JP2006250541A - Calibration support device of detector and its method - Google Patents

Calibration support device of detector and its method Download PDF

Info

Publication number
JP2006250541A
JP2006250541A JP2005063406A JP2005063406A JP2006250541A JP 2006250541 A JP2006250541 A JP 2006250541A JP 2005063406 A JP2005063406 A JP 2005063406A JP 2005063406 A JP2005063406 A JP 2005063406A JP 2006250541 A JP2006250541 A JP 2006250541A
Authority
JP
Japan
Prior art keywords
normal operation
detectors
drift
periodic inspection
true value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005063406A
Other languages
Japanese (ja)
Other versions
JP4611061B2 (en
Inventor
Masumi Nomura
真澄 野村
Nobuhiro Hayashi
宣宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005063406A priority Critical patent/JP4611061B2/en
Publication of JP2006250541A publication Critical patent/JP2006250541A/en
Application granted granted Critical
Publication of JP4611061B2 publication Critical patent/JP4611061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calibration support device of a detector and its method which can predict exact drift quantity by separately obtaining the drift quantity of the detector caused during startup and shutdown operation and the drift quantity caused during normal operation in the detectors of nuclear power plant and the like. <P>SOLUTION: In a statistical quantity evaluation means 14, a measured value in normal operation after the first regular inspection of a plurality of detectors, being the object of statistic quantity evaluation and a measured value during normal operation before the second regular inspection of a plurality of detectors are statistically processed to obtain the statistical drift quantity of a plurality of detectors causing during normal operation. The measured value of normal operation during normal operation after the first regular inspection and the measured value during normal operation after the second regular inspection, inspection results after drift control during the first regular inspection of a plurality of detectors and the inspection results before drift control during the second regular inspection of a plurality of detectors are statistically processed and the statistical quantity of drift quantity of a plurality of detectors caused in startup and shutdown is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は検出器の校正支援装置及びその方法に関し、特に原子力発電プラントのような多数の検出器を有する大型プラントなどに適用して有用なものである。   The present invention relates to a detector calibration support apparatus and method, and is particularly useful when applied to a large plant having a large number of detectors such as a nuclear power plant.

原子力発電プラントなどに設けられる検出器はその出力(実測値)が時間の経過とともに徐々に本来検出すべき真の値(真値)からずれてしまうというドリフト特性を有している。従って、このままでは検出器の出力(実測値)誤差が大きくなり過ぎてしまい、検出器の出力(実測値)に基づくプラントの監視や制御などに支障をきたす場合がある。   A detector provided in a nuclear power plant or the like has a drift characteristic that its output (actual value) gradually shifts from a true value (true value) that should be detected with time. Accordingly, if the output is kept as it is, the output (actual measurement value) error of the detector becomes too large, which may hinder the monitoring and control of the plant based on the output (actual measurement value) of the detector.

そこで、原子力発電プラントなどで使用している検出器の健全性確認に関しては、従来は定期検査時などプラントや機械装置の運転を停止したときに、校正(検査)やドリフトの調整作業を実施していた。具体的には、例えばプラント内の対象検出器に基準信号発生器を取り付けて基準入力信号を与え、このときに当該検出器が出力する信号が基準出力値と比較して許容誤差以内にあるか否か(当該検出器のドリフト量が許容範囲内にあるか否か)を確認し、許容誤差以内(許容範囲内)でなければ検出器の調整要領に基づいて設定を変更する。検出器の調整要領は様々であるが、例えば検出器に設けられた調整用つまみを操作して調整するものもあれば、専用ツールを接続して半導体内部の設定値を前記専用ツールから変更するものなどもある。   Therefore, with regard to the soundness confirmation of detectors used in nuclear power plants, etc., calibration (inspection) and drift adjustment work have been carried out when the operation of the plant or machinery has been stopped, such as during periodic inspections. It was. Specifically, for example, a reference signal generator is attached to a target detector in the plant to give a reference input signal, and whether the signal output from the detector at this time is within an allowable error compared to the reference output value. If it is not within the allowable error (within the allowable range), the setting is changed based on the adjustment procedure of the detector. There are various adjustment procedures for the detector. For example, some adjustments are made by operating an adjustment knob provided on the detector, and a dedicated tool is connected to change the set value in the semiconductor from the dedicated tool. There are also things.

しかし、以上のような検出器の健全性確認手法では、プラント類の運転停止中でなければこれを実施することができず、検出器の状態を常時好適に保持する点からは好ましくなく、また検出器の健全性確認のため頻繁にプラントの運転を中止するようでは、その運転コストが増大して好ましくない。   However, in the detector soundness confirmation method as described above, this cannot be performed unless the operation of the plants is stopped, which is not preferable from the viewpoint that the state of the detector is always suitably maintained. It is not preferable to frequently stop the operation of the plant for checking the soundness of the detector because the operation cost increases.

このような観点から、近年、検出器の健全性確認をプラント運転中にオンラインで実施する試みがなされ始めている。特許文献1(特開平10−104385号公報)には、過去にデータベースに保存した検出器信号のトレンドと現在の値とを比較したり、将来のドリフト量を予測したりして校正の要否を判断することより、定期検査時の校正や、ドリフトの調整作業計画に供するという技術を開示している。   From such a viewpoint, in recent years, attempts have been made to carry out detector health check online during plant operation. Patent Document 1 (Japanese Patent Laid-Open No. 10-104385) describes the necessity of calibration by comparing a trend of a detector signal stored in a database in the past with a current value or predicting a future drift amount. Therefore, a technique for calibrating during a periodic inspection and for providing a drift adjustment work plan is disclosed.

図17には従来のドリフト量予測の概念図を示す。図17(a)に示すように、従来はプラントの定期検査の実績に基づいて検出器のドリフト特性を評価していた。即ち、例えば図17(b)〜図17(d)に示すように、第N回の定期検査からその次の第N+1回の定期検査までの間に生じる類似の形式で且つ類似の環境条件で使用される複数の検出器の発生ドリフト量の分散をσ2、標準偏差をσとすると、その後の第N+1〜第N+4回の何れの定期検査においても検出器のドリフト調整を行わなかったと仮定した場合、前記複数の検出器の発生ドリフト量のばらつきは正規分布になるとみなすことができるため、前記複数の検出器の発生ドリフト量の分散σ2は2σ2、3σ2、4σ2と経過時間に比例して大きくなると考えてよい。従って、図17(e)に示すように前記複数の検出器の発生ドリフト量の標準偏差σは経過時間の1/2乗に比例して大きくなる。このことから、定期検査の実績に基づいて検出器のドリフト特性を評価することができる。 FIG. 17 shows a conceptual diagram of conventional drift amount prediction. As shown in FIG. 17A, conventionally, the drift characteristics of the detector have been evaluated based on the results of periodic inspection of the plant. That is, for example, as shown in FIGS. 17B to 17D, in a similar form and similar environmental conditions that occur between the N-th periodic inspection and the next N + 1-th periodic inspection. Assuming that the variance of the generated drift amount of the plurality of detectors used is σ 2 and the standard deviation is σ, it was assumed that the drift adjustment of the detector was not performed in any of the subsequent N + 1 to N + 4 periodic inspections. If, because the variation in the generation amount of drift of the plurality of detectors can be regarded as a normal distribution, the variance sigma 2 generation drift amount of the plurality of detectors 2 [sigma] 2, 3 [sigma] 2, the elapsed time and 4 [sigma] 2 You may think that it grows proportionally. Therefore, as shown in FIG. 17 (e), the standard deviation σ of the drift amount generated by the plurality of detectors increases in proportion to the ½ power of the elapsed time. From this, the drift characteristic of the detector can be evaluated based on the results of the periodic inspection.

また、特許文献2(特願2004−301086号)では、真値推定手段を複数準備し、各真値推定手段の適用可否を評価して精度を維持したり、データリコンシリエーション技法を組み合わせることにより検出器健全性評価の精度向上を図るとともに、プラント機器の経年変化・性能劣化の評価を行っている。   Further, in Patent Document 2 (Japanese Patent Application No. 2004-301086), a plurality of true value estimation means are prepared, the applicability of each true value estimation means is evaluated to maintain accuracy, or data reconciliation techniques are combined. In addition to improving the accuracy of detector soundness evaluation, we are evaluating the aging and performance deterioration of plant equipment.

特開平10−104385号公報Japanese Patent Laid-Open No. 10-104385 特願2004−301086号Japanese Patent Application No. 2004-301086

しかしながら、特許文献1ではプラントの起動・停止運転時と通常運転時とを区別していないため、正確な予測ができない。特許文献2でもまた、プラントの起動・停止運転時と通常運転時とを区別した評価は行っていない。   However, since Patent Document 1 does not distinguish between plant start / stop operation and normal operation, accurate prediction cannot be performed. Patent Document 2 also does not perform an evaluation that distinguishes between plant start / stop operation and normal operation.

従って本発明は上記の事情に鑑み、校正支援対象となる原子力発電プラントなどの所定の設備の検出器に対し、起動・停止運転時に生じた検出器のドリフト量と通常運転時に生じた検出器のドリフト量とを区別して求めることにより、正確なドリフト量の予測などを可能とする検出器の校正支援装置及びその方法を提供することを課題とする。   Therefore, in view of the above circumstances, the present invention is directed to a detector of a predetermined facility such as a nuclear power plant that is a calibration support target, and a drift amount of the detector generated during start / stop operation and a detector generated during normal operation. It is an object of the present invention to provide a detector calibration support apparatus and a method thereof that enable accurate prediction of a drift amount by separately determining the drift amount.

上記課題を解決する第1発明の検出器の校正支援装置は、所定の設備に設けられた統計量評価の対象となる複数の検出器(即ち類似の形式で且つ類似の環境条件で使用される検出器ごとにグループ分けされた検出器のうちの何れかのグループの検出器)の前記設備における第1の定期検査後の通常運転時の実測値と、前記複数の検出器の前記設備における前記第1の定期検査の次の定期検査である第2の定期検査前の通常運転時の実測値と、前記複数の検出器の前記第1の定期検査時におけるドリフト調整後の検査結果と、前記複数の検出器の前記第2の定期検査時におけるドリフト調整前の検査結果とをそれぞれ入力する入力手段と、
前記入力手段によって入力された前記第1の定期検査後の前記通常運転時の実測値及び前記第2の定期検査前の前記通常運転時の実測値を格納する第1の格納手段と、
前記入力手段によって入力された前記第1の定期検査時におけるドリフト調整後の検査結果及び前記第2の定期検査時におけるドリフト調整前の検査結果を格納する第2の格納手段と、
前記第1の格納手段に格納されている前記第1の定期検査後の前記通常運転時の実測値と前記第2の定期検査前の前記通常運転時の実測値とを統計的に処理して、前記通常運転時に生じる前記複数の検出器のドリフト量の統計量を求め、且つ、前記第1の格納手段に格納されている前記第1の定期検査後の前記通常運転時の実測値及び前記第2の定期検査前の前記通常運転時の実測値と、前記第2の格納手段に格納されている前記第1の定期検査時におけるドリフト調整後の検査結果及び前記第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、前記設備の起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量を求める統計量評価手段と、
前記統計量評価手段で求めた前記通常運転時の前記ドリフト量の統計量と、前記起動・停止運転時の前記ドリフト量の統計量とを出力する出力手段とを有することを特徴とする。
The detector calibration support apparatus according to the first aspect of the present invention that solves the above-described problems is used for a plurality of detectors (that is, in a similar format and in similar environmental conditions) that are objects of statistical evaluation provided in a predetermined facility. Detectors of any group of detectors grouped for each detector) measured values during normal operation after the first periodic inspection in the facility, and the plurality of detectors in the facility An actual measurement value during a normal operation before the second periodic inspection, which is a periodic inspection next to the first periodic inspection, an inspection result after drift adjustment in the first periodic inspection of the plurality of detectors, and Input means for inputting inspection results before drift adjustment at the time of the second periodic inspection of a plurality of detectors;
First storage means for storing the actual measurement value during the normal operation after the first periodic inspection and the actual measurement value during the normal operation before the second periodic inspection, which are input by the input means;
Second storage means for storing the inspection result after drift adjustment at the time of the first periodic inspection and the inspection result before drift adjustment at the time of the second periodic inspection, which are input by the input means;
Statistically processing the actual measurement value during the normal operation after the first periodic inspection and the actual measurement value during the normal operation before the second periodic inspection stored in the first storage means A statistical amount of the drift amount of the plurality of detectors generated during the normal operation, and the actual measurement value during the normal operation after the first periodic inspection stored in the first storage means and the The actual measurement value during the normal operation before the second periodic inspection, the inspection result after the drift adjustment in the first periodic inspection stored in the second storage means, and the second periodic inspection Statistically processing the inspection results before drift adjustment, and a statistic evaluation means for obtaining a statistic of the drift amount of the plurality of detectors generated during start / stop operation of the equipment,
Output means for outputting the statistical amount of the drift amount during the normal operation and the statistical amount of the drift amount during the start / stop operation obtained by the statistical amount evaluation means.

また、第2発明の検出器の校正支援装置は、第1発明の検出器の校正支援装置において、前記統計量評価手段で求めた前記通常運転時の前記ドリフト量の統計量に基づいて、前記通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測する予測手段を追加し、
前記出力手段は前記予測手段の予測結果も出力する構成としたことを特徴とする。
The detector calibration support apparatus according to the second aspect of the present invention is the detector calibration support apparatus according to the first aspect of the present invention, based on the statistic of the drift amount during the normal operation obtained by the statistic evaluation means. Adding a prediction means for predicting an increase in the drift amount of the plurality of detectors that occurs during normal operation in the case of extending the normal operation period;
The output means is also configured to output the prediction result of the prediction means.

また、第3発明の検出器の校正支援装置は、第1発明の検出器の校正支援装置において、前記入力手段は前記複数の検出器の検出信号も入力する構成とし、
真値を推定するための真値推定モデルを用い、前記入力手段で入力した前記検出信号の実測値に基づいて真値を推定し、且つ、この推定真値の不確かさを前記統計量評価手段で求めた前記通常運転時の前記ドリフト量の統計量に基づいて算出する真値推定手段を追加し、
前記出力手段は前記真値推定手段で求めた前記推定真値や前記推定真値の不確かさも出力する構成としたことを特徴とする。
The detector calibration support apparatus according to the third aspect of the present invention is the detector calibration support apparatus according to the first aspect of the present invention, wherein the input means also inputs detection signals of the plurality of detectors.
A true value estimation model for estimating a true value is used, a true value is estimated based on an actual measurement value of the detection signal input by the input means, and an uncertainty of the estimated true value is estimated by the statistic evaluation means A true value estimating means for calculating based on the statistic of the drift amount during the normal operation obtained in
The output means outputs the estimated true value obtained by the true value estimating means and the uncertainty of the estimated true value.

また、第4発明の検出器の校正支援装置は、第3発明の検出器の校正支援装置において、前記統計量評価手段で求めた前記通常運転時の前記ドリフト量の統計量と、前記真値推定手段で求めた前記推定真値の不確かさとに基づいて、前記通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測する予測手段を追加し、
前記出力手段は前記予測手段の予測結果も出力する構成としたことを特徴とする。
A detector calibration support apparatus according to a fourth aspect of the present invention is the detector calibration support apparatus according to the third aspect of the present invention, wherein the statistic of the drift amount during the normal operation obtained by the statistic evaluation means and the true value are calculated. Based on the uncertainty of the estimated true value obtained by the estimation means, adding a prediction means for predicting an increase in the drift amount of the plurality of detectors that occurs during the normal operation when extending the period of the normal operation,
The output means is also configured to output the prediction result of the prediction means.

また、第5発明の検出器の校正支援装置は、複数の設備のそれぞれに設けられた検出器の検出信号をそれぞれ入力する前記複数の設備側の入力手段と、第3又は第4発明の検出器の校正支援装置の入力手段とを通信手段を介して接続し、
第3又は第4発明の検出器の校正支援装置の入力手段は、前記検出器の検出信号を、前記複数の設備側の入力手段から前記通信手段を介して入力する構成としたことを特徴とする。
The detector calibration support apparatus according to the fifth aspect of the present invention is the detection means according to the third or fourth aspect, wherein the plurality of facility-side input means inputs the detection signals of the detectors provided in the plurality of facilities, respectively. Connected to the input means of the calibration support device of the device through the communication means,
The input means of the detector calibration support apparatus according to the third or fourth aspect of the invention is characterized in that the detection signals of the detector are input from the plurality of equipment-side input means via the communication means. To do.

また、第6発明の検出器の校正支援装置は、第3,第4又は第5発明の検出器の校正支援装置において、
前記真値推定手段で求めた前記推定真値を、前記設備における監視又は制御に利用するようにしたことを特徴とする。
The detector calibration support apparatus of the sixth invention is the detector calibration support apparatus of the third, fourth or fifth invention,
The estimated true value obtained by the true value estimating means is used for monitoring or control in the facility.

