JP2006252889A - Fuel cell gas diffusion layer member and manufacturing method of same - Google Patents

Fuel cell gas diffusion layer member and manufacturing method of same Download PDF

Info

Publication number
JP2006252889A
JP2006252889A JP2005066148A JP2005066148A JP2006252889A JP 2006252889 A JP2006252889 A JP 2006252889A JP 2005066148 A JP2005066148 A JP 2005066148A JP 2005066148 A JP2005066148 A JP 2005066148A JP 2006252889 A JP2006252889 A JP 2006252889A
Authority
JP
Japan
Prior art keywords
diffusion layer
gas diffusion
fuel cell
gas
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005066148A
Other languages
Japanese (ja)
Other versions
JP4747615B2 (en
Inventor
Eiko Kanda
栄子 神田
Masahiro Wada
正弘 和田
Takeshi Isobe
毅 磯部
Masaaki Kato
公明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005066148A priority Critical patent/JP4747615B2/en
Publication of JP2006252889A publication Critical patent/JP2006252889A/en
Application granted granted Critical
Publication of JP4747615B2 publication Critical patent/JP4747615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell gas diffusion layer member 20 excellent in assembling efficiency at assembling a fuel cell and gas sealing property under a condition of operating the fuel cell, and to provide a manufacturing method of the same. <P>SOLUTION: On the fuel cell gas diffusion layer member 20 having a gas sealing member 40 arranged around a gas diffusion layer 13 preventing the gas diffusion layer 13 from leakage of fuel gas and its manufacturing method, the gas sealing member 40 includes a base body 11 made of resin having a load deflecting temperature exceeding a range of fuel cell operation temperature; and a sealing member 12 made of elastomer. At least a part of the surface of the sealing member 12 is integrally molded with the bas body 11. It is preferable that the gas diffusion layer member 20 is formed integrally by two-color molding, and the resin is a crystalline resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用ガス拡散層部材およびその製造方法に関する。   The present invention relates to a fuel cell gas diffusion layer member and a method for producing the same.

燃料電池は、セルを構成単位とし、一つのセル(単セル)は、異なる電極(燃料極と空気極)が固体高分子などの電解質膜を挟んだ構造をしている。
そして、燃料電池は、セルが多数積み重なること(いわゆるスタック型)により、大きな電気を発生する。
A fuel cell has a cell as a structural unit, and one cell (single cell) has a structure in which different electrodes (a fuel electrode and an air electrode) sandwich an electrolyte membrane such as a solid polymer.
And a fuel cell generate | occur | produces big electricity by stacking many cells (what is called a stack type).

前記燃料極と空気極には、燃料ガスとの接触面積が大きい導電性の多孔体が用いられ、電解質膜側の面には触媒層が設けられている。そして、この導電性の多孔体の中(ガス拡散層)を燃料ガスの水素と空気がそれぞれ通る。
このとき、燃料極と空気極では、触媒の作用により電極反応が起こる。
燃料極側では、供給される水素分子が水素原子となって電子を放出し、水素イオンが生じる。この電子は、別に設けられる外部回路を通り、空気極側へと移動する。これにより、電流が流れ、電気を発生する。
一方、空気極側では、供給される空気中の酸素分子が前記電子を受け取り、酸素イオンが生じる。そこに、前記水素イオンが電解質膜を通り空気極側へと移動し、前記酸素イオンと結合し、水となる。そして、この水は、余剰の空気と共に系外へと排出される。
A conductive porous body having a large contact area with the fuel gas is used for the fuel electrode and the air electrode, and a catalyst layer is provided on the surface on the electrolyte membrane side. Then, hydrogen and air of the fuel gas pass through the conductive porous body (gas diffusion layer).
At this time, an electrode reaction occurs at the fuel electrode and the air electrode due to the action of the catalyst.
On the fuel electrode side, the supplied hydrogen molecules become hydrogen atoms and emit electrons, generating hydrogen ions. The electrons move to the air electrode side through an external circuit provided separately. Thereby, an electric current flows and electricity is generated.
On the other hand, on the air electrode side, oxygen molecules in the supplied air receive the electrons to generate oxygen ions. There, the hydrogen ions move through the electrolyte membrane to the air electrode side, combine with the oxygen ions, and become water. And this water is discharged | emitted out of the system with surplus air.

ここで燃料電池の発電効率を高めるためには、上記の一連の反応効率を高めることが重要であり、そのため、供給される燃料ガス漏れを防止することが求められている。   Here, in order to increase the power generation efficiency of the fuel cell, it is important to increase the series of reaction efficiencies described above, and therefore it is required to prevent leakage of supplied fuel gas.

これに対し、従来、燃料ガス漏れを防止するために、種々の提案がされている。
例えば、空隙部を有するシール対象物のシール部の空隙部分に、シール材料を含浸したガスケットの提案がされている(特許文献1参照。)。
また、ガス拡散層と、前記ガス拡散層の端面延長方向に配置されたシート状フレーム部材と、前記ガス拡散層およびフレーム部材間に配置されるとともにこの両者と一体化したゴム状弾性材製のガスケットとを有する構成部品が提案されている(特許文献2参照。)。
On the other hand, conventionally, various proposals have been made to prevent fuel gas leakage.
For example, a gasket having a sealing material impregnated in a gap portion of a sealing portion of a sealing object having a gap portion has been proposed (see Patent Document 1).
A gas diffusion layer; a sheet-like frame member arranged in an extending direction of the end face of the gas diffusion layer; and a rubber-like elastic material that is arranged between the gas diffusion layer and the frame member and integrated with both. A component having a gasket has been proposed (see Patent Document 2).

さらに、導電性多孔体の周囲に、樹脂またはエラストマーからなる樹脂枠を設け、該樹脂枠に、Oリング用の溝や軟質の樹脂で凸部を設けることができるガス拡散層用部材の提案(特許文献3参照。)や、担体部材とシール部材とストッパ部材(前記シール部材が空隙の幅を実質的に増加させるのを防止するためのもの)とを備えたガスケット(Oリング)等の提案(特許文献4参照。)がされている。
特開2004−95565号公報 特開2003−7328号公報 米国特許出願公開第2004/100295号明細書 特開2001−146971号公報
Further, a gas diffusion layer member is proposed in which a resin frame made of a resin or an elastomer is provided around the conductive porous body, and a groove for an O-ring or a convex portion can be provided on the resin frame with a soft resin ( And a gasket (O-ring) including a carrier member, a seal member, and a stopper member (for preventing the seal member from substantially increasing the width of the gap). (See Patent Document 4).
JP 2004-95565 A JP 2003-7328 A US Patent Application Publication No. 2004/100295 JP 2001-146971 A

しかしながら、特許文献1の提案では、シール対象物の空隙部分へシール材料を均一に含浸することは難しく、燃料電池作動の際の振動・衝撃などにより、シール材料の含浸部の薄い箇所が割れて穴が開いてしまう等、シール部の強度が低く、ガスシール性が不充分なものであった。
特許文献2の提案では、ガス拡散層とシート状フレーム部材とガスケットとの一体品が成形され、これらを一部品としてまとめて取り扱うことが可能となり、組み立て等が容易となる。しかしながら、ガスケットはゴム状弾性材製であり、燃料電池作動中に、ガスケットが熱により変形等を生じ、ガスシール性が悪くなる場合がある。
また特許文献3の提案では、導電性多孔体と樹脂枠とを一部品として取り扱うことが可能となるが、軟質の樹脂で凸部を設けることは、燃料電池作動中の熱による変形等、強度に劣るためにガスシール性が悪くなる場合がある。さらに、特許文献4などのOリングを用いることは、セルを組み立てる際、Oリングの取り付けに時間を要し、またはOリング用に設けた溝との一致性を欠く等によりOリングにねじれが生じ易く、組み立て効率が悪いといった問題がある。
However, in the proposal of Patent Document 1, it is difficult to uniformly impregnate the sealing material into the gap portion of the sealing object, and the thin portion of the impregnated portion of the sealing material is cracked due to vibration / impact during the operation of the fuel cell. The strength of the seal portion was low, such as a hole being opened, and the gas sealability was insufficient.
In the proposal of Patent Document 2, an integrated product of a gas diffusion layer, a sheet-like frame member, and a gasket is formed, and these can be handled together as one part, which facilitates assembly and the like. However, the gasket is made of a rubber-like elastic material, and during the operation of the fuel cell, the gasket may be deformed by heat and gas sealing performance may be deteriorated.
Further, in the proposal of Patent Document 3, it is possible to handle the conductive porous body and the resin frame as one component. However, providing a convex portion with a soft resin can cause deformation such as deformation due to heat during operation of the fuel cell. Therefore, the gas sealability may be deteriorated. Furthermore, the use of the O-ring disclosed in Patent Document 4, for example, requires time to install the O-ring when assembling the cell, or the O-ring is twisted due to lack of consistency with the groove provided for the O-ring. There is a problem that it is likely to occur and the assembly efficiency is low.

