compensated, and the light output intensity over a wide temperature characteristic. The amplitude of the signal superimposed with (light emission intensity) can be kept constant, and the light output amplitude can be kept constant even after the light emitting element 10 is deteriorated. That.

なお、本実施形態では、変調電流源の一つとして、温度特性を持つ電流源27を有する場合を例に挙げて説明したが、当該電流源27を持つことは必須ではない。ただし、本実施形態のように、温度特性を持つ電流源27を、温度特性を持たない電流源26に対して並列に接続し、電流源26,27の温度特性の比によって変調電流Imodに対して任意の温度特性を設定する構成を採った方が、図6に示すような発光素子の温度特性を補償できるため有利である。   In this embodiment, the case where the current source 27 having the temperature characteristic is provided as an example of the modulation current source has been described as an example. However, the current source 27 is not essential. However, as in the present embodiment, the current source 27 having temperature characteristics is connected in parallel to the current source 26 having no temperature characteristics, and the modulation current Imod is controlled by the ratio of the temperature characteristics of the current sources 26 and 27. Therefore, it is advantageous to adopt a configuration in which an arbitrary temperature characteristic is set because the temperature characteristic of the light emitting element as shown in FIG. 6 can be compensated.

[第2実施形態]
図2は、本発明の第2実施形態に係る発光素子駆動回路の構成を示す回路図であり、図中、図1と同等部分には同一符号を付して示している。
[Second Embodiment]
FIG. 2 is a circuit diagram showing a configuration of a light emitting element driving circuit according to the second embodiment of the present invention. In FIG. 2, the same parts as those in FIG.

第1実施形態に係る発光素子駆動回路では、変調電流源として、互いに並列に接続された3つの電流源26,27,28を用意し、電流源26,27の温度特性の比により、変調電流Imodに対して任意の温度特性を設定するとともに、電流源28によってバイアス電流Ibiasに比例した適当な電流を変調電流Imodに加算するようにした。   In the light emitting element driving circuit according to the first embodiment, three current sources 26, 27, and 28 connected in parallel to each other are prepared as modulation current sources, and the modulation current is determined according to the ratio of the temperature characteristics of the current sources 26 and 27. An arbitrary temperature characteristic is set for Imod, and an appropriate current proportional to the bias current Ibias is added to the modulation current Imod by the current source 28.

これに対して、本実施形態に係る発光素子駆動回路では、変調電流源として単一の電流源29を用いるとともに、当該電流源29に流れる変調電流Imodを設定する変調電流設定回路51を設け、当該変調電流設定回路51により、変調電流設定電圧に基づいて変調電流Imodの大きさを設定するとともに、バイアス電流Ibiasに比例した適当な電流を変調電流Imodに加算する構成を採っている。それ以外の構成は、第1実施形態に係る発光素子駆動回路と同じであり、その説明については重複するので省略する。   In contrast, in the light emitting element driving circuit according to the present embodiment, a single current source 29 is used as a modulation current source, and a modulation current setting circuit 51 for setting a modulation current Imod flowing through the current source 29 is provided. The modulation current setting circuit 51 is configured to set the magnitude of the modulation current Imod based on the modulation current setting voltage and add an appropriate current proportional to the bias current Ibias to the modulation current Imod. The rest of the configuration is the same as that of the light emitting element driving circuit according to the first embodiment, and a description thereof will be omitted because it is redundant.

変調電流設定回路51は、アナログ回路による加算器や乗算器や重み付け回路等によって構成される。本実施形態に係る発光素子駆動回路においてはさらに、変調電流設定回路51は、温度センサ52によって検出される雰囲気温度をもパラメータとして用いて、雰囲気温度も加味して変調電流Imodを設定するようにしているが、これは必須の要件ではない。ただし、雰囲気温度も加味して変調電流Imodを設定するようにした方が、図6に示すような発光素子の温度特性についても補償できるため有利である。   The modulation current setting circuit 51 includes an adder, a multiplier, a weighting circuit, and the like that are analog circuits. Further, in the light emitting element driving circuit according to the present embodiment, the modulation current setting circuit 51 uses the atmospheric temperature detected by the temperature sensor 52 as a parameter and sets the modulation current Imod in consideration of the atmospheric temperature. However, this is not a mandatory requirement. However, it is advantageous to set the modulation current Imod in consideration of the ambient temperature because the temperature characteristics of the light emitting element as shown in FIG. 6 can be compensated.