また、第7発明の検出器の校正支援方法は、所定の設備に設けられた統計量評価の対象となる複数の検出器の前記設備における第1の定期検査後の通常運転時の実測値と、前記複数の検出器の前記設備における前記第1の定期検査の次の定期検査である第2の定期検査前の通常運転時の実測値とを統計的に処理して、前記通常運転時に生じる前記複数の検出器のドリフト量の統計量を求め、
且つ、前記第1の定期検査後の前記通常運転時の実測値及び前記第2の定期検査前の前記通常運転時の実測値と、前記複数の検出器の前記第1の定期検査時におけるドリフト調整後の検査結果及び前記複数の検出器の前記第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、前記設備の起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量を求めることを特徴とする。
The detector calibration support method according to the seventh aspect of the present invention includes an actual measurement value during normal operation after the first periodic inspection of the plurality of detectors to be subjected to statistical evaluation provided in a predetermined facility. And statistically processing the measured values during the normal operation before the second periodic inspection, which is the periodic inspection following the first periodic inspection in the equipment of the plurality of detectors, and occur during the normal operation. Obtaining a statistic of the drift amount of the plurality of detectors;
And the actual measurement value during the normal operation after the first periodic inspection, the actual measurement value during the normal operation before the second periodic inspection, and the drift during the first periodic inspection of the plurality of detectors. The inspection results after adjustment and the inspection results before drift adjustment at the time of the second periodic inspection of the plurality of detectors are statistically processed, and the plurality of detectors generated during the start / stop operation of the equipment It is characterized in that a statistical amount of drift is obtained.

また、第8発明の検出器の校正支援方法は、第7発明の検出器の校正支援方法において、前記通常運転時の前記ドリフト量の統計量に基づいて、前記通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測することを特徴する。   The detector calibration support method according to the eighth aspect of the present invention is the detector calibration support method according to the seventh aspect, wherein the normal operation period is extended based on the statistics of the drift amount during the normal operation. An increase in the drift amount of the plurality of detectors occurring during the normal operation is predicted.

また、第9発明の検出器の校正支援方法は、第7発明の検出器の校正支援方法において、真値を推定するための真値推定モデルを用い、前記複数の検出器の検出信号の実測値に基づいて真値を推定し、且つ、この推定真値の不確かさを前記通常運転時の前記ドリフト量の統計量に基づいて算出することを特徴とする。   A detector calibration support method according to a ninth aspect of the present invention is the detector calibration support method according to the seventh aspect of the present invention, wherein a true value estimation model for estimating a true value is used and the detection signals of the plurality of detectors are actually measured. A true value is estimated based on the value, and an uncertainty of the estimated true value is calculated based on a statistic of the drift amount during the normal operation.

また、第10発明の検出器の校正支援方法は、第9発明の検出器の校正支援方法において、前記通常運転時の前記ドリフト量の統計量と、前記推定真値の不確かさとに基づいて、前記通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測することを特徴とする。   A detector calibration support method according to a tenth aspect of the present invention is the detector calibration support method according to the ninth aspect of the present invention, based on the statistics of the drift amount during the normal operation and the uncertainty of the estimated true value, An increase in the drift amount of the plurality of detectors occurring during the normal operation when the normal operation period is extended is predicted.

また、第11発明の検出器の校正支援方法は、複数の設備のそれぞれに設けられた検出器の検出信号をそれぞれ入力する前記複数の設備側の入力手段から、通信手段を介して前記検出信号を入力することにより、第9又は第10発明の検出器の校正支援方法を実施することを特徴とする。   The detector calibration support method according to the eleventh aspect of the present invention provides the detection signal from the input means on the plurality of facilities side through which the detection signals of the detectors provided in each of the plurality of facilities are input via communication means. The detector calibration support method of the ninth or tenth invention is implemented by inputting.

また、第12発明の検出器の校正支援方法は、第9,第10又は第11発明の検出器の校正支援方法において、
前記推定真値を、前記設備における監視又は制御に利用することを特徴とする。
The detector calibration support method of the twelfth aspect of the invention is the detector calibration support method of the ninth, tenth or eleventh aspect of the invention,
The estimated true value is used for monitoring or control in the facility.

第1発明の検出器の校正支援装置又は第7発明の検出器の校正支援方法によれば、統計量評価の対象となる複数の検出器の第1の定期検査後の通常運転時の実測値と、前記複数の検出器の第2の定期検査前の通常運転時の実測値とを統計的に処理して、通常運転時に生じる前記複数の検出器のドリフト量の統計量を求め、且つ、前記第1の定期検査後の通常運転時の実測値及び前記第2の定期検査前の通常運転時の実測値と、前記複数の検出器の第1の定期検査時におけるドリフト調整後の検査結果及び前記複数の検出器の第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量を求めることを特徴とするため、即ち、起動・停止運転時の発生ドリフト量の統計量と通常運転時の発生ドリフト量の統計量とを区別して求めるため、通常運転時の発生ドリフト量などを過大評価することなく適切に推定することができる。即ち、それぞれの統計量を目的に応じて厳密に使い分けることができ、ドリフト量の評価の精度を向上させることができる。例えば、通常運転期間の延長を検討する際には、通常運転時の発生ドリフト量の統計量に基づいて通常運転時におけるドリフト量の増加を予測することができるため、起動運転や停止運転と通常運転とを区別せずに(1運転サイクル分の発生ドリフト量の統計量に基づいて)運転期間延長の検討を行う場合に比べて、将来のドリフト量の増加傾向を過大評価することなく、適切に評価することが可能となる。   According to the detector calibration support apparatus of the first invention or the detector calibration support method of the seventh invention, the actual measurement values during normal operation after the first periodic inspection of a plurality of detectors to be subjected to statistical evaluation And statistically processing the actual measurement values during normal operation before the second periodic inspection of the plurality of detectors to obtain a statistic of drift amounts of the plurality of detectors that occur during normal operation, and The actual measurement value during normal operation after the first periodic inspection, the actual measurement value during normal operation before the second periodic inspection, and the inspection result after drift adjustment during the first periodic inspection of the plurality of detectors. And statistically processing the inspection results before drift adjustment at the time of the second periodic inspection of the plurality of detectors to obtain a statistic of the drift amount of the plurality of detectors generated during start / stop operation. In order to make it a feature, that is, drift generated during start / stop operation To determine and distinguish between statistics and typically occurs drift amount of statistics during operation, it can be appropriately estimated without normally overestimate such occurrence drift amount during operation. That is, each statistic can be used strictly according to the purpose, and the accuracy of evaluation of the drift amount can be improved. For example, when considering the extension of the normal operation period, it is possible to predict an increase in the drift amount during normal operation based on the statistics of the amount of drift generated during normal operation. Appropriate without overestimating the trend of increasing drift in the future compared to when extending the operation period (based on statistics of the drift amount generated for one operation cycle) without distinguishing from operation It becomes possible to evaluate.

第2発明の検出器の校正支援装置又は第8発明の検出器の校正支援方法によれば、通常運転時の発生ドリフト量の統計量に基づいて、通常運転の期間を延長する場合の当該通常運転時に生じる複数の検出器のドリフト量の増加を予測することを特徴するため、起動運転や停止運転と通常運転とを区別せずに(1運転サイクル分の発生ドリフト量の統計量に基づいて)運転期間延長の検討を行う場合に比べて、将来のドリフト量の増加傾向を過大評価することなく、適切に評価することが可能となる。このため、校正不要(ドリフト調整不要)と評価できる検出器の数を増やしたり(即ち検出器の校正(ドリフト調整)頻度を低減したり)、検出器校正の観点から、運転期間延長の可否(どれくらい延長できるか)を適正に評価することができる。   According to the detector calibration support apparatus of the second aspect of the invention or the calibration support method of the detector of the eighth aspect of the present invention, the normal operation period when the normal operation period is extended based on the statistics of the generated drift amount during normal operation. In order to predict the increase in drift amount of multiple detectors that occur during operation, it is not necessary to distinguish between start operation, stop operation and normal operation (based on the statistics of the amount of drift generated for one operation cycle). ) Compared with the case of considering the extension of the operation period, it is possible to evaluate appropriately without overestimating the tendency of future drift increase. For this reason, the number of detectors that can be evaluated as calibration unnecessary (drift adjustment unnecessary) is increased (that is, the frequency of detector calibration (drift adjustment) is reduced), and whether the operation period can be extended from the viewpoint of detector calibration ( How much can be extended).

第3発明の検出器の校正支援装置又は第9発明の検出器の校正支援方法によれば、真値を推定するための真値推定モデルを用い、複数の検出器の検出信号の実測値に基づいて真値を推定し、且つ、この推定真値の不確かさを通常運転時の前記ドリフト量の統計量に基づいて算出することを特徴とするため、起動運転や停止運転と通常運転とを区別せずに(1運転サイクル分の発生ドリフト量の統計量に基づいて)推定真値の不確かさを算出する場合に比べて、推定真値の推定区間(不確かさを考慮した推定真値の範囲)を小さくすることができ、通常運転時に発生するドリフト量を更に正確に評価・推定することができる。   According to the detector calibration support apparatus of the third invention or the detector calibration support method of the ninth invention, the true value estimation model for estimating the true value is used, and the actual measurement values of the detection signals of a plurality of detectors are used. A true value is estimated on the basis of this, and the uncertainty of the estimated true value is calculated based on the statistics of the drift amount during normal operation. Compared to the case where the uncertainty of the estimated true value is calculated without distinction (based on the statistic of the generated drift amount for one driving cycle), the estimated true value estimation section (the estimated true value taking into account the uncertainty) Range) can be reduced, and the amount of drift generated during normal operation can be evaluated and estimated more accurately.

第4発明の検出器の校正支援装置又は第10発明の検出器の校正支援方法によれば、通常運転時の発生ドリフト量の統計量と、推定真値の不確かさとに基づいて、通常運転の期間を延長する場合の当該通常運転時に生じる複数の検出器のドリフト量の増加を予測することを特徴とするため、真値推定(真値推定手段)とドリフト量の予測(予測手段)とを組み合わせたことにより、ドリフト量の推定区間を更に厳密に(正確に)評価可能であるため、校正不要(ドリフト調整不要)と評価できる検出器の数を更に増やしたり、運転期間延長の可否(どれくらい延長できるか)を更に適正に評価することができる。   According to the detector calibration support apparatus of the fourth aspect of the invention or the calibration support method of the detector of the tenth aspect of the present invention, based on the statistics of the generated drift amount during normal operation and the uncertainty of the estimated true value, In order to predict an increase in the drift amount of a plurality of detectors that occurs during normal operation when extending the period, true value estimation (true value estimation means) and drift amount prediction (prediction means) By combining it, it is possible to evaluate the estimation interval of the drift amount more strictly (accurately), so the number of detectors that can be evaluated as calibration unnecessary (drift adjustment unnecessary) can be further increased, and whether the operation period can be extended (how much Can be extended more appropriately.

第5発明の検出器の校正支援装置又は第11発明の検出器の校正支援方法によれば、複数の設備のそれぞれに設けられた検出器の検出信号をそれぞれ入力する複数の設備側の入力手段から、通信手段を介して検出信号を入力するため、遠隔地の監視所等で検出器の健全性を高信頼度で評価できる。また、遠隔地にて定期検査計画策定が可能となる。更に、一箇所で複数の設備に対応可能となるという効果も得られ、設備費や人件費において効率的な校正支援が可能となる。   According to the detector calibration support apparatus of the fifth aspect of the invention or the detector calibration support method of the eleventh aspect of the invention, the plurality of facility-side input means for inputting the detection signals of the detectors provided in the plurality of facilities, respectively. Since the detection signal is input through the communication means, the soundness of the detector can be evaluated with high reliability at a remote monitoring station or the like. In addition, a regular inspection plan can be formulated at a remote location. Furthermore, an effect that it is possible to deal with a plurality of facilities at one place is obtained, and efficient calibration support can be provided in terms of facility costs and labor costs.

第6発明の検出器の校正支援装置又は第12発明の検出器の校正支援方法によれば、推定真値を、設備における監視又は制御に利用することを特徴とするため、設備の信頼性を更に向上させることができる。   According to the detector calibration support apparatus of the sixth aspect of the invention or the detector calibration support method of the twelfth aspect of the invention, the estimated true value is used for monitoring or control in the facility. Further improvement can be achieved.

以下、本発明の実施の形態例を図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

<実施の形態例1>
図1は本発明の実施の形態例1に係る検出器の校正支援装置の構成を示すブロック線図、図2は前記校正支援装置の処理フローを示すフローチャート、図3は原子力発電プラントの運転サイクルなどを示す説明図、図4は原子力発電プラントの通常運転時における検出器の実測値例を示すグラフ、図5は原子力発電プラントにおける定期検査時の検査結果例を示すグラフである。
<Embodiment 1>
FIG. 1 is a block diagram showing the configuration of a detector calibration support apparatus according to Embodiment 1 of the present invention, FIG. 2 is a flowchart showing a processing flow of the calibration support apparatus, and FIG. 3 is an operation cycle of a nuclear power plant. FIG. 4 is a graph showing an example of an actual measurement value of a detector during normal operation of the nuclear power plant, and FIG. 5 is a graph showing an example of an inspection result at a periodic inspection in the nuclear power plant.

図1に示すように、本実施の形態例1の検出器の校正支援装置10は入力手段11と、第1の格納手段としての第1のデータベース12と、第2の格納手段としての第2のデータベース13と、統計量評価手段14と、出力手段17とを有している。本校正支援装置10はパーソナルコンピュータなどのコンピュータによって構成されるものであり、原子力発電プラント内やその他の適宜の場所に設置され(オフライン)、原子力発電プラントに設けられた検出器の校正を支援するために利用される。   As shown in FIG. 1, the detector calibration support apparatus 10 according to the first embodiment includes an input unit 11, a first database 12 as a first storage unit, and a second database as a second storage unit. Database 13, statistic evaluation means 14, and output means 17. The calibration support apparatus 10 is configured by a computer such as a personal computer, and is installed in a nuclear power plant or other appropriate place (offline) to support calibration of a detector provided in the nuclear power plant. Used for.

入力手段11は図示しないキーボードなどの入力機器などに接続されるインターフェースであり、原子力発電プラントの統計量評価の対象となる複数の検出器の原子力発電プラントにおける第1の定期検査後の通常運転時の出力(実測値)と、前記複数の検出器の原子力発電プラントにおける前記第1の定期検査の次の定期検査である第2の定期検査前の通常運転時の出力(実測値)と、前記複数の検出器の前記第1の定期検査時におけるドリフト調整後の検査結果(ドリフト量)と、前記複数の検出器の前記第2の定期検査時におけるドリフト調整前の検査結果(ドリフト量)とをそれぞれ入力する。なお、これらのデータは例えば作業員が前記入力機器を用いて手入力をする。   The input means 11 is an interface connected to an input device such as a keyboard (not shown), and during normal operation after the first periodic inspection in the nuclear power plant of a plurality of detectors to be subjected to statistical evaluation of the nuclear power plant. Output (actual value) of the plurality of detectors in the normal operation before the second periodic inspection, which is a periodic inspection following the first periodic inspection in the nuclear power plant, Inspection results after drift adjustment (drift amount) at the time of the first periodic inspection of a plurality of detectors, and inspection results (drift amount) before drift adjustment at the time of the second periodic inspection of the plurality of detectors Enter each. Note that these data are manually input by an operator using the input device, for example.

図3に示すように、原子力発電プラントの運転状態には、停止状態から起動して電気負荷(出力)が100%(通常運転)となるまでの起動運転の状態(起動運転期間は例えば1〜2週間程度)と、電気負荷(出力)100%の状態を一定に保持して運転する通常運転の状態(現状、加圧水型の原子力発電プラント(PWR)の通常運転期間は13箇月間)と、この通常運転の状態から電気負荷(出力)の低下を開始して停止状態になるまでの停止運転の状態(停止運転期間は例えば1〜2週間程度)とがある。そして、このような運転状態(起動運転、通常運転及び停止運転)が、検出器の校正試験やその他の機器の点検などを行う定期検査の期間(例えば40〜50日の停止期間)を間に挟んで繰り返される運転サイクルとなっている。図3には第n回の定期検査及びその次の第n+1回の定期検査と、これらの定期検査の前後の運転状態とを例示している。   As shown in FIG. 3, the operation state of the nuclear power plant includes the state of the start-up operation from the stop state until the electric load (output) reaches 100% (normal operation) (the start-up operation period is, for example, 1 to About 2 weeks), and a state of normal operation in which the electric load (output) is kept constant at 100% (currently, the normal operation period of the pressurized water nuclear power plant (PWR) is 13 months), There is a stop operation state (a stop operation period is, for example, about 1 to 2 weeks) from the normal operation state until the electric load (output) starts to be reduced to a stop state. And such an operating state (start-up operation, normal operation and stop operation) has a period of a periodic inspection (for example, a stop period of 40 to 50 days) in which a calibration test of the detector and inspection of other devices are performed. It is an operation cycle that is repeated between the two. FIG. 3 illustrates the n-th periodic inspection, the next n + 1-th periodic inspection, and the operating state before and after these periodic inspections.

上記の第1の定期検査とは何れか1回の定期検査(例えば第n回の定期検査)や複数回(例えば第1回〜第n回)の定期検査を意味し、第1の定期検査の次の定期検査である第2の定期検査とは前記何れか1回の定期検査の次の定期検査(例えば第n+1回の定期検査)や複数回(例えば第2回〜第n+1回)の定期検査を意味する。統計量評価の対象となる複数の検出器とは、類似の形式で且つ類似の環境条件で使用される複数の検出器ごとにグループ分けされた各グループの検出器を意味する。検出器の形式には例えば静電容量式、力平衡式、半導体式などがある。類似の形式で且つ類似の環境条件で使用される複数の検出器としては、例えば高い信頼性を確保するために多重化(4重化など)された水位検出器、流量検出器、圧力検出器などが挙げられる。なお、実際にどの検出器とどの検出器とを同じグループとするかは、検出器の仕様や実験などによって適宜設定すればよい。   The above-mentioned first periodic inspection means any one periodic inspection (for example, n-th periodic inspection) or multiple times (for example, 1st to n-th) periodic inspection, and the first periodic inspection The second periodic inspection that is the next periodic inspection is a periodic inspection (for example, the (n + 1) th periodic inspection) or a plurality of times (for example, the second to the (n + 1) th) following the one of the periodic inspections. Means periodic inspection. The plurality of detectors to be subjected to the statistic evaluation means detectors of each group grouped for a plurality of detectors used in a similar format and under similar environmental conditions. Examples of the detector type include a capacitance type, a force balance type, and a semiconductor type. As a plurality of detectors used in a similar format and under similar environmental conditions, for example, a water level detector, a flow rate detector, a pressure detector multiplexed (such as quadruple) to ensure high reliability. Etc. It should be noted that which detectors and which detectors actually belong to the same group may be appropriately set according to detector specifications or experiments.