本発明は、上記課題に鑑みてなされたもので、燃料電池セルを組み立てる際の組み立て効率、および燃料電池作動条件下でのガスシール性が共に優れた燃料電池用ガス拡散層部材およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is a gas diffusion layer member for a fuel cell that is excellent in both assembly efficiency when assembling a fuel cell and gas sealability under fuel cell operating conditions, and a method for manufacturing the same. The purpose is to provide.

本発明者らは、鋭意検討の結果、樹脂からなる基体とエラストマーからなるシール材とを一体成形したガス封止材をガス拡散層の周縁部に設けることにより、上記課題が解決されることを見出し、本発明を完成するに至った。
すなわち、本発明は、ガス拡散層からの燃料ガス漏れを防止するためのガス封止材が該ガス拡散層の周縁部に設けられた燃料電池用ガス拡散層部材において、前記ガス封止材は、荷重たわみ温度が燃料電池作動温度範囲の上限温度以上の樹脂からなる基体と、エラストマーからなるシール材とからなり、前記シール材が前記基体の表面の少なくとも一部で一体成形されていることを特徴とする燃料電池用ガス拡散層部材である。
また、本発明の燃料電池用ガス拡散層部材は、二色成形により一体成形されるものが好ましく、前記樹脂が結晶性樹脂であるものが好ましい。
さらに、本発明は、ガス拡散層からの燃料ガス漏れを防止するためのガス封止材が該ガス拡散層の周縁部に設けられた燃料電池用ガス拡散層部材の製造方法において、荷重たわみ温度が燃料電池作動温度範囲の上限温度以上の樹脂からなる基体と、エラストマーからなるシール材とを前記基体の表面の少なくとも一部で一体成形してガス封止材を成形し、該ガス封止材を、前記一体成形と同時または後にガス拡散層の周縁部に設けることを特徴とする燃料電池用ガス拡散層部材の製造方法である。
ここで、「ガス拡散層の周縁部に設けられた」とは、ガス拡散層の面方向に延びる周囲を囲むようにガス封止材が成形されることをいう。
As a result of intensive studies, the present inventors have found that the above problem can be solved by providing a gas sealing material integrally formed with a resin base and an elastomer sealing material on the peripheral portion of the gas diffusion layer. The headline and the present invention were completed.
That is, the present invention provides a gas diffusion layer member for a fuel cell in which a gas sealing material for preventing leakage of fuel gas from the gas diffusion layer is provided at a peripheral portion of the gas diffusion layer. The substrate is made of a resin having a deflection temperature under the upper limit temperature of the fuel cell operating temperature range and a sealing material made of an elastomer, and the sealing material is integrally formed on at least a part of the surface of the base. This is a gas diffusion layer member for a fuel cell.
Further, the gas diffusion layer member for a fuel cell of the present invention is preferably integrally molded by two-color molding, and the resin is preferably a crystalline resin.
Furthermore, the present invention provides a method for producing a gas diffusion layer member for a fuel cell in which a gas sealing material for preventing leakage of fuel gas from the gas diffusion layer is provided at the periphery of the gas diffusion layer. A gas sealing material is formed by integrally molding a base made of a resin having a temperature equal to or higher than the upper limit temperature of the fuel cell operating temperature range and a sealing material made of an elastomer at least at a part of the surface of the base, and the gas sealing material Is provided at the periphery of the gas diffusion layer at the same time as or after the integral molding, and a method for producing a gas diffusion layer member for a fuel cell.
Here, “provided at the peripheral portion of the gas diffusion layer” means that the gas sealing material is molded so as to surround the periphery extending in the surface direction of the gas diffusion layer.

本発明によれば、燃料電池セルを組み立てる際の組み立て効率、および燃料電池作動条件下でのガスシール性が共に優れた燃料電池用ガス拡散層部材およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the gas diffusion layer member for fuel cells which was excellent in both the assembly efficiency at the time of assembling a fuel cell, and the gas-seal property on fuel cell operating conditions can be provided.

以下、本発明の実施形態について、図1〜5を参照しながら詳細に説明する。
本発明の燃料電池用ガス拡散層部材20は、主として図1に模式的に示すようなスタック型燃料電池10に用いられ、一実施形態として図2〜4に示すように、シール材12が、基体11の表面の少なくとも一部で一体成形されているガス封止材40が、ガス拡散層13の周縁部に設けられたものである。
なお、本発明の燃料電池用ガス拡散層部材に付される符号は、図2では20、図3では30となるが、実施形態が同じ構成については、以下、図2における20を付して説明を省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
The gas diffusion layer member 20 for a fuel cell according to the present invention is mainly used in a stack type fuel cell 10 as schematically shown in FIG. 1, and as shown in FIGS. A gas sealing material 40 that is integrally formed on at least a part of the surface of the base 11 is provided on the peripheral edge of the gas diffusion layer 13.
The reference numerals assigned to the fuel cell gas diffusion layer members of the present invention are 20 in FIG. 2 and 30 in FIG. 3, but the same configuration as the embodiment will be denoted by 20 in FIG. Description is omitted.

<基体>
基体11に用いられる樹脂は、荷重たわみ温度が、燃料電池作動温度範囲の上限温度以上の樹脂である。
ここで、荷重たわみ温度とは、特定の試験条件(JIS K 7191)の下で、試験片が、一定の曲げ荷重のもとで一定の距離たわむ温度をいう。例えば、厚さ4.0mmの試験片に1.80MPaの荷重を加え、120℃/hr.で昇温し、たわみが0.34mmに達したときの温度を測定する。
また、燃料電池作動温度とは、実際に燃料電池10が作動している間のガス拡散層13内の温度をいい、個々の燃料電池装置毎に固有の温度値となる。
現状の実用温度範囲は、一般的に−20℃〜120℃であり、用いられる樹脂としては、荷重たわみ温度が120℃以上の樹脂であることが好ましい。これにより、燃料電池作動条件下での熱に対する強度が確保され、熱による変形やたわみ等の発生を防ぐことができ、ガスシール性に優れたものとなる。
<Substrate>
The resin used for the substrate 11 is a resin whose deflection temperature under load is equal to or higher than the upper limit temperature of the fuel cell operating temperature range.
Here, the deflection temperature under load refers to a temperature at which a test piece bends a certain distance under a certain bending load under a specific test condition (JIS K 7191). For example, a load of 1.80 MPa is applied to a test piece having a thickness of 4.0 mm, and 120 ° C./hr. And the temperature when the deflection reaches 0.34 mm is measured.
The fuel cell operating temperature refers to the temperature in the gas diffusion layer 13 while the fuel cell 10 is actually operating, and is a unique temperature value for each individual fuel cell device.
The current practical temperature range is generally −20 ° C. to 120 ° C., and the resin used is preferably a resin having a deflection temperature under load of 120 ° C. or higher. As a result, the strength against heat under the fuel cell operating conditions is ensured, the occurrence of deformation and deflection due to heat can be prevented, and the gas sealing property is excellent.

さらに、基体11に用いられる樹脂は、結晶性樹脂であることがより好ましい。
ここで、結晶性樹脂とは、かなりの秩序を持った分子配列を示し、X線回折により明瞭な結晶構造が認められる高分子物質をいう(理化学辞典)。
基体11に用いられる樹脂が結晶性樹脂であることにより、耐薬品性に優れ、燃料ガスや固体高分子などの電解質膜15等との接触による劣化が起こりにくくなる。また、該樹脂自体のガス透過性が低くなるため、ガスシール性がより向上したものとなる。
Furthermore, the resin used for the substrate 11 is more preferably a crystalline resin.
Here, the crystalline resin refers to a polymer substance that shows a molecular arrangement with a considerable order and has a clear crystal structure recognized by X-ray diffraction (Rikagaku Dictionary).
Since the resin used for the substrate 11 is a crystalline resin, it has excellent chemical resistance and is less likely to deteriorate due to contact with the electrolyte membrane 15 such as fuel gas or solid polymer. In addition, since the gas permeability of the resin itself is lowered, the gas sealability is further improved.

