JP2006250497A - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
JP2006250497A
JP2006250497A JP2005071292A JP2005071292A JP2006250497A JP 2006250497 A JP2006250497 A JP 2006250497A JP 2005071292 A JP2005071292 A JP 2005071292A JP 2005071292 A JP2005071292 A JP 2005071292A JP 2006250497 A JP2006250497 A JP 2006250497A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
flow path
heat
buffer tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005071292A
Other languages
Japanese (ja)
Inventor
Yoshiteru Yamazaki
吉照 山崎
Tomoaki Tanabe
智明 田邉
Yasuji Ogoshi
靖二 大越
Yasuhiro Niima
康博 新間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2005071292A priority Critical patent/JP2006250497A/en
Publication of JP2006250497A publication Critical patent/JP2006250497A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water supply system having economical and working advantages for coping with old facilities and a system change as at least a hot water storage tank remains unchanged. <P>SOLUTION: The hot water supply system comprises a heat pump unit 1 having a compressor 4, a four-way selector valve 5, an outdoor heat exchanger 6, an electric expansion valve 7 and a water heat exchanger 8 communicated with one another via a refrigerant pipe R to form a heat pump type refrigerating cycle, a buffer tank 10 for supplying heat-exchanged water to the water heat exchanger of the heat pump unit and temporarily storing hot water obtained by heat exchanging operation of the water heat exchanger, a three-way selector valve 11 for selecting a flow path for the hot water to be supplied from the buffer tank, a flow path selecting control unit 2 having a control device 15 for controlling the selection of the three-way selector valve, and the hot water storage tank 3 communicated with the flow path selecting control unit via the three-way selector valve. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱源機としてヒートポンプユニットを備え、冷媒と熱交換水とを熱交換して温水(湯)を得る給湯システムに関する。   The present invention relates to a hot water supply system that includes a heat pump unit as a heat source device and obtains hot water (hot water) by exchanging heat between refrigerant and heat exchange water.

[特許文献1]には、ヒートポンプ式冷凍サイクルを搭載した空気調和機と、上記ヒートポンプ式冷凍サイクルの冷媒と熱交換して貯湯用の熱交換水を加熱する給湯熱交換器を有する貯湯分岐ユニットと、上記給湯熱交換器と給湯用水配管で連結される貯湯槽を備えた電気温水器とから構成される空調・給湯システムが開示されている。
上記電気温水器は、安価な深夜電力を利用して夜間に電気ヒータを動作させ、その電気ヒータの発熱により貯湯槽内の水を加熱して温水(湯)を溜め、溜めた温水を深夜電力時以外の給湯に利用する。空気調和機であるエアコンは、室内機および室外機とから構成され、夏季には冷房を行い、冬季には暖房を行う。
特開2001−235252号公報
[Patent Document 1] discloses a hot water storage branch unit having an air conditioner equipped with a heat pump refrigeration cycle, and a hot water supply heat exchanger that exchanges heat with the refrigerant of the heat pump refrigeration cycle to heat the heat exchange water for hot water storage. In addition, an air conditioning / hot water supply system including the hot water supply heat exchanger and an electric water heater having a hot water storage tank connected by a hot water supply water pipe is disclosed.
The above-mentioned electric water heater operates an electric heater at night using inexpensive late-night power, heats the water in the hot water tank by the heat generated by the electric heater, and stores hot water (hot water). It is used for hot water supply other than when. An air conditioner, which is an air conditioner, is composed of an indoor unit and an outdoor unit, and performs cooling in the summer and heating in the winter.
JP 2001-235252 A

ところで、空調システムは別途備え、給湯機能のみを備えた給湯システムが多用されている。この給湯システムは、汎用の密閉型貯湯タンクあるいは開放型貯湯タンクのいずれかを備え、熱源機として深夜電力を利用する電気ヒータ、ヒートポンプ式冷凍サイクルもしくはガス燃焼器で水を加熱し温水に換える。
また、長期の使用にともなう設備の老朽化がある場合や、特別な事情によってガス給湯システムからヒートポンプ式給湯システムなどの他の方式に変更する場合には、熱源機と貯湯タンクの両方を交換しなければならない。そのため、コストアップや工事時間の増大化など、経済性や施工性の点で問題があった。
By the way, an air conditioning system is provided separately, and a hot water supply system having only a hot water supply function is frequently used. This hot water supply system includes either a general-purpose sealed hot water storage tank or an open hot water storage tank, and heats water with an electric heater, a heat pump refrigeration cycle, or a gas combustor that uses midnight power as a heat source device, and converts it into hot water.
In addition, when the equipment has been deteriorated due to long-term use or when changing from a gas hot water system to another system such as a heat pump hot water system due to special circumstances, both the heat source machine and hot water storage tank should be replaced. There must be. For this reason, there have been problems in terms of economy and workability, such as cost increase and construction time increase.

本発明は上記事情に着目してなされたものであり、その目的とするところは、少なくとも貯湯タンクはそのままで、設備の老朽化や方式変更に対応でき、経済性や施工性の点で有利となる給湯システムを提供しようとするものである。   The present invention has been made paying attention to the above circumstances, and the object of the present invention is to be able to cope with the aging of the equipment and the change of the system at least with the hot water storage tank as it is, and advantageous in terms of economy and workability. To provide a hot water supply system.

上記目的を達成するため本発明は、圧縮機、四方切換え弁、室外熱交換器、減圧装置および水熱交換器とを冷媒管を介して連通しヒートポンプ式の冷凍サイクルを構成するヒートポンプユニットと、このヒートポンプユニットの水熱交換器に熱交換水を供給し水熱交換器で熱交換して得られた温水(湯)を一時的に貯溜するバッファタンクと、このバッファタンクから供出される温水の流路先を切換える流路切換え手段および流路切換え手段を切換え制御する制御手段を備えた流路切換え制御ユニットと、この流路切換え制御ユニットの流路切換え手段を介して連通される貯湯タンクとを具備する。   In order to achieve the above object, the present invention comprises a heat pump unit comprising a compressor, a four-way switching valve, an outdoor heat exchanger, a pressure reducing device, and a water heat exchanger via a refrigerant pipe to constitute a heat pump refrigeration cycle, A buffer tank for temporarily storing hot water (hot water) obtained by supplying heat exchange water to the water heat exchanger of the heat pump unit and exchanging heat with the water heat exchanger, and hot water supplied from the buffer tank A flow path switching control unit comprising a flow path switching means for switching the flow path destination and a control means for switching control of the flow path switching means; and a hot water storage tank communicated via the flow path switching means of the flow path switching control unit; It comprises.

さらに、上記目的を達成するため本発明は、圧縮機、四方切換え弁、室外熱交換器、減圧装置を収容し冷媒管を介して接続されるヒートポンプユニットと、このヒートポンプユニットの四方切換え弁および減圧装置と冷媒管を介して連通されヒートポンプ式の冷凍サイクルを構成する水熱交換器、この水熱交換器に熱交換水を供給し水熱交換器に導かれる冷媒と熱交換して得られた温水(湯)を一時的に貯溜するバッファタンク、このバッファタンクから供出される温水の流路先を切換える流路切換え手段および流路切換え手段を切換え制御する制御手段などを備えた流路切換え制御ユニットと、この流路切換え制御ユニットの流路切換え手段を介して連通される貯湯タンクとを具備する。   Furthermore, in order to achieve the above object, the present invention provides a heat pump unit that houses a compressor, a four-way switching valve, an outdoor heat exchanger, a pressure reducing device and is connected via a refrigerant pipe, and a four-way switching valve and a pressure reducing valve of the heat pump unit. A water heat exchanger communicating with the apparatus via a refrigerant pipe to constitute a heat pump type refrigeration cycle, obtained by supplying heat exchange water to the water heat exchanger and exchanging heat with the refrigerant guided to the water heat exchanger Flow path switching control provided with a buffer tank for temporarily storing hot water (hot water), a flow path switching means for switching the flow path destination of hot water supplied from the buffer tank, and a control means for switching control of the flow path switching means A unit and a hot water storage tank communicated with the channel switching means of the channel switching control unit.

本発明によれば、少なくとも貯湯タンクはそのままで、設備の老朽化や方式変更に対応でき、経済性や施工性の点で有利となる等の効果を奏する。   According to the present invention, at least the hot water storage tank is left as it is, and it is possible to cope with the aging of the equipment and the method change, which is advantageous in terms of economy and workability.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
図1は給湯システムの装置構成図、図2は同給湯システムにおける貯湯運転時と除霜運転時の冷媒と温水の流れの説明図である。
この給湯システムは、ヒートポンプユニット1と、流路切換え制御ユニット2および、貯湯タンク3とから構成される。
はじめにヒートポンプユニット1から詳述すると、このヒートポンプユニット1には、圧縮機4と、四方切換え弁5と、室外熱交換器6と、減圧装置である電動膨張弁(PMV:パルスモータバルブ)7と、水熱交換器8および循環ポンプ9が収容配置されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an apparatus configuration diagram of a hot water supply system, and FIG. 2 is an explanatory diagram of the flow of refrigerant and hot water during hot water storage operation and defrost operation in the hot water supply system.
This hot water supply system includes a heat pump unit 1, a flow path switching control unit 2, and a hot water storage tank 3.
First, the heat pump unit 1 will be described in detail. The heat pump unit 1 includes a compressor 4, a four-way switching valve 5, an outdoor heat exchanger 6, an electric expansion valve (PMV: pulse motor valve) 7 as a decompression device, The water heat exchanger 8 and the circulation pump 9 are accommodated.