また、上記の複数の検出器の第1の定期検査後の通常運転時の実測値とは、例えば図3のB時点、即ち、第n回定期検査後の通常運転時(起動運転から通常運転となって直ぐの時点)における複数の検出器の出力(実測値)である。例えば図4に例示するような実測値である。図4には4重検出器X1,X2,X3,X4の実測値を例示している。同様に、複数の検出器の第2の定期検査前の通常運転時の実測値とは、例えば図3のC時点、即ち、第n+1回定期検査前の通常運転時(通常運転から停止運転となる直前の時点)における複数の検出器の出力(実測値)である。 In addition, the measured values during normal operation after the first periodic inspection of the plurality of detectors described above are, for example, the time point B in FIG. 3, that is, during normal operation after the nth periodic inspection (from startup operation to normal operation). Are the outputs (actually measured values) of a plurality of detectors at the time immediately after. For example, the measured values are exemplified in FIG. FIG. 4 illustrates measured values of the quadruple detectors X 1 , X 2 , X 3 , and X 4 . Similarly, the measured values during normal operation before the second periodic inspection of the plurality of detectors are, for example, at time C in FIG. 3, that is, during normal operation before the (n + 1) th periodic inspection (from normal operation to stop operation). Is the output (actual value) of a plurality of detectors at the time immediately before.

また、上記の複数の検出器の第1の定期検査時におけるドリフト調整後の検査結果(ドリフト量)とは、例えば図3のA時点(起動運転を開始する直前の時点)、即ち、1回目の検出器のドリフト量(真値に対する検出器の実測値のずれ量)の検査結果に基づいて検出器のドリフト調整を行った後に確認のために行う2回目の検出器のドリフト量の検査結果である。複数の検出器の第2の定期検査時における調整前の検査結果(ドリフト量)とは、例えば図3のD時点(停止運転を終了した直後の時点)、即ち、1回目の検出器のドリフト量の検査結果に基づいて検出器のドリフト調整を行う前の前記検査結果である。図5には4重検出器X1,X2,X3,X4のドリフト調整前の検査結果(ドリフト量Z1,Z2,Z3,Z4)を例示している。勿論、ドリフト調整後の検査結果ではドリフト量が図示例よりも小さくなる。定期検査時の検出器の検査では、0〜100%のフルレンジ間を5段階(或いは6段階)に分けて、それぞれのポイントで各検出器のドリフト量を検査する。図5には0〜100%のフルレンジ間を5段階(0%、25%、50%、75%、100%)に分けて各検出器X1,X2,X3,X4のドリフト量を検査した場合の検査結果を例示している。 Also, the inspection result (drift amount) after the drift adjustment at the time of the first periodic inspection of the plurality of detectors described above is, for example, time A in FIG. 3 (time immediately before starting the startup operation), that is, the first time. The second detector drift amount test result for confirmation after the detector drift adjustment based on the test result of the detector drift amount (deviation amount of the actual measured value of the detector with respect to the true value) It is. The inspection result (drift amount) before adjustment at the time of the second periodic inspection of the plurality of detectors is, for example, time D in FIG. 3 (time immediately after the stop operation is finished), that is, drift of the first detector. It is the said test result before performing drift adjustment of a detector based on the test result of quantity. FIG. 5 illustrates the inspection results (drift amounts Z 1 , Z 2 , Z 3 , Z 4 ) before drift adjustment of the quadruple detectors X 1 , X 2 , X 3 , X 4 . Of course, in the inspection result after the drift adjustment, the drift amount is smaller than in the illustrated example. In the inspection of the detector during the periodic inspection, the full range of 0 to 100% is divided into five stages (or six stages), and the drift amount of each detector is inspected at each point. In FIG. 5, the drift amount of each detector X 1 , X 2 , X 3 , X 4 is divided into 5 steps (0%, 25%, 50%, 75%, 100%) between 0% to 100% full range. The inspection result when inspecting is illustrated.

また、入力手段11では、何れのグループの検出器について何れの運転サイクルおける通常運転時の実測値と定期検査結果とに基づいて統計量評価を行うかを統計量評価手段14に対して指定する。即ち、入力手段11から統計量評価手段14に対して評価対象の指定を行う。なお、この評価対象の指定は例えば作業員が前記入力機器を用いて入力手段11に手入力する。   In addition, the input unit 11 designates to the statistic evaluation unit 14 which statistic evaluation is to be performed based on the actual measurement value in the normal operation and the periodic inspection result in which operation cycle with respect to which group of detectors. . That is, the input unit 11 designates the evaluation target to the statistic evaluation unit 14. For example, the operator manually inputs the evaluation target into the input unit 11 using the input device.

第1のデータベース12は統計量評価用のデータを記憶する記憶手段であり、入力手段11によって入力された前記第1の定期検査後の通常運転時の実測値と、前記第2の定期検査前の通常運転時の実測値とを記憶して格納する。第2のデータベース13も統計量評価用のデータを記憶する記憶手段であり、入力手段11によって入力された前記第1の定期検査時におけるドリフト調整後の検査結果と、前記第2の定期検査時におけるドリフト調整前の検査結果を記憶して格納する。第1のデータベース12及び第2のデータベース13は例えばハードディスクなどの記憶装置によって構成される。   The first database 12 is a storage unit that stores data for statistical evaluation, and is an actual value that is input by the input unit 11 during normal operation after the first periodic inspection, and before the second periodic inspection. The actual measured value during normal operation is stored and stored. The second database 13 is also a storage means for storing data for statistic evaluation, the inspection result after the drift adjustment at the time of the first periodic inspection inputted by the input means 11, and the time of the second periodic inspection. Stores and stores the inspection result before the drift adjustment at. The first database 12 and the second database 13 are configured by a storage device such as a hard disk.

そして、統計量評価手段14では、入力手段11からの評価対象の指定に基づいて第1のデータベース12から抽出した統計量評価対象の複数の検出器の第1の定期検査後の通常運転時の実測値と、前記複数の検出器の第2の定期検査前の通常運転時の実測値とを統計的に処理して、通常運転時に生じる前記複数の検出器のドリフト量の統計量(ドリフト量の分布のばらつきの程度を表す指標である分散σ2 2と標準偏差σ2、及び分布の中心を表す指標である平均μ2)を求める。更に、統計量評価手段14では、入力手段11からの前記評価対象の指定に基づいて第1のデータベース12から抽出した前記複数の検出器の第1の定期検査後の通常運転時の実測値及び前記複数の検出器の第2の定期検査前の通常運転時の実測値と、第2のデータベース13から抽出した前記複数の検出器の第1の定期検査時におけるドリフト調整後の検査結果及び前記複数の検出器の第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、原子力発電プラントの起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量(ドリフト量の分布のばらつきの程度を表す指標である分散σe 2と標準偏差σe、及び分布の中心を表す指標である平均μe)を求める。なお、統計量評価手段14は統計処理プログラムを記憶するメモリや前記統計処理プログラムなどを実行するCPUなどで構成される。統計量評価手段14における統計処理の詳細については後述する。 Then, the statistic evaluation unit 14 performs normal operation after the first periodic inspection of the plurality of detectors to be evaluated, extracted from the first database 12 based on the designation of the evaluation target from the input unit 11. Statistically processing the actual measurement value and the actual measurement value of the plurality of detectors during the normal operation before the second periodic inspection, and calculating a statistic (drift amount) of the plurality of detectors generated during the normal operation. Dispersion σ 2 2 and standard deviation σ 2 , which are indices indicating the degree of variation in the distribution, and average μ 2, which is an index representing the center of the distribution. Further, in the statistic evaluation means 14, the actual measurement values during normal operation after the first periodic inspection of the plurality of detectors extracted from the first database 12 based on the designation of the evaluation object from the input means 11 and Measured values during normal operation before the second periodic inspection of the plurality of detectors, inspection results after drift adjustment at the first periodic inspection of the plurality of detectors extracted from the second database 13, and the Statistically processing the drift amount of the plurality of detectors generated during start-up / stop operation of the nuclear power plant by statistically processing the inspection results before the drift adjustment at the second periodic inspection of the plurality of detectors. Dispersion σ e 2 and standard deviation σ e , which are indices indicating the degree of variation in the quantity distribution, and average μ e, which is an index representing the center of the distribution, are obtained. The statistic evaluation means 14 includes a memory that stores a statistical processing program, a CPU that executes the statistical processing program, and the like. Details of the statistical processing in the statistic evaluation means 14 will be described later.

統計量評価手段14において、起動運転時の発生ドリフト量の統計量(分散σ1 2など)と、停止運転時のドリフト量の統計量(分散σ3 2など)とをそれぞれ個別に求めることはせずに、起動運転と停止運転とを一緒にした起動・停止運転時の発生ドリフト量の統計量(分散σe 2など)を求めるのは次のような知見に基づいている。 In the statistic evaluation means 14, the statistic of the drift amount during start-up operation (such as variance σ 1 2 ) and the statistic of the drift amount during stop operation (such as variance σ 3 2 ) are individually obtained. Without determining the statistic of the amount of drift (such as variance σ e 2 ) during start / stop operation that combines start-up operation and stop-operation, is based on the following knowledge.

即ち、図3に示す第n回定期検査から第n+1回定期検査までの起動運転、通常運転及び停止運転における各ドリフト量の分散σ1 2,σ2 2,σ3 2を用いて下式(1)から全体的なドリフト量の分散σ2を求めた場合、この式(1)から求めた分散σ2は第n回定期検査におけるドリフト調整後の検査結果(ドリフト量)と第n+1回定期検査におけるドリフト調整前の検査結果(ドリフト量)とから求めた全体的な(1運転サイクル分の)ドリフト量の分散σ2とは一致せず、同分散σ2よりも大きな値であった。そこで、起動運転時のドリフト特性と停止運転時のドリフト特性とを調査した結果、これらは独立ではなく相互に関連しており、起動運転時にドリフト量が増加すると停止運転時にはドリフト量が減少し、起動運転時にドリフト量が減少すると停止運転時にはドリフト量が増加するような関係を有していることが判明した。そこで、起動運転と停止運転とを一緒にした起動・停止運転時の発生ドリフト量の分散σe 2を求め、この分散σe 2と通常運転時のドリフト量の分散σ2 2とを用いて下式(2)から全体的なドリフト量の分散σ2を求め、この式(2)から求めた分散σ2と、第n回定期検査におけるドリフト調整後の検査結果(ドリフト量)と第n+1回定期検査におけるドリフト調整前の検査結果(ドリフト量)とから求めた全体的なドリフト量の分散σ2とを比較した結果、両者はほぼ一致していた。 That is, the following equation ( 1) is used by using dispersions σ 1 2 , σ 2 2 , and σ 3 2 of drift amounts in the start-up operation, normal operation, and stop operation from the n-th periodic inspection to the (n + 1) -th periodic inspection shown in FIG. When the variance σ 2 of the overall drift amount is obtained from 1), the variance σ 2 obtained from this equation (1) is the inspection result (drift amount) after the drift adjustment in the n-th periodic inspection and the n + 1-th periodic interval. The variance (σ 2 ) of the overall drift amount (for one operating cycle) obtained from the inspection result (drift amount) before the drift adjustment in the inspection did not coincide with the variance σ 2 . Therefore, as a result of investigating the drift characteristics at the start operation and the drift characteristics at the stop operation, they are not independent, but are related to each other.If the drift amount increases during the start operation, the drift amount decreases during the stop operation, It has been found that there is a relationship in which if the drift amount decreases during start-up operation, the drift amount increases during stop operation. Therefore, the variance σ e 2 of the generated drift amount at the start / stop operation combined with the start operation and the stop operation is obtained, and this variance σ e 2 and the variance σ 2 2 of the drift amount at the normal operation are used. obtains the variance sigma 2 overall drift amount from the following equation (2), and variance sigma 2 obtained from the equation (2), the inspection results after drift adjustment in the n times periodic inspection (drift amount) and the n + 1 As a result of comparing the overall drift amount variance σ 2 obtained from the inspection result (drift amount) before the drift adjustment in the periodic inspection, the two values were almost the same.

Figure 2006250541
Figure 2006250541

また、通常運転時のドリフト量の標準偏差σ2や分散σ2 2と、起動・停止運転時のドリフト量の標準偏差σeや分散σe 2とを比較すると、前者の方が後者に比べて小さな値になるという知見も得られた。これは起動・停止運転時には検出器の環境(計測しているプロセスの温度や圧力等)が、定期検査時から比較的大きく変化するために比較的大きなドリフトが生じるのに対して、通常運転時には検出器の環境がほとんど変化しないために、あまりドリフトが生じないためであると考えられる。[表1]には、あるタイプ(形式)A,B,Cの検出器について、起動・停止運転時と通常運転時の各ドリフト量の統計量として、標準偏差σe,σ2を求めた例を示す。この[表1]からも、検出器のタイプによってその差は異なるものの、何れのタイプA,B,Cの検出器においても、通常運転時のドリフト量の標準偏差σ2の方が、起動・停止運転時のドリフト量の標準偏差σeよりも小さいことが分かる。 In addition, when comparing the standard deviation σ 2 and variance σ 2 2 of the drift amount during normal operation with the standard deviation σ e and variance σ e 2 of the drift amount during start / stop operation, the former is compared to the latter It was also found that the value would be small. This is because the detector environment (temperature and pressure of the process being measured, etc.) is relatively large during start-up and stop operations, and a relatively large drift occurs during normal operation. This is probably because the environment of the detector hardly changes, so that there is not much drift. In [Table 1], standard deviations σ e and σ 2 were obtained as statistics of each drift amount during start / stop operation and normal operation for a detector of a certain type (form) A, B, and C. An example is shown. From [Table 1], although the difference varies depending on the type of detector, the standard deviation σ 2 of the drift amount during normal operation is greater for each type A, B, C detector. It can be seen that the standard deviation σ e of the drift amount during the stop operation is smaller.

Figure 2006250541
Figure 2006250541

出力手段17は統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)と、起動・停止運転時の発生ドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)とを、例えば図示しないディスプレイ(モニタ)やプリンタなどに出力する。 The output means 17 is a statistic (standard deviation σ 2 , variance σ 2 2 , average μ 2 ) of the generated drift amount during normal operation obtained by the statistic evaluation means 14 and statistics of the generated drift amount during start / stop operation. The quantity (standard deviation σ e , variance σ e 2 , average μ e ) is output to, for example, a display (monitor) or a printer (not shown).

図2に基づいて校正支援装置10の処理フローを説明すると、本実施の形態例1においては、まず、入力手段11が統計量評価手段14に対して評価対象を指定する(ステップS11)。その結果、統計量評価手段14では入力手段11からの評価対象の指定に基づいて、第1のデータベース12から抽出した統計量評価対象の複数の検出器の第1の定期検査後の通常運転時の実測値と、前記複数の検出器の第2の定期検査前の通常運転時の実測値とを統計的に処理して、通常運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)を求め、且つ、第1のデータベース12から抽出した統計量評価対象の前記複数の検出器の第1の定期検査後の通常運転時の実測値及び前記複数の検出器の第2の定期検査前の通常運転時の実測値と、第2のデータベース13から抽出した前記複数の検出器の第1の定期検査時におけるドリフト調整後の検査結果及び前記複数の検出器の第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)を求める(ステップS12,13,14)。そして、出力手段17が、統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)と、前記起動・停止運転時の発生ドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)とを出力する(ステップS15)。 The processing flow of the calibration support apparatus 10 will be described with reference to FIG. 2. In the first embodiment, first, the input unit 11 designates an evaluation target for the statistic evaluation unit 14 (step S11). As a result, in the statistic evaluation means 14, based on the designation of the evaluation target from the input means 11, during the normal operation after the first periodic inspection of the plurality of detectors that are the statistic evaluation targets extracted from the first database 12. And the statistical values of the drift amounts of the plurality of detectors generated during the normal operation (standard) by statistically processing the actual measurement values of the plurality of detectors and the actual measurement values during the normal operation before the second periodic inspection of the plurality of detectors. (Deviation σ 2 , variance σ 2 2 , average μ 2 ), and the measured values during normal operation after the first periodic inspection of the plurality of detectors to be statistically evaluated extracted from the first database 12 And the actual measurement values during normal operation before the second periodic inspection of the plurality of detectors, the inspection results after the drift adjustment at the first periodic inspection of the plurality of detectors extracted from the second database 13, and During a second periodic inspection of the plurality of detectors It delivers the inspection result of the previous drift adjustment is treated statistically to determine the drift amount of statistics of the plurality of detectors that occurs when starting and stopping operation (standard deviation sigma e, variance sigma e 2, mean mu e) (Steps S12, 13, 14). Then, the output means 17 calculates the statistics (standard deviation σ 2 , variance σ 2 2 , average μ 2 ) of the generated drift amount during the normal operation obtained by the statistic evaluation means 14 and the occurrence during the start / stop operation. The statistics of the drift amount (standard deviation σ e , variance σ e 2 , average μ e ) are output (step S15).