このように、変調電流源として単一の電流源29を用い、変調電流設定回路51による制御の下に、変調電流Imodの大きさを設定するとともに、発光素子10の光出力強度が劣化し、APC回路40によってバイアス電流Ibiasが増加する方向に制御されたときに、発光素子10に変調を加える変調電流Imodの大きさをバイアス電流Ibiasに応じて制御するようにすることで、第1実施形態に係る発光素子駆動回路の場合と同様の作用効果を得ることに加えて、変調電流源が1つで済むためその分だけ回路構成を簡略化できる利点がある。   As described above, the single current source 29 is used as the modulation current source, and the magnitude of the modulation current Imod is set under the control of the modulation current setting circuit 51, and the light output intensity of the light emitting element 10 is deteriorated. When the bias current Ibias is controlled to increase by the APC circuit 40, the magnitude of the modulation current Imod that modulates the light emitting element 10 is controlled in accordance with the bias current Ibias, thereby enabling the first embodiment. In addition to obtaining the same effects as those of the light emitting element driving circuit according to the present invention, there is an advantage that the circuit configuration can be simplified correspondingly because only one modulation current source is required.

[第3実施形態]
図3は、本発明の第3実施形態に係る発光素子駆動回路の構成を示す回路図であり、図中、図2と同等部分には同一符号を付して示している。
[Third Embodiment]
FIG. 3 is a circuit diagram showing a configuration of a light emitting element driving circuit according to the third embodiment of the present invention. In FIG. 3, the same parts as those in FIG.

第2実施形態に係る発光素子駆動回路では、変調電流源を単一の電流源29とし、変調電流設定回路51によって変調電流Imodの大きさを設定するとともに、発光素子10が劣化したときはバイアス電流Ibiasに応じて変調電流Imodの大きさを補償するとしたが、本実施形態に係る発光素子駆動回路では、加算器や乗算器や重み付け回路等によって構成される変調電流設定回路51に代えてメモリ部53を用い、変調電流設定電圧およびバイアス電流Ibiasを基に、当該メモリ部53に格納したルックアップテーブル(LUT)を参照して変調電流Imodの最適値を設定する構成を採っている。   In the light emitting element driving circuit according to the second embodiment, the modulation current source is a single current source 29, the magnitude of the modulation current Imod is set by the modulation current setting circuit 51, and a bias is applied when the light emitting element 10 deteriorates. Although the magnitude of the modulation current Imod is compensated according to the current Ibias, in the light emitting element driving circuit according to the present embodiment, a memory is used instead of the modulation current setting circuit 51 configured by an adder, a multiplier, a weighting circuit, and the like. A configuration is employed in which an optimum value of the modulation current Imod is set using the unit 53 with reference to a lookup table (LUT) stored in the memory unit 53 based on the modulation current setting voltage and the bias current Ibias.