上記水熱交換器8は、熱交換用冷媒管8Aおよび熱交換用水配管8Bを備えていて、冷媒と水もしくは、冷媒と温水(湯)を互いに効率よく熱交換できるようになっている。上記圧縮機4、四方切換え弁5、室外熱交換器6、電動膨張弁7および水熱交換器8における熱交換用冷媒管8Aは、順次、冷媒管Rを介して連通され、ヒートポンプ式の冷凍サイクルを構成している。
上記ヒートポンプユニット1の側部には一対の接続口体aが互いに離間して設けられていて、これら接続口体a相互は水配管Mによって連通される。この水配管Mの中途部には、上記水熱交換器8の熱交換用水配管8Bおよび上記循環ポンプ9が設けられる。
The water heat exchanger 8 includes a heat exchange refrigerant pipe 8A and a heat exchange water pipe 8B so that the refrigerant and water or the refrigerant and hot water (hot water) can be efficiently exchanged with each other. The refrigerant pipe 8A for heat exchange in the compressor 4, the four-way switching valve 5, the outdoor heat exchanger 6, the electric expansion valve 7 and the water heat exchanger 8 is sequentially communicated via the refrigerant pipe R, and is a heat pump type refrigeration. Constitutes a cycle.
A pair of connection ports a are provided apart from each other on the side of the heat pump unit 1, and the connection ports a are connected to each other by a water pipe M. In the middle of the water pipe M, a heat exchange water pipe 8B of the water heat exchanger 8 and the circulation pump 9 are provided.

上記流路切換え制御ユニット2において、上記ヒートポンプユニット1側部に設けられる接続口体aとそれぞれ対向して一対の接続口体bが設けられ、互いに対向する接続口体a−b間には水配管Mが設けられて互いに連通する。
流路切換え制御ユニット2には、バッファタンク10と、三方切換え弁(流路切換え手段)11が収容配置され、上記貯湯タンク3と対向するユニット2の側部には一対の接続口体cが互いに離間して設けられる。
In the flow path switching control unit 2, a pair of connection ports b are provided to face the connection ports a provided on the side of the heat pump unit 1, and water is connected between the connection ports ab facing each other. A pipe M is provided and communicates with each other.
The flow path switching control unit 2 accommodates and arranges a buffer tank 10 and a three-way switching valve (flow path switching means) 11, and a pair of connection ports c are provided on the side of the unit 2 facing the hot water storage tank 3. They are provided apart from each other.

流路切換え制御ユニット2における、ヒートポンプユニット1と対向する一方の接続口体bと、上記バッファタンク10と、上記三方切換え弁11の2つのポートおよび、貯湯タンク3と対向する一方の接続口体cは水配管Mを介して直列に接続される。
流路切換え制御ユニット2の他方の接続口体bと接続口体cは水配管Mを介して直列に接続され、この水配管Mの中途部と上記三方切換え弁11の残りのポートとはバイパス管Nを介して連通される。このバイパス管Nと、水配管Mに沿って設けられる循環ポンプ9と、水熱交換器8の熱交換用水配管8Bと、バッファタンク10および三方切換え弁11とで、循環回路Kが形成される。
In the flow path switching control unit 2, one connection port b facing the heat pump unit 1, the two ports of the buffer tank 10, the three-way switching valve 11, and one connection port facing the hot water storage tank 3. c is connected in series via a water pipe M.
The other connection port b and connection port c of the flow path switching control unit 2 are connected in series via a water pipe M, and the middle part of the water pipe M and the remaining port of the three-way switching valve 11 are bypassed. Communicating through the tube N. The bypass pipe N, the circulation pump 9 provided along the water pipe M, the heat exchange water pipe 8B of the water heat exchanger 8, the buffer tank 10 and the three-way switching valve 11 form a circulation circuit K. .

上記貯湯タンク3は、ここでは汎用の密閉型貯湯タンクが用いられる。この密閉型貯湯タンク3の上部と底部には接続口体dが設けられていて、上部の接続口体dは流路切換え制御ユニット2における一方の接続口体cと水配管Mを介して連通される。この水配管Mの中途部には、たとえば洗面所や厨房設備に設けられる給湯栓12と連通する給湯管Sが接続される。
貯湯タンク3の底部に設けられる接続口体dは、流路切換え制御ユニット2における他方の接続口体cと水配管Mを介して連通される。水配管Mの中途部に図示しない給水源に接続する給水管Qが連通されていて、この給水管Qは中途部に減圧弁13を備えている。
The hot water storage tank 3 is a general-purpose sealed hot water storage tank here. A connection port d is provided at the top and bottom of the sealed hot water storage tank 3, and the upper connection port d communicates with one connection port c in the flow path switching control unit 2 via the water pipe M. Is done. In the middle of the water pipe M, for example, a hot water supply pipe S communicating with a hot water tap 12 provided in a bathroom or kitchen facility is connected.
The connection port body d provided at the bottom of the hot water storage tank 3 is communicated with the other connection port body c in the flow path switching control unit 2 through the water pipe M. A water supply pipe Q connected to a water supply source (not shown) is communicated with a middle part of the water pipe M, and the water supply pipe Q is provided with a pressure reducing valve 13 in the middle part.

以上のような装置構成と配管系統であり、特に図1に示すように、上記流路切換え制御ユニットには各構成部品を電気的に制御する制御装置(制御手段)15が設けられる。 上記制御装置15は、ヒートポンプユニット1に備えられ、ヒートポンプユニット1内の電動部品を制御するヒートポンプユニット制御器16と電気的に接続される。さらに、制御装置15は流路切換え制御ユニット2内の三方切換え弁11と電気的に接続され、三方切換え弁11に対して制御信号を送るようになっている。   The apparatus configuration and the piping system as described above, and in particular, as shown in FIG. 1, the flow path switching control unit is provided with a control device (control means) 15 for electrically controlling each component. The control device 15 is provided in the heat pump unit 1 and is electrically connected to a heat pump unit controller 16 that controls electric parts in the heat pump unit 1. Further, the control device 15 is electrically connected to the three-way switching valve 11 in the flow path switching control unit 2 and sends a control signal to the three-way switching valve 11.

上記貯湯タンク3には、底部から上面部まで所定間隔を存して複数の温度センサ17が取付けられていて、それぞれの取付け部位である液面高さにおける温度を検知する。これら複数の温度センサ17は、それぞれ上記制御装置15に電気的に接続され、検知温度信号を制御装置15へ送るようになっている。さらに、上記バッファタンク10にも図示しない温度センサが取付けられていて、上記制御装置15に電気的に接続され、検知温度信号を制御装置15へ送るようになっている。   A plurality of temperature sensors 17 are attached to the hot water storage tank 3 at predetermined intervals from the bottom to the top surface, and the temperature at the liquid level, which is the respective attachment site, is detected. The plurality of temperature sensors 17 are each electrically connected to the control device 15 so as to send a detected temperature signal to the control device 15. Further, a temperature sensor (not shown) is also attached to the buffer tank 10 and is electrically connected to the control device 15 so as to send a detected temperature signal to the control device 15.

本発明の給湯システムでは、図2に示すように、安価な深夜電力を利用して貯湯運転が行われる。
上記制御装置15は、圧縮機4および循環ポンプ9に駆動制御信号を送るともに、四方切換え弁5および三方切換え弁11に後述するように切換え制御信号を送る。圧縮機4が駆動されて冷媒を高温高圧に圧縮して吐出する。冷媒は、図中実線矢印に示すように、四方切換え弁5から水熱交換器8の熱交換用冷媒管8Aに導かれて凝縮し、凝縮熱を放出する。そして冷媒は、電動膨張弁7において減圧膨張し、室外熱交換器6に導かれて蒸発し、四方切換え弁5を介して圧縮機4に吸込まれ、圧縮されて再び上述の径路を循環する。
In the hot water supply system of the present invention, as shown in FIG. 2, hot water storage operation is performed using inexpensive late-night power.
The control device 15 sends a drive control signal to the compressor 4 and the circulation pump 9 and sends a switching control signal to the four-way switching valve 5 and the three-way switching valve 11 as described later. The compressor 4 is driven to compress and discharge the refrigerant to high temperature and pressure. As shown by solid line arrows in the figure, the refrigerant is led from the four-way switching valve 5 to the heat exchange refrigerant pipe 8A of the water heat exchanger 8 to condense, and releases the condensation heat. Then, the refrigerant expands under reduced pressure at the electric expansion valve 7, is led to the outdoor heat exchanger 6, evaporates, is sucked into the compressor 4 through the four-way switching valve 5, is compressed, and circulates again through the above-described path.