なお、今後(当該評価時点以後)の運転サイクルによって新たな実測値や新たな定期検査結果が得られれば、これらの新たな実測値や定期検査結果も、入力手段11を介して第1のデータベース12と第2のデータベース13に格納し、統計量評価手段14における統計量評価に利用する。   If new actual measurement values and new periodic inspection results are obtained in the future operation cycle (after the evaluation time point), these new actual measurement values and periodic inspection results are also stored in the first database via the input means 11. 12 and stored in the second database 13 and used for statistic evaluation in the statistic evaluation means 14.

ここで、統計量評価手段14における統計的な処理について詳述する。   Here, the statistical processing in the statistic evaluation means 14 will be described in detail.

上記のように統計量評価手段14においては、指定された運転サイクルにおける通常運転時の発生ドリフト量の統計量の算出と、起動・停止運転時の発生ドリフト量の統計量の算出とを行う。具体的には下記のとおりである。   As described above, the statistic evaluation means 14 calculates the statistic of the generated drift amount during the normal operation and the statistic of the generated drift amount during the start / stop operation in the designated operation cycle. Specifically, it is as follows.

<通常運転中の発生ドリフト量の統計量>
今、ある4重検出器について、第n回定期検査後の通常運転時の実測値をX11,X21,X31,X41とする。また、第n+1回定期検査前の通常運転時の実測値をX12,X22,X32,X42とした時、多重検出器間の実測値の変化量βは、次式(3)〜(6)のように展開することができる。

Figure 2006250541

但し,Y1,Y2は第n回定期検査後の通常運転時及び第n+1回定検前の通常運転時のプロセス値の真値とする。
一方,確率変数AとBの間に成立する統計上の定理
Figure 2006250541

において、
Figure 2006250541

と考えれば、多数の多重検出器についてβijを求め、その標準偏差をσRとして
Figure 2006250541

と考えることができる。即ち、各検出器の第n回定検後の通常運転時のドリフト量と第n+1回定検前の通常運転時のドリフト量の差((Xi2−Y2)−(Xi1−Y1))は統計的にσ2 2(=σR 2/2)のばらつきを持つこととなる。即ち、多数の多重検出器の実測値から通常運転時に発生したドリフト量の標準偏差を算出することができる。 <Statistics of the amount of drift generated during normal operation>
Now, let X 11 , X 21 , X 31 , and X 41 be measured values during normal operation after the nth periodic inspection for a quadruple detector. Further, when the measured values during normal operation before the (n + 1) th periodic inspection are X 12 , X 22 , X 32 , and X 42 , the variation β of the measured values between the multiple detectors is expressed by the following formula (3) to It can be developed as in (6).
Figure 2006250541

Y 1 and Y 2 are the true values of the process values during normal operation after the nth periodic inspection and during normal operation before the (n + 1) th regular inspection.
On the other hand, a statistical theorem that holds between random variables A and B
Figure 2006250541

In
Figure 2006250541

If β ij is obtained for a large number of multiple detectors, and its standard deviation is σ R
Figure 2006250541

Can be considered. That is, the difference between the drift amount during normal operation after the n-th regular inspection of each detector and the drift amount during normal operation before the (n + 1) -th regular inspection ((X i2 −Y 2 ) − (X i1 −Y 1 )) is to have a variation in statistically σ 2 2 (= σ R 2 /2). That is, the standard deviation of the drift amount generated during normal operation can be calculated from the measured values of a large number of multiple detectors.

<起動・停止運転時の発生ドリフト量の統計量>
起動・停止運転時も通常運転時と同様な考え方でドリフト量の標準偏差を求めることができる。この場合、第n回定期検査時(調整後)の検査結果、第n回定検後の通常運転時の実測値、第n+1回定期検査前の通常運転時の実測値、第n+1回定期検査時(調整前)の検査結果を用いて、通常運転時に発生した多重検出器間の差を差し引くことにより、起動・停止運転時のみの発生ドリフト量を求め、その標準偏差を算出する。
<Statistics of drift amount during start / stop operation>
The standard deviation of the drift amount can be obtained during start / stop operation in the same way as during normal operation. In this case, the inspection result at the n-th periodic inspection (after adjustment), the actual measurement value at the normal operation after the n-th regular inspection, the actual measurement value at the normal operation before the n + 1-th periodic inspection, the n + 1-th periodic inspection By subtracting the difference between multiple detectors that occurred during normal operation using the test results at the time (before adjustment), the amount of drift that occurs only during start / stop operation is obtained, and the standard deviation is calculated.

なお、定期検査時の検査は、前述のように0〜100%のフルレンジ間を5段階(あるいは6段階)に分けて、それぞれのポイントでドリフト量を計測するため、通常運転時の運転ポイント(例えば図5に例示する運転ポイントP)が検査されるわけではない。このため、5段階(あるいは6段階)の検査ポイントのドリフト量を内挿等の補完演算により、通常運転時の運転ポイント(図5の運転ポイントP)におけるドリフト量を求めて統計量評価に用いる。勿論、通常運転時の運転ポイントが検査されていれば、当該運転ポイントの検査結果(ドリフト量)を統計量評価に用いればよい。   In addition, the inspection at the time of regular inspection is divided into 5 steps (or 6 steps) between 0 to 100% full range as described above, and the drift amount is measured at each point. For example, the operation point P) illustrated in FIG. 5 is not inspected. For this reason, the drift amount at the operation point during normal operation (operation point P in FIG. 5) is obtained by interpolation calculation or the like for the drift amount at the five-stage (or six-stage) inspection point and used for statistical evaluation. . Of course, if the operation point at the time of normal operation is inspected, the inspection result (drift amount) of the operation point may be used for the statistic evaluation.

標準偏差の算出について詳述すると、今、ある4重検出器について、第n回定期検査時(調整後)の検査結果における通常運転時の運転ポイントのドリフト量をZ10,Z20,Z30,Z40とする。また、第n+1回定期検査時(調整前)の検査結果における通常運転時の運転ポイントのドリフト量をZ13,Z23,Z33,Z43としたとき、起動・停止運転時における多重検出器間の実測値の変化量βiSSは、次式(11)〜(14)のように展開することができる。

Figure 2006250541

従って、多数の多重検出器についてβiSSを求め、その標準偏差をσSSとすれば
Figure 2006250541

と考えることができる。即ち,各検出器の起動運転時及び停止運転時に発生したドリフト量は統計的にσT 2(=σSS 2/2)のばらつきを持つこととなる。即ち、多数の多重検出器の実測値と定期検査の検査結果から起動・停止運転時に発生したドリフト量の標準偏差を算出することができる。 The calculation of the standard deviation will be described in detail. The drift amount of the operation point during normal operation in the inspection result at the n-th periodic inspection (after adjustment) for a certain quadruple detector is Z 10 , Z 20 , Z 30. , Z 40 . In addition, when the drift amount of the operation point during normal operation in the inspection result at the (n + 1) th periodic inspection (before adjustment) is Z 13 , Z 23 , Z 33 , Z 43 , multiple detectors during start / stop operation A change amount β iSS of the actually measured value between can be developed as in the following equations (11) to (14).
Figure 2006250541

Therefore, if β iSS is obtained for many multiple detectors and its standard deviation is σ SS ,
Figure 2006250541

Can be considered. That is, startup operation and drift amount generated when stopping the operation of the detector becomes to have a variation in statistically σ T 2 (= σ SS 2 /2). That is, the standard deviation of the drift amount generated during the start / stop operation can be calculated from the actual measurement values of a large number of multiple detectors and the inspection results of the periodic inspection.

以上のように、本実施の形態例1の検出器の校正支援装置又はその方法によれば、統計量評価手段14において、統計量評価の対象となる複数の検出器の第1の定期検査後の通常運転時の実測値と、前記複数の検出器の第2の定期検査前の通常運転時の実測値とを統計的に処理して、通常運転時に生じる前記複数の検出器のドリフト量の統計量を求め、且つ、前記第1の定期検査後の通常運転時の実測値及び前記第2の定期検査前の通常運転時の実測値と、前記複数の検出器の第1の定期検査時におけるドリフト調整後の検査結果及び前記複数の検出器の第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量を求めることを特徴とするため、次のような効果を得ることができる。   As described above, according to the detector calibration support apparatus or the method thereof according to the first embodiment, after the first periodic inspection of the plurality of detectors to be subjected to the statistic evaluation in the statistic evaluation means 14. Statistically processing the actual measurement value during normal operation and the actual measurement value during normal operation before the second periodic inspection of the plurality of detectors, and calculating drift amounts of the plurality of detectors that occur during normal operation. Statistics are obtained, and measured values during normal operation after the first periodic inspection, measured values during normal operation before the second periodic inspection, and during the first periodic inspection of the plurality of detectors. The drift amount of the plurality of detectors generated during start / stop operation is statistically processed by the inspection result after the drift adjustment in the first and the inspection result before the drift adjustment in the second periodic inspection of the plurality of detectors. Since it is characterized by calculating the statistic of Effect can be obtained.

即ち、本実施の形態例1では、起動・停止運転時の発生ドリフト量の統計量と通常運転時の発生ドリフト量の統計量とを区別して求めるため、通常運転時の発生ドリフト量などを過大評価することなく適切に推定することができる。つまり、それぞれの統計量を目的に応じて厳密に使い分けることができ、ドリフト量の評価の精度を向上させることができる。例えば、通常運転期間の延長を検討する際には、通常運転時の発生ドリフト量の統計量に基づいて通常運転時におけるドリフト量の増加を予測することができるため、起動運転や停止運転と通常運転とを区別せずに(1運転サイクル分の発生ドリフト量の統計量に基づいて)運転期間延長の検討を行う場合に比べて、将来のドリフト量の増加傾向を過大評価することなく、適切に評価することが可能となる。   That is, in the first embodiment, since the statistical amount of the generated drift amount at the start / stop operation and the statistical amount of the generated drift amount at the normal operation are separately determined, the generated drift amount at the normal operation is excessively large. It can be estimated appropriately without evaluation. That is, each statistic can be used strictly according to the purpose, and the accuracy of evaluation of the drift amount can be improved. For example, when considering the extension of the normal operation period, it is possible to predict an increase in the drift amount during normal operation based on the statistics of the amount of drift generated during normal operation. Appropriate without overestimating the trend of increasing drift in the future compared to when extending the operation period (based on statistics of the drift amount generated for one operation cycle) without distinguishing from operation It becomes possible to evaluate.

<実施の形態例2>
図6は本発明の実施の形態例2に係る検出器の校正支援装置の構成を示すブロック線図、図7は前記校正支援装置の処理フローを示すフローチャート、図8は前記校正支援装置の予測手段におけるドリフト量予測の説明図である。なお、図6中、図1と同様の部分には同一の符号を付し、重複する詳細な説明は省略する。
<Embodiment 2>
6 is a block diagram showing a configuration of a detector calibration support apparatus according to Embodiment 2 of the present invention, FIG. 7 is a flowchart showing a processing flow of the calibration support apparatus, and FIG. 8 is a prediction of the calibration support apparatus. It is explanatory drawing of the drift amount prediction in a means. In FIG. 6, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図6に示すように、本実施の形態例2の検出器の校正支援装置20は入力手段11と、第1の格納手段としての第1のデータベース12と、第2の格納手段としての第2のデータベース13と、統計量評価手段14と、予測手段25と、出力手段27とを有している。即ち、本校正支援装置20は上記実施の形態例1の校正支援装置10(図1参照)において、更に予測手段25を追加したことを特徴としている。本校正支援装置20もパーソナルコンピュータなどのコンピュータによって構成されるものであり、原子力発電プラント内やその他の適宜の場所に設置され(オフライン)、原子力発電プラントに設けられた検出器の校正を支援するために利用される。   As shown in FIG. 6, the detector calibration support apparatus 20 according to the second embodiment includes an input unit 11, a first database 12 as a first storage unit, and a second database as a second storage unit. Database 13, statistic evaluation means 14, prediction means 25, and output means 27. That is, the calibration support apparatus 20 is characterized in that a prediction means 25 is further added to the calibration support apparatus 10 (see FIG. 1) of the first embodiment. The calibration support apparatus 20 is also configured by a computer such as a personal computer, and is installed in the nuclear power plant or other appropriate location (offline) to support calibration of the detector provided in the nuclear power plant. Used for.

そして、予測手段25では、統計量評価手段14で求めた評価対象の複数の検出器の通常運転時に生じるドリフト量の統計量(標準偏差σ2)に基づいて、通常運転の期間を延長する場合(例えば通常運転期間を13箇月から18箇月に延長する場合)の通常運転時に生じる前記複数の検出器のドリフト量の増加を予測する。なお、予測手段25は予測処理プログラムを記憶するメモリやこの予測処理プログラムを実行するCPUなどで構成される。 Then, in the prediction means 25, when the period of normal operation is extended based on the statistics (standard deviation σ 2 ) of the drift amount generated during the normal operation of the plurality of detectors to be evaluated obtained by the statistic evaluation means 14. An increase in the drift amount of the plurality of detectors that occurs during normal operation (for example, when the normal operation period is extended from 13 months to 18 months) is predicted. Note that the prediction means 25 includes a memory that stores a prediction processing program, a CPU that executes the prediction processing program, and the like.

ここで予測手段25の予測処理について詳述する。通常運転時の発生ドリフト量の統計量算定の基準とした期間をTとし、評価の起点と評価時点の日時との差をTevalとすると、評価時点の日時(任意の日時)における発生ドリフト量の標準偏差σiは次式(16)で計算する。式(16)に示すように発生ドリフト量の標準偏差σiは時間の1/2乗に比例して大きくなる。なお、通常運転時の発生ドリフト量の統計量算定の基準とした期間Tとは、例えば図3に例示するように13箇月の通常運転期間の初期(B時点)と終期(C時点)の実測値に基づいて通常運転時の発生ドリフト量の統計量を算出した場合には13箇月とする。また、この例の場合、評価の起点は13箇月の通常運転期間の初期(B時点)となる。そして、この例の場合において、通常運転期間を13箇月から例えば18箇月に延長しようとする場合には、評価の起点と評価時点の日時との差Tevalは18箇月となる。

Figure 2006250541
Here, the prediction process of the prediction means 25 will be described in detail. The amount of drift generated at the date and time of evaluation (arbitrary date and time), where T is the period used as the standard for calculating the statistics of the amount of drift generated during normal operation and T eval is the difference between the starting point of evaluation and the date and time of evaluation The standard deviation σ i is calculated by the following equation (16). As shown in Expression (16), the standard deviation σ i of the generated drift amount increases in proportion to the 1/2 power of time. Note that the period T used as a standard for calculating the statistic of the generated drift amount during normal operation is, for example, an actual measurement at the beginning (time B) and end (time C) of the normal operation period of 13 months as illustrated in FIG. If the statistic of the amount of drift generated during normal operation is calculated based on the value, it will be 13 months. In the case of this example, the starting point of the evaluation is the initial stage (time B) of the normal operation period of 13 months. In this example, when the normal operation period is to be extended from 13 months to, for example, 18 months, the difference Teval between the starting point of the evaluation and the date and time at the time of evaluation is 18 months.
Figure 2006250541

そして、通常、±3σを用いれば99.7%の信頼度で評価できるため、図8のように通常運転期間の延長に対して、どのようにドリフト量が増え(±3σの範囲のドリフト量の値が増え)、いつごろドリフト量(±3σの範囲のドリフト量)が許容範囲を逸脱するか(許容ラインを超えるか)を予測することができる。なお、±3σの範囲で評価することが最も望ましいと考えられるが、必ずしもこれに限定するものではなく、例えば許容条件などによっては±2σの範囲や±4σの範囲で評価するようにしてもよい。   In general, if ± 3σ is used, the reliability can be evaluated with a reliability of 99.7%. Thus, as shown in FIG. 8, how the drift amount increases with the extension of the normal operation period (the drift amount in the range of ± 3σ). It is possible to predict when the drift amount (the drift amount in the range of ± 3σ) deviates from the allowable range (exceeds the allowable line). Although it is considered that it is most desirable to evaluate in the range of ± 3σ, it is not necessarily limited to this, and for example, evaluation may be performed in the range of ± 2σ or ± 4σ depending on allowable conditions. .

出力手段27では、統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)と、起動・停止運転時の発生ドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)とを、例えば図示しないディスプレイ(モニタ)やプリンタなどに出力し、更には予測手段25における通常運転時の発生ドリフト量の増加の予測結果(どのようにドリフト量(±3σの値)が増えるか、いつごろドリフト量(±3σの増加量)が許容範囲を逸脱するか)も、ディスプレイ(モニタ)やプリンタなどに出力する。 In the output means 27, the statistics (standard deviation σ 2 , variance σ 2 2 , average μ 2 ) of the generated drift amount during normal operation obtained by the statistic evaluation means 14 and the generated drift amount during start / stop operation are calculated. The statistics (standard deviation σ e , variance σ e 2 , average μ e ) are output to, for example, a display (monitor) or a printer (not shown), and further, the prediction means 25 increases the amount of drift generated during normal operation. The prediction result (how the drift amount (± 3σ value) increases and when the drift amount (± 3σ increase amount) deviates from the allowable range) is also output to a display (monitor), a printer, or the like.