メモリ部53に演算機能をも持たせ、必要に応じて適当な演算を行うことで、変調電流Imodの最適値を設定するようにすることも可能である。本実施形態に係る発光素子駆動回路においても、第2実施形態に係る発光素子駆動回路の場合と同様に、温度センサ52によって検出される雰囲気温度をもパラメータとして用いて、雰囲気温度も加味して変調電流Imodの最適値を設定するようにしているが、これは必須の要件ではない。ただし、雰囲気温度も加味して変調電流Imodを設定するようにした方が、図6に示すような発光素子の温度特性についても補償できるため有利である。   It is also possible to set the optimum value of the modulation current Imod by providing the memory unit 53 with a calculation function and performing an appropriate calculation as necessary. In the light emitting element driving circuit according to the present embodiment, as in the case of the light emitting element driving circuit according to the second embodiment, the ambient temperature detected by the temperature sensor 52 is also used as a parameter, and the ambient temperature is also taken into account. The optimum value of the modulation current Imod is set, but this is not an essential requirement. However, it is advantageous to set the modulation current Imod in consideration of the ambient temperature because the temperature characteristics of the light emitting element as shown in FIG. 6 can be compensated.

このように、メモリ部53に格納したルックアップテーブルを参照して変調電流Imodの最適値を設定するとともに、発光素子10の光出力強度が劣化し、APC回路40によってバイアス電流Ibiasが増加する方向に制御されたときに、発光素子10に変調を加える変調電流Imodの大きさをバイアス電流Ibiasに応じて補償するようにすることで、第2実施形態に係る発光素子駆動回路の場合と同様の作用効果を得ることに加えて、アナログ回路による加算器や乗算器や重み付け回路等によって構成される変調電流設定回路51に代えてメモリ部53を1つ設けるだけで済むため、第2実施形態に係る発光素子駆動回路に比べて回路構成を簡略化できる利点がある。   Thus, the optimum value of the modulation current Imod is set with reference to the lookup table stored in the memory unit 53, the light output intensity of the light emitting element 10 is deteriorated, and the bias current Ibias is increased by the APC circuit 40. By controlling the magnitude of the modulation current Imod that modulates the light emitting element 10 according to the bias current Ibias, the same as in the case of the light emitting element driving circuit according to the second embodiment. In addition to obtaining the effects, only one memory unit 53 is required instead of the modulation current setting circuit 51 constituted by an analog circuit adder, multiplier, weighting circuit, and the like. Compared to such a light emitting element driving circuit, there is an advantage that the circuit configuration can be simplified.

[適用例]
以上説明した第1、第2および第3実施形態に係る発光素子駆動回路は、例えば、光通信装置における光送信装置の発光素子駆動回路として用いることができる。
[Application example]
The light emitting element driving circuits according to the first, second, and third embodiments described above can be used as, for example, a light emitting element driving circuit of an optical transmission device in an optical communication device.

図4は、本発明が適用される光通信装置の構成の概略を示すブロック図である。図4に示すように、本光通信装置は、光送信装置60、光伝送媒体70および光受信装置80によって構成されている。   FIG. 4 is a block diagram showing an outline of the configuration of an optical communication apparatus to which the present invention is applied. As shown in FIG. 4, the present optical communication device includes an optical transmission device 60, an optical transmission medium 70, and an optical reception device 80.

光送信装置60は、レーザダイオード等の発光素子61と、この発光素子61をクロックやデータの信号に応じて駆動(変調)する発光素子駆動回路62を有する構成となっている。光伝送媒体70は、例えば光ファイバからなり、発光素子61から出力される光信号を光受信装置80側へ伝送する。光受信装置80は、光伝送媒体70によって伝送された光信号を受光するフォトダイオード等の受光素子81と、この受光素子81の受光出力を復調する復調回路82を有する構成となっている。   The optical transmission device 60 includes a light emitting element 61 such as a laser diode and a light emitting element driving circuit 62 that drives (modulates) the light emitting element 61 according to a clock or data signal. The optical transmission medium 70 is made of, for example, an optical fiber, and transmits an optical signal output from the light emitting element 61 to the optical receiver 80 side. The optical receiver 80 includes a light receiving element 81 such as a photodiode that receives an optical signal transmitted by the optical transmission medium 70, and a demodulation circuit 82 that demodulates the light reception output of the light receiving element 81.