一方、減圧弁13を介して貯湯タンク3内へ水を供給し、満杯状態にして貯溜する。貯湯タンク3に貯えられた水は、循環ポンプ9の運転により、図中実線矢印に示すように流路切換え制御ユニット2内を介してヒートポンプユニット1内に導かれ、循環ポンプ9から水熱交換器8の熱交換用水配管8Bに導かれる。熱交換用水配管8Bに導かれる水は、水熱交換器8内の熱交換用冷媒管8Aで凝縮熱を放出する冷媒と熱交換する。
熱交換用水配管8Bに導かれる水は冷媒の凝縮熱を吸収し、温度上昇して温水(湯)に変る。温水はヒートポンプユニット1から出て、流路切換え制御ユニット2内のバッファタンク10に導かれる。上記制御装置15は、バッファタンク10内の温水が予め設定された温度に到達するまでは、温水をバッファタンク10からバイパス管Nに導通するよう三方切換え弁11を切換え制御する。したがって、温水は循環ポンプ9から水熱交換器8内の熱交換用水配管8Bに導かれて熱交換し、さらにバッファタンク10へと循環する。
On the other hand, water is supplied into the hot water storage tank 3 through the pressure reducing valve 13 and stored in a full state. The water stored in the hot water storage tank 3 is guided into the heat pump unit 1 through the flow path switching control unit 2 as shown by the solid line arrow in the drawing by the operation of the circulation pump 9, and the water is exchanged from the circulation pump 9. The heat exchange water pipe 8B of the vessel 8 is guided. The water guided to the heat exchange water pipe 8 </ b> B exchanges heat with the refrigerant that releases the condensation heat in the heat exchange refrigerant pipe 8 </ b> A in the water heat exchanger 8.
The water led to the heat exchange water pipe 8B absorbs the heat of condensation of the refrigerant, rises in temperature, and changes to hot water (hot water). The hot water leaves the heat pump unit 1 and is guided to the buffer tank 10 in the flow path switching control unit 2. The control device 15 switches and controls the three-way switching valve 11 so that the hot water is conducted from the buffer tank 10 to the bypass pipe N until the hot water in the buffer tank 10 reaches a preset temperature. Accordingly, the hot water is led from the circulation pump 9 to the heat exchange water pipe 8B in the water heat exchanger 8 to exchange heat, and further circulates to the buffer tank 10.

バッファタンク10内の温水の温度が徐々に上昇して所定温度以上になったことを、バッファタンク10に取付けられた温度センサにより検知したら、制御装置15は三方切換え弁11を切換え制御する。バッファタンク10内の温水は、図中破線矢印に示すように流路切換え制御ユニット2から出て貯湯タンク3上部へ供給される。その一方で、貯湯タンク3底部から図中実線矢印に示すように低温の温水が導出され、上述したように水熱交換器8に導かれて熱交換するとともにバッファタンク10に導かれ、所定温度に到達するまではバイパス管Nを介して循環回路Kを循環する。   When the temperature sensor attached to the buffer tank 10 detects that the temperature of the hot water in the buffer tank 10 gradually rises and exceeds a predetermined temperature, the control device 15 switches and controls the three-way switching valve 11. The hot water in the buffer tank 10 exits from the flow path switching control unit 2 and is supplied to the upper part of the hot water storage tank 3 as indicated by broken line arrows in the figure. On the other hand, low temperature hot water is led out from the bottom of the hot water storage tank 3 as shown by the solid line arrow in the figure, and as described above, it is led to the water heat exchanger 8 for heat exchange and led to the buffer tank 10 for a predetermined temperature. Is circulated through the circulation circuit K through the bypass pipe N until it reaches.

バッファタンク10内の温水温度が所定温度以上になったことを検知する都度、制御装置15は三方切換え弁11を切換え制御して、バッファタンク10内の温水を貯湯タンク3へ供給する。そして、貯湯タンク3内の低温の温水を循環回路Kに循環するよう切換え制御する。
貯湯タンク3において、各水位に取付けられる全ての温度センサ17により、それぞれ予め設定された温度以上を検知したら、貯湯タンク3内に貯溜される温水の全てが所定温度以上になったことと判断し、制御装置15は圧縮機4と循環ポンプ9の運転を停止して貯湯運転を終了する。
Each time it is detected that the temperature of the hot water in the buffer tank 10 has become equal to or higher than the predetermined temperature, the control device 15 switches and controls the three-way switching valve 11 to supply the hot water in the buffer tank 10 to the hot water storage tank 3. Then, switching control is performed so that the low-temperature hot water in the hot water storage tank 3 is circulated to the circulation circuit K.
In the hot water storage tank 3, if all the temperature sensors 17 attached to each water level detect a temperature higher than a preset value, it is determined that all of the hot water stored in the hot water storage tank 3 has reached a predetermined temperature or higher. The control device 15 stops the operation of the compressor 4 and the circulation pump 9 and ends the hot water storage operation.

深夜電力の適用時間外では、給湯栓12を開放すると貯湯タンク3内の温水が給湯栓12から供給される。給湯栓12を閉成すれば、給湯が終了する。
また、冬季に貯湯運転をなすと、特に室外熱交換器6では冷媒が蒸発して周囲から蒸発潜熱を奪うために、室外熱交換器6自体がより低温化して表面に霜が付着する。そのまま運転を継続すると、室外熱交換器6での熱交換効率が低下して、温水を所定温度にまで加熱することができなくなる。
そこで、制御装置15は、以下に述べるような除霜運転を行うよう制御する。このとき、圧縮機4と循環ポンプ9が駆動されることは変りがないが、四方切換え弁5と三方切換え弁11は後述するように切換え制御される。
Outside the application time of midnight power, when the hot water tap 12 is opened, hot water in the hot water storage tank 3 is supplied from the hot water tap 12. When the hot water tap 12 is closed, the hot water supply is completed.
In addition, when hot water storage operation is performed in winter, the outdoor heat exchanger 6 itself lowers in temperature because the refrigerant evaporates and takes away latent heat of vaporization from the surroundings, and frost adheres to the surface. If the operation is continued as it is, the heat exchange efficiency in the outdoor heat exchanger 6 decreases, and the hot water cannot be heated to a predetermined temperature.
Therefore, the control device 15 controls to perform a defrosting operation as described below. At this time, although the compressor 4 and the circulation pump 9 are not changed, the four-way switching valve 5 and the three-way switching valve 11 are controlled to be switched as will be described later.

ヒートポンプユニット1においては、圧縮機4で圧縮され吐出された高温高圧の冷媒ガスが、図中一点鎖線矢印に示すように四方切換え弁5を介して室外熱交換器6に導かれ、ここで凝縮して凝縮熱を放出する。したがって、室外熱交換器6に付着していた霜が徐々に溶融する除霜作用が行われる。凝縮した冷媒は電動膨張弁7において減圧膨張し、水熱交換器8に導かれて蒸発し、四方切換え弁5を介して圧縮機4に吸込まれ、再び上述の径路を循環する。   In the heat pump unit 1, the high-temperature and high-pressure refrigerant gas compressed and discharged by the compressor 4 is led to the outdoor heat exchanger 6 through the four-way switching valve 5 as indicated by a one-dot chain line arrow in the figure, where it is condensed. The heat of condensation is released. Therefore, a defrosting action is performed in which the frost adhering to the outdoor heat exchanger 6 is gradually melted. The condensed refrigerant is decompressed and expanded in the electric expansion valve 7, is led to the water heat exchanger 8, evaporates, is sucked into the compressor 4 through the four-way switching valve 5, and circulates again through the above-described path.

一方、循環ポンプ9が駆動されて、バッファタンク10内に充満していた温水は、図中実線矢印に示すように三方切換え弁11からバイパス管Nと循環ポンプ9を介して水熱交換器8の熱交換用水配管8Bに導かれる。温水は熱交換用水配管8Bにおいて熱交換用冷媒管8Aを流通する低温の冷媒と熱交換してからバッファタンク10に導かれ、上述の循環回路Kを循環する。ヒートポンプ冷凍サイクルを循環する冷媒の温度が上がって、室外熱交換器に6おける除霜作用が早期に終了する。   On the other hand, the hot water that has been filled in the buffer tank 10 when the circulation pump 9 is driven is supplied from the three-way switching valve 11 through the bypass pipe N and the circulation pump 9 to the water heat exchanger 8 as shown by solid arrows in the figure. To the heat exchange water pipe 8B. The hot water exchanges heat with the low-temperature refrigerant flowing through the heat exchange refrigerant pipe 8A in the heat exchange water pipe 8B, and then is guided to the buffer tank 10 and circulates in the circulation circuit K described above. The temperature of the refrigerant circulating in the heat pump refrigeration cycle rises, and the defrosting action in the outdoor heat exchanger 6 is completed early.

除霜作用が完全に終了して再び貯湯運転を開始する際に、バッファタンク10内の温水が所定温度以下に低下していることを検知したら、制御装置15は三方切換え弁11の切換え方向を維持する。バッファタンク10内の温水はバイパス管Nに導びかれ、さらに循環ポンプ9を介して水熱交換器8の熱交換用水配管8Bに導かれ、熱交換用冷媒管8Aに導かれる冷媒と熱交換する。   When it is detected that the hot water in the buffer tank 10 has dropped below a predetermined temperature when the defrosting operation is completed and the hot water storage operation is started again, the control device 15 changes the switching direction of the three-way switching valve 11. maintain. The hot water in the buffer tank 10 is led to the bypass pipe N, and further led to the heat exchange water pipe 8B of the water heat exchanger 8 through the circulation pump 9, and exchanges heat with the refrigerant led to the heat exchange refrigerant pipe 8A. To do.