図7に基づいて校正支援装置20の処理フローを説明すると、本実施の形態例2においては、まず、入力手段11が統計量評価手段14に対して評価対象を指定する(ステップS21)。その結果、統計量評価手段14では入力手段11からの評価対象の指定に基づいて、第1のデータベース12から抽出した統計量評価対象の複数の検出器の第1の定期検査後の通常運転時の実測値と、前記複数の検出器の第2の定期検査前の通常運転時の実測値とを統計的に処理して、通常運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)を求め、且つ、第1のデータベース12から抽出した前記複数の検出器の第1の定期検査後の通常運転時の実測値及び前記複数の検出器の第2の定期検査前の通常運転時の実測値と、第2のデータベース13から抽出した前記複数の検出器の第1の定期検査時におけるドリフト調整後の検査結果及び前記複数の検出器の第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)を求める(ステップS22,23,24)。 The processing flow of the calibration support apparatus 20 will be described with reference to FIG. 7. In the second embodiment, first, the input unit 11 designates an evaluation target for the statistic evaluation unit 14 (step S21). As a result, in the statistic evaluation means 14, based on the designation of the evaluation target from the input means 11, during the normal operation after the first periodic inspection of the plurality of detectors that are the statistic evaluation targets extracted from the first database 12. And the statistical values of the drift amounts of the plurality of detectors generated during the normal operation (standard) by statistically processing the actual measurement values of the plurality of detectors and the actual measurement values during the normal operation before the second periodic inspection of the plurality of detectors. Deviation σ 2 , variance σ 2 2 , average μ 2 ), and extracted from the first database 12 and the actual values and the plurality of detections during normal operation after the first periodic inspection of the plurality of detectors. Measured values during normal operation before the second periodic inspection of the detector, the inspection results after the drift adjustment of the plurality of detectors extracted from the second database 13 at the first periodic inspection, and the plurality of detectors Drift adjustment at the second periodic inspection Treated the previous inspection results statistically, the statistics of the drift amount of the plurality of detectors that occurs when starting and stopping operation (standard deviation sigma e, variance sigma e 2, mean mu e) obtaining the (step S22 23, 24).

その後、予測手段25が、統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2)に基づいて、通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測する(ステップS25)。そして、出力手段17が、統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)と、起動・停止運転時の発生検出器のドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)とを出力し、更に予測手段25における通常運転時の発生ドリフト量の増加の予測結果も出力する(ステップS26)。 Thereafter, the prediction unit 25 generates the normal operation period when the normal operation period is extended based on the statistics (standard deviation σ 2 ) of the generated drift amount during the normal operation obtained by the statistic evaluation unit 14. An increase in the drift amount of the plurality of detectors is predicted (step S25). Then, the output means 17 calculates the statistics (standard deviation σ 2 , variance σ 2 2 , average μ 2 ) of the generated drift amount during normal operation obtained by the statistic evaluation means 14, and the occurrence detection during start / stop operation. Statistic (standard deviation σ e , variance σ e 2 , average μ e ) of the drift amount of the vessel, and further, the prediction result of the increase in the generated drift amount during normal operation in the prediction means 25 is also output (step S26). ).

以上のように、本実施の形態例2の検出器の校正支援装置又はその方法によれば、予測手段25で通常運転時の発生ドリフト量の統計量に基づいて、通常運転の期間を延長する場合の当該通常運転時に生じる複数の検出器のドリフト量の増加を予測することを特徴するため、起動運転や停止運転と通常運転とを区別せずに(1運転サイクル分の発生ドリフト量の統計量に基づいて)運転期間延長の検討を行う場合に比べて、将来のドリフト量の増加傾向を過大評価することなく、適切に評価することが可能となる。このため、校正不要(ドリフト調整不要)と評価できる検出器の数を増やしたり(即ち検出器の校正(ドリフト調整)頻度を低減したり)、検出器校正の観点から、運転期間延長の可否(どれくらい延長できるか)を適正に評価することができる。   As described above, according to the detector calibration support apparatus or the method thereof according to the second embodiment, the normal operation period is extended by the prediction unit 25 based on the statistics of the generated drift amount during the normal operation. In this case, the increase in the drift amount of the plurality of detectors occurring during the normal operation is predicted, so that the start operation and the stop operation are not distinguished from the normal operation (statistics of the generated drift amount for one operation cycle). Compared with the case of considering the extension of the operation period (based on the amount), it is possible to appropriately evaluate without overestimating the tendency of the future drift amount to increase. For this reason, the number of detectors that can be evaluated as calibration unnecessary (drift adjustment unnecessary) is increased (that is, the frequency of detector calibration (drift adjustment) is reduced), and whether the operation period can be extended from the viewpoint of detector calibration ( How much can be extended).

<実施の形態例3>
図9は本発明の実施の形態例3に係る検出器の校正支援装置の構成を示すブロック線図、図10は前記校正支援装置の処理フローを示すフローチャート、図11は前記校正支援装置の真値推定手段で用いる真値推定モデルの一例を示す説明図である。なお、図9中、図1と同様の部分には同一の符号を付し、重複する詳細な説明は省略する。
<Embodiment 3>
FIG. 9 is a block diagram showing a configuration of a detector calibration support apparatus according to Embodiment 3 of the present invention, FIG. 10 is a flowchart showing a processing flow of the calibration support apparatus, and FIG. It is explanatory drawing which shows an example of the true value estimation model used with a value estimation means. In FIG. 9, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図9に示すように、本実施の形態例3の検出器の校正支援装置30は入力手段11と、第1の格納手段としての第1のデータベース12と、第2の格納手段としての第2のデータベース13と、統計量評価手段14と、真値推定手段36と、出力手段37とを有している。即ち、本校正支援装置30は上記実施の形態例1の校正支援装置10(図1参照)において、更に真値推定手段36を追加したことを特徴としている。本校正支援装置30もパーソナルコンピュータなどのコンピュータによって構成されるものであり、原子力発電プラント内に設置され(オンライン)、原子力発電プラントに設けられた検出器の校正を支援するために利用される。   As shown in FIG. 9, the detector calibration support apparatus 30 according to the third embodiment has an input means 11, a first database 12 as a first storage means, and a second database as a second storage means. Database 13, statistic evaluation means 14, true value estimation means 36, and output means 37. That is, the calibration support apparatus 30 is characterized in that a true value estimation means 36 is further added to the calibration support apparatus 10 (see FIG. 1) of the first embodiment. The calibration support apparatus 30 is also configured by a computer such as a personal computer, and is installed in the nuclear power plant (online) and used to support calibration of the detector provided in the nuclear power plant.

入力手段11は上記実施の形態例1と同様に図示しないキーボードなどの入力機器などに接続されるインターフェースであり、原子力発電プラント1で統計量評価の対象となる複数の検出器の原子力発電プラント1における第1の定期検査後の通常運転時の実測値と、前記複数の検出器の原子力発電プラント1における前記第1の定期検査の次の定期検査である第2の定期検査前の通常運転時の実測値と、前記複数の検出器の前記第1の定期検査時におけるドリフト調整後の検査結果(ドリフト量)と、前記複数の検出器の前記第2の定期検査時におけるドリフト調整前の検査結果(ドリフト量)とをそれぞれ入力する。そして更に本実施の形態例3においては、入力手段11は原子力発電プラント1に設けられた多数の検出器にも接続されており、これらの各検出器から出力される検出信号も入力する。入力手段11は、各検出器から入力した検出信号を実測値として真値推定手段36と第1のデータベース12とに送出する。第1のデータベース12では、各検出器から入力した検出信号(実測値)も統計量評価用のデータとして格納する。   The input means 11 is an interface connected to an input device such as a keyboard (not shown) as in the first embodiment. The nuclear power plant 1 is a plurality of detectors that are subject to statistical evaluation in the nuclear power plant 1. Measured values during normal operation after the first periodic inspection in, and during normal operation before the second periodic inspection, which is the periodic inspection next to the first periodic inspection in the nuclear power plant 1 of the plurality of detectors , Actual inspection value of the plurality of detectors, and inspection result after drift adjustment (drift amount) at the time of the first periodic inspection, and inspection before drift adjustment at the time of the second periodic inspection of the plurality of detectors Enter the result (drift amount). Further, in the third embodiment, the input means 11 is also connected to a large number of detectors provided in the nuclear power plant 1 and also inputs detection signals output from these detectors. The input means 11 sends the detection signal input from each detector to the true value estimation means 36 and the first database 12 as an actual measurement value. In the first database 12, detection signals (actual measurement values) input from the detectors are also stored as statistics evaluation data.

そして、真値推定手段36では、真値を推定するための真値推定モデルを用い、入力手段11で入力した統計量評価対象の複数の検出器の検出信号(実測値)に基づいて真値を推定し、且つ、この推定真値の不確かさを統計量評価手段14で求めた通常運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σ2)に基づいて算出する。真値推定手段36で求めた推定真値と実測値とから推定ドリフト量を算出することができる。なお、真値推定手段36はプログラミングされた真値推定モデルを記憶するメモリやこの真値推定モデルのプログラムを実行するCPUなどで構成される。 Then, the true value estimation means 36 uses a true value estimation model for estimating the true value, and the true value is based on the detection signals (actual values) of the plurality of detectors to be evaluated by the statistic input inputted by the input means 11. , And the uncertainty of the estimated true value is calculated based on the statistics (standard deviation σ 2 ) of the drift amounts of the plurality of detectors generated during the normal operation obtained by the statistic evaluation means 14. The estimated drift amount can be calculated from the estimated true value obtained by the true value estimating means 36 and the actually measured value. The true value estimation means 36 includes a memory for storing a programmed true value estimation model, a CPU for executing a program for the true value estimation model, and the like.

詳述すると、真値推定手段36で用いる真値推定モデルは、事前にモデル内部のパラメータを調整または学習したものであり、たとえば線形モデルやニューラルネットワークなどである。真値推定モデルの構築、即ち、推定モデルの調整や学習は原子力発電プラント1の通常運転で得られた検出器信号(実測値)を用いて行われる。   More specifically, the true value estimation model used by the true value estimation means 36 is obtained by adjusting or learning parameters in the model in advance, and is, for example, a linear model or a neural network. Construction of the true value estimation model, that is, adjustment and learning of the estimation model is performed using a detector signal (actual measurement value) obtained in normal operation of the nuclear power plant 1.

図11は真値推定モデルの一例としてニューラルネットワークの概念を示す模式図である。ニューラルネットワーク自体は公知であるため、ニューラルネットワークの詳細な説明については省略する。図11において、左端の4個のノードは入力層を構成し、右端の4個のノードは出力層を構成する。入力層と出力層の間は中間層である。このニューラルネットワークでは、入力層に検出器信号の実測値を入れると、ネットワーク内部の重み、バイアスおよび変換関数などに基づいて演算がおこなわれ、出力層から各検出器信号の推定真値が出力される。ここで、入力層のノード数と出力層のノード数は一致しており、第i番目のノードへの入力信号に対する推定真値は出力層の第i番目のノードに出力される。なお、入力層、中間層および出力層の各ノード数はネットワークへの入力信号の数に応じて変化するので、図11に示す個数に限らない。   FIG. 11 is a schematic diagram showing the concept of a neural network as an example of a true value estimation model. Since the neural network itself is known, detailed description of the neural network is omitted. In FIG. 11, the four nodes at the left end constitute an input layer, and the four nodes at the right end constitute an output layer. Between the input layer and the output layer is an intermediate layer. In this neural network, when the measured value of the detector signal is input to the input layer, the calculation is performed based on the weight, bias, conversion function, etc. inside the network, and the estimated true value of each detector signal is output from the output layer. The Here, the number of nodes in the input layer matches the number of nodes in the output layer, and the estimated true value for the input signal to the i-th node is output to the i-th node in the output layer. Note that the number of nodes in the input layer, intermediate layer, and output layer varies depending on the number of input signals to the network, and is not limited to the number shown in FIG.

また、真値推定手段36で得られた推定真値は不確かさを持っている。検出器Ajの推定真値Ykjの不確かさσkjは,検出器Aiの指示値Xiにおいて発生したドリフトが真値推定モデルkを経て推定真値Ykjに影響する感度をfkijとすると,次式(17)で計算できる。

Figure 2006250541
Further, the estimated true value obtained by the true value estimating means 36 has uncertainty. The uncertainties σ k , j of the estimated true value Y k , j of the detector A j are the drifts generated in the indicated value X i of the detector A i to the estimated true value Y k , j via the true value estimation model k. If the influencing sensitivities are f k and ij , they can be calculated by the following equation (17).
Figure 2006250541

但し、右辺のσi(即ちσ1,σ2・・・σn)は通常運転時の発生ドリフト量の統計量(標準偏差σ2)であり、時間の1/2乗に比例して大きくなる。即ち、通常運転時の発生ドリフト量の統計量算定の基準とした期間をTとし、真値推定モデル構築に使用したデータ日時と評価時点の日時の差をTnowとすると、次式(18)で計算する。通常運転時の発生ドリフト量の統計量算定の基準とした期間Tとは、例えば図3に例示するように13箇月の通常運転期間の初期(B時点)と終期(C時点)の実測値に基づいて通常運転時の発生ドリフト量の統計量を算出した場合には13箇月とする。また、この例の場合、真値推定モデル構築に使用したデータ日時とは、13箇月の通常運転期間の例えば初期(B時点)の実測値に基づいて真値推定モデルを構築したときには当該初期の日時(B時点の日時)となる。また、この例の場合、評価時点の日時とは真値推定手段36で真値を推定して当該推定真値の不確かさを評価する日時(13箇月の通常運転期間の何れかの時点)であり、真値推定モデル構築に使用したデータ日時と評価時点の日時の差Tnowとは、真値推定手段36で真値を推定して当該推定真値の不確かさを評価した日時が例えば13箇月の通常運転期間の初期(B時点)から5箇月経過した時点であるとすると、5箇月である。

Figure 2006250541
However, σ i (that is, σ 1 , σ 2 ... Σ n ) on the right side is a statistic (standard deviation σ 2 ) of the generated drift amount during normal operation, and increases in proportion to the 1/2 power of time. Become. That is, assuming that the period used as the standard for calculating the statistic of the drift amount during normal operation is T, and the difference between the data date and time used to construct the true value estimation model and the date and time of evaluation is T now , the following equation (18) Calculate with The period T used as a standard for calculating the statistic of the amount of drift generated during normal operation is, for example, measured values at the beginning (time B) and the end (time C) of the normal operation period of 13 months as illustrated in FIG. If the statistic of the amount of drift generated during normal operation is calculated based on this, it will be 13 months. In the case of this example, the data date and time used for constructing the true value estimation model is the initial value when the true value estimation model is constructed based on, for example, the actual measurement value of the normal operation period of 13 months (time B). Date and time (date and time at time B). In the case of this example, the date and time at the time of evaluation is the date and time at which the true value is estimated by the true value estimating means 36 and the uncertainty of the estimated true value is evaluated (at any point in the normal operation period of 13 months). The difference T now between the data date and time used for constructing the true value estimation model and the date and time at the time of evaluation is, for example, 13 when the true value is estimated by the true value estimating means 36 and the uncertainty of the estimated true value is evaluated. If five months have passed since the beginning of the normal operation period of the month (time B), it is 5 months.
Figure 2006250541

また、感度fkijについて詳述すると、今、検出器A1、・・・、Anの実測値X1、・・・、Xnをベクトル表現し、X=[X1、X2、…XnTとすると、真値推定モデルkにより得られる推定値Yk=[Yk、1、Yk、2、…、YknTは、次式(19)となる。

Figure 2006250541

ここでfkは真値推定モデルkである。また、記号Tは転置を意味する。
そして、検出器Aiの実測値Xiにおいて発生したドリフトが真値推定モデルkを経て推定真値Ykjに影響する感度fkijは、次式(20)で求めることができる。
Figure 2006250541
Also, the sensitivity f k, will be described more in detail ij, now, detector A 1, · · ·, measured values X 1 of A n, · · ·, the X n was vector representation, X = [X 1, X 2 ,... X n ] T , the estimated value Y k = [Y k , 1, Y k , 2,..., Y k , n ] T obtained by the true value estimation model k is expressed by the following equation (19). .
Figure 2006250541

Here, f k is a true value estimation model k. The symbol T means transposition.
The sensitivities f k and ij that the drift generated in the actual measurement value X i of the detector A i affects the estimated true values Y k and j through the true value estimation model k can be obtained by the following equation (20). .
Figure 2006250541

出力手段37では、統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)と、起動・停止運転時の発生ドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)とを、例えば図示しないディスプレイ(モニタ)やプリンタなどに出力し、更に真値推定手段36で求めた推定真値や推定真値の不確かさもディスプレイ(モニタ)やプリンタなどに出力する。 In the output means 37, the statistics (standard deviation σ 2 , variance σ 2 2 , average μ 2 ) of the generated drift amount at the normal operation obtained by the statistic evaluation means 14 and the generated drift amount at the start / stop operation are calculated. Statistics (standard deviation σ e , variance σ e 2 , average μ e ) are output to, for example, a display (monitor) or a printer (not shown), and further, an estimated true value or an estimated true value obtained by the true value estimating means 36. Uncertainty is also output to a display (monitor) or printer.