基体11に用いられる樹脂としては、荷重たわみ温度が、燃料電池作動温度範囲の上限温度以上の樹脂であればよく、現状では荷重たわみ温度が120℃以上の樹脂が好ましく、中でも、熱可塑性樹脂、熱硬化性樹脂から好適に選ばれる。
熱可塑性樹脂としては、アイオノマー樹脂、エチレン・アクリル酸エチル共重合樹脂、
アクリロニトリル・スチレン・アクリルゴム共重合(ASA)樹脂、アクリロニトリル・塩素化ポリエチレン・スチレン共重合(ACS)樹脂、エチレン・ビニルアルコール共重合樹脂、アクリロニトリル・ブタジエン・スチレン共重合(ABS)樹脂、フッ素樹脂、ポリアミド樹脂、ポリアクリレート樹脂、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルサルフォン(PES)樹脂、ポリエチレンテレフタレート、ポリカーボネート樹脂、フェニレンエーテル樹脂、ポリフェニレンサルフィド(PPS)樹脂、ポリブチレンテレフタレート(PBT)、ポリプロピレン樹脂、ポリメチルペンテン、
シンジオタクチックポリスチレン(SPS)等が挙げられる。
熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹
脂等が挙げられる。
以上の中でも、結晶性樹脂であり、耐薬品性に優れ、ガス透過性が低いことから、フッ
素樹脂、ポリアミド樹脂、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエチレンテレフタレート、ポリフェニレンサルフィド(PPS)樹脂、ポリブチレンテレフタレート(PBT)、ポリプロピレン樹脂が好ましく選ばれ、中でもポリフェニレンスルフィド(PPS)樹脂、ポリプロピレン樹脂がより好ましく選ばれる。これらの樹脂は、1種を単独で用いてもよく、または2種以上を併用してもよい。
The resin used for the substrate 11 may be a resin having a deflection temperature under load that is equal to or higher than the upper limit temperature of the fuel cell operating temperature range. Currently, a resin with a deflection temperature under load of 120 ° C. or higher is preferable, among which a thermoplastic resin, It is preferably selected from thermosetting resins.
Thermoplastic resins include ionomer resins, ethylene / ethyl acrylate copolymer resins,
Acrylonitrile / styrene / acrylic rubber copolymer (ASA) resin, acrylonitrile / chlorinated polyethylene / styrene copolymer (ACS) resin, ethylene / vinyl alcohol copolymer resin, acrylonitrile / butadiene / styrene copolymer (ABS) resin, fluorine resin, Polyamide resin, polyacrylate resin, liquid crystal polymer, polyether ether ketone (PEEK) resin, polyether sulfone (PES) resin, polyethylene terephthalate, polycarbonate resin, phenylene ether resin, polyphenylene sulfide (PPS) resin, polybutylene terephthalate ( PBT), polypropylene resin, polymethylpentene,
Examples include syndiotactic polystyrene (SPS).
Examples of the thermosetting resin include an epoxy resin, a phenol resin, a polyimide resin, and a melamine resin.
Among these, the crystalline resin is excellent in chemical resistance and has low gas permeability. Therefore, it is a fluororesin, polyamide resin, liquid crystal polymer, polyether ether ketone (PEEK) resin, polyethylene terephthalate, polyphenylene sulfide (PPS). ) Resin, polybutylene terephthalate (PBT), and polypropylene resin are preferably selected, and among them, polyphenylene sulfide (PPS) resin and polypropylene resin are more preferably selected. These resins may be used alone or in combination of two or more.

基体11には、その他に上述の樹脂以外に無機フィラーを適宜添加することができる。無機フィラーは、繊維状とされるとともに、基体11中に5〜60質量%以下含有され
る。ここで繊維状とは、アスペクト比が5以上のものをいう。
無機フィラーの外径は、3.5nm以上30μm以下、好ましくは3.5nm以上10μm以下である。これにより、成形工程で、基体11を構成する樹脂を溶融した溶融樹脂中に無機フィラーが均一に分散され、該溶融樹脂の流動性が良好なものとなる。
例えば、ガス封止材40とガス拡散層13との成形の際、無機フィラーが、ガス拡散層13の周縁部に開口した気孔部に絡み付き、該気孔の開口面積が小さくなる。そして、その部位で前記溶融樹脂が硬化することにより、より確実に該気孔を塞くことができるようになる。これにより、ガス封止材40とガス拡散層13との接合部におけるガスシール性がより向上したものとなる。
無機フィラーとしては、ガラス繊維、炭素繊維、カーボンナノチューブ、金属短繊維等の繊維状物質;酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、チタン酸カリウム、ホウ酸アルミニウム等の金属酸化物;炭化ケイ素、窒化アルミニウム等の非酸化物セラミックスの針状結晶(いわゆるウィスカー)物質等が用いられる。
In addition to the above-described resin, an inorganic filler can be appropriately added to the substrate 11. The inorganic filler is in a fibrous form and is contained in the substrate 11 in an amount of 5 to 60% by mass or less. Here, the fibrous form means one having an aspect ratio of 5 or more.
The outer diameter of the inorganic filler is 3.5 nm to 30 μm, preferably 3.5 nm to 10 μm. Thereby, an inorganic filler is uniformly disperse | distributed in the molten resin which fuse | melted resin which comprises the base | substrate 11 at a shaping | molding process, and the fluidity | liquidity of this molten resin will become favorable.
For example, when the gas sealing material 40 and the gas diffusion layer 13 are molded, the inorganic filler is entangled with the pores opened at the peripheral edge of the gas diffusion layer 13, and the opening area of the pores is reduced. And since the said molten resin hardens | cures in the site | part, this comes to be able to block | close this pore more reliably. Thereby, the gas sealing property in the junction part of the gas sealing material 40 and the gas diffusion layer 13 will improve more.
Examples of inorganic fillers include fibrous materials such as glass fibers, carbon fibers, carbon nanotubes, and short metal fibers; metal oxides such as aluminum oxide, zirconium oxide, zinc oxide, potassium titanate, and aluminum borate; silicon carbide, aluminum nitride A non-oxide ceramic needle crystal (so-called whisker) substance or the like is used.

なお、基体11には、一実施形態として図2〜4に示すように、燃料ガスの導入口として、燃料供給用の貫通孔21、燃料排出用の貫通孔22、空気供給用の貫通孔31、空気排出用の貫通孔32がそれぞれ設けられる。
また、基体11には、燃料電池セルの積層体を固定するために、固定用のボルト等を挿通させるためのボルト挿通孔25を四隅に設けることができる。
As shown in FIGS. 2 to 4, as an embodiment, the base 11 has a fuel supply through hole 21, a fuel discharge through hole 22, and an air supply through hole 31. Each of the through holes 32 for discharging air is provided.
Further, the base 11 can be provided with bolt insertion holes 25 at four corners through which fixing bolts and the like are inserted in order to fix the stacked body of fuel cells.

<シール材>
シール材12は、エラストマーから選ばれる。中でも、燃料電池作動温度範囲でのヤング率(JIS K 6394)が、5×10Pa以下であるエラストマーが好ましく選ばれる。これにより、燃料電池セルを組み立てる際や、燃料電池作動の際の振動・衝撃を吸収できる充分な弾性力を有し、ガスシール性に優れたものとなる。
なお、シール材12は、以下に詳述するように、基体11と、該基体11の表面の少なくとも一部で一体成形され、該基体11の片方の面だけに設けられてもよく、両面に設けられてもよい。また、シール材12が設けられる基体11の表面における位置は任意であり、例えば図2に示すような位置に、シール細線状に設けることができる。
特に、ガスシール性を高めるとともに、燃料ガスの水素と空気の混合を防止するために、燃料極用の燃料電池用ガス拡散層部材20では、ガス拡散層13と空気供給用の貫通孔31との間、およびガス拡散層13と空気排出用の貫通孔32との間に、図2に示すようにシール材12を設けることが好ましい。また、空気極用の燃料電池用ガス拡散層部材30では、ガス拡散層13と燃料供給用の貫通孔21との間、およびガス拡散層13と燃料排出用の貫通孔22との間に、図3に示すようにシール材12を設けることが好ましい。結果として、貫通孔31、32、21、22を囲うようにシール材が設けられる。
<Seal material>
The sealing material 12 is selected from elastomers. Among them, an elastomer having a Young's modulus (JIS K 6394) in the fuel cell operating temperature range of 5 × 10 8 Pa or less is preferably selected. Thereby, when assembling the fuel cell or when the fuel cell is operated, it has sufficient elastic force that can absorb vibrations and shocks, and has excellent gas sealing properties.
As will be described in detail below, the sealing material 12 may be integrally formed with the base body 11 and at least a part of the surface of the base body 11, and may be provided only on one side of the base body 11. It may be provided. Further, the position on the surface of the substrate 11 on which the sealing material 12 is provided is arbitrary, and can be provided in a thin seal line, for example, at the position shown in FIG.
In particular, in order to improve gas sealing performance and prevent mixing of hydrogen and air of the fuel gas, in the fuel cell gas diffusion layer member 20 for the fuel electrode, the gas diffusion layer 13 and the air supply through-hole 31 2 and between the gas diffusion layer 13 and the air exhaust through-hole 32, it is preferable to provide the sealing material 12 as shown in FIG. Further, in the fuel cell gas diffusion layer member 30 for the air electrode, between the gas diffusion layer 13 and the fuel supply through hole 21 and between the gas diffusion layer 13 and the fuel discharge through hole 22, It is preferable to provide the sealing material 12 as shown in FIG. As a result, a sealing material is provided so as to surround the through holes 31, 32, 21, and 22.