このとき、ヒートポンプ式冷凍サイクルにおける四方切換え弁5は切換え制御されていて、冷媒は図中実線矢印に示すように導かれ、熱交換用冷媒管8Aで凝縮して凝縮熱を放出する。熱交換用水配管8Bに導かれる低温の温水は加熱され、温度上昇して高温の温水に変る。   At this time, the four-way switching valve 5 in the heat pump refrigeration cycle is controlled to be switched, and the refrigerant is guided as indicated by the solid line arrow in the figure, and condensed in the heat exchange refrigerant pipe 8A to release the condensed heat. The low temperature hot water led to the heat exchange water pipe 8B is heated, and the temperature rises to change to high temperature hot water.

バッファタンク10内の温水が所定温度以上に上昇したことを検知したら、制御装置15は三方切換え弁11を切換え制御してバッファタンク10内の高温の温水を、図中破線矢印に示すように貯湯タンク3へ導く。
その一方で、貯湯タンク3底部から図中実線矢印に示すように低温の温水が導出され、上述したように水熱交換器8に導かれて熱交換するとともにバッファタンク10に導かれ、所定温度に到達するまではバイパス管Nを介して循環回路Kを循環する。
When it is detected that the hot water in the buffer tank 10 has risen above a predetermined temperature, the control device 15 controls the three-way switching valve 11 to store hot hot water in the buffer tank 10 as indicated by broken line arrows in the figure. Guide to tank 3.
On the other hand, low temperature hot water is led out from the bottom of the hot water storage tank 3 as shown by the solid line arrow in the figure, and as described above, it is led to the water heat exchanger 8 for heat exchange and led to the buffer tank 10 for a predetermined temperature. Is circulated through the circulation circuit K through the bypass pipe N until it reaches.

バッファタンク10内の温水温度が所定温度以上になったことを検知する都度、制御装置15は三方切換え弁11を切換え制御して、バッファタンク10内の温水を貯湯タンク3へ供給する。そして、貯湯タンク3内の低温の温水を循環回路Kに循環するよう切換え制御する。
貯湯タンク3において、各水位に取付けられる全ての温度センサ17により、それぞれ予め設定された温度以上を検知したら、貯湯タンク3内に貯溜される温水の全てが所定温度以上になったことと判断し、制御装置15は圧縮機4と循環ポンプ9の運転を停止して貯湯運転を終了する。
Each time it is detected that the temperature of the hot water in the buffer tank 10 has become equal to or higher than the predetermined temperature, the control device 15 switches and controls the three-way switching valve 11 to supply the hot water in the buffer tank 10 to the hot water storage tank 3. Then, switching control is performed so that the low-temperature hot water in the hot water storage tank 3 is circulated to the circulation circuit K.
In the hot water storage tank 3, if all the temperature sensors 17 attached to each water level detect a temperature higher than a preset value, it is determined that all of the hot water stored in the hot water storage tank 3 has reached a predetermined temperature or higher. The control device 15 stops the operation of the compressor 4 and the circulation pump 9 and ends the hot water storage operation.

このようにして、上記流路切換え制御ユニット2内に、バッファタンク10と三方切換え弁11および制御装置15を備えることにより、上記貯湯タンク3に流路切換え手段(三方切換え弁)11と制御手段(制御装置)15を備える必要がなくなり、熱源機であるヒートポンプユニット1の加熱能力と貯湯タンク3の容量の組合せに対する制限がほとんどなくなるため、貯湯タンク3の種類と、大きさ(容量)の選択自由度が増して、汎用性が向上する。   Thus, by providing the buffer tank 10, the three-way switching valve 11 and the control device 15 in the channel switching control unit 2, the channel switching means (three-way switching valve) 11 and the control means are provided in the hot water storage tank 3. (Control device) 15 is no longer required, and there is almost no restriction on the combination of the heating capacity of the heat pump unit 1 that is a heat source unit and the capacity of the hot water storage tank 3, so the type and size (capacity) of the hot water storage tank 3 are selected. The degree of freedom increases and versatility improves.

上記制御装置15は、貯湯運転の起動時に沸き上げ温度が所定の温度になるまで、三方切換え弁11を切換え制御して温水をヒートポンプユニット1とバッファタンク10との間に循環させ、所定温度以上に上昇してから三方切換え弁11を切換え制御して貯湯タンク3へ温水を供給するようにしたから、貯湯タンク3に対して高い温度の温水を効率よく貯湯できる。   The control device 15 switches the three-way switching valve 11 to circulate hot water between the heat pump unit 1 and the buffer tank 10 until the boiling temperature reaches a predetermined temperature when the hot water storage operation is started, and exceeds the predetermined temperature. Since the hot water is supplied to the hot water storage tank 3 by controlling the three-way switching valve 11 after the temperature rises, the hot water of high temperature can be efficiently stored in the hot water storage tank 3.

上記制御装置15は、室外熱交換器6に対する除霜運転において、三方切換え弁11を切換え制御しバッファタンク10内の温水をヒートポンプユニット1を構成する水熱交換器8に導き、室外熱交換器6の除霜をなす。水熱交換器8で温度低下した温水を貯湯タンク3へ戻さずに、再びバッファタンク10に戻すようにしたから、貯湯タンク3に貯溜される温水の温度低下を防止するとともに、たとえ貯湯タンク3内の温水量が不足して湯切れが生じた場合でも、室外熱交換器6に対する除霜運転が可能となる。   In the defrosting operation for the outdoor heat exchanger 6, the control device 15 switches and controls the three-way switching valve 11 to guide the hot water in the buffer tank 10 to the water heat exchanger 8 constituting the heat pump unit 1. Defrost 6 Since the hot water whose temperature has been lowered by the water heat exchanger 8 is not returned to the hot water storage tank 3 but returned to the buffer tank 10 again, the temperature of the hot water stored in the hot water storage tank 3 is prevented from lowering, and even the hot water storage tank 3 Even when the amount of warm water in the interior is insufficient and hot water runs out, the defrosting operation for the outdoor heat exchanger 6 can be performed.

なお、上述の実施の形態では貯湯タンクとして、密閉型のものを適用して説明したが、これに限定されるものではなく、いわゆる開放型の貯湯タンクを備えてもよい。この場合は、特に図示していないが、基本的には先に図1および図2で説明したものと同一である。以下、概略的に説明する。
給水源と貯湯タンクとを連通する給水管に減圧弁とともにモータバルブが設けられる。上記貯湯タンクにフロートスイッチが設けられ、制御装置15ではフロートスイッチから送られる信号にもとづいて上記モータバルブを制御する。そして、貯湯タンク内の湯を給湯栓12へ送る給湯管Sの中途部にはポンプが設けられる。
In the above-described embodiment, the sealed hot water storage tank has been described. However, the present invention is not limited to this, and a so-called open hot water storage tank may be provided. In this case, although not particularly illustrated, it is basically the same as that described above with reference to FIGS. A brief description will be given below.
A motor valve is provided along with a pressure reducing valve in a water supply pipe communicating with the water supply source and the hot water storage tank. The hot water storage tank is provided with a float switch, and the control device 15 controls the motor valve based on a signal sent from the float switch. A pump is provided in the middle of the hot water supply pipe S that sends hot water in the hot water storage tank to the hot water tap 12.

上記開放型貯湯タンクを備えた構成の給湯システムにおいて貯湯運転は、減圧弁で水圧を一定にして貯湯タンク内に水を供給し貯溜する。貯湯タンクに貯溜された水は、循環ポンプ9の運転により水熱交換器8の熱交換用水配管8Bに導かれて、熱交換用冷媒管8Aから放出される冷媒の凝縮熱を吸収し温度上昇する。
熱交換用水配管8Bで温度上昇した温水はバッファタンク10に導かれ、ここに集溜する温水が所定温度以上になるまで三方切換え弁11を切換え制御して、バイパス管Nおよび循環ポンプ9からなる循環回路Kを介して再び熱交換用水配管8Bに導く。バッファタンク10内の温水が所定温度以上になると、三方切換え弁11を切換え制御してバッファタンク10内の温水を図中破線矢印に示すように、貯湯タンクに導く。
In the hot water supply system having the open type hot water storage tank, the hot water storage operation supplies water to the hot water storage tank while keeping the water pressure constant by the pressure reducing valve. The water stored in the hot water storage tank is guided to the heat exchange water pipe 8B of the water heat exchanger 8 by the operation of the circulation pump 9, and absorbs the heat of condensation of the refrigerant released from the heat exchange refrigerant pipe 8A to increase the temperature. To do.
The hot water whose temperature has risen in the heat exchange water pipe 8B is guided to the buffer tank 10, and is controlled by switching the three-way switching valve 11 until the hot water collected therein reaches a predetermined temperature or more, and includes a bypass pipe N and a circulation pump 9. It is again led to the heat exchange water pipe 8B through the circulation circuit K. When the hot water in the buffer tank 10 reaches a predetermined temperature or higher, the three-way switching valve 11 is controlled to guide the hot water in the buffer tank 10 to the hot water storage tank as indicated by the broken line arrow in the figure.