図10に基づいて校正支援装置30の処理フローを説明すると、本実施の形態例3においては、まず、入力手段11が原子力発電プラント1に設けられた検出器から検出信号(実測値)を取り込む(ステップS31)。また、入力手段11が統計量評価手段14に対して評価対象を指定する。その結果、統計量評価手段14では入力手段11からの評価対象の指定に基づいて、第1のデータベース12から抽出した統計量評価対象の複数の検出器の第1の定期検査後の通常運転時の実測値と、前記複数の検出器の第2の定期検査前の通常運転時の実測値とを統計的に処理して、通常運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)を求め、且つ、第1のデータベース12から抽出した前記複数の検出器の第1の定期検査後の通常運転時の実測値及び前記複数の検出器の第2の定期検査前の通常運転時の実測値と、第2のデータベース13から抽出した前記複数の検出器の第1の定期検査時におけるドリフト調整後の検査結果及び前記複数の検出器の第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)を求める(ステップS32,33,34)。 The processing flow of the calibration support apparatus 30 will be described with reference to FIG. 10. In the third embodiment, first, the input unit 11 captures a detection signal (actual measurement value) from a detector provided in the nuclear power plant 1. (Step S31). Further, the input means 11 designates an evaluation target for the statistic evaluation means 14. As a result, in the statistic evaluation means 14, based on the designation of the evaluation target from the input means 11, during the normal operation after the first periodic inspection of the plurality of detectors that are the statistic evaluation targets extracted from the first database 12. And the statistical values of the drift amounts of the plurality of detectors generated during the normal operation (standard) by statistically processing the actual measurement values of the plurality of detectors and the actual measurement values during the normal operation before the second periodic inspection of the plurality of detectors. Deviation σ 2 , variance σ 2 2 , average μ 2 ), and extracted from the first database 12 and the actual values and the plurality of detections during normal operation after the first periodic inspection of the plurality of detectors. Measured values during normal operation before the second periodic inspection of the detector, the inspection results after the drift adjustment of the plurality of detectors extracted from the second database 13 at the first periodic inspection, and the plurality of detectors Drift adjustment at the second periodic inspection Treated the previous inspection results statistically, the statistics of the drift amount of the plurality of detectors that occurs when starting and stopping operation (standard deviation sigma e, variance sigma e 2, mean mu e) obtaining the (step S32 33, 34).

その後、真値推定手段36が、真値を推定するための真値推定モデルを用い、入力手段11で入力した前記検出信号の実測値に基づいて真値を推定し、且つ、この推定真値の不確かさを統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2)に基づいて算出する(ステップS35)。そして、出力手段37が、統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)と、起動・停止運転時の発生ドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)とを出力し、更に真値推定手段36で求めた推定真値や推定真値の不確かさも出力する(ステップS36)。 Thereafter, the true value estimating means 36 estimates the true value based on the actual measurement value of the detection signal input by the input means 11 using the true value estimation model for estimating the true value, and this estimated true value. Is calculated based on the statistic (standard deviation σ 2 ) of the generated drift amount during the normal operation obtained by the statistic evaluation means 14 (step S35). Then, the output means 37 calculates the statistics (standard deviation σ 2 , variance σ 2 2 , average μ 2 ) of the generated drift amount during normal operation obtained by the statistic evaluation means 14 and the generated drift during start / stop operation. The quantity statistics (standard deviation σ e , variance σ e 2 , average μ e ) are output, and the estimated true value obtained by the true value estimating means 36 and the uncertainty of the estimated true value are also output (step S36).

以上のように、本実施の形態例3の検出器の校正支援装置又はその方法によれば、真値推定手段36において、真値を推定するための真値推定モデルを用い、複数の検出器の検出信号の実測値に基づいて真値を推定し、且つ、この推定真値の不確かさを通常運転時の前記ドリフト量の統計量に基づいて算出することを特徴とするため、起動運転や停止運転と通常運転とを区別せずに(1運転サイクル分の発生ドリフト量の統計量に基づいて)推定真値の不確かさを算出する場合に比べて、推定真値の推定区間(不確かさを考慮した推定真値の範囲)を小さくすることができ、通常運転時に発生するドリフト量を更に正確に評価・推定することができる。   As described above, according to the detector calibration support apparatus or method of the third embodiment, the true value estimation means 36 uses a true value estimation model for estimating the true value, and a plurality of detectors. The true value is estimated based on the actual measurement value of the detection signal, and the uncertainty of the estimated true value is calculated based on the statistic of the drift amount during normal operation. Compared to calculating the estimated true value uncertainty (based on the statistics of the drift amount generated for one operating cycle) without distinguishing between stop operation and normal operation, the estimated true value estimation interval (uncertainty) The range of the estimated true value in consideration of the above can be reduced, and the drift amount generated during normal operation can be evaluated and estimated more accurately.

<実施の形態例4>
図12は本発明の実施の形態例4に係る検出器の校正支援装置の構成を示すブロック線図、図13は前記校正支援装置の処理フローを示すフローチャート、図14は前記校正支援装置の真値推定手段によって得られる推定真値の適用例を示すブロック線図である。なお、図12中、図1と同様の部分には同一の符号を付し、重複する詳細な説明は省略する。
<Embodiment 4>
FIG. 12 is a block diagram showing a configuration of a detector calibration support apparatus according to Embodiment 4 of the present invention, FIG. 13 is a flowchart showing a processing flow of the calibration support apparatus, and FIG. It is a block diagram which shows the example of application of the estimation true value obtained by a value estimation means. In FIG. 12, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図12に示すように、本実施の形態例4の検出器の校正支援装置40は入力手段11と、第1の格納手段としての第1のデータベース12と、第2の格納手段としての第2のデータベース13と、統計量評価手段14と、予測手段45と、真値推定手段46と、出力手段47とを有している。即ち、本校正支援装置40は上記実施の形態例1の校正支援装置10(図1参照)において、更に予測手段45と真値推定手段46とを追加したことを特徴としている。更に言えば、本校正支援装置40は上記実施の形態例3の校正支援装置30(図9参照)において、更に予測手段45を追加したことを特徴としている。本校正支援装置40もパーソナルコンピュータなどのコンピュータによって構成されるものであり、原子力発電プラント内に設置され(オンライン)、原子力発電プラントに設けられた検出器の校正を支援するために利用される。   As shown in FIG. 12, the detector calibration support apparatus 40 according to the fourth embodiment includes an input means 11, a first database 12 as a first storage means, and a second database as a second storage means. Database 13, statistic evaluation means 14, prediction means 45, true value estimation means 46, and output means 47. That is, the calibration support apparatus 40 is characterized in that a prediction means 45 and a true value estimation means 46 are further added to the calibration support apparatus 10 (see FIG. 1) of the first embodiment. Furthermore, the calibration support apparatus 40 is characterized in that a prediction means 45 is further added to the calibration support apparatus 30 (see FIG. 9) of the third embodiment. The calibration support device 40 is also configured by a computer such as a personal computer, and is installed in the nuclear power plant (online) and is used to support calibration of the detector provided in the nuclear power plant.

入力手段11は上記実施の形態例1と同様に図示しないキーボードなどの入力機器などに接続されるインターフェースであり、原子力発電プラント1で統計量評価の対象となる複数の検出器の原子力発電プラント1における第1の定期検査後の通常運転時の実測値と、前記複数の検出器の原子力発電プラント1における前記第1の定期検査の次の定期検査である第2の定期検査前の通常運転時の実測値と、前記複数の検出器の前記第1の定期検査時におけるドリフト調整後の検査結果(ドリフト量)と、前記複数の検出器の前記第2の定期検査時におけるドリフト調整前の検査結果(ドリフト量)とをそれぞれ入力する。そして更に本実施の形態例4においては、入力手段11は原子力発電プラント1に設けられた多数の検出器にも接続されており、これらの各検出器から出力される検出信号も入力する。入力手段11は、各検出器から入力した検出信号を実測値として真値推定手段46と第1のデータベース12とに送出する。第1のデータベース12では、各検出器から入力した検出信号(実測値)も統計量評価用のデータとして格納する。   The input means 11 is an interface connected to an input device such as a keyboard (not shown) as in the first embodiment. The nuclear power plant 1 is a plurality of detectors that are subject to statistical evaluation in the nuclear power plant 1. Measured values during normal operation after the first periodic inspection in, and during normal operation before the second periodic inspection, which is the periodic inspection next to the first periodic inspection in the nuclear power plant 1 of the plurality of detectors , Actual inspection value of the plurality of detectors, and inspection result after drift adjustment (drift amount) at the time of the first periodic inspection, and inspection before drift adjustment at the time of the second periodic inspection of the plurality of detectors Enter the result (drift amount). Further, in the fourth embodiment, the input means 11 is also connected to a number of detectors provided in the nuclear power plant 1, and the detection signals output from these detectors are also input. The input means 11 sends the detection signal input from each detector to the true value estimation means 46 and the first database 12 as an actual measurement value. In the first database 12, detection signals (actual measurement values) input from the detectors are also stored as statistics evaluation data.

真値推定手段46では、真値を推定するための真値推定モデルを用い、入力手段11で入力した前記検出信号の実測値に基づいて真値を推定し、且つ、この推定真値の不確かさを統計量評価手段14で求めた通常運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σ2)に基づいて算出する。なお、本真値推定手段46については上記実施の形態例3の校正支援装置30に備えた真値推定手段36(図9参照)と同様のものである。上記実施の形態例3でも述べたように真値推定手段46で得られた推定真値は不確かさを持っている。検出器Ajの推定真値Ykjの不確かさσkjは、検出器Aiの指示値Xiにおいて発生したドリフトが真値推定モデルkを経て推定真値Ykjに影響する感度をfkijとすると、次式(21)で計算できる。

Figure 2006250541

但し、右辺のσi(即ちσ1,σ2・・・σn)は通常運転時の発生ドリフト量の統計量(標準偏差σ2)であり,時間の1/2乗に比例して大きくなる。即ち、通常運転時の発生ドリフト量の統計量算定の基準とした期間をTとし、真値推定モデル構築に使用したデータ日時と評価時点の日時の差をTnowとすると、次式(22)で計算する。通常運転時の発生ドリフト量の統計量算定の基準とした期間Tとは、例えば図3に例示するように13箇月の通常運転期間の初期(B時点)と終期(C時点)の実測値に基づいて通常運転時の発生ドリフト量の統計量を算出した場合には13箇月とする。また、この例の場合、真値推定モデル構築に使用したデータ日時とは、13箇月の通常運転期間の例えば初期(B時点)の実測値に基づいて真値推定モデルを構築したときには当該初期の日時(B時点の日時)となる。また、この例の場合、評価時点の日時とは真値推定手段46で真値を推定して当該推定真値の不確かさを評価する日時(13箇月の通常運転期間の何れかの時点)であり、真値推定モデル構築に使用したデータ日時と評価時点の日時の差Tnowとは、真値推定手段46で真値を推定して当該推定真値の不確かさを評価した日時が例えば13箇月の通常運転期間の初期(B時点)から5箇月経過した時点であるとすると、5箇月である。
Figure 2006250541
The true value estimating means 46 uses a true value estimation model for estimating the true value, estimates the true value based on the actual value of the detection signal input by the input means 11, and is uncertain about the estimated true value. This is calculated based on the statistic (standard deviation σ 2 ) of the drift amounts of the plurality of detectors generated during the normal operation obtained by the statistic evaluation means 14. The true value estimating means 46 is the same as the true value estimating means 36 (see FIG. 9) provided in the calibration support apparatus 30 of the third embodiment. As described in the third embodiment, the estimated true value obtained by the true value estimating means 46 has uncertainty. The uncertainties σ k , j of the estimated true values Y k , j of the detector A j are the drifts generated in the indicated values X i of the detectors A i to the estimated true values Y k , j via the true value estimation model k. If the influencing sensitivities are f k and ij , they can be calculated by the following equation (21).
Figure 2006250541

However, σ i (that is, σ 1 , σ 2 ... Σ n ) on the right side is a statistical amount (standard deviation σ 2 ) of the generated drift amount during normal operation, and increases in proportion to the 1/2 power of time. Become. That is, assuming that the period used as the standard for calculating the statistic of the drift amount during normal operation is T, and the difference between the data date and time used to construct the true value estimation model and the date and time at the time of evaluation is T now , the following equation (22) Calculate with The period T used as a standard for calculating the statistic of the amount of drift generated during normal operation is, for example, measured values at the beginning (time B) and the end (time C) of the normal operation period of 13 months as illustrated in FIG. If the statistic of the amount of drift generated during normal operation is calculated based on this, it will be 13 months. In the case of this example, the data date and time used for constructing the true value estimation model is the initial value when the true value estimation model is constructed based on, for example, the actual measurement value of the normal operation period of 13 months, for example, the initial (time B). Date and time (date and time at time B). In the case of this example, the date and time at the time of evaluation is the date and time at which the true value is estimated by the true value estimating means 46 and the uncertainty of the estimated true value is evaluated (at any point in the normal operation period of 13 months). Yes, the difference T now between the data date and time used to construct the true value estimation model and the date and time at the time of evaluation is, for example, 13 when the true value is estimated by the true value estimating means 46 and the uncertainty of the estimated true value is evaluated. If five months have passed since the beginning of the normal operation period of the month (time B), it is 5 months.
Figure 2006250541

そして、予測手段45では、統計量評価手段14で求めた通常運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σ2)と、真値推定手段46で求めた推定真値の不確かさとに基づいて、通常運転の期間を延長する場合(例えば通常運転期間を13箇月から18箇月に延長する場合)の通常運転時に生じる前記複数の検出器のドリフト量の増加を予測する。なお、予測手段45は予測処理プログラムを記憶するメモリやこの予測処理プログラムを実行するCPUなどで構成される。ここで予測手段45の予測処理について詳述する。評価すべき将来日時をTfutureとすると、この日時Tfutureにおける不確かさは、現在の推定真値の不確かさに通常運転中のドリフト量の将来分を考慮した次式(23)で求めることができる。即ち、図8のように、どのようにドリフト量(±3σの値)が増えるか、いつごろドリフト量(±3σの増加量)が許容範囲を逸脱するかを予測することができる。なお、上記の例の場合において、通常運転期間を13箇月から例えば18箇月に延長しようとする場合には、Tfutureは18箇月となる。

Figure 2006250541
Then, in the predicting means 45, the statistics of the drift amounts (standard deviation σ 2 ) of the plurality of detectors generated during the normal operation obtained by the statistic evaluating means 14 and the estimated true value obtained by the true value estimating means 46 are calculated. Based on the uncertainty, an increase in the drift amount of the plurality of detectors occurring during the normal operation when the normal operation period is extended (for example, when the normal operation period is extended from 13 months to 18 months) is predicted. Note that the prediction unit 45 includes a memory that stores a prediction processing program, a CPU that executes the prediction processing program, and the like. Here, the prediction process of the prediction means 45 will be described in detail. Assuming that the future date and time to be evaluated is T future, the uncertainty at this date and time T future can be obtained by the following equation (23) in consideration of the current estimated true value uncertainty and the future drift amount during normal operation. it can. That is, as shown in FIG. 8, it is possible to predict how the drift amount (± 3σ value) increases and when the drift amount (± 3σ increase amount) deviates from the allowable range. In the case of the above example, if the normal operation period is to be extended from 13 months to, for example, 18 months, T future is 18 months.
Figure 2006250541

出力手段47では、統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)と、起動・停止運転時の発生ドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)とを、例えば図示しないディスプレイ(モニタ)やプリンタなどに出力し、更には真値推定手段46で求めた推定真値や推定真値の不確かさ、及び、予測手段45における通常運転時の発生ドリフト量の増加の予測結果(どのようにドリフト量(±3σの値)が増えるか、いつごろドリフト量(±3σの増加量)が許容範囲を逸脱するか)も、ディスプレイ(モニタ)やプリンタなどに出力する。 In the output means 47, the statistics (standard deviation σ 2 , variance σ 2 2 , average μ 2 ) of the generated drift amount during normal operation obtained by the statistic evaluation means 14 and the generated drift amount during start / stop operation are calculated. The statistics (standard deviation σ e , variance σ e 2 , average μ e ) are output to, for example, a display (monitor) or a printer (not shown), and further the estimated true value and the estimated true value obtained by the true value estimating means 46 Uncertainty of value and prediction result of increase in generated drift amount during normal operation in predicting means 45 (how drift amount (± 3σ value) increases, when drift amount (± 3σ increase amount)) Is out of the permissible range) is also output to a display (monitor) or a printer.

図13に基づいて校正支援装置40の処理フローを説明すると、本実施の形態例4においては、まず、入力手段11が原子力発電プラント1に設けられた検出器から検出信号(実測値)を取り込む(ステップS41)。また、入力手段11が統計量評価手段14に対して評価対象を指定する。その結果、統計量評価手段14では入力手段11からの評価対象の指定に基づいて、第1のデータベース12から抽出した統計量評価対象の複数の検出器の第1の定期検査後の通常運転時の実測値と、前記複数の検出器の第2の定期検査前の通常運転時の実測値とを統計的に処理して、通常運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)を求め、且つ、第1のデータベース12から抽出した統計量評価対象の前記複数の検出器の第1の定期検査後の通常運転時の実測値及び前記複数の検出器の第2の定期検査前の通常運転時の実測値と、第2のデータベース13から抽出した前記複数の検出器の第1の定期検査時におけるドリフト調整後の検査結果及び前記複数の検出器の第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)を求める(ステップS42,43,44)。 The processing flow of the calibration support apparatus 40 will be described with reference to FIG. 13. In the fourth embodiment, first, the input unit 11 captures a detection signal (actual value) from a detector provided in the nuclear power plant 1. (Step S41). Further, the input means 11 designates an evaluation target for the statistic evaluation means 14. As a result, in the statistic evaluation means 14, based on the designation of the evaluation target from the input means 11, during the normal operation after the first periodic inspection of the plurality of detectors that are the statistic evaluation targets extracted from the first database 12. And the statistical values of the drift amounts of the plurality of detectors generated during the normal operation (standard) by statistically processing the actual measurement values of the plurality of detectors and the actual measurement values during the normal operation before the second periodic inspection of the plurality of detectors. (Deviation σ 2 , variance σ 2 2 , average μ 2 ), and the measured values during normal operation after the first periodic inspection of the plurality of detectors to be statistically evaluated extracted from the first database 12 And the actual measurement values during normal operation before the second periodic inspection of the plurality of detectors, the inspection results after the drift adjustment at the first periodic inspection of the plurality of detectors extracted from the second database 13, and During a second periodic inspection of the plurality of detectors It delivers the inspection result of the previous drift adjustment is treated statistically to determine the drift amount of statistics of the plurality of detectors that occurs when starting and stopping operation (standard deviation sigma e, variance sigma e 2, mean mu e) (Steps S42, 43, 44).