上記構成の光通信装置における光送信装置60の発光素子駆動回路62として、先述した第1、第2または第3実施形態に係る発光素子駆動回路が用いられる。光通信では光出力振幅の減少が通信エラーの大きな原因となるが、第1、第2または第3実施形態に係る発光素子駆動回路を光送信装置60の発光素子駆動回路62として用いることで、これら発光素子駆動回路は発光素子の劣化後にも光出力振幅を一定に保ち、光信号の品質を保証できる利点を持ち、発光素子61の光出力強度が経時変化により劣化したとしても、それに起因する通信エラーを低減できるため信頼性を向上できる。   The light emitting element driving circuit according to the first, second, or third embodiment described above is used as the light emitting element driving circuit 62 of the optical transmission device 60 in the optical communication apparatus having the above configuration. In optical communication, a decrease in optical output amplitude causes a large communication error. By using the light emitting element driving circuit according to the first, second, or third embodiment as the light emitting element driving circuit 62 of the optical transmission device 60, These light-emitting element driving circuits have the advantage that the light output amplitude can be kept constant even after deterioration of the light-emitting element, and the quality of the optical signal can be assured, even if the light output intensity of the light-emitting element 61 deteriorates with time. Reliability can be improved because communication errors can be reduced.

なお、ここでは、光通信装置における光送信装置に適用した場合を例に挙げて説明したが、本発明はこの適用例に限られるものではなく、変調回路およびAPC回路を含む発光素子駆動回路を用いる装置全般に対して適用可能である。   Here, the case where the present invention is applied to an optical transmission apparatus in an optical communication apparatus has been described as an example. However, the present invention is not limited to this application example, and a light emitting element driving circuit including a modulation circuit and an APC circuit is provided. Applicable to all devices to be used.

本発明の第1実施形態に係る発光素子駆動回路の構成を示す回路図である。1 is a circuit diagram showing a configuration of a light emitting element driving circuit according to a first embodiment of the present invention. 本発明の第2実施形態に係る発光素子駆動回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the light emitting element drive circuit which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る発光素子駆動回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the light emitting element drive circuit which concerns on 3rd Embodiment of this invention. 本発明が適用される光通信装置の構成の概略を示すブロック図である。It is a block diagram which shows the outline of a structure of the optical communication apparatus with which this invention is applied. 従来例に係る発光素子駆動回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the light emitting element drive circuit which concerns on a prior art example. 発光素子の温度特性を示す図である。It is a figure which shows the temperature characteristic of a light emitting element. 発光素子の経時変化を示す図である。It is a figure which shows the time-dependent change of a light emitting element.

符号の説明Explanation of symbols

10,61…発光素子、20…変調回路、21…バッファ、22,23…差動対トランジスタ、26,27,28,29…変調電流源、30,81…受光素子、40…APC回路、41…バイアス電流源、51…変調電流設定回路、52…温度センサ、53…メモリ部、60…光送信装置、62…発光素子駆動か色、70…光伝送媒体、80…光受信装置   DESCRIPTION OF SYMBOLS 10,61 ... Light emitting element, 20 ... Modulation circuit, 21 ... Buffer, 22, 23 ... Differential pair transistor, 26, 27, 28, 29 ... Modulation current source, 30, 81 ... Light receiving element, 40 ... APC circuit, 41 DESCRIPTION OF SYMBOLS ... Bias current source, 51 ... Modulation current setting circuit, 52 ... Temperature sensor, 53 ... Memory part, 60 ... Optical transmitter, 62 ... Light-emitting element drive or color, 70 ... Optical transmission medium, 80 ... Optical receiver

Claims (9)