シール材12に用いるエラストマーとしては、シリコーン樹脂などのゴム状弾性を有する熱硬化性樹脂;エチレン・酢酸ビニル(EVA)共重合樹脂;ポリブタジエン樹脂などのゴム状弾性を有する熱可塑性樹脂;熱可塑性ポリウレタンエラストマー、その他熱可塑性エラストマー(TPE)等が挙げられる。中でも、耐薬品性と耐熱性に優れることから、
シリコーン樹脂、オレフィン系熱可塑性エラストマーが好ましく選ばれる。これらのエラストマーは、1種を単独で用いてもよく、または2種以上を併用してもよい。
The elastomer used for the sealing material 12 includes a thermosetting resin having rubber-like elasticity such as a silicone resin; an ethylene / vinyl acetate (EVA) copolymer resin; a thermoplastic resin having rubber-like elasticity such as a polybutadiene resin; and a thermoplastic polyurethane. Examples include elastomers and other thermoplastic elastomers (TPE). Above all, because it is excellent in chemical resistance and heat resistance,
Silicone resins and olefinic thermoplastic elastomers are preferably selected. These elastomers may be used individually by 1 type, or may use 2 or more types together.

<基体とシール材との一体成形>
上述の基体11とシール材12とを用いて、両者を該基体11の表面の少なくとも一部で一体成形し、ガス封止材40を成形する。
該一体成形により、燃料電池セルを組み立てる際、基体11とシール材12とを一部品としてまとめて取り扱うことができ、従来の接着剤等による基体11へのシール材12の取り付け工程が必要なくなることにより、取り付け時間が短縮され、セルの組み立て効率に優れたものとなる。
また、一体成形された基体11とシール材12との固定強度は、従来の接着剤等による固定強度より高いものが得られる。これにより、燃料電池セルを組み立てる際や燃料電池作動の際の振動・衝撃に対しても、基体11とシール材12との位置関係がずれることなく一定に保つことができ、ガスシール性に優れたものとなる。
<Integrated molding of base and sealing material>
Using the base body 11 and the sealing material 12 described above, the gas sealing material 40 is formed by integrally molding both of them on at least a part of the surface of the base body 11.
By the integral molding, when assembling the fuel cell, the base body 11 and the sealing material 12 can be handled together as one part, and the conventional process of attaching the sealing material 12 to the base body 11 with an adhesive or the like is not necessary. As a result, the mounting time is shortened and the cell assembly efficiency is excellent.
In addition, the fixing strength between the integrally formed base 11 and the sealing material 12 is higher than the fixing strength with a conventional adhesive or the like. As a result, the positional relationship between the base 11 and the sealing material 12 can be kept constant even when the fuel cell is assembled or the vibration / impact at the time of fuel cell operation, and the gas sealing property is excellent. It will be.

一体成形の方法としては、特に限定されるものではなく、中でも射出成形が好ましく用いられ、その中でも二色成形がより好ましく用いられる。
ここで二色成形とは、二種類の樹脂からなる一体の製品を作る成形法をいう。
該二色成形により、基体11の樹脂とシール材12のエラストマーとが、界面で溶融した状態で直接接触し、融着する。これにより、基体11とシール材12とが強固に接着した一体化物(ガス封止材40)が成形される。
また、締め付け圧等の制御が可能なことから、成形品における平滑性と厚さの振れを防ぐことができ、均一な形状を持つ一体化物(ガス封止材40)を得ることができる。これにより、セルを積み重ねる際、隙間ができにくくなるため、重ね合わせが良好となり、ガスシール性がより向上する。
さらに、基体11の表面に設けるシール材12の位置は、任意、かつ高精度に成形することができるため、シール材12の位置を多様なパターンに配置でき、多種の燃料電池装置に対応が可能となる等、多様な要求に応え得る利用性に優れたものとなる。
The method of integral molding is not particularly limited, and among these, injection molding is preferably used, and among these, two-color molding is more preferably used.
Here, the two-color molding refers to a molding method for producing an integrated product made of two types of resins.
By the two-color molding, the resin of the base 11 and the elastomer of the sealing material 12 are in direct contact with each other in a melted state at the interface, and are fused. Thereby, the integrated object (gas sealing material 40) which the base | substrate 11 and the sealing material 12 adhered firmly is shape | molded.
Further, since the tightening pressure and the like can be controlled, smoothness and thickness fluctuation in the molded product can be prevented, and an integrated product (gas sealing material 40) having a uniform shape can be obtained. Thereby, when stacking cells, it becomes difficult to form a gap, so that the stacking is good and the gas sealability is further improved.
Furthermore, since the position of the sealing material 12 provided on the surface of the base 11 can be arbitrarily and highly accurately formed, the position of the sealing material 12 can be arranged in various patterns and can be used for various fuel cell devices. For example, it is excellent in usability to meet various requirements.

〔二色成形〕
次に、本発明に好ましく用いられる二色成形について詳述する。
成形には、二組の射出装置(金型、シリンダ等)を備えた専用機を使用する。
基体11とシール材12との一体成形では、はじめに、第一シリンダより、一材目の基体11の溶融樹脂を一次金型で型締めし、射出成形する。次いで、一度型開きをし、一次成形品をコア側に付着させたまま、金型回転盤を180°回転させて型を閉じる。
次に、第二シリンダより、二材目のシール材12の溶融物を二次金型で型締めし、射出成形する。次いで、再び型開きをし、成形品を金型から取り出すことにより、二色成形品であるガス封止材40が成形される。
実際の操作では、二組の射出装置がほぼ同時に作動し、半回転ごとに1ショットの成形品が得られる。
なお、二色射出成形機は、金型が反転する方式が一般的であるが、金型のコアバック方式を採用した成形機も使用することができる。
[Two-color molding]
Next, the two-color molding preferably used in the present invention will be described in detail.
For molding, a dedicated machine equipped with two sets of injection devices (mold, cylinder, etc.) is used.
In the integral molding of the base 11 and the sealing material 12, first, the molten resin of the first base 11 is clamped with a primary mold from the first cylinder and injection molded. Next, the mold is opened once, and the mold is closed by rotating the mold turntable 180 degrees while the primary molded product is adhered to the core side.
Next, from the second cylinder, the melt of the second sealant 12 is clamped with a secondary mold and injection molded. Next, the mold is opened again, and the molded product is taken out of the mold, whereby the gas sealing material 40 which is a two-color molded product is molded.
In actual operation, two sets of injection devices are operated almost simultaneously, and one shot of a molded product is obtained every half rotation.
The two-color injection molding machine is generally a system in which the mold is reversed, but a molding machine that employs a core back system of the mold can also be used.

一方、二色成形以外の方法として、二組の金型を垂直軸の周りに背中合わせに取り付けて垂直軸を中心にして半回転させる方法、一組の金型内に一次成形用と二次成形用のキャビティとコアのセットを設ける方法等を用いることもできる。   On the other hand, as a method other than two-color molding, two sets of molds are attached back to back around the vertical axis and half-rotated around the vertical axis, and primary molding and secondary molding in one set of molds For example, a method of providing a set of cavities and cores can be used.