その一方で、貯湯タンク底部から図中実線矢印に示すように低温の温水が導出され、水熱交換器8に導かれて熱交換するとともにバッファタンク10に導かれ、所定温度に到達するまではバイパス管Nを介して循環回路Kを循環する。バッファタンク10内の温水温度が所定温度以上になったことを検知する都度、制御装置15は三方切換え弁11を切換え制御して、バッファタンク10内の温水を貯湯タンク3へ供給する。   On the other hand, as shown by the solid line arrow in the figure, the low temperature hot water is led out from the bottom of the hot water storage tank, led to the water heat exchanger 8 to exchange heat and led to the buffer tank 10 until it reaches a predetermined temperature. The circulation circuit K is circulated through the bypass pipe N. Each time it is detected that the temperature of the hot water in the buffer tank 10 has become equal to or higher than the predetermined temperature, the control device 15 switches and controls the three-way switching valve 11 to supply the hot water in the buffer tank 10 to the hot water storage tank 3.

貯湯タンク3において、各水位に取付けられる全ての温度センサ17が、それぞれ予め設定された温度以上を検知したら、貯湯タンク3内に貯溜される温水の全てが所定温度以上になったことと判断し、制御装置15は圧縮機4と循環ポンプ9の運転を停止して貯湯運転を終了する。
深夜電力の適用時間外では、給湯栓12を開放すると給湯ポンプが駆動されて、貯湯タンク内の温水が給湯栓12から供給される。給湯栓12を閉成すれば、給湯ポンプの運転が終了する。
In the hot water storage tank 3, when all the temperature sensors 17 attached to the respective water levels detect a predetermined temperature or higher, it is determined that all of the hot water stored in the hot water storage tank 3 has reached a predetermined temperature or higher. The control device 15 stops the operation of the compressor 4 and the circulation pump 9 and ends the hot water storage operation.
Outside the application time of midnight power, when the hot-water tap 12 is opened, the hot-water pump is driven and hot water in the hot water storage tank is supplied from the hot-water tap 12. If the hot-water tap 12 is closed, the operation of the hot-water supply pump ends.

上記開放型の貯湯タンクを備えた場合での除霜運転は、以下に述べるようになる。
圧縮機4から吐出される高温高圧の冷媒ガスが四方切換え弁5を介して室外熱交換器6に導かれ、凝縮熱を放出するので、室外熱交換器6に付着していた霜は徐々に溶融する。凝縮した冷媒は電動膨張弁7において減圧膨張され、水熱交換器8に導かれて蒸発し、四方切換え弁5を介して圧縮機4に吸込まれ、再び上述の径路を循環する。
一方、循環ポンプ9が駆動されて、バッファタンク10内に充満していた温水は三方切換え弁11からバイパス管Nを介して、循環ポンプ9から水熱交換器8の熱交換用水配管8Bに導かれる。温水は熱交換用水配管8Bにおいて熱交換用冷媒管8Aを流通する低温の冷媒と熱交換しバッファタンク10に導かれるよう循環回路Kを循環する。したがって、冷媒の温度が上がって室外熱交換器6における除霜作用が早期に終了する。
The defrosting operation when the open hot water storage tank is provided will be described below.
The high-temperature and high-pressure refrigerant gas discharged from the compressor 4 is led to the outdoor heat exchanger 6 through the four-way switching valve 5 and releases condensation heat, so that the frost adhering to the outdoor heat exchanger 6 gradually Melt. The condensed refrigerant is decompressed and expanded in the electric expansion valve 7, is led to the water heat exchanger 8, evaporates, is sucked into the compressor 4 through the four-way switching valve 5, and circulates again through the above-described path.
On the other hand, when the circulation pump 9 is driven, the hot water filled in the buffer tank 10 is led from the three-way switching valve 11 through the bypass pipe N to the heat exchange water pipe 8B of the water heat exchanger 8. It is burned. The hot water circulates in the circulation circuit K so as to exchange heat with the low-temperature refrigerant flowing through the heat exchange refrigerant pipe 8A in the heat exchange water pipe 8B and to be led to the buffer tank 10. Therefore, the temperature of the refrigerant rises and the defrosting action in the outdoor heat exchanger 6 is finished early.

除霜作用が完全に終了して再び貯湯運転を開始する際に、バッファタンク10内の温水が所定温度以下に低下していることを検知したら、制御装置15は三方切換え弁11の切換え方向を維持する。バッファタンク10内の温水はバイパス管Nに導びかれ、さらに循環ポンプ9を介して水熱交換器8の熱交換用水配管8Bに導かれ、熱交換用冷媒管8Aに導かれる冷媒と熱交換する。   When it is detected that the hot water in the buffer tank 10 has dropped below a predetermined temperature when the defrosting operation is completed and the hot water storage operation is started again, the control device 15 changes the switching direction of the three-way switching valve 11. maintain. The hot water in the buffer tank 10 is led to the bypass pipe N, and further led to the heat exchange water pipe 8B of the water heat exchanger 8 through the circulation pump 9, and exchanges heat with the refrigerant led to the heat exchange refrigerant pipe 8A. To do.

このとき、ヒートポンプ式冷凍サイクルにおける四方切換え弁5は切換え制御されていて、冷媒は熱交換用冷媒管8Aで凝縮して凝縮熱を放出する。熱交換用水配管8Bに導かれる低温の温水は加熱され、温度上昇して高温の温水に変る。
バッファタンク10内の温水が所定温度以上に上昇したことを検知したら、制御装置15は三方切換え弁11を切換え制御してバッファタンク10内の高温の温水を貯湯タンクへ導く。
At this time, the four-way switching valve 5 in the heat pump refrigeration cycle is controlled to be switched, and the refrigerant condenses in the heat exchange refrigerant pipe 8A and releases condensed heat. The low temperature hot water led to the heat exchange water pipe 8B is heated, and the temperature rises to change to high temperature hot water.
When detecting that the hot water in the buffer tank 10 has risen above a predetermined temperature, the control device 15 controls the three-way switching valve 11 to guide the hot water in the buffer tank 10 to the hot water storage tank.

その一方で、貯湯タンク底部から低温の温水が導出され、水熱交換器8に導かれて熱交換するとともにバッファタンク10に導かれ、所定温度に到達するまではバイパス管Nを介して循環回路Kを循環する。バッファタンク10内の温水温度が所定温度以上になったことを検知する都度、制御装置15は三方切換え弁11を切換え制御して、バッファタンク10内の温水を貯湯タンク3へ供給する。   On the other hand, low-temperature hot water is led out from the bottom of the hot water storage tank, led to the water heat exchanger 8 to exchange heat, and led to the buffer tank 10 until a predetermined temperature is reached. Cycle K. Each time it is detected that the temperature of the hot water in the buffer tank 10 has become equal to or higher than the predetermined temperature, the control device 15 switches and controls the three-way switching valve 11 to supply the hot water in the buffer tank 10 to the hot water storage tank 3.

貯湯タンク3において、各水位に取付けられる全ての温度センサ17が、それぞれ予め設定された温度以上を検知したら、貯湯タンク3内に貯溜される温水の全てが所定温度以上になったことと判断し、制御装置15は圧縮機4と循環ポンプ9の運転を停止して貯湯運転を終了する。
このように本発明の給湯システムでは、上述した密閉型貯湯タンク3と、ここで説明した開放型貯湯タンクのいずれにも対応できる。そのため、設備の老朽化にともなうリニューアルや、熱源機としてガス給湯システムからヒートポンプ式給湯システムなどの他の方式に変更する場合に、密閉型、開放型のいずれの貯湯タンクであっても、少なくとも貯湯タンクはそのまま用いることができて、経済性および施工性の向上化を得られる。
In the hot water storage tank 3, when all the temperature sensors 17 attached to the respective water levels detect a predetermined temperature or higher, it is determined that all of the hot water stored in the hot water storage tank 3 has reached a predetermined temperature or higher. The control device 15 stops the operation of the compressor 4 and the circulation pump 9 and ends the hot water storage operation.
Thus, the hot water supply system of the present invention can be applied to both the above-described sealed hot water storage tank 3 and the open hot water storage tank described here. Therefore, when refurbishing due to aging equipment, or when changing from a gas hot water supply system to another system such as a heat pump hot water supply system as a heat source, at least hot water storage tanks, whether sealed or open, The tank can be used as it is, and an improvement in economic efficiency and workability can be obtained.