その後、真値推定手段46が、真値を推定するための真値推定モデルを用い、入力手段11で入力した前記検出信号の実測値に基づいて真値を推定し、且つ、この推定真値の不確かさを統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2)に基づいて算出する(ステップS45)。続いて、予測手段45が、統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2)と、真値推定手段46で求めた推定真値の不確かさとに基づいて、通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測する。そして、出力手段47が、統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)と、起動・停止運転時の発生ドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)とを出力し、更に真値推定手段46で求めた推定真値や推定真値の不確かさ、及び、予測手段45における通常運転時の発生ドリフト量の増加の予測結果も出力する。 Thereafter, the true value estimation means 46 estimates the true value based on the actual measurement value of the detection signal input by the input means 11 using the true value estimation model for estimating the true value, and this estimated true value Is calculated based on the statistic (standard deviation σ 2 ) of the generated drift amount during normal operation obtained by the statistic evaluation means 14 (step S45). Subsequently, the predicting means 45 is based on the statistical amount (standard deviation σ 2 ) of the generated drift amount during normal operation obtained by the statistic evaluating means 14 and the uncertainty of the estimated true value obtained by the true value estimating means 46. Thus, an increase in the drift amount of the plurality of detectors that occurs during the normal operation when the normal operation period is extended is predicted. Then, the output means 47 calculates the statistics (standard deviation σ 2 , variance σ 2 2 , average μ 2 ) of the generated drift amount during normal operation obtained by the statistic evaluation means 14 and the generated drift during start / stop operation. Statistic of quantity (standard deviation σ e , variance σ e 2 , average μ e ), and further, the estimated true value obtained by the true value estimating means 46 and the uncertainty of the estimated true value, and the predicting means 45 The predicted result of the increase in the amount of drift generated during normal operation is also output.

なお、本実施の形態例4の校正支援装置40や上記実施の形態例3の校正支援装置30の出力手段47,37から出力される推定真値は、監視や制御に用いることもできる。図15には推定真値を制御に用いる場合の例を示している。同図に示す制御装置90は校正処理機能91と各種制御機能92とを有している。そして、この制御装置90は検出器81の検出信号(実測値)に基づいて所定の制御(例えば圧力制御、流量制御、水位制御など)を行うものであるが、このとき校正処理機能91では校正支援装置40又は30から入力した推定真値に基づいて検出器81の検出信号(実測値)を校正し、各種制御機能92ではこの校正された検出信号(実測値)に基づいて所定の制御(例えば圧力制御、流量制御、水位制御など)を行うようになっている。   The estimated true values output from the output means 47 and 37 of the calibration support apparatus 40 of the fourth embodiment and the calibration support apparatus 30 of the third embodiment can also be used for monitoring and control. FIG. 15 shows an example in which the estimated true value is used for control. The control device 90 shown in the figure has a calibration processing function 91 and various control functions 92. The control device 90 performs predetermined control (for example, pressure control, flow rate control, water level control, etc.) based on the detection signal (actual value) of the detector 81. At this time, the calibration processing function 91 performs calibration. The detection signal (actual value) of the detector 81 is calibrated based on the estimated true value input from the support device 40 or 30, and the various control functions 92 perform predetermined control (based on the calibrated detection signal (actual value). For example, pressure control, flow rate control, water level control, etc.) are performed.

以上のように、本実施の形態例4の検出器の校正支援装置又はその方法によれば、予測手段45と真値推定手段46とを有しており、予測手段45では通常運転時の発生ドリフト量の統計量と、推定真値の不確かさとに基づいて、通常運転の期間を延長する場合の当該通常運転時に生じる複数の検出器のドリフト量の増加を予測することを特徴とするため、真値推定(真値推定手段)とドリフト量の予測(予測手段)とを組み合わせたことにより、ドリフト量の推定区間を更に厳密に(正確に)評価可能であるため、校正不要(ドリフト調整不要)と評価できる検出器の数を更に増やしたり、運転期間延長の可否(どれくらい延長できるか)を更に適正に評価することができる。   As described above, according to the detector calibration support apparatus or method of the fourth embodiment, the prediction means 45 and the true value estimation means 46 are provided, and the prediction means 45 generates during normal operation. Based on the statistics of the drift amount and the uncertainty of the estimated true value, it is characterized by predicting an increase in the drift amount of a plurality of detectors that occurs during the normal operation when extending the normal operation period, By combining true value estimation (true value estimation means) and drift amount prediction (prediction means), it is possible to evaluate the drift amount estimation section more strictly (accurately), so calibration is not required (drift adjustment is not required) ) And the number of detectors that can be evaluated can be further increased, and whether or not the operation period can be extended (how much can be extended) can be evaluated more appropriately.

また、図14に例示するように推定真値を、原子力発電プラント1における監視又は制御に利用することにより、原子力発電プラント1の信頼性を更に向上させることができる。   Further, as illustrated in FIG. 14, the reliability of the nuclear power plant 1 can be further improved by using the estimated true value for monitoring or control in the nuclear power plant 1.

<実施の形態例5>
図15は本発明の実施の形態例5に係る検出器の校正支援装置の構成を示すブロック線図である。同図に示すように、本実施の形態例5は複数の原子力発電プラントA,B・・・のそれぞれに設けられた多数の検出器55の検出信号を一括して処理するものである。そこで、本実施の形態例5に係る検出器の校正支援装置50は、各プラントA,B・・・側に設けた通信手段52と信号の授受を行うための通信手段53を有している。なお、本校正支援装置50のその他の構成については、上記実施の形態例4の校正支援装置40と同様であるため、ここで詳細な説明は省略する。また、この場合の校正支援装置としては、上記実施の形態例3の校正支援装置30を適用することもできる。
<Embodiment 5>
FIG. 15 is a block diagram showing a configuration of a detector calibration support apparatus according to Embodiment 5 of the present invention. As shown in the figure, Embodiment 5 of the present embodiment processes the detection signals of a large number of detectors 55 provided in each of a plurality of nuclear power plants A, B. Therefore, the detector calibration support apparatus 50 according to the fifth embodiment includes the communication means 52 provided on each plant A, B... Side and the communication means 53 for exchanging signals. . Since the other configuration of the calibration support apparatus 50 is the same as that of the calibration support apparatus 40 of the fourth embodiment, detailed description thereof is omitted here. Further, as the calibration support apparatus in this case, the calibration support apparatus 30 of the third embodiment can be applied.

各プラントA,B・・・には、各検出器55の検出信号(実測値)を入力する入力手段51と、この検出信号を遠隔地に設置されている本校正支援装置50の通信手段53に送出する通信手段52と、出力手段54とを有している。各プラントA,B・・・側の通信手段52と本校正支援装置50側の通信手段53は双方向通信が可能な構成となっている。本校正支援装置50の統計量評価手段14で求めた通常運転時の発生ドリフト量の統計量(標準偏差σ2,分散σ2 2,平均μ2)と、起動・停止運転時の発生ドリフト量の統計量(標準偏差σe,分散σe 2,平均μe)と、真値推定手段46で求めた推定真値や推定真値の不確かさと、予測手段45における通常運転時の発生ドリフト量の増加の予測結果は、本校正支援装置50側の通信手段53から各プラントA,B・・・側の通信手段52へも送信されて、各プラントA,B・・・側の出力手段54により例えば図示しない各プラントA,B・・・側のディスプレイ(モニタ)やプリンタなどにも出力されるようになっている。 In each plant A, B,..., An input means 51 for inputting a detection signal (actual value) of each detector 55 and a communication means 53 of the present calibration support apparatus 50 installed at a remote place. Communication means 52 and output means 54. The communication means 52 on each plant A, B... Side and the communication means 53 on the calibration support apparatus 50 side are configured to be capable of bidirectional communication. The statistics (standard deviation σ 2 , variance σ 2 2 , average μ 2 ) of the generated drift amount during normal operation and the generated drift amount during start / stop operation obtained by the statistic evaluation means 14 of the calibration support device 50 Statistic (standard deviation σ e , variance σ e 2 , average μ e ), estimated true value obtained by the true value estimating means 46 and uncertainty of the estimated true value, and the amount of drift generated during normal operation in the predicting means 45 Is predicted from the communication means 53 on the calibration support device 50 side to the communication means 52 on each plant A, B... Side, and the output means 54 on each plant A, B. For example, the data is output to a display (monitor) or a printer on the side of each plant A, B,.

以上のように、本実施の形態例5の検出器の校正支援装置又はその方法によれば、複数の原子力発電プラントA,B・・・のそれぞれに設けられた検出器55の検出信号をそれぞれ入力する複数の原子力発電プラントA,B・・・側の入力手段51から、通信手段52,53を介して検出信号を入力するため、遠隔地の監視所等で検出器55の健全性を高信頼度で評価できる。また、遠隔地にて定期検査計画策定が可能となる。更に、一箇所で複数の原子力発電プラントトA,B・・・に対応可能となるという効果も得られ、設備費や人件費において効率的な校正支援が可能となる。   As described above, according to the detector calibration support apparatus or the method thereof in the fifth embodiment, the detection signals of the detectors 55 provided in each of the plurality of nuclear power plants A, B,. Since detection signals are input via the communication means 52, 53 from the input means 51 on the input side of the plurality of nuclear power plants A, B,..., The soundness of the detector 55 is increased at a remote monitoring station or the like. Can be evaluated by reliability. In addition, a regular inspection plan can be formulated at a remote location. Further, an effect that it is possible to deal with a plurality of nuclear power plants A, B,... At one place is obtained, and efficient calibration support can be provided in equipment costs and labor costs.

ここで、図16に基づき、本実施の形態例1〜5の校正支援装置10〜50が適用される原子力発電プラントの概略構成を説明する。[表2]には図16に示されている検出器の測定点名と点数を示している。

Figure 2006250541
Here, based on FIG. 16, a schematic configuration of a nuclear power plant to which the calibration support apparatuses 10 to 50 of the first to fifth embodiments are applied will be described. [Table 2] shows the measurement point names and points of the detector shown in FIG.
Figure 2006250541

図16に示すように、原子炉101内で発生した熱は一次冷却材(ほう酸水)に吸収される。この一次冷却材は、原子炉101、蒸気発生器102および一次冷却材ポンプ103により構成される原子炉冷却系統104において、一次冷却材ポンプ103により強制的に循環させられている。また、原子炉冷却系統104の配管には、圧力を調整するための加圧器105が接続されている。一方、蒸気発生器102内に供給された二次冷却材(水)は、一次冷却材からの入熱により蒸発し、蒸気となって図示しない蒸気タービンへ送られる。その結果、蒸気によって蒸気タービンが回転し、この蒸気タービンによって発電機が回転駆動されて発電する。   As shown in FIG. 16, the heat generated in the nuclear reactor 101 is absorbed by the primary coolant (borate water). The primary coolant is forcibly circulated by the primary coolant pump 103 in the reactor cooling system 104 including the reactor 101, the steam generator 102, and the primary coolant pump 103. A pressurizer 105 for adjusting the pressure is connected to the piping of the reactor cooling system 104. On the other hand, the secondary coolant (water) supplied into the steam generator 102 evaporates due to heat input from the primary coolant and is sent to a steam turbine (not shown) as steam. As a result, the steam turbine is rotated by the steam, and the generator is rotated by the steam turbine to generate electric power.

ここで、T601及びT602はそれぞれ一次冷却材の高温側温度および低温側温度を検出する検出器、F601及びF602は何れも蒸気発生器給水流量を検出する検出器、F603及びF604は何れも蒸気発生器蒸気流量を検出する検出器、P601〜P603は何れも蒸気発生器圧力を検出する検出器、U600は原子炉出力を検出する検出器、L601〜L603は何れも加圧器水位を検出する検出器である。原子力発電プラントにはこの他にも多数の検出器が設けられている。そして、これらの検出器のうち、類似の形式で且つ類似の環境条件で使用される複数の検出器ごとにグループ分けをして、各グループの検出器がそれぞれ統計量評価の対象となる。例えば、3重化された圧力検出器P601〜P603などは類似の形式で且つ類似の環境条件で使用される(同じプロセス値を検出する)ものであるため、同じグループに属する検出器として統計量評価の対象となる。   Here, T601 and T602 are detectors for detecting the high temperature side temperature and the low temperature side temperature of the primary coolant, respectively, F601 and F602 are detectors for detecting the steam generator feed flow rate, and F603 and F604 are all for steam generation. P601 to P603 are detectors that detect the steam generator pressure, U600 is a detector that detects the reactor output, and L601 to L603 are detectors that detect the pressurizer water level. It is. Numerous other detectors are provided in the nuclear power plant. Of these detectors, a plurality of detectors used in a similar format and under similar environmental conditions are grouped, and the detectors of each group are subjected to statistical evaluation. For example, since triple pressure detectors P601 to P603 are used in a similar format and under similar environmental conditions (detect the same process value), statistics as detectors belonging to the same group Subject to evaluation.

なお、現状、原子力発電プラントはベースロード用の発電設備として運用されており、通常運転時には電気負荷(出力)がほとんど変化せずにほぼ一定であるため、本発明は、特に原子力発電プラントに適用して有用なものであるが、必ずしもこれに限定するものでなく、停止時の定期検査と運転(起動運転と一定出力(ほぼ一定出力の場合も含む)の通常運転と停止運転とからなる運転パターン)とを繰り返すような各種設備(例えばガスタービン発電設備など)適用して有用なものである。   At present, the nuclear power plant is operated as a power generation facility for base load, and the electric load (output) remains almost constant during normal operation, so the present invention is particularly applicable to the nuclear power plant. However, it is not necessarily limited to this, and it consists of regular inspection and operation at the time of stopping (operation that consists of normal operation and starting operation of starting operation and constant output (including almost constant output)) The present invention is useful when applied to various facilities (such as gas turbine power generation facilities) that repeat the pattern.

本発明は検出器の校正支援装置及びその方法に関するものであり、原子力発電プラントなどの多数の検出器を有する設備において検出器の校正を支援する場合に適用して有用なものである。   The present invention relates to a detector calibration support apparatus and method, and is useful when applied to support calibration of a detector in a facility having a large number of detectors such as a nuclear power plant.

本発明の実施の形態例1に係る検出器の校正支援装置の構成を示すブロック線図である。It is a block diagram which shows the structure of the calibration assistance apparatus of the detector which concerns on Example 1 of this invention. 前記校正支援装置の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow of the said calibration assistance apparatus. 原子力発電プラントの運転サイクルなどを示す説明図である。It is explanatory drawing which shows the operation cycle etc. of a nuclear power plant. 原子力発電プラントの通常運転時における検出器の実測値例を示すグラフである。It is a graph which shows the example of an actual measurement value of a detector at the time of normal operation of a nuclear power plant. 原子力発電プラントにおける定期検査時の検査結果例を示すグラフである。It is a graph which shows the example of an inspection result at the time of periodic inspection in a nuclear power plant. 本発明の実施の形態例2に係る検出器の校正支援装置の構成を示すブロック線図である。It is a block diagram which shows the structure of the calibration assistance apparatus of the detector which concerns on Example 2 of this invention. 前記校正支援装置の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow of the said calibration assistance apparatus. 前記校正支援装置の予測手段におけるドリフト量予測の説明図である。It is explanatory drawing of the drift amount prediction in the prediction means of the said calibration assistance apparatus. 本発明の実施の形態例3に係る検出器の校正支援装置の構成を示すブロック線図である。It is a block diagram which shows the structure of the calibration assistance apparatus of the detector which concerns on Example 3 of Embodiment of this invention. 前記校正支援装置の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow of the said calibration assistance apparatus. 前記校正支援装置の真値推定手段で用いる真値推定モデルの一例を示す説明図である。It is explanatory drawing which shows an example of the true value estimation model used with the true value estimation means of the said calibration assistance apparatus. 本発明の実施の形態例4に係る検出器の校正支援装置の構成を示すブロック線図である。It is a block diagram which shows the structure of the calibration assistance apparatus of the detector which concerns on Example 4 of this invention. 前記校正支援装置の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow of the said calibration assistance apparatus. 前記校正支援装置の真値推定手段によって得られる推定真値の適用例を示すブロック線図である。It is a block diagram which shows the application example of the estimated true value obtained by the true value estimation means of the said calibration assistance apparatus. 本発明の実施の形態例5に係る検出器の校正支援装置の構成を示すブロック線図である。It is a block diagram which shows the structure of the calibration assistance apparatus of the detector which concerns on Example 5 of this invention. 本発明の実施の形態例の校正支援装置が適用される原子力発電プラントの概略構成図である。1 is a schematic configuration diagram of a nuclear power plant to which a calibration support apparatus according to an embodiment of the present invention is applied. 従来のドリフト量予測の概念図である。It is a conceptual diagram of the conventional drift amount prediction.