<ガス拡散層>
本発明に用いられるガス拡散層13は、導電性に優れ、燃料ガスとの接触面積が大きいことが好ましく、中でも導電性の多孔体が好適に用いられる。
導電性の多孔体としては、カーボンペーパー、カーボンクロス等のカーボン製多孔体;3次元網目構造を有する金属製多孔体等が挙げられる。中でも、ガス拡散性と導電性が共に良好であることから、金属製多孔体が好ましく用いられる。
金属製多孔体としては、例えば、金属粉末を焼結したシート、金属不織布、積層メッシュ等が好ましく用いられ、中でも、気孔率や厚さを適宜調節でき、使用可能な原料金属も多用であることから、金属粉末を焼結したシートがより好ましく用いられる。中でも、高い気孔率の金属製多孔体を製造できることから、金属粉末とバインダと溶媒を加えて混練したものに、発泡剤を混ぜて発泡性スラリーとし、発泡成形後に焼結して得られる発泡金属焼結シートがさらに好ましく用いられる。
これらの導電性の多孔体は、1種を単独で用いてもよく、または2種以上を併用してもよい。
<Gas diffusion layer>
The gas diffusion layer 13 used in the present invention is excellent in conductivity and preferably has a large contact area with the fuel gas. Among them, a conductive porous body is preferably used.
Examples of the conductive porous body include carbon porous bodies such as carbon paper and carbon cloth; metal porous bodies having a three-dimensional network structure, and the like. Among these, a metal porous body is preferably used because both gas diffusibility and conductivity are good.
As the metal porous body, for example, a sheet obtained by sintering a metal powder, a metal nonwoven fabric, a laminated mesh, and the like are preferably used. Among them, the porosity and thickness can be appropriately adjusted, and usable raw metal is also widely used. Therefore, a sheet obtained by sintering metal powder is more preferably used. Above all, since a metal porous body with a high porosity can be produced, a foamed metal obtained by mixing a metal powder, a binder and a solvent and kneading them into a foaming slurry by mixing a foaming agent and sintering after foam molding A sintered sheet is more preferably used.
These conductive porous bodies may be used alone or in combination of two or more.

<ガス封止材とガス拡散層との成形>
ガス封止材40と上記のガス拡散層13との成形方法としては、上述の基体11とシール材12との一体成形と同時または後に、前記特許文献3に記載のインサート成形等の方法が好ましく用いられ、中でも二色成形とインサート成形を同時に行うインサート二色成形がより好ましく用いられる。
例えば、上記のガス拡散層13の材料をインサート部品とし、ガス封止材40を成形する際の二色成形と同時にインサート成形を行うことにより、ガス封止材40がガス拡散層13の周縁部に設けられた燃料電池用ガス拡散層部材20が成形される。
これにより、ガス拡散層13の周縁部に開口する気孔中に、ガス封止材40を構成する材料の溶融樹脂等が含浸し硬化することによって、ガス拡散層13のガスシールを確実にすることができる。また、ガス封止材40とガス拡散層13とをアンカー効果によって強固に接合することができる。これにより、ガス拡散層13の強度を高めることができ、かつガス封止材40とガス拡散層13とを一部品として取り扱うことができるため、燃料電池セルの組み立て効率に優れたものとなる。
<Molding of gas sealing material and gas diffusion layer>
As a molding method of the gas sealing material 40 and the gas diffusion layer 13, a method such as insert molding described in Patent Document 3 is preferable at the same time as or after the integral molding of the base body 11 and the sealing material 12 described above. Of these, insert two-color molding, in which two-color molding and insert molding are simultaneously performed, is more preferably used.
For example, the material of the gas diffusion layer 13 is an insert part, and insert molding is performed simultaneously with two-color molding when the gas sealing material 40 is molded. The gas diffusion layer member 20 for a fuel cell provided in is formed.
This ensures that the gas diffusion layer 13 has a gas seal by being impregnated with the molten resin or the like of the material constituting the gas sealing material 40 and being cured in the pores opened in the peripheral portion of the gas diffusion layer 13. Can do. Moreover, the gas sealing material 40 and the gas diffusion layer 13 can be firmly joined by the anchor effect. Thereby, the strength of the gas diffusion layer 13 can be increased, and the gas sealing material 40 and the gas diffusion layer 13 can be handled as one component, so that the fuel cell assembly efficiency is excellent.

なお、上記の「ガス封止材40がガス拡散層13の周縁部に設けられた」とは、ガス拡散層13の面方向に延びる周囲を囲むようにガス封止材40が成形されることをいう。
また、「一体成形と同時または後に」とは、ガス封止材40を成形する際の基体11とシール材12との一体成形と同時にガス拡散層13をインサート成形する、または、一体成形されたガス封止材40に対してガス拡散層13をインサート成形することをいい、従来のシール材12あるいはOリングなどを基体11の表面に別途設けることとは異なるものである。
In addition, said "the gas sealing material 40 was provided in the peripheral part of the gas diffusion layer 13" means that the gas sealing material 40 is shape | molded so that the circumference extended in the surface direction of the gas diffusion layer 13 may be enclosed. Say.
In addition, “simultaneously with or after the integral molding” means that the gas diffusion layer 13 is insert-molded or integrally molded simultaneously with the integral molding of the base 11 and the sealing material 12 when the gas sealing material 40 is molded. This means that the gas diffusion layer 13 is insert-molded with respect to the gas sealing material 40, which is different from the conventional method of separately providing the sealing material 12 or the O-ring on the surface of the base 11.

本発明により製造される燃料電池用ガス拡散層部材20は、ガス封止材40がガス拡散層13の周縁部に設けられているものであり、さらに他の燃料電池構成部品を備えていてもよい。
本発明によれば、例えば図5に示すように、ガス封止材40が、ガス拡散層13とセパレータ14がホットプレス等により接合した燃料電池構成部品の周縁部に設けられた燃料電池用ガス拡散層部材であってもよく、さらには、ガス封止材40が、一組のガス拡散層とこの層間に挟まれる固体高分子等の電解質膜15とが接合した燃料電池構成部品の周縁部に設けられた燃料電池用ガス拡散層部材であってもよい。
The gas diffusion layer member 20 for a fuel cell manufactured according to the present invention is such that the gas sealing material 40 is provided at the peripheral edge of the gas diffusion layer 13 and further includes other fuel cell components. Good.
According to the present invention, for example, as shown in FIG. 5, the gas sealing material 40 is a fuel cell gas provided at the peripheral portion of the fuel cell component in which the gas diffusion layer 13 and the separator 14 are joined by hot pressing or the like. Further, it may be a diffusion layer member. Further, the peripheral portion of the fuel cell component in which the gas sealing material 40 is joined to a pair of gas diffusion layers and an electrolyte membrane 15 such as a solid polymer sandwiched between the gas diffusion layers. It may be a gas diffusion layer member for a fuel cell provided in the above.

以下に、実施例を用いて本発明を図6〜9を参照しながら、さらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to FIGS. 6 to 9 using examples, but the present invention is not limited to these examples.

燃料電池作動温度範囲が−20℃〜120℃の燃料電池に用いるために、実施例1、2および比較例1〜3に示す燃料電池用ガス拡散層部材を製造した。
該燃料電池用ガス拡散層部材は、縦40mm、横40mm、厚さ0.5mmのものを製造した。ガス拡散層の周縁部に設けるガス封止材における基体は、幅7.5mm、厚さ0.5mmであり、シール材は、図6に示す位置に、幅0.3mm、厚さ0.3mmになるように成形した。
なお、Oリングを用いた際は、図6と同じ位置になるように基体の表面に固定した。
The fuel cell gas diffusion layer members shown in Examples 1 and 2 and Comparative Examples 1 to 3 were manufactured for use in fuel cells having a fuel cell operating temperature range of -20 ° C to 120 ° C.
The gas diffusion layer member for a fuel cell was manufactured having a length of 40 mm, a width of 40 mm, and a thickness of 0.5 mm. The base in the gas sealing material provided at the peripheral edge of the gas diffusion layer has a width of 7.5 mm and a thickness of 0.5 mm, and the sealing material has a width of 0.3 mm and a thickness of 0.3 mm at the position shown in FIG. It shape | molded so that it might become.
When the O-ring was used, it was fixed on the surface of the base so as to be in the same position as in FIG.