なお、本発明の給湯システムは、以下に述べるような構成においても適用される。
図3は他の実施の形態における給湯システムの装置構成図、図4は同給湯システムにおける貯湯運転時と除霜運転時の冷媒と温水の流れの説明図である。
この給湯システムは、ヒートポンプユニット1Aと、流路切換え制御ユニット2Aおよび、密閉型貯湯タンク3とから構成される。
上記ヒートポンプユニット1Aには、圧縮機4と、四方切換え弁5と、室外熱交換器6と、減圧装置である電動膨張弁(PMV:パルスモータバルブ)7が収容配置されている。
Note that the hot water supply system of the present invention is also applied to the configuration described below.
FIG. 3 is an apparatus configuration diagram of a hot water supply system according to another embodiment, and FIG. 4 is an explanatory diagram of the flow of refrigerant and hot water during hot water storage operation and defrost operation in the hot water supply system.
This hot water supply system includes a heat pump unit 1A, a flow path switching control unit 2A, and a sealed hot water storage tank 3.
In the heat pump unit 1A, a compressor 4, a four-way switching valve 5, an outdoor heat exchanger 6, and an electric expansion valve (PMV: pulse motor valve) 7 which is a pressure reducing device are accommodated.

上記流路切換え制御ユニット2Aには、水熱交換器8と、循環ポンプ9と、バッファタンク10および、三方切換え弁(流路切換え手段)11が収容配置される。上記水熱交換器8は、熱交換用冷媒管8Aおよび熱交換用水配管8Bを備えていて、上記圧縮機4、四方切換え弁11、室外熱交換器6、電動膨張弁7および水熱交換器8における熱交換用冷媒管8Aは、順次、冷媒管Rを介して連通され、ヒートポンプ式の冷凍サイクルを構成している。   In the flow path switching control unit 2A, a water heat exchanger 8, a circulation pump 9, a buffer tank 10, and a three-way switching valve (flow path switching means) 11 are accommodated. The water heat exchanger 8 includes a heat exchange refrigerant pipe 8A and a heat exchange water pipe 8B. The compressor 4, the four-way switching valve 11, the outdoor heat exchanger 6, the electric expansion valve 7, and the water heat exchanger. The heat exchange refrigerant pipe 8A in Fig. 8 is sequentially communicated through the refrigerant pipe R to constitute a heat pump type refrigeration cycle.

流路切換え制御ユニット2Aにおける、水熱交換器8の熱交換用水配管8Bと、上記バッファタンク10と、上記三方切換え弁11の2つのポートおよび循環ポンプ9は水配管Mを介して接続され、これらで循環回路Kが構成される。
上記三方切換え弁11の残りのポートと、汎用の密閉型貯湯タンク3とは水配管Mを介して連通される。この水配管Mの中途部には、たとえば洗面所や厨房設備に設けられる給湯栓12と連通する給湯管Sが接続される。貯湯タンク3の底部には流路切換え制御ユニット2の循環回路Kに接続される水配管Mが設けられ、この水配管Mの中途部に図示しない給水源に接続する給水管Qが連通されていて、この給水管Qは減圧弁13を備えている。
In the flow path switching control unit 2A, the heat exchange water pipe 8B of the water heat exchanger 8, the buffer tank 10, the two ports of the three-way switching valve 11 and the circulation pump 9 are connected via a water pipe M. These constitute the circulation circuit K.
The remaining port of the three-way switching valve 11 and the general-purpose sealed hot water storage tank 3 are communicated with each other through a water pipe M. In the middle of the water pipe M, for example, a hot water supply pipe S communicating with a hot water tap 12 provided in a washroom or kitchen facility is connected. A water pipe M connected to the circulation circuit K of the flow path switching control unit 2 is provided at the bottom of the hot water storage tank 3, and a water supply pipe Q connected to a water supply source (not shown) is connected to the middle of the water pipe M. The water supply pipe Q is provided with a pressure reducing valve 13.

以上のような装置構成と配管系統であり、特に図3に示すように、上記流路切換え制御ユニット2Aには各構成部品を電気的に制御する制御装置(制御手段)15が設けられる。上記制御装置15は、ヒートポンプユニット制御器16と、三方切換え弁11と、貯湯タンク3に底部から上面部まで所定間隔を存して設けられる複数の温度センサ17と電気的に接続される。
図4に示すように、安価な深夜電力を利用する貯湯運転の開始にあたって上記制御装置15は、圧縮機4と循環ポンプ9に駆動制御信号を送り、四方切換え弁5および三方切換え弁11に切換え制御信号を送る。
The apparatus configuration and the piping system as described above, and in particular, as shown in FIG. 3, the flow path switching control unit 2A is provided with a control device (control means) 15 for electrically controlling each component. The control device 15 is electrically connected to the heat pump unit controller 16, the three-way switching valve 11, and a plurality of temperature sensors 17 provided in the hot water storage tank 3 with a predetermined interval from the bottom to the top surface.
As shown in FIG. 4, the controller 15 sends a drive control signal to the compressor 4 and the circulation pump 9 to switch to the four-way switching valve 5 and the three-way switching valve 11 at the start of hot water storage operation using inexpensive late-night power. Send a control signal.

圧縮機4が駆動され吐出される冷媒は、図中実線矢印に示すように四方切換え弁5からヒートポンプユニット1Aを出て流路切換え制御ユニット2A内に導入され、水熱交換器8の熱交換用冷媒管8Aに導かれて凝縮し、凝縮熱を放出する。そして冷媒は、再びヒートポンプユニット1A内に入って電動膨張弁7で減圧膨張し、室外熱交換器6で蒸発し、四方切換え弁5を介して圧縮機4に吸込まれ、再び上述の径路を循環する。   The refrigerant that is driven and discharged by the compressor 4 exits the heat pump unit 1A from the four-way switching valve 5 and is introduced into the flow path switching control unit 2A as shown by the solid arrows in the figure, and heat exchange of the water heat exchanger 8 is performed. It is led to the refrigerant pipe 8A for condensation and releases heat of condensation. Then, the refrigerant again enters the heat pump unit 1A, decompresses and expands by the electric expansion valve 7, evaporates by the outdoor heat exchanger 6, is sucked into the compressor 4 through the four-way switching valve 5, and circulates again through the above-described path. To do.

一方、減圧弁13を介して貯湯タンク3内へ水を供給し、満杯状態にして貯溜する。ここに貯えられた水は循環ポンプ9の運転により、図中実線矢印に示すように水熱交換器8の熱交換用水配管8Bに導かれ、熱交換用冷媒管8Aで凝縮熱を放出する冷媒と熱交換して温度上昇し温水(湯)に変る。そして、温水はヒートポンプユニット1Aから出て、バッファタンク10に導かれる。   On the other hand, water is supplied into the hot water storage tank 3 through the pressure reducing valve 13 and stored in a full state. The water stored here is led to the heat exchange water pipe 8B of the water heat exchanger 8 by the operation of the circulation pump 9 as shown by the solid line arrow in the figure, and the refrigerant releases the heat of condensation in the heat exchange refrigerant pipe 8A. Heat is exchanged with the water and the temperature rises and turns into hot water (hot water). Then, the hot water leaves the heat pump unit 1A and is guided to the buffer tank 10.

上記制御装置15は、バッファタンク10内の温水が予め設定された温度に到達するまでは、バッファタンク10からバイパス管Nに導通するよう三方切換え弁11を切換え制御する。温水は循環ポンプ9から水熱交換器8内の熱交換用水配管8Bに導かれて熱交換し、さらにバッファタンク10へと循環する。
バッファタンク10内の温水が徐々に上昇して所定温度以上になったことを検知したら、制御装置15は三方切換え弁11を切換え制御する。バッファタンク10内の温水は図中破線矢印に示すように、貯湯タンク3上部へ供給される。その一方で、貯湯タンク3底部から低温の温水が図中実線矢印に示すように導出され、水熱交換器8に導かれて熱交換するとともにバッファタンク10に導かれ、所定温度に到達するまではバイパス管Nを介して循環回路Kを循環する。
The control device 15 switches and controls the three-way switching valve 11 so that the buffer tank 10 conducts to the bypass pipe N until the hot water in the buffer tank 10 reaches a preset temperature. The hot water is guided from the circulation pump 9 to the heat exchange water pipe 8B in the water heat exchanger 8 to exchange heat, and further circulates to the buffer tank 10.
When it is detected that the hot water in the buffer tank 10 gradually rises to a predetermined temperature or higher, the control device 15 controls the three-way switching valve 11 to switch. The hot water in the buffer tank 10 is supplied to the upper part of the hot water storage tank 3 as indicated by a broken line arrow in the figure. On the other hand, the low temperature hot water is led out from the bottom of the hot water storage tank 3 as shown by the solid arrow in the figure, led to the water heat exchanger 8 to exchange heat and led to the buffer tank 10 until it reaches a predetermined temperature. Circulates in the circulation circuit K via the bypass pipe N.