入力信号に応じて発光素子に変調電流を流す変調手段と、
前記発光素子の光出力強度が一定になるように、当該発光素子のバイアス電流を制御する光出力制御手段と、
前記発光素子の光出力強度の劣化時に前記光出力制御手段によって前記バイアス電流が増加する方向に制御されたときに、当該バイアス電流に応じて前記変調電流の大きさを制御する変調電流制御手段と
を具備することを特徴とする発光素子駆動回路。
Modulation means for causing a modulation current to flow through the light emitting element in response to an input signal;
Light output control means for controlling the bias current of the light emitting element so that the light output intensity of the light emitting element is constant;
Modulation current control means for controlling the magnitude of the modulation current according to the bias current when the bias output is controlled by the light output control means when the light output intensity of the light emitting element is deteriorated; A light emitting element driving circuit comprising:
前記変調電流制御手段は、前記変調電流を流す第1の電流源に対して並列に接続され、前記バイアス電流を流すバイアス電流源と共にカレントミラー回路を構成する第2の電流源である
ことを特徴とする請求項1記載の発光素子駆動回路。
The modulation current control means is a second current source that is connected in parallel to the first current source that supplies the modulation current, and that forms a current mirror circuit together with the bias current source that supplies the bias current. The light-emitting element driving circuit according to claim 1.
前記第1の電流源に対して並列に接続された温度特性を持つ第3の電流源を有する
ことを特徴とする請求項2記載の発光素子駆動回路。
The light emitting element drive circuit according to claim 2, further comprising a third current source having a temperature characteristic connected in parallel to the first current source.
前記変調電流制御手段は、所定の設定電圧と前記バイアス電流に基づいて演算を行うことによって前記変調電流の大きさを設定する
ことを特徴とする請求項2記載の発光素子駆動回路。
The light emitting element drive circuit according to claim 2, wherein the modulation current control unit sets the magnitude of the modulation current by performing a calculation based on a predetermined set voltage and the bias current.
前記変調電流制御手段は、雰囲気温度をパラメータとして用いて前記変調電流の大きさを設定する
ことを特徴とする請求項4記載の発光素子駆動回路。
The light emitting element drive circuit according to claim 4, wherein the modulation current control means sets the magnitude of the modulation current using an ambient temperature as a parameter.
前記変調電流制御手段は、所定の設定電圧と前記バイアス電流を基にルックアップテーブルを参照して前記変調電流の大きさを設定する
ことを特徴とする請求項2記載の発光素子駆動回路。
The light emitting element drive circuit according to claim 2, wherein the modulation current control means sets the magnitude of the modulation current with reference to a lookup table based on a predetermined set voltage and the bias current.
前記変調電流制御手段は、雰囲気温度をパラメータとして用いて前記変調電流の大きさを設定する
ことを特徴とする請求項6記載の発光素子駆動回路。
The light emitting element drive circuit according to claim 6, wherein the modulation current control unit sets the magnitude of the modulation current using an ambient temperature as a parameter.
入力信号に応じて発光素子に変調電流を流すとともに、前記発光素子の光出力強度が一定になるように、当該発光素子のバイアス電流を制御し、
前記発光素子の光出力強度の劣化時に前記バイアス電流が増加する方向に制御されたときに、当該バイアス電流に応じて前記変調電流の大きさを制御する
ことを特徴とする発光素子駆動方法。
A modulation current is supplied to the light emitting element in accordance with the input signal, and the bias current of the light emitting element is controlled so that the light output intensity of the light emitting element is constant,
When the bias current is controlled to increase when the light output intensity of the light emitting element is deteriorated, the magnitude of the modulation current is controlled according to the bias current.
発光素子と、
入力信号に応じて前記発光素子に変調電流を流す変調回路と、
前記発光素子の光出力強度が一定になるように、当該発光素子のバイアス電流を制御する光出力制御回路と、
前記発光素子の光出力強度の劣化時に前記光出力制御回路によって前記バイアス電流が増加する方向に制御されたときに、当該バイアス電流に応じて前記変調電流の大きさを制御する変調電流制御回路と
を具備することを特徴とする光送信装置。
A light emitting element;
A modulation circuit for supplying a modulation current to the light emitting element in response to an input signal;
A light output control circuit for controlling the bias current of the light emitting element so that the light output intensity of the light emitting element is constant;
A modulation current control circuit for controlling the magnitude of the modulation current according to the bias current when the bias output is controlled by the light output control circuit when the light output intensity of the light emitting element is deteriorated; An optical transmission device comprising:
JP2005065084A 2005-03-09 2005-03-09 Circuit and method for driving light emitting device and optical transmission device Pending JP2006253266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065084A JP2006253266A (en) 2005-03-09 2005-03-09 Circuit and method for driving light emitting device and optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065084A JP2006253266A (en) 2005-03-09 2005-03-09 Circuit and method for driving light emitting device and optical transmission device