(実施例1)
ガス拡散層(発泡金属焼結シート)53をインサート部品とし、下記の材料からなる基体51とシール材52とを一体成形する際の二色成形と同時にインサート成形を行うことにより、図6に示すように、ガス封止材54をガス拡散層(発泡金属焼結シート)53の周縁部に設けた燃料電池用ガス拡散層部材50を製造した。
<基体とシール材に用いた材料>
・基体:ポリプロピレン(荷重たわみ温度 121℃、結晶性樹脂)
・シール材:熱可塑性オレフィン系エラストマー(ヤング率 5×10Pa)
Example 1
FIG. 6 shows a gas diffusion layer (foamed metal sintered sheet) 53 as an insert part, and insert molding is performed simultaneously with two-color molding when the base 51 and the sealing material 52 made of the following materials are integrally molded. As described above, the fuel cell gas diffusion layer member 50 in which the gas sealing material 54 was provided on the periphery of the gas diffusion layer (foamed metal sintered sheet) 53 was manufactured.
<Materials used for base and sealing material>
-Substrate: Polypropylene (deflection temperature of load 121 ° C, crystalline resin)
Sealing material: Thermoplastic olefin-based elastomer (Young's modulus 5 × 10 5 Pa)

(実施例2)
基体に用いた材料をポリスチレン(荷重たわみ温度 60℃、非晶性樹脂)に変更した以外は、実施例1と同様に燃料電池用ガス拡散層部材を製造した。
(Example 2)
A gas diffusion layer member for a fuel cell was produced in the same manner as in Example 1 except that the material used for the substrate was changed to polystyrene (load deflection temperature 60 ° C., amorphous resin).

(比較例1)
シール材に用いた材料をエラストマーとは異なるポリカーボネート(ヤング率 3×10Pa)に変更した以外は、実施例1と同様に燃料電池用ガス拡散層部材を製造した。
(Comparative Example 1)
A gas diffusion layer member for a fuel cell was produced in the same manner as in Example 1 except that the material used for the sealing material was changed to a polycarbonate (Young's modulus 3 × 10 9 Pa) different from the elastomer.

(比較例2)
下記の材料からなる基体61とガス拡散層(発泡金属焼結シート)63とをインサート成形し、図7に示すように、基体61だけからなるガス封止材をガス拡散層63の周縁部に設けた燃料電池用ガス拡散層部材60を製造した。また、別に下記のOリング80を用意した。
<基体とOリングに用いた材料>
・基体:ポリプロピレン(荷重たわみ温度 121℃、結晶性樹脂)
・Oリング:フッ素ゴム(規格S38、内径 37.5mm、太さ 2mm)
(Comparative Example 2)
A base 61 made of the following material and a gas diffusion layer (foamed metal sintered sheet) 63 are insert-molded, and a gas sealing material consisting only of the base 61 is applied to the peripheral portion of the gas diffusion layer 63 as shown in FIG. The provided fuel cell gas diffusion layer member 60 was manufactured. Separately, the following O-ring 80 was prepared.
<Materials used for base and O-ring>
-Substrate: Polypropylene (deflection temperature of load 121 ° C, crystalline resin)
・ O-ring: Fluoro rubber (Standard S38, inner diameter 37.5mm, thickness 2mm)

(比較例3)
下記の材料からなる基体71とガス拡散層(発泡金属焼結シート)73とをインサート成形し、図8に示すように、Oリング固定溝を基体71の表面に形成した基体71だけからなるガス封止材をガス拡散層73の周縁部に設けた燃料電池用ガス拡散層部材70を製造した。また、別に下記のOリング80を用意した。
<基体とOリングに用いた材料>
・基体:ポリプロピレン(荷重たわみ温度 121℃、結晶性樹脂)
・Oリング:フッ素ゴム(規格S38、内径 37.5mm、太さ 2mm)
(Comparative Example 3)
A gas composed only of a base 71 in which a base 71 made of the following material and a gas diffusion layer (foamed metal sintered sheet) 73 are insert-molded and an O-ring fixing groove is formed on the surface of the base 71 as shown in FIG. A fuel cell gas diffusion layer member 70 in which a sealing material was provided on the peripheral edge of the gas diffusion layer 73 was manufactured. Separately, the following O-ring 80 was prepared.
<Materials used for base and O-ring>
-Substrate: Polypropylene (deflection temperature of load 121 ° C, crystalline resin)
・ O-ring: Fluoro rubber (Standard S38, inner diameter 37.5mm, thickness 2mm)

<評価方法>
実施例と比較例で製造した燃料電池用ガス拡散層部材とOリング80を用いて、燃料電池セルの代わりとして前記燃料電池用ガス拡散層部材の積層体を組み立てる際の組み立て効率と、該積層体の燃料電池作動条件下でのガスシール性について、以下に示す方法にて評価を行った。
<Evaluation method>
Using the fuel cell gas diffusion layer member and the O-ring 80 manufactured in the example and the comparative example, the assembly efficiency when assembling the laminate of the fuel cell gas diffusion layer member instead of the fuel cell, and the lamination The gas sealing property under the fuel cell operating conditions of the body was evaluated by the following method.

(組み立て効率)
図9に示す、燃料電池用ガス拡散層部材91の積層体を組み立てる作業を、以下のように行った。
実施例1と実施例2、比較例1では、製造した燃料電池用ガス拡散層部材91を、ガイドピン挿通孔55にガイドピン93を通して10枚積み重ねた積層体を製造し、該積層体の両側面を固定用金属板92で挟み、矢印方向に1MPaで締結した。
比較例2と比較例3では、製造した燃料電池用ガス拡散層部材91における基体の表面に、図6に示すシール材の位置と同じ位置になるようにOリング80を接着剤で固定しながら、該燃料電池用ガス拡散層部材91を、ガイドピン挿通孔55にガイドピン93を通して10枚積み重ねた積層体を製造し、該積層体の両側面を固定用金属板92で挟み、矢印方向に1MPaで締結した。
この作業に要した時間を組み立て時間(分)として測定し、組み立て効率を下記基準にて評価した。
○:30分未満
×:30分以上
(Assembly efficiency)
The operation of assembling the stack of fuel cell gas diffusion layer members 91 shown in FIG. 9 was performed as follows.
In Example 1, Example 2, and Comparative Example 1, a laminated body in which 10 manufactured fuel cell gas diffusion layer members 91 were stacked in the guide pin insertion hole 55 through the guide pins 93 was manufactured, and both sides of the laminated body were manufactured. The surfaces were sandwiched between fixing metal plates 92 and fastened at 1 MPa in the direction of the arrow.
In Comparative Example 2 and Comparative Example 3, the O-ring 80 is fixed to the surface of the base body of the manufactured fuel cell gas diffusion layer member 91 with an adhesive so as to be in the same position as the sealing material shown in FIG. A fuel cell gas diffusion layer member 91 is produced by stacking 10 pieces of the gas diffusion layer members 91 in the guide pin insertion holes 55 through the guide pins 93, and both side surfaces of the laminate are sandwiched between the fixing metal plates 92, in the direction of the arrow. Fastened at 1 MPa.
The time required for this work was measured as the assembly time (minutes), and the assembly efficiency was evaluated according to the following criteria.
○: Less than 30 minutes ×: 30 minutes or more

(ガスシール性)
上述の積層体に、水素ガスを一定時間流し、バルブ1(94)とバルブ2(95)を閉じ、該積層体の中を25℃、初期圧力100kPaとした。
この条件を維持し、−20℃で2時間の保存の後、120℃で2時間の保存の操作を3サイクル(合計12時間)繰り返した。
その後、25℃下で、圧力計96により該積層体の中の圧力を測定し、初期圧力との差を求め、ガスシール性を下記基準にて評価した。
○:2MPa未満
△:2MPa以上5MPa未満
×:5MPa以上
(Gas sealability)
Hydrogen gas was allowed to flow through the above-mentioned laminated body for a certain period of time, valve 1 (94) and valve 2 (95) were closed, and the inside of the laminated body was set to 25 ° C. and an initial pressure of 100 kPa.
This condition was maintained, and after storing at −20 ° C. for 2 hours, the operation of storing at 120 ° C. for 2 hours was repeated 3 cycles (12 hours in total).
Then, the pressure in this laminated body was measured with the pressure gauge 96 at 25 degreeC, the difference with an initial stage pressure was calculated | required, and the gas-sealing property was evaluated on the following reference | standard.
○: Less than 2 MPa Δ: 2 MPa or more and less than 5 MPa ×: 5 MPa or more