符号の説明Explanation of symbols

1,A,B 原子力発電プラント
10 検出器の校正支援装置
11 入力手段
12 第1のデータベース
13 第2のデータベース
14 統計量評価手段
17 出力手段
20 検出器の校正支援装置
25 予測手段
27 出力手段
30 検出器の校正支援装置
36 真値推定手段
37 出力手段
40 検出器の校正支援装置
45 予測手段
46 真値推定手段
47 出力手段
50 検出器の校正支援装置
51 入力手段
52,53 通信手段
54 出力手段
55 検出器
81 検出器
90 制御装置
91 校正処理機能
92 各種制御演算
101 原子炉
102 蒸気発生器
103 一次冷却材ポンプ
104 原子炉冷却系統
105 加圧器
DESCRIPTION OF SYMBOLS 1, A, B Nuclear power plant 10 Detector calibration assistance apparatus 11 Input means 12 1st database 13 2nd database 14 Statistics evaluation means 17 Output means 20 Detector calibration assistance apparatus 25 Predictive means 27 Output means 30 Detector calibration support apparatus 36 True value estimation means 37 Output means 40 Detector calibration support apparatus 45 Prediction means 46 True value estimation means 47 Output means 50 Detector calibration support apparatus 51 Input means 52, 53 Communication means 54 Output means 55 Detector 81 Detector 90 Control device 91 Calibration processing function 92 Various control operations 101 Reactor 102 Steam generator 103 Primary coolant pump 104 Reactor cooling system 105 Pressurizer

Claims (12)

所定の設備に設けられた統計量評価の対象となる複数の検出器の前記設備における第1の定期検査後の通常運転時の実測値と、前記複数の検出器の前記設備における前記第1の定期検査の次の定期検査である第2の定期検査前の通常運転時の実測値と、前記複数の検出器の前記第1の定期検査時におけるドリフト調整後の検査結果と、前記複数の検出器の前記第2の定期検査時におけるドリフト調整前の検査結果とをそれぞれ入力する入力手段と、
前記入力手段によって入力された前記第1の定期検査後の前記通常運転時の実測値及び前記第2の定期検査前の前記通常運転時の実測値を格納する第1の格納手段と、
前記入力手段によって入力された前記第1の定期検査時におけるドリフト調整後の検査結果及び前記第2の定期検査時におけるドリフト調整前の検査結果を格納する第2の格納手段と、
前記第1の格納手段に格納されている前記第1の定期検査後の前記通常運転時の実測値と前記第2の定期検査前の前記通常運転時の実測値とを統計的に処理して、前記通常運転時に生じる前記複数の検出器のドリフト量の統計量を求め、且つ、前記第1の格納手段に格納されている前記第1の定期検査後の前記通常運転時の実測値及び前記第2の定期検査前の前記通常運転時の実測値と、前記第2の格納手段に格納されている前記第1の定期検査時におけるドリフト調整後の検査結果及び前記第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、前記設備の起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量を求める統計量評価手段と、
前記統計量評価手段で求めた前記通常運転時の前記ドリフト量の統計量と、前記起動・停止運転時の前記ドリフト量の統計量とを出力する出力手段とを有することを特徴とする検出器の校正支援装置。
Measured values at the time of normal operation after the first periodic inspection in the equipment of the plurality of detectors to be subjected to statistical evaluation provided in the predetermined equipment, and the first in the equipment of the plurality of detectors Measured values during normal operation before the second periodic inspection, which is a periodic inspection next to the periodic inspection, inspection results after drift adjustment at the first periodic inspection of the plurality of detectors, and the plurality of detections Input means for inputting each of the inspection results before the drift adjustment at the time of the second periodic inspection of the container;
First storage means for storing the actual measurement value during the normal operation after the first periodic inspection and the actual measurement value during the normal operation before the second periodic inspection, which are input by the input means;
Second storage means for storing the inspection result after drift adjustment at the time of the first periodic inspection and the inspection result before drift adjustment at the time of the second periodic inspection, which are input by the input means;
Statistically processing the actual measurement value during the normal operation after the first periodic inspection and the actual measurement value during the normal operation before the second periodic inspection stored in the first storage means A statistical amount of the drift amount of the plurality of detectors generated during the normal operation, and the actual measurement value during the normal operation after the first periodic inspection stored in the first storage means and the The actual measurement value during the normal operation before the second periodic inspection, the inspection result after the drift adjustment in the first periodic inspection stored in the second storage means, and the second periodic inspection Statistically processing the inspection results before drift adjustment, and a statistic evaluation means for obtaining a statistic of the drift amount of the plurality of detectors generated during start / stop operation of the equipment,
A detector comprising: an output means for outputting the statistics of the drift amount during the normal operation and the statistics of the drift amount during the start / stop operation obtained by the statistics evaluation means. Calibration support device.
請求項1に記載する検出器の校正支援装置において、
前記統計量評価手段で求めた前記通常運転時の前記ドリフト量の統計量に基づいて、前記通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測する予測手段を追加し、
前記出力手段は前記予測手段の予測結果も出力する構成としたことを特徴とする検出器の校正支援装置。
In the detector calibration support apparatus according to claim 1,
Predicting an increase in the drift amount of the plurality of detectors that occurs during the normal operation when the normal operation period is extended based on the statistics of the drift amount during the normal operation obtained by the statistic evaluation unit Add a prediction method to
A detector calibration support apparatus, wherein the output means outputs the prediction result of the prediction means.
請求項1に記載する検出器の校正支援装置において、
前記入力手段は前記複数の検出器の検出信号も入力する構成とし、
真値を推定するための真値推定モデルを用い、前記入力手段で入力した前記検出信号の実測値に基づいて真値を推定し、且つ、この推定真値の不確かさを前記統計量評価手段で求めた前記通常運転時の前記ドリフト量の統計量に基づいて算出する真値推定手段を追加し、
前記出力手段は前記真値推定手段で求めた前記推定真値や前記推定真値の不確かさも出力する構成としたことを特徴とする検出器の校正支援装置。
In the detector calibration support apparatus according to claim 1,
The input means is configured to also input detection signals of the plurality of detectors,
A true value estimation model for estimating a true value is used, a true value is estimated based on an actual measurement value of the detection signal input by the input means, and an uncertainty of the estimated true value is estimated by the statistic evaluation means A true value estimating means for calculating based on the statistic of the drift amount during the normal operation obtained in
A detector calibration support apparatus, wherein the output means outputs the estimated true value obtained by the true value estimating means and the uncertainty of the estimated true value.
請求項3に記載する検出器の校正支援装置において、
前記統計量評価手段で求めた前記通常運転時の前記ドリフト量の統計量と、前記真値推定手段で求めた前記推定真値の不確かさとに基づいて、前記通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測する予測手段を追加し、
前記出力手段は前記予測手段の予測結果も出力する構成としたことを特徴とする検出器の校正支援装置。
In the detector calibration support apparatus according to claim 3,
In the case of extending the period of the normal operation based on the statistical amount of the drift amount during the normal operation obtained by the statistic evaluation unit and the uncertainty of the estimated true value obtained by the true value estimation unit Adding a prediction means for predicting an increase in drift amount of the plurality of detectors that occurs during the normal operation;
A detector calibration support apparatus, wherein the output means outputs the prediction result of the prediction means.
複数の設備のそれぞれに設けられた検出器の検出信号をそれぞれ入力する前記複数の設備側の入力手段と、請求項3又は4に記載する校正支援装置の入力手段とを通信手段を介して接続し、
請求項3又は4に記載する校正支援装置の入力手段は、前記検出器の検出信号を、前記複数の設備側の入力手段から前記通信手段を介して入力する構成としたことを特徴とする検出器の校正支援装置。
A plurality of equipment-side input means that respectively input detection signals of detectors provided in each of the plurality of equipment and an input means of the calibration support apparatus according to claim 3 or 4 are connected via communication means. And
The detection means characterized in that the input means of the calibration support apparatus according to claim 3 or 4 is configured to input detection signals of the detectors from the plurality of equipment side input means via the communication means. A calibration support device.
請求項3,4又は5に記載する検出器の校正支援装置において、
前記真値推定手段で求めた前記推定真値を、前記設備における監視又は制御に利用するようにしたことを特徴とする検出器の校正支援装置。
In the detector calibration support apparatus according to claim 3, 4 or 5,
A detector calibration support apparatus, wherein the estimated true value obtained by the true value estimating means is used for monitoring or control in the facility.
所定の設備に設けられた統計量評価の対象となる複数の検出器の前記設備における第1の定期検査後の通常運転時の実測値と、前記複数の検出器の前記設備における前記第1の定期検査の次の定期検査である第2の定期検査前の通常運転時の実測値とを統計的に処理して、前記通常運転時に生じる前記複数の検出器のドリフト量の統計量を求め、
且つ、前記第1の定期検査後の前記通常運転時の実測値及び前記第2の定期検査前の前記通常運転時の実測値と、前記複数の検出器の前記第1の定期検査時におけるドリフト調整後の検査結果及び前記複数の検出器の前記第2の定期検査時におけるドリフト調整前の検査結果とを統計的に処理して、前記設備の起動・停止運転時に生じる前記複数の検出器のドリフト量の統計量を求めることを特徴とする検出器の校正支援方法。
Measured values at the time of normal operation after the first periodic inspection in the equipment of the plurality of detectors to be subjected to statistical evaluation provided in the predetermined equipment, and the first in the equipment of the plurality of detectors Statistically processing the measured value at the time of normal operation before the second periodic inspection, which is the periodic inspection next to the periodic inspection, to determine the statistic of the drift amount of the plurality of detectors that occurs during the normal operation,
And the actual measurement value during the normal operation after the first periodic inspection, the actual measurement value during the normal operation before the second periodic inspection, and the drift during the first periodic inspection of the plurality of detectors. The inspection results after adjustment and the inspection results before drift adjustment at the time of the second periodic inspection of the plurality of detectors are statistically processed, and the plurality of detectors generated during the start / stop operation of the equipment A detector calibration support method characterized by obtaining a drift statistic.
請求項7に記載する検出器の校正支援方法において、
前記通常運転時の前記ドリフト量の統計量に基づいて、前記通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測することを特徴する検出器の校正支援方法。
The detector calibration support method according to claim 7,
A detector that predicts an increase in drift amount of the plurality of detectors that occurs during the normal operation when the period of the normal operation is extended based on a statistic of the drift amount during the normal operation. Calibration support method.
請求項7に記載する検出器の校正支援方法において、
真値を推定するための真値推定モデルを用い、前記複数の検出器の検出信号の実測値に基づいて真値を推定し、且つ、この推定真値の不確かさを前記通常運転時の前記ドリフト量の統計量に基づいて算出することを特徴とする検出器の校正支援方法。
The detector calibration support method according to claim 7,
A true value estimation model for estimating a true value is used, a true value is estimated based on measured values of detection signals of the plurality of detectors, and an uncertainty of the estimated true value is determined in the normal operation. A detector calibration support method, which is calculated based on a drift statistic.
請求項9に記載する検出器の校正支援方法において、
前記通常運転時の前記ドリフト量の統計量と、前記推定真値の不確かさとに基づいて、前記通常運転の期間を延長する場合の当該通常運転時に生じる前記複数の検出器のドリフト量の増加を予測することを特徴とする検出器の校正支援方法。
The detector calibration support method according to claim 9,
Based on the statistics of the drift amount during the normal operation and the uncertainty of the estimated true value, an increase in the drift amount of the plurality of detectors that occurs during the normal operation when the period of the normal operation is extended. A detector calibration support method characterized by predicting.
複数の設備のそれぞれに設けられた検出器の検出信号をそれぞれ入力する前記複数の設備側の入力手段から、通信手段を介して前記検出信号を入力することにより、請求項9又は10に記載する検出器の校正支援方法を実施することを特徴とする検出器の校正支援方法。   11. The detection device according to claim 9 or 10, wherein the detection signals are input via communication means from the input means on the plurality of equipment sides that respectively input detection signals of detectors provided in each of the plurality of facilities. A calibration support method for a detector, characterized in that a calibration support method for the detector is implemented. 請求項9,10又は11に記載する検出器の校正支援方法において、
前記推定真値を、前記設備における監視又は制御に利用することを特徴とする検出器の校正支援方法。
The detector calibration support method according to claim 9, 10 or 11,
A detector calibration support method, wherein the estimated true value is used for monitoring or control in the facility.
JP2005063406A 2005-03-08 2005-03-08 Detector calibration support apparatus and method Active JP4611061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063406A JP4611061B2 (en) 2005-03-08 2005-03-08 Detector calibration support apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063406A JP4611061B2 (en) 2005-03-08 2005-03-08 Detector calibration support apparatus and method

Publications (2)

Publication Number Publication Date
JP2006250541A true JP2006250541A (en) 2006-09-21
JP4611061B2 JP4611061B2 (en) 2011-01-12

Family

ID=37091227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063406A Active JP4611061B2 (en) 2005-03-08 2005-03-08 Detector calibration support apparatus and method

Country Status (1)

Country Link
JP (1) JP4611061B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216042A (en) * 2007-03-05 2008-09-18 Omron Corp Calibration support device, calibration support method, program, and record medium
JP2009003758A (en) * 2007-06-22 2009-01-08 Toshiba Corp Device for supporting calibration of measuring instrument for plant and method for supporting calibration of measuring instrument for plant
JP2012194186A (en) * 2012-06-12 2012-10-11 Omron Corp Calibration support device, calibration support method, program, and recording medium
JP2013195188A (en) * 2012-03-19 2013-09-30 Hitachi-Ge Nuclear Energy Ltd Sensor diagnostic device and sensor diagnostic method
CN113541262A (en) * 2021-07-23 2021-10-22 天长市盛能电子科技有限公司 Charger capable of detecting battery electric quantity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111191A (en) * 1983-11-22 1985-06-17 株式会社東芝 Neutron measuring system
JPH10104385A (en) * 1996-10-01 1998-04-24 Hitachi Ltd Surveillance method and system for transmitter in plant
JPH1183536A (en) * 1997-09-09 1999-03-26 Hitachi Ltd Rationalization method for calibration cycle
JP2002148382A (en) * 2000-11-14 2002-05-22 Mitsubishi Heavy Ind Ltd Plant maintenance system and method
JP2003207373A (en) * 2002-01-16 2003-07-25 Mitsubishi Heavy Ind Ltd Sensor calibration assistance system, sensor calibration assistance method, and computer readable recording medium storing program for computer execution of the same
JP2003270004A (en) * 2002-03-15 2003-09-25 Mitsubishi Heavy Ind Ltd Device and method for estimating drift of detector, and system for monitoring detector
JP2005338049A (en) * 2004-04-26 2005-12-08 Mitsubishi Heavy Ind Ltd Plant instrumentation control unit and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111191A (en) * 1983-11-22 1985-06-17 株式会社東芝 Neutron measuring system
JPH10104385A (en) * 1996-10-01 1998-04-24 Hitachi Ltd Surveillance method and system for transmitter in plant
JPH1183536A (en) * 1997-09-09 1999-03-26 Hitachi Ltd Rationalization method for calibration cycle
JP2002148382A (en) * 2000-11-14 2002-05-22 Mitsubishi Heavy Ind Ltd Plant maintenance system and method
JP2003207373A (en) * 2002-01-16 2003-07-25 Mitsubishi Heavy Ind Ltd Sensor calibration assistance system, sensor calibration assistance method, and computer readable recording medium storing program for computer execution of the same
JP2003270004A (en) * 2002-03-15 2003-09-25 Mitsubishi Heavy Ind Ltd Device and method for estimating drift of detector, and system for monitoring detector
JP2005338049A (en) * 2004-04-26 2005-12-08 Mitsubishi Heavy Ind Ltd Plant instrumentation control unit and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216042A (en) * 2007-03-05 2008-09-18 Omron Corp Calibration support device, calibration support method, program, and record medium
JP2009003758A (en) * 2007-06-22 2009-01-08 Toshiba Corp Device for supporting calibration of measuring instrument for plant and method for supporting calibration of measuring instrument for plant
JP2013195188A (en) * 2012-03-19 2013-09-30 Hitachi-Ge Nuclear Energy Ltd Sensor diagnostic device and sensor diagnostic method
JP2012194186A (en) * 2012-06-12 2012-10-11 Omron Corp Calibration support device, calibration support method, program, and recording medium
CN113541262A (en) * 2021-07-23 2021-10-22 天长市盛能电子科技有限公司 Charger capable of detecting battery electric quantity

Also Published As

Publication number Publication date
JP4611061B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
RU2667691C1 (en) Method of fault diagnostics and the fault diagnostic system
Harrou et al. An improved multivariate chart using partial least squares with continuous ranked probability score
US20070067114A1 (en) System and method for monitoring degradation
Deng et al. Degradation modeling based on a time-dependent ornstein-uhlenbeck process and residual useful lifetime estimation
EP3270250A1 (en) Method and system for remote monitoring of power generation units
EP1927994B1 (en) Systems and methods of predicting a critical effective k for a nuclear reactor
JP4611061B2 (en) Detector calibration support apparatus and method
JP2013073414A (en) Sensor diagnostic device and sensor diagnostic method for plant
CN108958226A (en) Based on existence information potential-Principal Component Analysis Algorithm TE procedure failure testing method
US11900223B2 (en) Device and method for monitoring a system
JP2011060012A (en) Plant monitoring apparatus and plant monitoring method
JP2018073316A (en) Plant diagnostic system and diagnostic method
Baraldi et al. Ensemble of bootstrapped models for the prediction of the remaining useful life of a creeping turbine blade
US20100161132A1 (en) System and method for monitoring an industrial production process
Ramuhalli et al. Uncertainty quantification techniques for sensor calibration monitoring in nuclear power plants
JP2003207373A (en) Sensor calibration assistance system, sensor calibration assistance method, and computer readable recording medium storing program for computer execution of the same
Shardt Data quality assessment for closed-loop system identification and forecasting with application to soft sensors
Hashemian Applying online monitoring for nuclear power plant instrumentation and control
JP2007003381A (en) Calibration support device for detector, technique thereof, and program
CN110688152B (en) Software reliability quantitative evaluation method combining software development quality information
US11300058B2 (en) Signal processing apparatus, turbine system, signal processing method, and program
Lazzarotto et al. Principal components in multivariate control charts applied to data instrumentation of dams
JP3825447B2 (en) How to create data for calibration of internal and external nuclear instrumentation
Ramuhalli et al. Robust online monitoring for calibration assessment of transmitters and instrumentation
JP6647949B2 (en) Reactor operating limit range setting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4611061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250