Publications (1)

Publication Number Publication Date
JP2006253266A true JP2006253266A (en) 2006-09-21

Family

ID=37093450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065084A Pending JP2006253266A (en) 2005-03-09 2005-03-09 Circuit and method for driving light emitting device and optical transmission device

Country Status (1)

Country Link
JP (1) JP2006253266A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110571A1 (en) * 2008-03-05 2009-09-11 株式会社フジクラ Light transmitting device
JP2012028439A (en) * 2010-07-21 2012-02-09 Fujitsu Optical Components Ltd Optical transmission module and control method for optical transmission module
CN103227412A (en) * 2013-04-12 2013-07-31 南京诺威尔光电系统有限公司 Constant-current complementary control circuit of high-power semiconductor laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110571A1 (en) * 2008-03-05 2009-09-11 株式会社フジクラ Light transmitting device
JP2009239879A (en) * 2008-03-05 2009-10-15 Fujikura Ltd Light transmitting device
CN101965696A (en) * 2008-03-05 2011-02-02 株式会社藤仓 Optical transmission device
JP2012028439A (en) * 2010-07-21 2012-02-09 Fujitsu Optical Components Ltd Optical transmission module and control method for optical transmission module
CN103227412A (en) * 2013-04-12 2013-07-31 南京诺威尔光电系统有限公司 Constant-current complementary control circuit of high-power semiconductor laser device
CN103227412B (en) * 2013-04-12 2015-04-01 南京诺威尔光电系统有限公司 Constant-current complementary control circuit of high-power semiconductor laser device

Similar Documents

Publication Publication Date Title
US6559995B2 (en) Optical transmission method and optical transmitter with temperature compensation function
JP5011805B2 (en) Optical transmitter
JPH11135871A (en) Method for activating laser diode and circuit thereof
JP3636411B2 (en) Laser diode drive circuit and drive method
US20040086006A1 (en) Optical output stabilizing circuit and light transmission module of semiconductor laser
JP4566692B2 (en) LIGHT EMITTING DIODE DRIVING DEVICE AND OPTICAL TRANSMISSION DEVICE HAVING THE SAME
JP2004193376A (en) Light emitting device driving device
JP3423115B2 (en) Optical signal transmission device
JP2006253266A (en) Circuit and method for driving light emitting device and optical transmission device
KR100721578B1 (en) Direct Current Stabilizing Circuit of Organic Electroluminescent Device and Power Supply using the same
US7680164B1 (en) Configurable laser driver with common anode and common cathode outputs
US20020093999A1 (en) Laser diode drive circuit and optical transmission system
JPH11233870A (en) Equipment and method for light transmission
JP4337842B2 (en) Optical transmission circuit
JP2008009226A (en) Optical transmission module
JP2004349532A (en) Optical transmitter
JP2008153544A (en) Current source circuit and light-emitting element drive circuit
JP4712669B2 (en) Optical semiconductor device, control method therefor, and optical module
JP2005340278A (en) Light emitting element driving circuit
JP3333390B2 (en) Laser diode extinction ratio control circuit
JP2573426B2 (en) Burst type optical communication circuit
JP2009123959A (en) Optical transmitter and control method thereof
JPH0595148A (en) Driver for laser diode
JPH10145305A (en) Optical transmitter
JP2001156719A (en) Optical transmitter