バッファタンク10内の温水温度が所定温度以上になったことを検知する都度、制御装置15は三方切換え弁11を切換え制御して、バッファタンク10内の温水を貯湯タンク3へ供給する。貯湯タンク3において、各水位に取付けられる全ての温度センサ17により、それぞれ予め設定された温度以上を検知したら、貯湯タンク3内に貯溜される温水の全てが所定温度以上になったことと判断し、制御装置15は圧縮機4と循環ポンプ9の運転を停止して貯湯運転を終了する。
深夜電力の適用時間外では、給湯栓12を開放すると貯湯タンク3内の温水が給湯栓12から供給される。給湯栓12を閉成すれば、給湯が終了する。
Each time it is detected that the temperature of the hot water in the buffer tank 10 has become equal to or higher than the predetermined temperature, the control device 15 switches and controls the three-way switching valve 11 to supply the hot water in the buffer tank 10 to the hot water storage tank 3. In the hot water storage tank 3, if all the temperature sensors 17 attached to each water level detect a temperature higher than a preset value, it is determined that all of the hot water stored in the hot water storage tank 3 has reached a predetermined temperature or higher. The control device 15 stops the operation of the compressor 4 and the circulation pump 9 and ends the hot water storage operation.
Outside the application time of midnight power, when the hot water tap 12 is opened, hot water in the hot water storage tank 3 is supplied from the hot water tap 12. When the hot water tap 12 is closed, the hot water supply is completed.

また、制御装置15は、以下に述べるように除霜運転を行うよう制御する。
圧縮機4から吐出された冷媒ガスが図中一点鎖線矢印に示すように、四方切換え弁5を介して室外熱交換器6に導かれ、ここで凝縮して凝縮熱を放出する。したがって、室外熱交換器6に付着していた霜が徐々に溶融する除霜作用が行われる。凝縮した冷媒は電動膨張弁7において減圧膨張し、水熱交換器8に導かれて蒸発し、四方切換え弁5を介して圧縮機4に吸込まれ、再び上述の径路を循環する。
In addition, the control device 15 controls to perform the defrosting operation as described below.
The refrigerant gas discharged from the compressor 4 is led to the outdoor heat exchanger 6 through the four-way switching valve 5 as indicated by the one-dot chain arrow in the figure, where it condenses and releases the condensation heat. Therefore, a defrosting action is performed in which the frost adhering to the outdoor heat exchanger 6 is gradually melted. The condensed refrigerant is decompressed and expanded in the electric expansion valve 7, is led to the water heat exchanger 8, evaporates, is sucked into the compressor 4 through the four-way switching valve 5, and circulates again through the above-described path.

一方、循環ポンプ9が駆動されて、バッファタンク10内に充満していた温水が図中実線矢印に示すように、三方切換え弁11から循環ポンプ9を介して水熱交換器8の熱交換用水配管8Bに導かれる。温水は熱交換用水配管8Bにおいて熱交換用冷媒管8Aを流通する低温の冷媒と熱交換してからバッファタンク10に導かれ、上述の循環回路Kを循環する。ヒートポンプ冷凍サイクルを循環する冷媒の温度が上がって、室外熱交換器6における除霜作用が早期に終了する。   On the other hand, as the circulation pump 9 is driven and the hot water filled in the buffer tank 10 is indicated by a solid line arrow in the figure, the water for heat exchange of the water heat exchanger 8 is passed from the three-way switching valve 11 through the circulation pump 9. It is guided to the pipe 8B. The hot water exchanges heat with the low-temperature refrigerant flowing through the heat exchange refrigerant pipe 8A in the heat exchange water pipe 8B, and then is guided to the buffer tank 10 and circulates in the circulation circuit K described above. The temperature of the refrigerant circulating in the heat pump refrigeration cycle rises, and the defrosting action in the outdoor heat exchanger 6 ends early.

除霜作用が完全に終了して再び貯湯運転を開始する際に、バッファタンク10内の温水が所定温度以下に低下していることを検知したら、制御装置15は三方切換え弁11の切換え方向を維持する。バッファタンク10内の温水は循環ポンプ9を介して水熱交換器8の熱交換用水配管8Bに導かれ、熱交換用冷媒管8Aに導かれる冷媒と熱交換する。
このとき、ヒートポンプ式冷凍サイクルにおける四方切換え弁5は切換え制御されていて、冷媒は熱交換用冷媒管8Aで凝縮して凝縮熱を放出する。熱交換用水配管8Bに導かれる低温の温水は加熱され、温度上昇して高温の温水に変る。
When it is detected that the hot water in the buffer tank 10 has dropped below a predetermined temperature when the defrosting operation is completed and the hot water storage operation is started again, the control device 15 changes the switching direction of the three-way switching valve 11. maintain. Hot water in the buffer tank 10 is led to the heat exchange water pipe 8B of the water heat exchanger 8 through the circulation pump 9, and exchanges heat with the refrigerant led to the heat exchange refrigerant pipe 8A.
At this time, the four-way switching valve 5 in the heat pump refrigeration cycle is controlled to be switched, and the refrigerant condenses in the heat exchange refrigerant pipe 8A and releases condensed heat. The low temperature hot water led to the heat exchange water pipe 8B is heated, and the temperature rises to change to high temperature hot water.

バッファタンク10内の温水が所定温度以上に上昇したことを検知したら、制御装置15は三方切換え弁11を切換え制御し図中破線矢印に示すように、バッファタンク10内の高温の湯を貯湯タンク3へ導く。
その一方で、貯湯タンク3底部から図中実線矢印に示すように低温の温水が導出され、水熱交換器8に導かれて熱交換するとともにバッファタンク10に導かれ、所定温度に到達するまではバイパス管Nを介して循環回路Kを循環する。バッファタンク10内の温水温度が所定温度以上になったことを検知する都度、制御装置15は三方切換え弁11を切換え制御して、バッファタンク10内の温水を貯湯タンク3へ供給する。
When it is detected that the hot water in the buffer tank 10 has risen above the predetermined temperature, the control device 15 controls the three-way switching valve 11 to switch the hot water in the buffer tank 10 to the hot water storage tank as indicated by the broken line arrow in the figure. Lead to 3.
On the other hand, from the bottom of the hot water storage tank 3, as shown by the solid line arrow in the figure, the low temperature hot water is led out, led to the water heat exchanger 8 to exchange heat and led to the buffer tank 10 until it reaches a predetermined temperature. Circulates in the circulation circuit K via the bypass pipe N. Each time it is detected that the temperature of the hot water in the buffer tank 10 has become equal to or higher than the predetermined temperature, the control device 15 switches and controls the three-way switching valve 11 to supply the hot water in the buffer tank 10 to the hot water storage tank 3.

貯湯タンク3において、各水位に取付けられる全ての温度センサ17が、それぞれ予め設定された温度以上を検知したら、貯湯タンク3内に貯溜される温水の全てが所定温度以上になったことと判断し、制御装置15は圧縮機4と循環ポンプ9の運転を停止して貯湯運転を終了する。
特に図示していないが貯湯タンク3として、開放型の貯湯タンクを備えた場合でも、先に説明したような貯湯運転と除霜運転との切換えが可能である。したがって、水熱交換器8と循環ポンプ9を流路切換え制御ユニット2A内に備えた、この実施の形態の構成であっても、先の実施の形態と全く同様の作用効果が得られる。
In the hot water storage tank 3, when all the temperature sensors 17 attached to the respective water levels detect a predetermined temperature or higher, it is determined that all of the hot water stored in the hot water storage tank 3 has reached a predetermined temperature or higher. The control device 15 stops the operation of the compressor 4 and the circulation pump 9 and ends the hot water storage operation.
Although not particularly illustrated, even when an open-type hot water storage tank is provided as the hot water storage tank 3, switching between the hot water storage operation and the defrosting operation as described above is possible. Therefore, even with the configuration of this embodiment in which the water heat exchanger 8 and the circulation pump 9 are provided in the flow path switching control unit 2A, the same operational effects as those of the previous embodiment can be obtained.

また、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。   Further, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明の実施の形態に係る、給湯システムの装置構成と配管系統を説明する図。The figure explaining the apparatus structure and piping system of a hot-water supply system based on embodiment of this invention. 同実施の形態に係る、貯湯運転時と除霜運転時の冷媒および温水の流れを説明する図。The figure explaining the flow of the refrigerant | coolant and warm water at the time of the hot water storage operation and defrost operation which concern on the embodiment. 本発明の他の実施の形態に係る、給湯システムの装置構成と配管系統を説明する図。The figure explaining the apparatus structure and piping system of a hot-water supply system based on other embodiment of this invention. 同実施の形態に係る、貯湯運転時と除霜運転時の冷媒および温水の流れを説明する図。The figure explaining the flow of the refrigerant | coolant and warm water at the time of the hot water storage operation and defrost operation which concern on the embodiment.

符号の説明Explanation of symbols

4…圧縮機、5…四方切換え弁、7…電動膨張弁(減圧装置)、8…水熱交換器、P…冷媒管、1…ヒートポンプユニット、10…バッファタンク、11…三方切換え弁(流路切換え手段)、15…制御装置(制御手段)、2…流路切換え制御ユニット、3…貯湯タンク。   DESCRIPTION OF SYMBOLS 4 ... Compressor, 5 ... Four-way switching valve, 7 ... Electric expansion valve (pressure reduction device), 8 ... Water heat exchanger, P ... Refrigerant pipe, 1 ... Heat pump unit, 10 ... Buffer tank, 11 ... Three-way switching valve (flow) Path switching means), 15 ... control device (control means), 2 ... flow path switching control unit, 3 ... hot water storage tank.