Figure 2006252889
Figure 2006252889

表1から、基体51に荷重たわみ温度が燃料電池作動温度範囲の上限温度以上の樹脂を用い、シール材52にエラストマーを用いた実施例1は、組み立て効率およびガスシール性がいずれも良好であった。また、実施例1は、基体に非晶性樹脂を用いた実施例2よりガスシール性に優れることが確認された。
一方、シール材にエラストマーを用いていない比較例1では、ガスシール性が悪いことが確認された。また、シール材を基体と一体成形するのではなく、Oリング80を接着剤により固定した比較例2、3について、比較例2は、組み立て効率およびガスシール性がいずれも悪いことが確認された。比較例3では、組み立て効率は悪く、ガスシール性にも劣る傾向が確認された。
以上より、ガス拡散層13の周縁部に設けられたガス封止材40が、荷重たわみ温度が燃料電池作動温度範囲の上限温度以上の樹脂からなる基体11と、エラストマーからなるシール材12とからなり、前記シール材12が前記基体11の表面の少なくとも一部で一体成形されている本発明の燃料電池用ガス拡散層部材20は、燃料電池セルを組み立てる際の組み立て効率および燃料電池作動条件下でのガスシール性に優れることが確認された。
From Table 1, Example 1 in which the deflection temperature under load applied to the substrate 51 is equal to or higher than the upper limit temperature of the fuel cell operating temperature range and the elastomer is used as the sealing material 52 has good assembly efficiency and gas sealability. It was. In addition, it was confirmed that Example 1 was superior in gas sealability to Example 2 in which an amorphous resin was used for the substrate.
On the other hand, in Comparative Example 1 where no elastomer was used as the sealing material, it was confirmed that the gas sealability was poor. Further, it was confirmed that Comparative Example 2 and Comparative Example 2 in which the O-ring 80 was fixed with an adhesive, rather than integrally molding the sealing material with the base body, had poor assembly efficiency and gas sealability. . In Comparative Example 3, it was confirmed that the assembly efficiency was poor and the gas sealing property was inferior.
As described above, the gas sealing material 40 provided at the peripheral portion of the gas diffusion layer 13 includes the base body 11 made of a resin having a deflection temperature under the upper limit temperature of the fuel cell operating temperature range, and the sealing material 12 made of an elastomer. The gas diffusion layer member 20 for a fuel cell according to the present invention, in which the sealing material 12 is integrally formed on at least a part of the surface of the base 11, has the assembly efficiency and fuel cell operating conditions when assembling the fuel cell. It was confirmed that the gas-sealing property was excellent.

スタック型燃料電池の一例であり、その断面図である。It is an example of a stack type fuel cell, and is a sectional view thereof. 図1における燃料極用の燃料電池用ガス拡散層部材の一例であり、その平面図(a)および図2(a)におけるA−A線に沿う断面図(b)である。It is an example of the gas diffusion layer member for fuel cells for fuel electrodes in FIG. 1, and is the top view (a) and sectional drawing (b) in alignment with the AA in FIG. 2 (a). 図1における空気極用の燃料電池用ガス拡散層部材の一例であり、その平面図(a)および図3(a)におけるA−A線に沿う断面図(b)である。It is an example of the gas diffusion layer member for fuel cells for air electrodes in FIG. 1, and is the top view (a) and sectional drawing (b) which follows the AA line in FIG. 3 (a). 図2におけるガス封止材の平面図(a)および図4(a)におけるA−A線に沿う断面図(b)である。It is sectional drawing (b) which follows the top view (a) of the gas sealing material in FIG. 2, and the AA line in FIG. 4 (a). ガス拡散層とセパレータが接合した燃料電池構成部品の周縁部に設けられた燃料電池用ガス拡散層部材の一実施形態の断面図である。It is sectional drawing of one Embodiment of the gas diffusion layer member for fuel cells provided in the peripheral part of the fuel cell component with which the gas diffusion layer and the separator joined. 本発明の実施例1による燃料電池用ガス拡散層部材の平面図(a)および図6(a)におけるA−A線に沿う断面図(b)である。It is sectional drawing (b) which follows the AA line in the top view (a) and FIG. 6 (a) of the gas diffusion layer member for fuel cells by Example 1 of this invention. 比較例2による燃料電池用ガス拡散層部材とOリングの平面図(a)と、燃料電池用ガス拡散層部材の図7(a)におけるA−A線に沿う断面図(b)である。8A is a plan view of a fuel cell gas diffusion layer member and an O-ring according to Comparative Example 2, and FIG. 7B is a cross-sectional view of the fuel cell gas diffusion layer member taken along line AA in FIG. 比較例3による燃料電池用ガス拡散層部材とOリングの平面図(a)と、燃料電池用ガス拡散層部材の図8(a)におけるA−A線に沿う断面図(b)である。9A is a plan view of a fuel cell gas diffusion layer member and an O-ring according to Comparative Example 3, and FIG. 8B is a cross-sectional view of the fuel cell gas diffusion layer member taken along line AA in FIG. 燃料電池用ガス拡散層部材の積層体のガスシール性を評価するための評価装置を示す模式図である。It is a schematic diagram which shows the evaluation apparatus for evaluating the gas-seal property of the laminated body of the gas diffusion layer member for fuel cells.

符号の説明Explanation of symbols

10 スタック型燃料電池
11 基体
12 シール材
13 ガス拡散層
14 セパレータ
15 電解質膜
20 燃料極用の燃料電池用ガス拡散層部材
21 燃料供給用の貫通孔
22 燃料排出用の貫通孔
25 ボルト挿通孔
30 空気極用の燃料電池用ガス拡散層部材
31 空気供給用の貫通孔
32 空気排出用の貫通孔
40 ガス封止材
50 燃料電池用ガス拡散層部材
51 基体
52 シール材
53 ガス拡散層
54 ガス封止材
55 ガイドピン挿通孔
56 燃料供給用の貫通孔
57 燃料排出用の貫通孔
58 空気供給用の貫通孔
59 空気排出用の貫通孔
60 燃料電池用ガス拡散層部材
61 基体
63 ガス拡散層
70 燃料電池用ガス拡散層部材
71 基体
73 ガス拡散層
80 Oリング
90 評価装置
91 燃料電池用ガス拡散層部材
92 固定用金属板
93 ガイドピン
94 バルブ1
95 バルブ2
96 圧力計

DESCRIPTION OF SYMBOLS 10 Stack type fuel cell 11 Base body 12 Sealing material 13 Gas diffusion layer 14 Separator 15 Electrolyte membrane 20 Gas diffusion layer member for fuel cell for fuel electrode 21 Through hole for fuel supply 22 Through hole for fuel discharge 25 Bolt insertion hole 30 Gas diffusion layer member for fuel cell for air electrode 31 Through hole for supplying air 32 Through hole for discharging air 40 Gas sealing material 50 Gas diffusion layer member for fuel cell 51 Base 52 Sealing material 53 Gas diffusion layer 54 Gas sealing Stop material 55 Guide pin insertion hole 56 Fuel supply through hole 57 Fuel discharge through hole 58 Air supply through hole 59 Air discharge through hole 60 Gas diffusion layer member for fuel cell 61 Base 63 Gas diffusion layer 70 Gas diffusion layer member for fuel cell 71 Base 73 Gas diffusion layer 80 O-ring 90 Evaluation device 91 Gas diffusion layer member for fuel cell 92 Fixing Metal plate 93 Guide pin 94 Valve 1
95 Valve 2
96 Pressure gauge

Claims (4)