Claims (4)

圧縮機、四方切換え弁、室外熱交換器、減圧装置および水熱交換器とを冷媒管を介して連通しヒートポンプ式の冷凍サイクルを構成するヒートポンプユニットと、
このヒートポンプユニットの上記水熱交換器に熱交換水を供給し、水熱交換器で熱交換して得られた温水(湯)を一時的に貯溜するバッファタンク、このバッファタンクから供出される温水の流路先を切換える流路切換え手段および、この流路切換え手段を切換え制御する制御手段を備えた流路切換え制御ユニットと、
この流路切換え制御ユニットの上記流路切換え手段を介して連通される貯湯タンクと
を具備することを特徴とする給湯システム。
A heat pump unit comprising a compressor, a four-way switching valve, an outdoor heat exchanger, a pressure reducing device, and a water heat exchanger via a refrigerant pipe to constitute a heat pump refrigeration cycle;
A buffer tank that supplies heat exchange water to the water heat exchanger of the heat pump unit and temporarily stores hot water (hot water) obtained by heat exchange with the water heat exchanger, hot water supplied from the buffer tank A flow path switching means for switching the flow path destination, and a flow path switching control unit comprising a control means for switching the flow path switching means,
A hot water supply system comprising a hot water storage tank communicated with the flow path switching means of the flow path switching control unit.
上記制御手段は、上記貯湯タンクに対する貯湯運転時に、上記流路切換え制御ユニットの上記流路切換え手段に対し、沸き上げ温度が所定温度に上昇するまで上記水熱交換器とバッファタンクとの間を温水が循環するよう切換え、所定の温度以上になったときバッファタンクの温水を上記貯湯タンクに導くよう切換え制御することを特徴とする請求項1記載の給湯システム。   In the hot water storage operation for the hot water storage tank, the control means causes the flow path switching means of the flow path switching control unit to move between the water heat exchanger and the buffer tank until the boiling temperature rises to a predetermined temperature. 2. The hot water supply system according to claim 1, wherein the hot water is switched so as to circulate, and the hot water in the buffer tank is switched so as to be guided to the hot water storage tank when the temperature becomes a predetermined temperature or higher. 上記制御手段は、上記室外熱交換器に対する除霜運転時に、上記ヒートポンプユニットにおける上記流路切換え手段に対し上記バッファタンク内の温水を上記水熱交換器に導き、水熱交換器に導かれる冷媒と熱交換するよう切換え制御することを特徴とする請求項1記載の給湯システム。   In the defrosting operation for the outdoor heat exchanger, the control means guides the hot water in the buffer tank to the water heat exchanger with respect to the flow path switching means in the heat pump unit, and the refrigerant guided to the water heat exchanger. 2. The hot water supply system according to claim 1, wherein switching control is performed so as to exchange heat with the hot water supply system. 圧縮機、四方切換え弁、室外熱交換器、減圧装置を収容し、冷媒管を介して接続されるヒートポンプユニットと、
このヒートポンプユニットの上記四方切換え弁および上記減圧装置と冷媒管を介して連通されヒートポンプ式の冷凍サイクルを構成する水熱交換器、この水熱交換器に熱交換水を供給し水熱交換器に導かれる冷媒と熱交換して得られた温水(湯)を一時的に貯溜するバッファタンク、このバッファタンクから供出される温水の流路先を切換える流路切換え手段および、この流路切換え手段を切換え制御する制御手段などを備えた流路切換え制御ユニットと、
この流路切換え制御ユニットの上記流路切換え手段を介して連通される貯湯タンクと
を具備することを特徴とする給湯システム。
A compressor, a four-way switching valve, an outdoor heat exchanger, a decompression device, a heat pump unit connected via a refrigerant pipe;
A water heat exchanger composing a heat pump refrigeration cycle communicated with the four-way switching valve and the decompression device of the heat pump unit through a refrigerant pipe, supplying heat exchange water to the water heat exchanger, and supplying the water heat exchanger A buffer tank for temporarily storing hot water (hot water) obtained by heat exchange with the refrigerant to be guided, a flow path switching means for switching a flow path destination of the hot water supplied from the buffer tank, and this flow path switching means A flow path switching control unit including a control means for switching control, and the like;
A hot water supply system comprising a hot water storage tank communicated with the flow path switching means of the flow path switching control unit.
JP2005071292A 2005-03-14 2005-03-14 Hot water supply system Pending JP2006250497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071292A JP2006250497A (en) 2005-03-14 2005-03-14 Hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071292A JP2006250497A (en) 2005-03-14 2005-03-14 Hot water supply system

Publications (1)

Publication Number Publication Date
JP2006250497A true JP2006250497A (en) 2006-09-21

Family

ID=37091185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071292A Pending JP2006250497A (en) 2005-03-14 2005-03-14 Hot water supply system

Country Status (1)

Country Link
JP (1) JP2006250497A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097799A (en) * 2007-10-17 2009-05-07 Panasonic Corp Heat pump water heater
JP2011501089A (en) * 2007-10-12 2011-01-06 スカンジナビアン エナジー エフィシェンシー カンパニー シーク エービー Heat pump equipment
WO2010090898A3 (en) * 2009-02-03 2011-04-14 Sridhar Deivasigamani Apparatus and control method for a hybrid tankless water heater
JP2011257137A (en) * 2011-09-30 2011-12-22 Mitsubishi Electric Corp Heat pump hot water supply device, and method of operating the same
KR101261170B1 (en) 2011-09-23 2013-05-09 곽상칠 Warm water supplying and heating apparatus
US8971694B2 (en) 2009-02-03 2015-03-03 Intellihot Green Technologies, Inc. Control method for a hybrid tankless water heater
EP2863144A1 (en) * 2008-12-16 2015-04-22 Mitsubishi Electric Corporation Heat pump water heater and operating method thereof
CN106288022A (en) * 2015-06-03 2017-01-04 陕西华汇能源科技有限公司 A kind of trilogy supply outdoor machine of air-conditioner
US10247446B2 (en) 2007-03-09 2019-04-02 Lochinvar, Llc Control system for modulating water heater

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955169B2 (en) 2007-03-09 2021-03-23 Lochinvar, Llc Control system for modulating water heater
US10247446B2 (en) 2007-03-09 2019-04-02 Lochinvar, Llc Control system for modulating water heater
US8950203B2 (en) 2007-10-12 2015-02-10 Scandinavian Energy Efficiency Co. Seec Ab Heat pump device
JP2011501089A (en) * 2007-10-12 2011-01-06 スカンジナビアン エナジー エフィシェンシー カンパニー シーク エービー Heat pump equipment
JP2009097799A (en) * 2007-10-17 2009-05-07 Panasonic Corp Heat pump water heater
EP2863144A1 (en) * 2008-12-16 2015-04-22 Mitsubishi Electric Corporation Heat pump water heater and operating method thereof
US9062895B2 (en) 2009-02-03 2015-06-23 Intellihot Green Technologies, Inc. Gas control method for a hybrid tankless water heater
US8971694B2 (en) 2009-02-03 2015-03-03 Intellihot Green Technologies, Inc. Control method for a hybrid tankless water heater
US8498523B2 (en) 2009-02-03 2013-07-30 Intellihot, Inc. Apparatus and control method for a hybrid tankless water heater
US9234679B2 (en) 2009-02-03 2016-01-12 Intellihot Green Technologies, Inc. Apparatus and control method for a hybrid tankless water heater
WO2010090898A3 (en) * 2009-02-03 2011-04-14 Sridhar Deivasigamani Apparatus and control method for a hybrid tankless water heater
KR101261170B1 (en) 2011-09-23 2013-05-09 곽상칠 Warm water supplying and heating apparatus
JP2011257137A (en) * 2011-09-30 2011-12-22 Mitsubishi Electric Corp Heat pump hot water supply device, and method of operating the same
CN106288022A (en) * 2015-06-03 2017-01-04 陕西华汇能源科技有限公司 A kind of trilogy supply outdoor machine of air-conditioner

Similar Documents

Publication Publication Date Title
JP2006250497A (en) Hot water supply system
KR101329509B1 (en) Hot water circulation system associated with heat pump and method for controlling the same
KR900000809B1 (en) Room-warming/cooling and hot-water supplying heat-pump apparatus
KR101372594B1 (en) Heat pump system
EP2402686A1 (en) Heat pump system
EP2402684A1 (en) Heat pump system
KR101045435B1 (en) Water circulation system associated with refrigerant cycle
JP5185091B2 (en) Heat pump hot water supply system
KR20100015104A (en) Method for controlling hot water circulation system associated with heat pump
AU2010219038A1 (en) Heat pump system
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP4726573B2 (en) Heat pump hot water floor heater
JP2004317093A (en) Heat pump hot water supply and heating apparatus
JP3887781B2 (en) Heat pump water heater
JP2010084975A (en) Heating device
KR101116927B1 (en) Heat pump system using ground heat source
JP5095488B2 (en) Heat pump water heater
JP2006336949A (en) Heat storage type air conditioner
JP5097054B2 (en) Heat pump water heater
JP2007071471A (en) Heating device and hot-water supply heating device
JP2010054145A (en) Heat pump water heater
JP2003222416A (en) Heat storage type air conditioner
JP2008045826A (en) Hot-water storage type hot water supply heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804