ガス拡散層からの燃料ガス漏れを防止するためのガス封止材が該ガス拡散層の周縁部に設けられた燃料電池用ガス拡散層部材において、前記ガス封止材は、荷重たわみ温度が燃料電池作動温度範囲の上限温度以上の樹脂からなる基体と、エラストマーからなるシール材とからなり、前記シール材が前記基体の表面の少なくとも一部で一体成形されていることを特徴とする燃料電池用ガス拡散層部材。   In a gas diffusion layer member for a fuel cell in which a gas sealing material for preventing fuel gas leakage from the gas diffusion layer is provided at a peripheral portion of the gas diffusion layer, the gas sealing material has a deflection temperature under load of fuel. A fuel cell comprising a base made of a resin having an upper limit temperature of a battery operating temperature range and a sealing material made of an elastomer, wherein the sealing material is integrally formed on at least a part of the surface of the base. Gas diffusion layer member. 二色成形により一体成形されるものである請求項1記載の燃料電池用ガス拡散層部材。   The gas diffusion layer member for a fuel cell according to claim 1, which is integrally formed by two-color molding. 前記樹脂が結晶性樹脂である請求項1または請求項2記載の燃料電池用ガス拡散層部材。   The gas diffusion layer member for a fuel cell according to claim 1 or 2, wherein the resin is a crystalline resin. ガス拡散層からの燃料ガス漏れを防止するためのガス封止材が該ガス拡散層の周縁部に設けられた燃料電池用ガス拡散層部材の製造方法において、荷重たわみ温度が燃料電池作動温度範囲の上限温度以上の樹脂からなる基体と、エラストマーからなるシール材とを前記基体の表面の少なくとも一部で一体成形してガス封止材を成形し、該ガス封止材を、前記一体成形と同時または後にガス拡散層の周縁部に設けることを特徴とする燃料電池用ガス拡散層部材の製造方法。
In a method for manufacturing a gas diffusion layer member for a fuel cell in which a gas sealing material for preventing leakage of fuel gas from the gas diffusion layer is provided at the peripheral edge of the gas diffusion layer, the deflection temperature under load is a fuel cell operating temperature range A base material made of a resin having a temperature equal to or higher than the upper limit temperature and a sealing material made of an elastomer are integrally formed on at least a part of the surface of the base material to form a gas sealing material. A method for producing a gas diffusion layer member for a fuel cell, characterized in that the gas diffusion layer member is provided at a peripheral portion of the gas diffusion layer simultaneously or later.
JP2005066148A 2005-03-09 2005-03-09 Gas diffusion layer member for fuel cell and method for producing the same Expired - Fee Related JP4747615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066148A JP4747615B2 (en) 2005-03-09 2005-03-09 Gas diffusion layer member for fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066148A JP4747615B2 (en) 2005-03-09 2005-03-09 Gas diffusion layer member for fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006252889A true JP2006252889A (en) 2006-09-21
JP4747615B2 JP4747615B2 (en) 2011-08-17

Family

ID=37093161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066148A Expired - Fee Related JP4747615B2 (en) 2005-03-09 2005-03-09 Gas diffusion layer member for fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4747615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277389A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Fuel cell
US9118044B2 (en) 2012-12-11 2015-08-25 Hyundai Motor Company Method for manufacturing manifold for fuel cell

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146971A (en) * 1999-10-01 2001-05-29 Nok Corp Gasket
JP2003007328A (en) * 2001-06-20 2003-01-10 Nok Corp Component for fuel cell
JP2003068332A (en) * 2001-06-15 2003-03-07 Nok Corp Fuel cell constituting component
JP2004087318A (en) * 2002-08-27 2004-03-18 Honda Motor Co Ltd Fuel cell
JP2004095565A (en) * 2003-12-25 2004-03-25 Nok Corp Gasket for laminated fuel cell
JP2004178977A (en) * 2002-11-27 2004-06-24 Honda Motor Co Ltd Manufacturing method of separator for fuel cell with seal and separator for fuel cell with seal
JP2004319461A (en) * 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd Electrolyte film structure for fuel cell, electrolyte film-electrode junction structure for fuel cell, and fuel cell
WO2004100295A1 (en) * 2003-05-12 2004-11-18 Mitsubishi Materials Corporation Composite porous body, member for gas diffusion layer, cell member, and their manufacturing methods
JP2004349198A (en) * 2003-05-26 2004-12-09 Mitsubishi Materials Corp Gas diffusion layer member for fuel cell of solid polymer type, and its manufacturing method
JP2005011741A (en) * 2003-06-20 2005-01-13 Mitsubishi Materials Corp Gas diffusion member for solid polymer fuel cell and manufacturing method of the same
JP2005011624A (en) * 2003-06-18 2005-01-13 Mitsubishi Materials Corp Cell member for solid polymer fuel battery and manufacturing method of the same
JP2005022142A (en) * 2003-06-30 2005-01-27 Mitsubishi Materials Corp Composite carbonaceous porous body and its manufacturing method
JP2005032546A (en) * 2003-07-11 2005-02-03 Mitsubishi Materials Corp Solid polymer fuel cell, component for gaseous diffusion layer, and manufacturing method therefor
JP2005029806A (en) * 2003-05-12 2005-02-03 Mitsubishi Materials Corp Composite metallic porous body and its manufacturing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146971A (en) * 1999-10-01 2001-05-29 Nok Corp Gasket
JP2003068332A (en) * 2001-06-15 2003-03-07 Nok Corp Fuel cell constituting component
JP2003007328A (en) * 2001-06-20 2003-01-10 Nok Corp Component for fuel cell
JP2004087318A (en) * 2002-08-27 2004-03-18 Honda Motor Co Ltd Fuel cell
JP2004178977A (en) * 2002-11-27 2004-06-24 Honda Motor Co Ltd Manufacturing method of separator for fuel cell with seal and separator for fuel cell with seal
JP2004319461A (en) * 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd Electrolyte film structure for fuel cell, electrolyte film-electrode junction structure for fuel cell, and fuel cell
WO2004100295A1 (en) * 2003-05-12 2004-11-18 Mitsubishi Materials Corporation Composite porous body, member for gas diffusion layer, cell member, and their manufacturing methods
JP2005029806A (en) * 2003-05-12 2005-02-03 Mitsubishi Materials Corp Composite metallic porous body and its manufacturing method
JP2004349198A (en) * 2003-05-26 2004-12-09 Mitsubishi Materials Corp Gas diffusion layer member for fuel cell of solid polymer type, and its manufacturing method
JP2005011624A (en) * 2003-06-18 2005-01-13 Mitsubishi Materials Corp Cell member for solid polymer fuel battery and manufacturing method of the same
JP2005011741A (en) * 2003-06-20 2005-01-13 Mitsubishi Materials Corp Gas diffusion member for solid polymer fuel cell and manufacturing method of the same
JP2005022142A (en) * 2003-06-30 2005-01-27 Mitsubishi Materials Corp Composite carbonaceous porous body and its manufacturing method
JP2005032546A (en) * 2003-07-11 2005-02-03 Mitsubishi Materials Corp Solid polymer fuel cell, component for gaseous diffusion layer, and manufacturing method therefor
JP2004095565A (en) * 2003-12-25 2004-03-25 Nok Corp Gasket for laminated fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277389A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Fuel cell
US9118044B2 (en) 2012-12-11 2015-08-25 Hyundai Motor Company Method for manufacturing manifold for fuel cell

Also Published As

Publication number Publication date
JP4747615B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
EP2991148B1 (en) Insulating structure, fuel cell and fuel cell stack
MXPA06008300A (en) Polymerizable compositions for bonding and sealing low surface energy substrates for fuel cells.
US20110053030A1 (en) Fuel Cell with Gas Diffusion Layer having Flow Channel and Manufacturing Method Thereof
CN101346841A (en) Separator material for fuel cell and process for producing the same
JP2001283873A (en) Polymer electrolytic fuel cell separator, its manufacturing method and polymer electrolytic fuel cell using same
JP4645790B2 (en) Fuel cell separator and polymer electrolyte fuel cell
JP4747615B2 (en) Gas diffusion layer member for fuel cell and method for producing the same
JP2016058161A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP2006210222A (en) Separator for fuel cell and its manufacturing method
JP4237128B2 (en) Fuel cell separator mold, fuel cell separator manufacturing method, fuel cell separator, fuel cell separator manufacturing apparatus, and fuel cell
KR101402391B1 (en) Method for producing separator material for solid polymer fuel cell
JP2005011624A (en) Cell member for solid polymer fuel battery and manufacturing method of the same
JP2008123885A (en) Fuel cell, manufacturing method of fuel cell, and assembly
KR101425561B1 (en) Separator and method for manufacturing the same
JP4389532B2 (en) Cell member of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4650673B2 (en) Separator material for fuel cell and manufacturing method thereof
JP2004055458A (en) Manufacturing method of fuel cell
JP2009140849A (en) Fuel cell and fuel cell separator
KR101267326B1 (en) Separator, manufacturing method thereof and fuel cell including the separator
JP6110218B2 (en) Method for producing power generator, method for producing fuel cell stack
JP5509330B2 (en) Gasket for metal separator and method for forming gasket for metal separator
KR102556470B1 (en) Separator for fuel cell manufactured using curved core member manufactured by injection molding and method of manufacturing same
JP5255251B2 (en) Fuel cell separator and fuel cell
KR20220090625A (en) Separator for fuel cell with improved durability and electric conductivity and apparatus and method for manufacturing same
JP2006351342A (en) Fuel cell stack, seal member of fuel cell stack, and manufacturing method of fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees